Newer
Older
Donato Meoli
a validé
from collections import deque, defaultdict
from functools import reduce as _reduce
import search
Donato Meoli
a validé
from csp import sat_up, NaryCSP, Constraint, ac_search_solver, is_
Donato Meoli
a validé
from logic import FolKB, conjuncts, unify, associate, SAT_plan, cdcl_satisfiable
from utils import Expr, expr, first
Planning Domain Definition Language (PlanningProblem) used to define a search problem.
It stores states in a knowledge base consisting of first order logic statements.
The conjunction of these logical statements completely defines a state.
Donato Meoli
a validé
def __init__(self, initial, goals, actions, domain=None):
self.initial = self.convert(initial) if domain is None else self.convert(initial) + self.convert(domain)
Donato Meoli
a validé
self.domain = domain
if not isinstance(clauses, Expr):
if len(clauses) > 0:
clauses = expr(clauses)
else:
clauses = []
new_clauses = []
for clause in clauses:
if clause.op == '~':
new_clauses.append(expr('Not' + str(clause.args[0])))
else:
new_clauses.append(clause)
return new_clauses
Donato Meoli
a validé
def expand_fluents(self, name=None):
kb = None
if self.domain:
kb = FolKB(self.convert(self.domain))
for action in self.actions:
if action.precond:
for fests in set(action.precond).union(action.effect).difference(self.convert(action.domain)):
if fests.op[:3] != 'Not':
kb.tell(expr(str(action.domain) + ' ==> ' + str(fests)))
objects = set(arg for clause in set(self.initial + self.goals) for arg in clause.args)
fluent_list = []
if name is not None:
for fluent in self.initial + self.goals:
if str(fluent) == name:
fluent_list.append(fluent)
break
else:
fluent_list = list(map(lambda fluent: Expr(fluent[0], *fluent[1]),
{fluent.op: fluent.args for fluent in self.initial + self.goals +
[clause for action in self.actions for clause in action.effect if
clause.op[:3] != 'Not']}.items()))
expansions = []
for fluent in fluent_list:
for permutation in itertools.permutations(objects, len(fluent.args)):
new_fluent = Expr(fluent.op, *permutation)
if (self.domain and kb.ask(new_fluent) is not False) or not self.domain:
expansions.append(new_fluent)
return expansions
Donato Meoli
a validé
def expand_actions(self, name=None):
"""Generate all possible actions with variable bindings for precondition selection heuristic"""
Donato Meoli
a validé
has_domains = all(action.domain for action in self.actions if action.precond)
kb = None
if has_domains:
kb = FolKB(self.initial)
for action in self.actions:
if action.precond:
kb.tell(expr(str(action.domain) + ' ==> ' + str(action)))
Donato Meoli
a validé
objects = set(arg for clause in self.initial for arg in clause.args)
expansions = []
action_list = []
if name is not None:
for action in self.actions:
if str(action.name) == name:
action_list.append(action)
break
else:
action_list = self.actions
for action in action_list:
for permutation in itertools.permutations(objects, len(action.args)):
bindings = unify(Expr(action.name, *action.args), Expr(action.name, *permutation))
if bindings is not None:
new_args = []
for arg in action.args:
if arg in bindings:
new_args.append(bindings[arg])
else:
new_args.append(arg)
new_expr = Expr(str(action.name), *new_args)
Donato Meoli
a validé
if (has_domains and kb.ask(new_expr) is not False) or (
has_domains and not action.precond) or not has_domains:
new_preconds = []
for precond in action.precond:
new_precond_args = []
for arg in precond.args:
if arg in bindings:
new_precond_args.append(bindings[arg])
else:
new_precond_args.append(arg)
new_precond = Expr(str(precond.op), *new_precond_args)
new_preconds.append(new_precond)
new_effects = []
for effect in action.effect:
new_effect_args = []
for arg in effect.args:
if arg in bindings:
new_effect_args.append(bindings[arg])
else:
new_effect_args.append(arg)
new_effect = Expr(str(effect.op), *new_effect_args)
new_effects.append(new_effect)
expansions.append(Action(new_expr, new_preconds, new_effects))
Donato Meoli
a validé
return expansions
def is_strips(self):
"""
Returns True if the problem does not contain negative literals in preconditions and goals
"""
return (all(clause.op[:3] != 'Not' for clause in self.goals) and
all(clause.op[:3] != 'Not' for action in self.actions for clause in action.precond))
"""Checks if the goals have been reached"""
Donato Meoli
a validé
return all(goal in self.initial for goal in self.goals)
Note that action is an Expr like expr('Remove(Glass, Table)') or expr('Eat(Sandwich)')
Donato Meoli
a validé
"""
action_name = action.op
args = action.args
list_action = first(a for a in self.actions if a.name == action_name)
if list_action is None:
raise Exception("Action '{}' not found".format(action_name))
Donato Meoli
a validé
if not list_action.check_precond(self.initial, args):
raise Exception("Action '{}' pre-conditions not satisfied".format(action))
Donato Meoli
a validé
self.initial = list_action(self.initial, args).clauses
Defines an action schema using preconditions and effects.
