Newer
Older
Donato Meoli
a validé
from collections import deque, defaultdict
from functools import reduce as _reduce
import search
from logic import FolKB, conjuncts, unify, associate, SAT_plan, dpll_satisfiable
from utils import Expr, expr, first
Planning Domain Definition Language (PlanningProblem) used to define a search problem.
It stores states in a knowledge base consisting of first order logic statements.
The conjunction of these logical statements completely defines a state.
Donato Meoli
a validé
def __init__(self, initial, goals, actions):
self.initial = self.convert(initial)
if not isinstance(clauses, Expr):
if len(clauses) > 0:
clauses = expr(clauses)
else:
clauses = []
new_clauses = []
for clause in clauses:
if clause.op == '~':
new_clauses.append(expr('Not' + str(clause.args[0])))
else:
new_clauses.append(clause)
return new_clauses
Donato Meoli
a validé
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
def expand_actions(self, name=None):
"""Generate all possible actions with variable bindings for precondition selection heuristic"""
objects = set(arg for clause in self.initial for arg in clause.args)
expansions = []
action_list = []
if name is not None:
for action in self.actions:
if str(action.name) == name:
action_list.append(action)
break
else:
action_list = self.actions
for action in action_list:
for permutation in itertools.permutations(objects, len(action.args)):
bindings = unify(Expr(action.name, *action.args), Expr(action.name, *permutation))
if bindings is not None:
new_args = []
for arg in action.args:
if arg in bindings:
new_args.append(bindings[arg])
else:
new_args.append(arg)
new_expr = Expr(str(action.name), *new_args)
new_preconds = []
for precond in action.precond:
new_precond_args = []
for arg in precond.args:
if arg in bindings:
new_precond_args.append(bindings[arg])
else:
new_precond_args.append(arg)
new_precond = Expr(str(precond.op), *new_precond_args)
new_preconds.append(new_precond)
new_effects = []
for effect in action.effect:
new_effect_args = []
for arg in effect.args:
if arg in bindings:
new_effect_args.append(bindings[arg])
else:
new_effect_args.append(arg)
new_effect = Expr(str(effect.op), *new_effect_args)
new_effects.append(new_effect)
expansions.append(Action(new_expr, new_preconds, new_effects))
return expansions
def is_strips(self):
"""
Returns True if the problem does not contain negative literals in preconditions and goals
"""
return (all(clause.op[:3] != 'Not' for clause in self.goals) and
all(clause.op[:3] != 'Not' for action in self.actions for clause in action.precond))
"""Checks if the goals have been reached"""
Donato Meoli
a validé
return all(goal in self.initial for goal in self.goals)
Note that action is an Expr like expr('Remove(Glass, Table)') or expr('Eat(Sandwich)')
Donato Meoli
a validé
"""
action_name = action.op
args = action.args
list_action = first(a for a in self.actions if a.name == action_name)
if list_action is None:
raise Exception("Action '{}' not found".format(action_name))
Donato Meoli
a validé
if not list_action.check_precond(self.initial, args):
raise Exception("Action '{}' pre-conditions not satisfied".format(action))
Donato Meoli
a validé
self.initial = list_action(self.initial, args).clauses
Defines an action schema using preconditions and effects.
Use this to describe actions in PlanningProblem.
action is an Expr where variables are given as arguments(args).
Precondition and effect are both lists with positive and negative literals.
