Newer
Older
from utils import Expr, expr, first
from logic import FolKB
PDLL used to define a search problem.
It stores states in a knowledge base consisting of first order logic statements.
The conjunction of these logical statements completely defines a state.
def __init__(self, initial_state, actions, goal_test):
self.kb = FolKB(initial_state)
self.actions = actions
self.goal_test_func = goal_test
def goal_test(self):
return self.goal_test_func(self.kb)
def act(self, action):
"""
Note that action is an Expr like expr('Remove(Glass, Table)') or expr('Eat(Sandwich)')
"""
action_name = action.op
args = action.args
list_action = first(a for a in self.actions if a.name == action_name)
if list_action is None:
raise Exception("Action '{}' not found".format(action_name))
if not list_action.check_precond(self.kb, args):
raise Exception("Action '{}' pre-conditions not satisfied".format(action))
list_action(self.kb, args)
class Action:
"""
Defines an action schema using preconditions and effects.
Use this to describe actions in PDDL.
action is an Expr where variables are given as arguments(args).
Precondition and effect are both lists with positive and negated literals.
Example:
precond_pos = [expr("Human(person)"), expr("Hungry(Person)")]
precond_neg = [expr("Eaten(food)")]
effect_add = [expr("Eaten(food)")]
effect_rem = [expr("Hungry(person)")]
eat = Action(expr("Eat(person, food)"), [precond_pos, precond_neg], [effect_add, effect_rem])
"""
def __init__(self, action, precond, effect):
self.name = action.op
self.args = action.args
self.precond_pos = precond[0]
self.precond_neg = precond[1]
self.effect_add = effect[0]
self.effect_rem = effect[1]
def __call__(self, kb, args):
return self.act(kb, args)
def substitute(self, e, args):
"""Replaces variables in expression with their respective Propositional symbol"""
new_args = list(e.args)
for num, x in enumerate(e.args):
for i in range(len(self.args)):
if self.args[i] == x:
new_args[num] = args[i]
return Expr(e.op, *new_args)
def check_precond(self, kb, args):
"""Checks if the precondition is satisfied in the current state"""
# check for positive clauses
for clause in self.precond_pos:
if self.substitute(clause, args) not in kb.clauses:
return False
# check for negative clauses
for clause in self.precond_neg:
if self.substitute(clause, args) in kb.clauses:
return False
return True
def act(self, kb, args):
"""Executes the action on the state's kb"""
# check if the preconditions are satisfied
if not self.check_precond(kb, args):
raise Exception("Action pre-conditions not satisfied")
# remove negative literals
for clause in self.effect_rem:
kb.retract(self.substitute(clause, args))
for clause in self.effect_add:
kb.tell(self.substitute(clause, args))
def air_cargo():
init = [expr('At(C1, SFO)'),
expr('At(C2, JFK)'),
expr('At(P1, SFO)'),
expr('At(P2, JFK)'),
expr('Cargo(C1)'),
expr('Cargo(C2)'),
expr('Plane(P1)'),
expr('Plane(P2)'),
expr('Airport(JFK)'),
expr('Airport(SFO)')]
def goal_test(kb):
required = [expr('At(C1 , JFK)'), expr('At(C2 ,SFO)')]
for q in required:
if kb.ask(q) is False:
return False
return True
## Actions
# Load
precond_pos = [expr("At(c, a)"), expr("At(p, a)"), expr("Cargo(c)"), expr("Plane(p)"), expr("Airport(a)")]
precond_neg = []
effect_add = [expr("In(c, p)")]
effect_rem = [expr("At(c, a)")]
load = Action(expr("Load(c, p, a)"), [precond_pos, precond_neg], [effect_add, effect_rem])
# Unload
precond_pos = [expr("In(c, p)"), expr("At(p, a)"), expr("Cargo(c)"), expr("Plane(p)"), expr("Airport(a)")]
precond_neg = []
effect_add = [expr("At(c, a)")]
effect_rem = [expr("In(c, p)")]
unload = Action(expr("Unload(c, p, a)"), [precond_pos, precond_neg], [effect_add, effect_rem])