Use this to describe actions in PlanningProblem.
action is an Expr where variables are given as arguments(args).
Precondition and effect are both lists with positive and negative literals.
Negative preconditions and effects are defined by adding a 'Not' before the name of the clause
precond = [expr("Human(person)"), expr("Hungry(Person)"), expr("NotEaten(food)")]
effect = [expr("Eaten(food)"), expr("Hungry(person)")]
eat = Action(expr("Eat(person, food)"), precond, effect)
Donato Meoli
a validé
def __init__(self, action, precond, effect, domain=None):
if isinstance(action, str):
action = expr(action)
Donato Meoli
a validé
self.precond = self.convert(precond) if domain is None else self.convert(precond) + self.convert(domain)
Donato Meoli
a validé
self.domain = domain
def __call__(self, kb, args):
return self.act(kb, args)
Donato Meoli
a validé
return '{}'.format(Expr(self.name, *self.args))
if isinstance(clauses, Expr):
clauses = conjuncts(clauses)
for i in range(len(clauses)):
if clauses[i].op == '~':
clauses[i] = expr('Not' + str(clauses[i].args[0]))
elif isinstance(clauses, str):
clauses = clauses.replace('~', 'Not')
if len(clauses) > 0:
clauses = expr(clauses)
try:
clauses = conjuncts(clauses)
except AttributeError:
pass
Donato Meoli
a validé
def relaxed(self):
"""
Removes delete list from the action by removing all negative literals from action's effect
"""
return Action(Expr(self.name, *self.args), self.precond,
list(filter(lambda effect: effect.op[:3] != 'Not', self.effect)))
"""Replaces variables in expression with their respective Propositional symbol"""
new_args = list(e.args)
for num, x in enumerate(e.args):
for i, _ in enumerate(self.args):
return Expr(e.op, *new_args)
def check_precond(self, kb, args):
"""Checks if the precondition is satisfied in the current state"""
if isinstance(kb, list):
kb = FolKB(kb)
for clause in self.precond:
if self.substitute(clause, args) not in kb.clauses:
return False
return True
def act(self, kb, args):
"""Executes the action on the state's knowledge base"""
if isinstance(kb, list):
kb = FolKB(kb)
if not self.check_precond(kb, args):
raise Exception('Action pre-conditions not satisfied')
for clause in self.effect:
kb.tell(self.substitute(clause, args))
if clause.op[:3] == 'Not':
new_clause = Expr(clause.op[3:], *clause.args)
if kb.ask(self.substitute(new_clause, args)) is not False:
kb.retract(self.substitute(new_clause, args))
else:
new_clause = Expr('Not' + clause.op, *clause.args)
Donato Meoli
a validé
if kb.ask(self.substitute(new_clause, args)) is not False:
kb.retract(self.substitute(new_clause, args))
def goal_test(goals, state):
"""Generic goal testing helper function"""
if isinstance(state, list):
kb = FolKB(state)
else:
kb = state
return all(kb.ask(q) is not False for q in goals)
"""
[Figure 10.1] AIR-CARGO-PROBLEM
An air-cargo shipment problem for delivering cargo to different locations,
given the starting location and airplanes.