Negative preconditions and effects are defined by adding a 'Not' before the name of the clause
precond = [expr("Human(person)"), expr("Hungry(Person)"), expr("NotEaten(food)")]
effect = [expr("Eaten(food)"), expr("Hungry(person)")]
eat = Action(expr("Eat(person, food)"), precond, effect)
def __init__(self, action, precond, effect):
if isinstance(action, str):
action = expr(action)
self.precond = self.convert(precond)
self.effect = self.convert(effect)
def __call__(self, kb, args):
return self.act(kb, args)
Donato Meoli
a validé
return '{}'.format(Expr(self.name, *self.args))
if isinstance(clauses, Expr):
clauses = conjuncts(clauses)
for i in range(len(clauses)):
if clauses[i].op == '~':
clauses[i] = expr('Not' + str(clauses[i].args[0]))
elif isinstance(clauses, str):
clauses = clauses.replace('~', 'Not')
if len(clauses) > 0:
clauses = expr(clauses)
try:
clauses = conjuncts(clauses)
except AttributeError:
pass
Donato Meoli
a validé
def relaxed(self):
"""
Removes delete list from the action by removing all negative literals from action's effect
"""
return Action(Expr(self.name, *self.args), self.precond,
list(filter(lambda effect: effect.op[:3] != 'Not', self.effect)))
"""Replaces variables in expression with their respective Propositional symbol"""
new_args = list(e.args)
for num, x in enumerate(e.args):
for i, _ in enumerate(self.args):
return Expr(e.op, *new_args)
def check_precond(self, kb, args):
"""Checks if the precondition is satisfied in the current state"""
if isinstance(kb, list):
kb = FolKB(kb)
for clause in self.precond:
if self.substitute(clause, args) not in kb.clauses:
return False
return True
def act(self, kb, args):
"""Executes the action on the state's knowledge base"""
if isinstance(kb, list):
kb = FolKB(kb)
if not self.check_precond(kb, args):
raise Exception('Action pre-conditions not satisfied')
for clause in self.effect:
kb.tell(self.substitute(clause, args))
if clause.op[:3] == 'Not':
new_clause = Expr(clause.op[3:], *clause.args)
if kb.ask(self.substitute(new_clause, args)) is not False:
kb.retract(self.substitute(new_clause, args))
else:
new_clause = Expr('Not' + clause.op, *clause.args)
Donato Meoli
a validé
if kb.ask(self.substitute(new_clause, args)) is not False:
kb.retract(self.substitute(new_clause, args))
def goal_test(goals, state):
"""Generic goal testing helper function"""
if isinstance(state, list):
kb = FolKB(state)
else:
kb = state
return all(kb.ask(q) is not False for q in goals)
"""
[Figure 10.1] AIR-CARGO-PROBLEM
An air-cargo shipment problem for delivering cargo to different locations,
given the starting location and airplanes.
Example:
>>> from planning import *
>>> ac = air_cargo()
>>> ac.goal_test()
False
>>> ac.act(expr('Load(C2, P2, JFK)'))
>>> ac.act(expr('Load(C1, P1, SFO)'))
>>> ac.act(expr('Fly(P1, SFO, JFK)'))
>>> ac.act(expr('Fly(P2, JFK, SFO)'))
>>> ac.act(expr('Unload(C2, P2, SFO)'))
>>> ac.goal_test()
False
>>> ac.act(expr('Unload(C1, P1, JFK)'))
>>> ac.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(
initial='At(C1, SFO) & At(C2, JFK) & At(P1, SFO) & At(P2, JFK) & '
'Cargo(C1) & Cargo(C2) & Plane(P1) & Plane(P2) & Airport(SFO) & Airport(JFK)',
goals='At(C1, JFK) & At(C2, SFO)',
actions=[Action('Load(c, p, a)',
precond='At(c, a) & At(p, a) & Cargo(c) & Plane(p) & Airport(a)',
effect='In(c, p) & ~At(c, a)'),
Action('Unload(c, p, a)',
precond='In(c, p) & At(p, a) & Cargo(c) & Plane(p) & Airport(a)',
effect='At(c, a) & ~In(c, p)'),
Action('Fly(p, f, to)',
precond='At(p, f) & Plane(p) & Airport(f) & Airport(to)',
effect='At(p, to) & ~At(p, f)')])
"""[Figure 10.2] SPARE-TIRE-PROBLEM
A problem involving changing the flat tire of a car
with a spare tire from the trunk.
Example:
>>> from planning import *
>>> st = spare_tire()
>>> st.goal_test()
False
>>> st.act(expr('Remove(Spare, Trunk)'))
>>> st.act(expr('Remove(Flat, Axle)'))
>>> st.goal_test()
False
>>> st.act(expr('PutOn(Spare, Axle)'))
>>> st.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(initial='Tire(Flat) & Tire(Spare) & At(Flat, Axle) & At(Spare, Trunk)',
goals='At(Spare, Axle) & At(Flat, Ground)',
actions=[Action('Remove(obj, loc)',
precond='At(obj, loc)',
effect='At(obj, Ground) & ~At(obj, loc)'),
Action('PutOn(t, Axle)',
precond='Tire(t) & At(t, Ground) & ~At(Flat, Axle)',
effect='At(t, Axle) & ~At(t, Ground)'),
Action('LeaveOvernight',
precond='',
effect='~At(Spare, Ground) & ~At(Spare, Axle) & ~At(Spare, Trunk) & \
~At(Flat, Ground) & ~At(Flat, Axle) & ~At(Flat, Trunk)')])
opensourceware
a validé
"""
[Figure 10.3] THREE-BLOCK-TOWER
A blocks-world problem of stacking three blocks in a certain configuration,
also known as the Sussman Anomaly.