# Fly
# Used 'f' instead of 'from' because 'from' is a python keyword and expr uses eval() function
precond_pos = [expr("At(p, f)"), expr("Plane(p)"), expr("Airport(f)"), expr("Airport(to)")]
precond_neg = []
effect_add = [expr("At(p, to)")]
effect_rem = [expr("At(p, f)")]
fly = Action(expr("Fly(p, f, to)"), [precond_pos, precond_neg], [effect_add, effect_rem])
return PDLL(init, [load, unload, fly], goal_test)
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
def spare_tire():
init = [expr('Tire(Flat)'),
expr('Tire(Spare)'),
expr('At(Flat, Axle)'),
expr('At(Spare, Trunk)')]
def goal_test(kb):
required = [expr('At(Spare, Axle)'), expr('At(Flat, Ground)')]
for q in required:
if kb.ask(q) is False:
return False
return True
##Actions
#Remove
precond_pos = [expr("At(obj, loc)")]
precond_neg = []
effect_add = [expr("At(obj, Ground)")]
effect_rem = [expr("At(obj, loc)")]
remove = Action(expr("Remove(obj, loc)"), [precond_pos, precond_neg], [effect_add, effect_rem])
#PutOn
precond_pos = [expr("Tire(t)"), expr("At(t, Ground)")]
precond_neg = [expr("At(Flat, Axle)")]
effect_add = [expr("At(t, Axle)")]
effect_rem = [expr("At(t, Ground)")]
put_on = Action(expr("PutOn(t, Axle)"), [precond_pos, precond_neg], [effect_add, effect_rem])
#LeaveOvernight
precond_pos = []
precond_neg = []
effect_add = []
effect_rem = [expr("At(Spare, Ground)"), expr("At(Spare, Axle)"), expr("At(Spare, Trunk)"),
expr("At(Flat, Ground)"), expr("At(Flat, Axle)"), expr("At(Flat, Trunk)")]
leave_overnight = Action(expr("LeaveOvernight"), [precond_pos, precond_neg], [effect_add, effect_rem])
return PDLL(init, [remove, put_on, leave_overnight], goal_test)
opensourceware
a validé
def three_block_tower():
init = [expr('On(A, Table)'),
expr('On(B, Table)'),
expr('On(C, A)'),
expr('Block(A)'),
expr('Block(B)'),
expr('Block(C)'),
expr('Clear(B)'),
expr('Clear(C)')]
def goal_test(kb):
required = [expr('On(A, B)'), expr('On(B, C)')]
for q in required:
if kb.ask(q) is False:
return False
return True
## Actions
# Move
opensourceware
a validé
precond_pos = [expr('On(b, x)'), expr('Clear(b)'), expr('Clear(y)'), expr('Block(b)'), expr('Block(y)')]
precond_neg = []
effect_add = [expr('On(b, y)'), expr('Clear(x)')]
effect_rem = [expr('On(b, x)'), expr('Clear(y)')]
move = Action(expr('Move(b, x, y)'), [precond_pos, precond_neg], [effect_add, effect_rem])
# MoveToTable
opensourceware
a validé
precond_pos = [expr('On(b, x)'), expr('Clear(b)'), expr('Block(b)')]
precond_neg = []
effect_add = [expr('On(b, Table)'), expr('Clear(x)')]
effect_rem = [expr('On(b, x)')]
moveToTable = Action(expr('MoveToTable(b, x)'), [precond_pos, precond_neg], [effect_add, effect_rem])
return PDLL(init, [move, moveToTable], goal_test)
opensourceware
a validé
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def have_cake_and_eat_cake_too():
init = [expr('Have(Cake)')]
def goal_test(kb):
required = [expr('Have(Cake)'), expr('Eaten(Cake)')]
for q in required:
if kb.ask(q) is False:
return False
return True
##Actions
# Eat cake
precond_pos = [expr('Have(Cake)')]
precond_neg = []
effect_add = [expr('Eaten(Cake)')]
effect_rem = [expr('Have(Cake)')]
eat_cake = Action(expr('Eat(Cake)'), [precond_pos, precond_neg], [effect_add, effect_rem])
#Bake Cake
precond_pos = []
precond_neg = [expr('Have(Cake)')]
effect_add = [expr('Have(Cake)')]
effect_rem = []
bake_cake = Action(expr('Bake(Cake)'), [precond_pos, precond_neg], [effect_add, effect_rem])
return PDLL(init, [eat_cake, bake_cake], goal_test)
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
class Level():
"""
Contains the state of the planning problem
and exhaustive list of actions which use the
states as pre-condition.