Example:
>>> from planning import *
>>> ac = air_cargo()
>>> ac.goal_test()
False
>>> ac.act(expr('Load(C2, P2, JFK)'))
>>> ac.act(expr('Load(C1, P1, SFO)'))
>>> ac.act(expr('Fly(P1, SFO, JFK)'))
>>> ac.act(expr('Fly(P2, JFK, SFO)'))
>>> ac.act(expr('Unload(C2, P2, SFO)'))
>>> ac.goal_test()
False
>>> ac.act(expr('Unload(C1, P1, JFK)'))
>>> ac.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(initial='At(C1, SFO) & At(C2, JFK) & At(P1, SFO) & At(P2, JFK)',
goals='At(C1, JFK) & At(C2, SFO)',
actions=[Action('Load(c, p, a)',
precond='At(c, a) & At(p, a)',
effect='In(c, p) & ~At(c, a)',
domain='Cargo(c) & Plane(p) & Airport(a)'),
Action('Unload(c, p, a)',
precond='In(c, p) & At(p, a)',
effect='At(c, a) & ~In(c, p)',
domain='Cargo(c) & Plane(p) & Airport(a)'),
Action('Fly(p, f, to)',
precond='At(p, f)',
effect='At(p, to) & ~At(p, f)',
domain='Plane(p) & Airport(f) & Airport(to)')],
domain='Cargo(C1) & Cargo(C2) & Plane(P1) & Plane(P2) & Airport(SFO) & Airport(JFK)')
"""[Figure 10.2] SPARE-TIRE-PROBLEM
A problem involving changing the flat tire of a car
with a spare tire from the trunk.
Example:
>>> from planning import *
>>> st = spare_tire()
>>> st.goal_test()
False
>>> st.act(expr('Remove(Spare, Trunk)'))
>>> st.act(expr('Remove(Flat, Axle)'))
>>> st.goal_test()
False
>>> st.act(expr('PutOn(Spare, Axle)'))
>>> st.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(initial='At(Flat, Axle) & At(Spare, Trunk)',
Donato Meoli
a validé
goals='At(Spare, Axle) & At(Flat, Ground)',
actions=[Action('Remove(obj, loc)',
precond='At(obj, loc)',
Donato Meoli
a validé
effect='At(obj, Ground) & ~At(obj, loc)',
domain='Tire(obj)'),
Donato Meoli
a validé
Action('PutOn(t, Axle)',
Donato Meoli
a validé
precond='At(t, Ground) & ~At(Flat, Axle)',
effect='At(t, Axle) & ~At(t, Ground)',
domain='Tire(t)'),
Donato Meoli
a validé
Action('LeaveOvernight',
precond='',
effect='~At(Spare, Ground) & ~At(Spare, Axle) & ~At(Spare, Trunk) & \
Donato Meoli
a validé
~At(Flat, Ground) & ~At(Flat, Axle) & ~At(Flat, Trunk)')],
domain='Tire(Flat) & Tire(Spare)')
opensourceware
a validé
"""
[Figure 10.3] THREE-BLOCK-TOWER
A blocks-world problem of stacking three blocks in a certain configuration,
also known as the Sussman Anomaly.
Example:
>>> from planning import *
>>> tbt = three_block_tower()
>>> tbt.goal_test()
False
>>> tbt.act(expr('MoveToTable(C, A)'))
>>> tbt.act(expr('Move(B, Table, C)'))
>>> tbt.goal_test()
False
>>> tbt.act(expr('Move(A, Table, B)'))
>>> tbt.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(initial='On(A, Table) & On(B, Table) & On(C, A) & Clear(B) & Clear(C)',
goals='On(A, B) & On(B, C)',
actions=[Action('Move(b, x, y)',
precond='On(b, x) & Clear(b) & Clear(y)',
effect='On(b, y) & Clear(x) & ~On(b, x) & ~Clear(y)',
domain='Block(b) & Block(y)'),
Action('MoveToTable(b, x)',
precond='On(b, x) & Clear(b)',
effect='On(b, Table) & Clear(x) & ~On(b, x)',
domain='Block(b) & Block(x)')],
domain='Block(A) & Block(B) & Block(C)')
opensourceware
a validé
def simple_blocks_world():
"""
SIMPLE-BLOCKS-WORLD
A simplified definition of the Sussman Anomaly problem.