Example:
>>> from planning import *
>>> tbt = three_block_tower()
>>> tbt.goal_test()
False
>>> tbt.act(expr('MoveToTable(C, A)'))
>>> tbt.act(expr('Move(B, Table, C)'))
>>> tbt.goal_test()
False
>>> tbt.act(expr('Move(A, Table, B)'))
>>> tbt.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(
initial='On(A, Table) & On(B, Table) & On(C, A) & Block(A) & Block(B) & Block(C) & Clear(B) & Clear(C)',
goals='On(A, B) & On(B, C)',
actions=[Action('Move(b, x, y)',
precond='On(b, x) & Clear(b) & Clear(y) & Block(b) & Block(y)',
effect='On(b, y) & Clear(x) & ~On(b, x) & ~Clear(y)'),
Action('MoveToTable(b, x)',
precond='On(b, x) & Clear(b) & Block(b)',
effect='On(b, Table) & Clear(x) & ~On(b, x)')])
opensourceware
a validé
def simple_blocks_world():
"""
SIMPLE-BLOCKS-WORLD
A simplified definition of the Sussman Anomaly problem.
Example:
>>> from planning import *
>>> sbw = simple_blocks_world()
>>> sbw.goal_test()
False
>>> sbw.act(expr('ToTable(A, B)'))
>>> sbw.act(expr('FromTable(B, A)'))
>>> sbw.goal_test()
False
>>> sbw.act(expr('FromTable(C, B)'))
>>> sbw.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(initial='On(A, B) & Clear(A) & OnTable(B) & OnTable(C) & Clear(C)',
goals='On(B, A) & On(C, B)',
actions=[Action('ToTable(x, y)',
precond='On(x, y) & Clear(x)',
effect='~On(x, y) & Clear(y) & OnTable(x)'),
Action('FromTable(y, x)',
precond='OnTable(y) & Clear(y) & Clear(x)',
effect='~OnTable(y) & ~Clear(x) & On(y, x)')])
opensourceware
a validé
def have_cake_and_eat_cake_too():
"""
[Figure 10.7] CAKE-PROBLEM
Donato Meoli
a validé
A problem where we begin with a cake and want to
reach the state of having a cake and having eaten a cake.
The possible actions include baking a cake and eating a cake.
Example:
>>> from planning import *
>>> cp = have_cake_and_eat_cake_too()
>>> cp.goal_test()
False
>>> cp.act(expr('Eat(Cake)'))
>>> cp.goal_test()
False
>>> cp.act(expr('Bake(Cake)'))
>>> cp.goal_test()
True
>>>
"""
opensourceware
a validé
Donato Meoli
a validé
return PlanningProblem(initial='Have(Cake)',
goals='Have(Cake) & Eaten(Cake)',
actions=[Action('Eat(Cake)',
precond='Have(Cake)',
effect='Eaten(Cake) & ~Have(Cake)'),
Action('Bake(Cake)',
precond='~Have(Cake)',
effect='Have(Cake)')])
opensourceware
a validé
"""
SHOPPING-PROBLEM
A problem of acquiring some items given their availability at certain stores.