Example:
>>> from planning import *
>>> sbw = simple_blocks_world()
>>> sbw.goal_test()
False
>>> sbw.act(expr('ToTable(A, B)'))
>>> sbw.act(expr('FromTable(B, A)'))
>>> sbw.goal_test()
False
>>> sbw.act(expr('FromTable(C, B)'))
>>> sbw.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(initial='On(A, B) & Clear(A) & OnTable(B) & OnTable(C) & Clear(C)',
goals='On(B, A) & On(C, B)',
actions=[Action('ToTable(x, y)',
precond='On(x, y) & Clear(x)',
effect='~On(x, y) & Clear(y) & OnTable(x)'),
Action('FromTable(y, x)',
precond='OnTable(y) & Clear(y) & Clear(x)',
effect='~OnTable(y) & ~Clear(x) & On(y, x)')])
opensourceware
a validé
def have_cake_and_eat_cake_too():
"""
[Figure 10.7] CAKE-PROBLEM
Donato Meoli
a validé
A problem where we begin with a cake and want to
reach the state of having a cake and having eaten a cake.
The possible actions include baking a cake and eating a cake.
Example:
>>> from planning import *
>>> cp = have_cake_and_eat_cake_too()
>>> cp.goal_test()
False
>>> cp.act(expr('Eat(Cake)'))
>>> cp.goal_test()
False
>>> cp.act(expr('Bake(Cake)'))
>>> cp.goal_test()
True
>>>
"""
opensourceware
a validé
Donato Meoli
a validé
return PlanningProblem(initial='Have(Cake)',
goals='Have(Cake) & Eaten(Cake)',
actions=[Action('Eat(Cake)',
precond='Have(Cake)',
effect='Eaten(Cake) & ~Have(Cake)'),
Action('Bake(Cake)',
precond='~Have(Cake)',
effect='Have(Cake)')])
opensourceware
a validé
"""
SHOPPING-PROBLEM
A problem of acquiring some items given their availability at certain stores.
Example:
>>> from planning import *
>>> sp = shopping_problem()
>>> sp.goal_test()
False
>>> sp.act(expr('Go(Home, HW)'))
>>> sp.act(expr('Buy(Drill, HW)'))
>>> sp.act(expr('Go(HW, SM)'))
>>> sp.act(expr('Buy(Banana, SM)'))
>>> sp.goal_test()
False
>>> sp.act(expr('Buy(Milk, SM)'))
>>> sp.goal_test()
True
>>>
"""
opensourceware
a validé
Donato Meoli
a validé
return PlanningProblem(initial='At(Home) & Sells(SM, Milk) & Sells(SM, Banana) & Sells(HW, Drill)',
goals='Have(Milk) & Have(Banana) & Have(Drill)',
actions=[Action('Buy(x, store)',
precond='At(store) & Sells(store, x)',
Donato Meoli
a validé
effect='Have(x)',
domain='Store(store) & Item(x)'),
Donato Meoli
a validé
Action('Go(x, y)',
precond='At(x)',
Donato Meoli
a validé
effect='At(y) & ~At(x)',
domain='Place(x) & Place(y)')],
domain='Place(Home) & Place(SM) & Place(HW) & Store(SM) & Store(HW) & '
'Item(Milk) & Item(Banana) & Item(Drill)')
"""
SOCKS-AND-SHOES-PROBLEM
A task of wearing socks and shoes on both feet
Example:
>>> from planning import *
>>> ss = socks_and_shoes()
>>> ss.goal_test()
False
>>> ss.act(expr('RightSock'))
>>> ss.act(expr('RightShoe'))
>>> ss.act(expr('LeftSock'))
>>> ss.goal_test()
False
>>> ss.act(expr('LeftShoe'))
>>> ss.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(initial='',
goals='RightShoeOn & LeftShoeOn',
actions=[Action('RightShoe',
precond='RightSockOn',
effect='RightShoeOn'),
Action('RightSock',
precond='',
effect='RightSockOn'),
Action('LeftShoe',
precond='LeftSockOn',
effect='LeftShoeOn'),
Action('LeftSock',
precond='',
effect='LeftSockOn')])
"""
[Figure 11.10] DOUBLE-TENNIS-PROBLEM
A multiagent planning problem involving two partner tennis players
trying to return an approaching ball and repositioning around in the court.
Example:
>>> from planning import *
>>> dtp = double_tennis_problem()
Donato Meoli
a validé
>>> goal_test(dtp.goals, dtp.initial)
False
>>> dtp.act(expr('Go(A, RightBaseLine, LeftBaseLine)'))
>>> dtp.act(expr('Hit(A, Ball, RightBaseLine)'))
Donato Meoli
a validé
>>> goal_test(dtp.goals, dtp.initial)
False
>>> dtp.act(expr('Go(A, LeftNet, RightBaseLine)'))
Donato Meoli
a validé
>>> goal_test(dtp.goals, dtp.initial)
Donato Meoli
a validé
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
return PlanningProblem(
initial='At(A, LeftBaseLine) & At(B, RightNet) & Approaching(Ball, RightBaseLine) & Partner(A, B) & Partner(B, A)',
goals='Returned(Ball) & At(a, LeftNet) & At(a, RightNet)',
actions=[Action('Hit(actor, Ball, loc)',
precond='Approaching(Ball, loc) & At(actor, loc)',
effect='Returned(Ball)'),
Action('Go(actor, to, loc)',
precond='At(actor, loc)',
effect='At(actor, to) & ~At(actor, loc)')])
class ForwardPlan(search.Problem):
"""
Forward state-space search [Section 10.2.1]
"""
def __init__(self, planning_problem):
super().__init__(associate('&', planning_problem.initial), associate('&', planning_problem.goals))
self.planning_problem = planning_problem
self.expanded_actions = self.planning_problem.expand_actions()
def actions(self, state):
return [action for action in self.expanded_actions if all(pre in conjuncts(state) for pre in action.precond)]
def result(self, state, action):
return associate('&', action(conjuncts(state), action.args).clauses)
def goal_test(self, state):
return all(goal in conjuncts(state) for goal in self.planning_problem.goals)
def h(self, state):
"""
Computes ignore delete lists heuristic by creating a relaxed version of the original problem (we can do that
by removing the delete lists from all actions, ie. removing all negative literals from effects) that will be
easier to solve through GraphPlan and where the length of the solution will serve as a good heuristic.
"""
relaxed_planning_problem = PlanningProblem(initial=state.state,
goals=self.goal,
actions=[action.relaxed() for action in
self.planning_problem.actions])
try:
return len(linearize(GraphPlan(relaxed_planning_problem).execute()))
except:
return float('inf')
class BackwardPlan(search.Problem):
"""
Backward relevant-states search [Section 10.2.2]
"""
def __init__(self, planning_problem):
super().__init__(associate('&', planning_problem.goals), associate('&', planning_problem.initial))
self.planning_problem = planning_problem
self.expanded_actions = self.planning_problem.expand_actions()
def actions(self, subgoal):
"""
Returns True if the action is relevant to the subgoal, ie.:
- the action achieves an element of the effects
- the action doesn't delete something that needs to be achieved
- the preconditions are consistent with other subgoals that need to be achieved
"""
def negate_clause(clause):
return Expr(clause.op.replace('Not', ''), *clause.args) if clause.op[:3] == 'Not' else Expr(
'Not' + clause.op, *clause.args)
subgoal = conjuncts(subgoal)
return [action for action in self.expanded_actions if
(any(prop in action.effect for prop in subgoal) and
not any(negate_clause(prop) in subgoal for prop in action.effect) and
not any(negate_clause(prop) in subgoal and negate_clause(prop) not in action.effect
for prop in action.precond))]
def result(self, subgoal, action):
# g' = (g - effects(a)) + preconds(a)
return associate('&', set(set(conjuncts(subgoal)).difference(action.effect)).union(action.precond))
def goal_test(self, subgoal):
return all(goal in conjuncts(self.goal) for goal in conjuncts(subgoal))
def h(self, subgoal):
"""
Computes ignore delete lists heuristic by creating a relaxed version of the original problem (we can do that
by removing the delete lists from all actions, ie. removing all negative literals from effects) that will be
easier to solve through GraphPlan and where the length of the solution will serve as a good heuristic.