Example:
>>> from planning import *
>>> sp = shopping_problem()
>>> sp.goal_test()
False
>>> sp.act(expr('Go(Home, HW)'))
>>> sp.act(expr('Buy(Drill, HW)'))
>>> sp.act(expr('Go(HW, SM)'))
>>> sp.act(expr('Buy(Banana, SM)'))
>>> sp.goal_test()
False
>>> sp.act(expr('Buy(Milk, SM)'))
>>> sp.goal_test()
True
>>>
"""
opensourceware
a validé
Donato Meoli
a validé
return PlanningProblem(initial='At(Home) & Sells(SM, Milk) & Sells(SM, Banana) & Sells(HW, Drill)',
goals='Have(Milk) & Have(Banana) & Have(Drill)',
actions=[Action('Buy(x, store)',
precond='At(store) & Sells(store, x)',
effect='Have(x)'),
Action('Go(x, y)',
precond='At(x)',
effect='At(y) & ~At(x)')])
"""
SOCKS-AND-SHOES-PROBLEM
A task of wearing socks and shoes on both feet
Example:
>>> from planning import *
>>> ss = socks_and_shoes()
>>> ss.goal_test()
False
>>> ss.act(expr('RightSock'))
>>> ss.act(expr('RightShoe'))
>>> ss.act(expr('LeftSock'))
>>> ss.goal_test()
False
>>> ss.act(expr('LeftShoe'))
>>> ss.goal_test()
True
>>>
"""
Donato Meoli
a validé
return PlanningProblem(initial='',
goals='RightShoeOn & LeftShoeOn',
actions=[Action('RightShoe',
precond='RightSockOn',
effect='RightShoeOn'),
Action('RightSock',
precond='',
effect='RightSockOn'),
Action('LeftShoe',
precond='LeftSockOn',
effect='LeftShoeOn'),
Action('LeftSock',
precond='',
effect='LeftSockOn')])
"""
[Figure 11.10] DOUBLE-TENNIS-PROBLEM
A multiagent planning problem involving two partner tennis players
trying to return an approaching ball and repositioning around in the court.
Example:
>>> from planning import *
>>> dtp = double_tennis_problem()
Donato Meoli
a validé
>>> goal_test(dtp.goals, dtp.initial)
False
>>> dtp.act(expr('Go(A, RightBaseLine, LeftBaseLine)'))
>>> dtp.act(expr('Hit(A, Ball, RightBaseLine)'))
Donato Meoli
a validé
>>> goal_test(dtp.goals, dtp.initial)
False
>>> dtp.act(expr('Go(A, LeftNet, RightBaseLine)'))
Donato Meoli
a validé
>>> goal_test(dtp.goals, dtp.initial)
Donato Meoli
a validé
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
return PlanningProblem(
initial='At(A, LeftBaseLine) & At(B, RightNet) & Approaching(Ball, RightBaseLine) & Partner(A, B) & Partner(B, A)',
goals='Returned(Ball) & At(a, LeftNet) & At(a, RightNet)',
actions=[Action('Hit(actor, Ball, loc)',
precond='Approaching(Ball, loc) & At(actor, loc)',
effect='Returned(Ball)'),
Action('Go(actor, to, loc)',
precond='At(actor, loc)',
effect='At(actor, to) & ~At(actor, loc)')])
class ForwardPlan(search.Problem):
"""
Forward state-space search [Section 10.2.1]
"""
def __init__(self, planning_problem):
super().__init__(associate('&', planning_problem.initial), associate('&', planning_problem.goals))
self.planning_problem = planning_problem
self.expanded_actions = self.planning_problem.expand_actions()
def actions(self, state):
return [action for action in self.expanded_actions if all(pre in conjuncts(state) for pre in action.precond)]
def result(self, state, action):
return associate('&', action(conjuncts(state), action.args).clauses)
def goal_test(self, state):
return all(goal in conjuncts(state) for goal in self.planning_problem.goals)
def h(self, state):
"""
Computes ignore delete lists heuristic by creating a relaxed version of the original problem (we can do that
by removing the delete lists from all actions, ie. removing all negative literals from effects) that will be
easier to solve through GraphPlan and where the length of the solution will serve as a good heuristic.
"""
relaxed_planning_problem = PlanningProblem(initial=state.state,
goals=self.goal,
actions=[action.relaxed() for action in
self.planning_problem.actions])
try:
return len(linearize(GraphPlan(relaxed_planning_problem).execute()))
except:
return float('inf')
class BackwardPlan(search.Problem):
"""
Backward relevant-states search [Section 10.2.2]
"""
def __init__(self, planning_problem):
super().__init__(associate('&', planning_problem.goals), associate('&', planning_problem.initial))
self.planning_problem = planning_problem
self.expanded_actions = self.planning_problem.expand_actions()
def actions(self, subgoal):
"""
Returns True if the action is relevant to the subgoal, ie.:
- the action achieves an element of the effects
- the action doesn't delete something that needs to be achieved
- the preconditions are consistent with other subgoals that need to be achieved
"""
def negate_clause(clause):
return Expr(clause.op.replace('Not', ''), *clause.args) if clause.op[:3] == 'Not' else Expr(
'Not' + clause.op, *clause.args)
subgoal = conjuncts(subgoal)
return [action for action in self.expanded_actions if
(any(prop in action.effect for prop in subgoal) and
not any(negate_clause(prop) in subgoal for prop in action.effect) and
not any(negate_clause(prop) in subgoal and negate_clause(prop) not in action.effect
for prop in action.precond))]
def result(self, subgoal, action):
# g' = (g - effects(a)) + preconds(a)
return associate('&', set(set(conjuncts(subgoal)).difference(action.effect)).union(action.precond))
def goal_test(self, subgoal):
return all(goal in conjuncts(self.goal) for goal in conjuncts(subgoal))
def h(self, subgoal):
"""
Computes ignore delete lists heuristic by creating a relaxed version of the original problem (we can do that
by removing the delete lists from all actions, ie. removing all negative literals from effects) that will be
easier to solve through GraphPlan and where the length of the solution will serve as a good heuristic.
"""
relaxed_planning_problem = PlanningProblem(initial=self.goal,
goals=subgoal.state,
actions=[action.relaxed() for action in
self.planning_problem.actions])
try:
return len(linearize(GraphPlan(relaxed_planning_problem).execute()))
except:
return float('inf')
def SATPlan(planning_problem, solution_length, SAT_solver=dpll_satisfiable):
"""
Planning as Boolean satisfiability [Section 10.4.1]
"""
def expand_transitions(state, actions):
state = sorted(conjuncts(state))
for action in filter(lambda act: act.check_precond(state, act.args), actions):
transition[associate('&', state)].update(
{Expr(action.name, *action.args):
associate('&', sorted(set(filter(lambda clause: clause.op[:3] != 'Not',
action(state, action.args).clauses))))
if planning_problem.is_strips()
else associate('&', sorted(set(action(state, action.args).clauses)))})
for state in transition[associate('&', state)].values():
if state not in transition:
expand_transitions(expr(state), actions)
transition = defaultdict(dict)
expand_transitions(associate('&', planning_problem.initial), planning_problem.expand_actions())
return SAT_plan(associate('&', sorted(planning_problem.initial)), transition,
associate('&', sorted(planning_problem.goals)), solution_length, SAT_solver=SAT_solver)
"""
Contains the state of the planning problem
and exhaustive list of actions which use the
states as pre-condition.
"""
def __init__(self, kb):
"""Initializes variables to hold state and action details of a level"""
self.kb = kb
# current state
self.current_state = kb.clauses
# current action to state link
self.current_action_links = {}
# current state to action link
self.current_state_links = {}
# current action to next state link
# next state to current action link
self.next_state_links = {}
# mutually exclusive actions
self.mutex = []
def __call__(self, actions, objects):
self.build(actions, objects)
self.find_mutex()
def separate(self, e):
"""Separates an iterable of elements into positive and negative parts"""
positive = []
negative = []
for clause in e:
if clause.op[:3] == 'Not':
negative.append(clause)
else:
positive.append(clause)
return positive, negative
"""Finds mutually exclusive actions"""
pos_nsl, neg_nsl = self.separate(self.next_state_links)
for negeff in neg_nsl:
new_negeff = Expr(negeff.op[3:], *negeff.args)
for poseff in pos_nsl:
if new_negeff == poseff:
for a in self.next_state_links[poseff]:
for b in self.next_state_links[negeff]:
if {a, b} not in self.mutex:
self.mutex.append({a, b})
# Interference will be calculated with the last step
pos_csl, neg_csl = self.separate(self.current_state_links)
Donato Meoli
a validé
for pos_precond in pos_csl:
for neg_precond in neg_csl:
new_neg_precond = Expr(neg_precond.op[3:], *neg_precond.args)
if new_neg_precond == pos_precond:
for a in self.current_state_links[pos_precond]:
for b in self.current_state_links[neg_precond]:
if {a, b} not in self.mutex:
self.mutex.append({a, b})
state_mutex = []
for pair in self.mutex:
next_state_0 = self.next_action_links[list(pair)[0]]
if len(pair) == 2:
next_state_1 = self.next_action_links[list(pair)[1]]
else:
next_state_1 = self.next_action_links[list(pair)[0]]
if (len(next_state_0) == 1) and (len(next_state_1) == 1):
state_mutex.append({next_state_0[0], next_state_1[0]})
Donato Meoli
a validé
self.mutex = self.mutex + state_mutex
"""Populates the lists and dictionaries containing the state action dependencies"""
for clause in self.current_state:
p_expr = Expr('P' + clause.op, *clause.args)
self.current_action_links[p_expr] = [clause]
self.next_action_links[p_expr] = [clause]
self.current_state_links[clause] = [p_expr]
self.next_state_links[clause] = [p_expr]
for a in actions:
num_args = len(a.args)
possible_args = tuple(itertools.permutations(objects, num_args))
for arg in possible_args:
for num, symbol in enumerate(a.args):
if not symbol.op.islower():
arg = list(arg)
arg[num] = symbol
arg = tuple(arg)
new_action = a.substitute(Expr(a.name, *a.args), arg)
self.current_action_links[new_action] = []
self.current_action_links[new_action].append(new_clause)