"""
relaxed_planning_problem = PlanningProblem(initial=self.goal,
goals=subgoal.state,
actions=[action.relaxed() for action in
self.planning_problem.actions])
try:
return len(linearize(GraphPlan(relaxed_planning_problem).execute()))
except:
return float('inf')
Donato Meoli
a validé
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
def CSPlan(planning_problem, solution_length, CSP_solver=ac_search_solver, arc_heuristic=sat_up):
"""
Planning as Constraint Satisfaction Problem [Section 10.4.3]
"""
def st(var, stage):
"""Returns a string for the var-stage pair that can be used as a variable"""
return str(var) + "_" + str(stage)
def if_(v1, v2):
"""If the second argument is v2, the first argument must be v1"""
def if_fun(x1, x2):
return x1 == v1 if x2 == v2 else True
if_fun.__name__ = "if the second argument is " + str(v2) + " then the first argument is " + str(v1) + " "
return if_fun
def eq_if_not_in_(actset):
"""First and third arguments are equal if action is not in actset"""
def eq_if_not_in(x1, a, x2):
return x1 == x2 if a not in actset else True
eq_if_not_in.__name__ = "first and third arguments are equal if action is not in " + str(actset) + " "
return eq_if_not_in
expanded_actions = planning_problem.expand_actions()
fluent_values = planning_problem.expand_fluents()
for horizon in range(solution_length):
act_vars = [st('action', stage) for stage in range(horizon + 1)]
domains = {av: list(map(lambda action: expr(str(action)), expanded_actions)) for av in act_vars}
domains.update({st(var, stage): {True, False} for var in fluent_values for stage in range(horizon + 2)})
# initial state constraints
constraints = [Constraint((st(var, 0),), is_(val))
for (var, val) in {expr(str(fluent).replace('Not', '')):
True if fluent.op[:3] != 'Not' else False
for fluent in planning_problem.initial}.items()]
constraints += [Constraint((st(var, 0),), is_(False))
for var in {expr(str(fluent).replace('Not', ''))
for fluent in fluent_values if fluent not in planning_problem.initial}]
# goal state constraints
constraints += [Constraint((st(var, horizon + 1),), is_(val))
for (var, val) in {expr(str(fluent).replace('Not', '')):
True if fluent.op[:3] != 'Not' else False
for fluent in planning_problem.goals}.items()]
# precondition constraints
constraints += [Constraint((st(var, stage), st('action', stage)), if_(val, act))
# st(var, stage) == val if st('action', stage) == act
for act, strps in {expr(str(action)): action for action in expanded_actions}.items()
for var, val in {expr(str(fluent).replace('Not', '')):
True if fluent.op[:3] != 'Not' else False
for fluent in strps.precond}.items()
for stage in range(horizon + 1)]
# effect constraints
constraints += [Constraint((st(var, stage + 1), st('action', stage)), if_(val, act))
# st(var, stage + 1) == val if st('action', stage) == act
for act, strps in {expr(str(action)): action for action in expanded_actions}.items()
for var, val in {expr(str(fluent).replace('Not', '')): True if fluent.op[:3] != 'Not' else False
for fluent in strps.effect}.items()
for stage in range(horizon + 1)]
# frame constraints
constraints += [Constraint((st(var, stage), st('action', stage), st(var, stage + 1)),
eq_if_not_in_(set(map(lambda action: expr(str(action)),
{act for act in expanded_actions if var in act.effect
or Expr('Not' + var.op, *var.args) in act.effect}))))
for var in fluent_values for stage in range(horizon + 1)]
csp = NaryCSP(domains, constraints)
sol = CSP_solver(csp, arc_heuristic=arc_heuristic)
if sol:
return [sol[a] for a in act_vars]
Donato Meoli
a validé
def SATPlan(planning_problem, solution_length, SAT_solver=cdcl_satisfiable):
Donato Meoli
a validé
"""
Planning as Boolean satisfiability [Section 10.4.1]
"""
def expand_transitions(state, actions):
state = sorted(conjuncts(state))
for action in filter(lambda act: act.check_precond(state, act.args), actions):
transition[associate('&', state)].update(
{Expr(action.name, *action.args):
associate('&', sorted(set(filter(lambda clause: clause.op[:3] != 'Not',
action(state, action.args).clauses))))
if planning_problem.is_strips()
else associate('&', sorted(set(action(state, action.args).clauses)))})
for state in transition[associate('&', state)].values():
if state not in transition:
expand_transitions(expr(state), actions)
transition = defaultdict(dict)
expand_transitions(associate('&', planning_problem.initial), planning_problem.expand_actions())
return SAT_plan(associate('&', sorted(planning_problem.initial)), transition,
associate('&', sorted(planning_problem.goals)), solution_length, SAT_solver=SAT_solver)
"""
Contains the state of the planning problem
and exhaustive list of actions which use the
states as pre-condition.
"""
def __init__(self, kb):
"""Initializes variables to hold state and action details of a level"""
self.kb = kb
# current state
self.current_state = kb.clauses
# current action to state link
self.current_action_links = {}
# current state to action link
self.current_state_links = {}
# current action to next state link
# next state to current action link
self.next_state_links = {}
# mutually exclusive actions
self.mutex = []
def __call__(self, actions, objects):
self.build(actions, objects)
self.find_mutex()
def separate(self, e):
"""Separates an iterable of elements into positive and negative parts"""
positive = []
negative = []
for clause in e:
if clause.op[:3] == 'Not':
negative.append(clause)
else:
positive.append(clause)
return positive, negative
"""Finds mutually exclusive actions"""
pos_nsl, neg_nsl = self.separate(self.next_state_links)
for negeff in neg_nsl:
new_negeff = Expr(negeff.op[3:], *negeff.args)
for poseff in pos_nsl:
if new_negeff == poseff:
for a in self.next_state_links[poseff]:
for b in self.next_state_links[negeff]:
if {a, b} not in self.mutex:
self.mutex.append({a, b})
# Interference will be calculated with the last step
pos_csl, neg_csl = self.separate(self.current_state_links)
Donato Meoli
a validé
for pos_precond in pos_csl:
for neg_precond in neg_csl:
new_neg_precond = Expr(neg_precond.op[3:], *neg_precond.args)
if new_neg_precond == pos_precond:
for a in self.current_state_links[pos_precond]:
for b in self.current_state_links[neg_precond]:
if {a, b} not in self.mutex:
self.mutex.append({a, b})
state_mutex = []
for pair in self.mutex:
next_state_0 = self.next_action_links[list(pair)[0]]
if len(pair) == 2:
next_state_1 = self.next_action_links[list(pair)[1]]
else:
next_state_1 = self.next_action_links[list(pair)[0]]
if (len(next_state_0) == 1) and (len(next_state_1) == 1):
state_mutex.append({next_state_0[0], next_state_1[0]})
Donato Meoli
a validé
self.mutex = self.mutex + state_mutex
"""Populates the lists and dictionaries containing the state action dependencies"""
for clause in self.current_state:
p_expr = Expr('P' + clause.op, *clause.args)
self.current_action_links[p_expr] = [clause]
self.next_action_links[p_expr] = [clause]
self.current_state_links[clause] = [p_expr]
self.next_state_links[clause] = [p_expr]
for a in actions:
num_args = len(a.args)
possible_args = tuple(itertools.permutations(objects, num_args))
for arg in possible_args:
for num, symbol in enumerate(a.args):
if not symbol.op.islower():
arg = list(arg)
arg[num] = symbol
arg = tuple(arg)
new_action = a.substitute(Expr(a.name, *a.args), arg)
self.current_action_links[new_action] = []
self.current_action_links[new_action].append(new_clause)