if new_clause in self.current_state_links:
self.current_state_links[new_clause].append(new_action)
self.current_state_links[new_clause] = [new_action]
Donato Meoli
a validé
new_clause = a.substitute(clause, arg)
self.next_action_links[new_action].append(new_clause)
if new_clause in self.next_state_links:
self.next_state_links[new_clause].append(new_action)
self.next_state_links[new_clause] = [new_action]
"""Performs the necessary actions and returns a new Level"""
new_kb = FolKB(list(set(self.next_state_links.keys())))
return Level(new_kb)
class Graph:
"""
Contains levels of state and actions
Used in graph planning algorithm to extract a solution
"""
Donato Meoli
a validé
def __init__(self, planning_problem):
self.planning_problem = planning_problem
self.kb = FolKB(planning_problem.initial)
self.levels = [Level(self.kb)]
self.objects = set(arg for clause in self.kb.clauses for arg in clause.args)
def __call__(self):
self.expand_graph()
"""Expands the graph by a level"""
Donato Meoli
a validé
last_level(self.planning_problem.actions, self.objects)
self.levels.append(last_level.perform_actions())
def non_mutex_goals(self, goals, index):
"""Checks whether the goals are mutually exclusive"""
goal_perm = itertools.combinations(goals, 2)
for g in goal_perm:
if set(g) in self.levels[index].mutex:
return False
return True
class GraphPlan:
"""
Class for formulation GraphPlan algorithm
Constructs a graph of state and action space
Returns solution for the planning problem
"""
Donato Meoli
a validé
def __init__(self, planning_problem):
self.graph = Graph(planning_problem)
self.no_goods = []
self.solution = []
def check_leveloff(self):
"""Checks if the graph has levelled off"""
check = (set(self.graph.levels[-1].current_state) == set(self.graph.levels[-2].current_state))
if check:
def extract_solution(self, goals, index):
"""Extracts the solution"""
Donato Meoli
a validé
level = self.graph.levels[index]
if not self.graph.non_mutex_goals(goals, index):
Donato Meoli
a validé
self.no_goods.append((level, goals))
Donato Meoli
a validé
level = self.graph.levels[index - 1]
Donato Meoli
a validé
# Create all combinations of actions that satisfy the goal
Donato Meoli
a validé
actions.append(level.next_state_links[goal])
Donato Meoli
a validé
all_actions = list(itertools.product(*actions))
Donato Meoli
a validé
non_mutex_actions = []
Donato Meoli
a validé
action_pairs = itertools.combinations(list(set(action_tuple)), 2)
non_mutex_actions.append(list(set(action_tuple)))
for pair in action_pairs:
if set(pair) in level.mutex:
non_mutex_actions.pop(-1)
break
Donato Meoli
a validé
for action_list in non_mutex_actions:
if [action_list, index] not in self.solution:
self.solution.append([action_list, index])
Donato Meoli
a validé
for act in set(action_list):
if act in level.current_action_links:
new_goals = new_goals + level.current_action_links[act]
if abs(index) + 1 == len(self.graph.levels):
Donato Meoli
a validé
elif (level, new_goals) in self.no_goods:
self.extract_solution(new_goals, index - 1)
solution = []
for item in self.solution:
if item[1] == -1:
solution.append([])
solution[-1].append(item[0])
else:
solution[-1].append(item[0])
for num, item in enumerate(solution):
item.reverse()
solution[num] = item
return solution
Donato Meoli
a validé
return all(kb.ask(q) is not False for q in self.graph.planning_problem.goals)
def execute(self):
"""Executes the GraphPlan algorithm for the given problem"""
Donato Meoli
a validé
if (self.goal_test(self.graph.levels[-1].kb) and self.graph.non_mutex_goals(
self.graph.planning_problem.goals, -1)):
solution = self.extract_solution(self.graph.planning_problem.goals, -1)
Donato Meoli
a validé
if len(self.graph.levels) >= 2 and self.check_leveloff():
return None
Donato Meoli
a validé
def __init__(self, planning_problem):
self.planning_problem = planning_problem
def filter(self, solution):
"""Filter out persistence actions from a solution"""
new_solution = []
for section in solution[0]:
new_section = []
for operation in section:
if not (operation.op[0] == 'P' and operation.op[1].isupper()):