if new_clause in self.current_state_links:
self.current_state_links[new_clause].append(new_action)
self.current_state_links[new_clause] = [new_action]
Donato Meoli
a validé
new_clause = a.substitute(clause, arg)
self.next_action_links[new_action].append(new_clause)
if new_clause in self.next_state_links:
self.next_state_links[new_clause].append(new_action)
self.next_state_links[new_clause] = [new_action]
"""Performs the necessary actions and returns a new Level"""
new_kb = FolKB(list(set(self.next_state_links.keys())))
return Level(new_kb)
class Graph:
"""
Contains levels of state and actions
Used in graph planning algorithm to extract a solution
"""
Donato Meoli
a validé
def __init__(self, planning_problem):
self.planning_problem = planning_problem
self.kb = FolKB(planning_problem.initial)
self.levels = [Level(self.kb)]
self.objects = set(arg for clause in self.kb.clauses for arg in clause.args)
def __call__(self):
self.expand_graph()
"""Expands the graph by a level"""
Donato Meoli
a validé
last_level(self.planning_problem.actions, self.objects)
self.levels.append(last_level.perform_actions())
def non_mutex_goals(self, goals, index):
"""Checks whether the goals are mutually exclusive"""
goal_perm = itertools.combinations(goals, 2)
for g in goal_perm:
if set(g) in self.levels[index].mutex:
return False
return True
class GraphPlan:
"""
Class for formulation GraphPlan algorithm
Constructs a graph of state and action space
Returns solution for the planning problem
"""
Donato Meoli
a validé
def __init__(self, planning_problem):
self.graph = Graph(planning_problem)
self.no_goods = []
self.solution = []
def check_leveloff(self):
"""Checks if the graph has levelled off"""
check = (set(self.graph.levels[-1].current_state) == set(self.graph.levels[-2].current_state))
if check:
def extract_solution(self, goals, index):
"""Extracts the solution"""
Donato Meoli
a validé
level = self.graph.levels[index]
if not self.graph.non_mutex_goals(goals, index):
Donato Meoli
a validé
self.no_goods.append((level, goals))
Donato Meoli
a validé
level = self.graph.levels[index - 1]
Donato Meoli
a validé
# Create all combinations of actions that satisfy the goal
Donato Meoli
a validé
actions.append(level.next_state_links[goal])
Donato Meoli
a validé
all_actions = list(itertools.product(*actions))
Donato Meoli
a validé
non_mutex_actions = []
Donato Meoli
a validé
action_pairs = itertools.combinations(list(set(action_tuple)), 2)
non_mutex_actions.append(list(set(action_tuple)))
for pair in action_pairs:
if set(pair) in level.mutex:
non_mutex_actions.pop(-1)
break
Donato Meoli
a validé
for action_list in non_mutex_actions:
if [action_list, index] not in self.solution:
self.solution.append([action_list, index])
Donato Meoli
a validé
for act in set(action_list):
if act in level.current_action_links:
new_goals = new_goals + level.current_action_links[act]
if abs(index) + 1 == len(self.graph.levels):
Donato Meoli
a validé
elif (level, new_goals) in self.no_goods:
self.extract_solution(new_goals, index - 1)
solution = []
for item in self.solution:
if item[1] == -1:
solution.append([])
solution[-1].append(item[0])
else:
solution[-1].append(item[0])
for num, item in enumerate(solution):
item.reverse()
solution[num] = item
return solution
Donato Meoli
a validé
return all(kb.ask(q) is not False for q in self.graph.planning_problem.goals)
def execute(self):
"""Executes the GraphPlan algorithm for the given problem"""
Donato Meoli
a validé
if (self.goal_test(self.graph.levels[-1].kb) and self.graph.non_mutex_goals(
self.graph.planning_problem.goals, -1)):
solution = self.extract_solution(self.graph.planning_problem.goals, -1)