new_section.append(operation)
new_solution.append(new_section)
return new_solution
Donato Meoli
a validé
def orderlevel(self, level, planning_problem):
"""Return valid linear order of actions for a given level"""
for permutation in itertools.permutations(level):
Donato Meoli
a validé
temp = copy.deepcopy(planning_problem)
count = 0
for action in permutation:
try:
temp.act(action)
count += 1
except:
count = 0
Donato Meoli
a validé
temp = copy.deepcopy(planning_problem)
break
if count == len(permutation):
return list(permutation), temp
return None
def execute(self):
"""Finds total-order solution for a planning graph"""
Donato Meoli
a validé
graphplan_solution = GraphPlan(self.planning_problem).execute()
filtered_solution = self.filter(graphplan_solution)
ordered_solution = []
Donato Meoli
a validé
planning_problem = self.planning_problem
Donato Meoli
a validé
level_solution, planning_problem = self.orderlevel(level, planning_problem)
for element in level_solution:
ordered_solution.append(element)
def linearize(solution):
"""Converts a level-ordered solution into a linear solution"""
linear_solution = []
for section in solution[0]:
for operation in section:
if not (operation.op[0] == 'P' and operation.op[1].isupper()):
linear_solution.append(operation)
return linear_solution
Donato Meoli
a validé
"""
[Section 10.13] PARTIAL-ORDER-PLANNER
Partially ordered plans are created by a search through the space of plans
rather than a search through the state space. It views planning as a refinement of partially ordered plans.
A partially ordered plan is defined by a set of actions and a set of constraints of the form A < B,
which denotes that action A has to be performed before action B.
To summarize the working of a partial order planner,
1. An open precondition is selected (a sub-goal that we want to achieve).
2. An action that fulfils the open precondition is chosen.
3. Temporal constraints are updated.
4. Existing causal links are protected. Protection is a method that checks if the causal links conflict
and if they do, temporal constraints are added to fix the threats.
5. The set of open preconditions is updated.
6. Temporal constraints of the selected action and the next action are established.
7. A new causal link is added between the selected action and the owner of the open precondition.
8. The set of new causal links is checked for threats and if found, the threat is removed by either promotion or
demotion. If promotion or demotion is unable to solve the problem, the planning problem cannot be solved with
the current sequence of actions or it may not be solvable at all.
9. These steps are repeated until the set of open preconditions is empty.
"""
Donato Meoli
a validé
def __init__(self, planning_problem):
self.tries = 1
self.planning_problem = planning_problem
Donato Meoli
a validé
self.start = Action('Start', [], self.planning_problem.initial)
self.finish = Action('Finish', self.planning_problem.goals, [])
self.actions = set()
self.actions.add(self.start)
self.actions.add(self.finish)
self.constraints = set()
self.constraints.add((self.start, self.finish))
self.agenda = set()
for precond in self.finish.precond:
self.agenda.add((precond, self.finish))
Donato Meoli
a validé
self.expanded_actions = planning_problem.expand_actions()
def find_open_precondition(self):
"""Find open precondition with the least number of possible actions"""
number_of_ways = dict()
actions_for_precondition = dict()
for element in self.agenda:
open_precondition = element[0]
possible_actions = list(self.actions) + self.expanded_actions
for action in possible_actions:
for effect in action.effect:
if effect == open_precondition:
if open_precondition in number_of_ways:
number_of_ways[open_precondition] += 1
actions_for_precondition[open_precondition].append(action)
else:
number_of_ways[open_precondition] = 1
actions_for_precondition[open_precondition] = [action]
number = sorted(number_of_ways, key=number_of_ways.__getitem__)
Donato Meoli
a validé
for k, v in number_of_ways.items():
if v == 0:
return None, None, None