"""
def __init__(self, poskb, negkb):
self.poskb = poskb
#Current state
self.current_state_pos = poskb.clauses
self.current_state_neg = negkb.clauses
#Current action to current state link
self.current_action_links_pos = {}
self.current_action_links_neg = {}
#Current state to action link
self.current_state_links_pos = {}
self.current_state_links_neg = {}
#Current action to next state link
self.next_action_links = {}
#Next state to current action link
self.next_state_links_pos = {}
self.next_state_links_neg = {}
self.mutex = []
def __call__(self, actions, objects):
self.build(actions, objects)
self.find_mutex()
def find_mutex(self):
#Inconsistent effects
for poseff in self.next_state_links_pos:
#negeff = Expr('not'+poseff.op, poseff.args)
negeff = poseff
if negeff in self.next_state_links_neg:
for a in self.next_state_links_pos[poseff]:
for b in self.next_state_links_neg[negeff]:
if set([a,b]) not in self.mutex:
self.mutex.append(set([a,b]))
#Interference
for posprecond in self.current_state_links_pos:
#negeff = Expr('not'+posprecond.op, posprecond.args)
negeff = posprecond
if negeff in self.next_state_links_neg:
for a in self.current_state_links_pos[posprecond]:
for b in self.next_state_links_neg[negeff]:
if set([a,b]) not in self.mutex:
self.mutex.append(set([a,b]))
for negprecond in self.current_state_links_neg:
#poseff = Expr(negprecond.op[3:], negprecond.args)
poseff = negprecond
if poseff in self.next_state_links_pos:
for a in self.next_state_links_pos[poseff]:
for b in self.current_state_links_neg[negprecond]:
if set([a,b]) not in self.mutex:
self.mutex.append(set([a,b]))
#Competing needs
for posprecond in self.current_state_links_pos:
#negprecond = Expr('not'+posprecond.op, posprecond.args)
negprecond = posprecond
if negprecond in self.current_state_links_neg:
for a in self.current_state_links_pos[posprecond]:
for b in self.current_state_links_neg[negprecond]:
if set([a,b]) not in self.mutex:
self.mutex.append(set([a,b]))
#Inconsistent support
state_mutex = []
for pair in self.mutex:
next_state_0 = self.next_action_links[list(pair)[0]]
if len(pair) == 2:
next_state_1 = self.next_action_links[list(pair)[1]]
else:
next_state_1 = self.next_action_links[list(pair)[0]]
if (len(next_state_0) == 1) and (len(next_state_1) == 1):
state_mutex.append(set([next_state_0[0], next_state_1[0]]))
self.mutex = self.mutex+state_mutex
def build(self, actions, objects):
#Add persistence actions for positive states
for clause in self.current_state_pos:
self.current_action_links_pos[Expr('Persistence', clause)] = [clause]
self.next_action_links[Expr('Persistence', clause)] = [clause]
self.current_state_links_pos[clause] = [Expr('Persistence', clause)]
self.next_state_links_pos[clause] = [Expr('Persistence', clause)]
#Add persistence actions for negative states
for clause in self.current_state_neg:
self.current_action_links_neg[Expr('Persistence', Expr('not'+clause.op, clause.args))] = [clause]
self.next_action_links[Expr('Persistence', Expr('not'+clause.op, clause.args))] = [clause]
self.current_state_links_neg[clause] = [Expr('Persistence', Expr('not'+clause.op, clause.args))]
self.next_state_links_neg[clause] = [Expr('Persistence', Expr('not'+clause.op, clause.args))]
for a in actions:
num_args = len(a.args)
possible_args = tuple(itertools.permutations(objects, num_args))
for arg in possible_args:
if a.check_precond(self.poskb, arg):
for num, symbol in enumerate(a.args):
if not symbol.op.islower():
arg = list(arg)
arg[num] = symbol
arg = tuple(arg)
new_action = a.substitute(Expr(a.name, *a.args), arg)
self.current_action_links_pos[new_action] = []
self.current_action_links_neg[new_action] = []
for clause in a.precond_pos:
new_clause = a.substitute(clause, arg)
self.current_action_links_pos[new_action].append(new_clause)
if new_clause in self.current_state_links_pos:
self.current_state_links_pos[new_clause].append(new_action)
else:
self.current_state_links_pos[new_clause] = [new_action]
for clause in a.precond_neg:
new_clause = a.substitute(clause, arg)
#new_clause = Expr('not'+new_clause.op, new_clause.arg)
self.current_action_links_neg[new_action].append(new_clause)
if new_clause in self.current_state_links_neg:
self.current_state_links_neg[new_clause].append(new_action)
else:
self.current_state_links_neg[new_clause] = [new_action]
self.next_action_links[new_action] = []
for clause in a.effect_add:
new_clause = a.substitute(clause, arg)
self.next_action_links[new_action].append(new_clause)
if new_clause in self.next_state_links_pos:
self.next_state_links_pos[new_clause].append(new_action)
else:
self.next_state_links_pos[new_clause] = [new_action]
for clause in a.effect_rem:
new_clause = a.substitute(clause, arg)
self.next_action_links[new_action].append(new_clause)
if new_clause in self.next_state_links_neg:
self.next_state_links_neg[new_clause].append(new_action)
else:
self.next_state_links_neg[new_clause] = [new_action]
def perform_actions(self):
new_kb_pos, new_kb_neg = FolKB(list(set(self.next_state_links_pos.keys()))), FolKB(list(set(self.next_state_links_neg.keys())))
return Level(new_kb_pos, new_kb_neg)
class Graph:
"""
Contains levels of state and actions
Used in graph planning algorithm to extract a solution
"""
def __init__(self, pdll, negkb):
self.pdll = pdll
self.levels = [Level(pdll.kb, negkb)]
self.objects = set(arg for clause in pdll.kb.clauses + negkb.clauses for arg in clause.args)
def __call__():
expand_graph()
def expand_graph(self):
last_level = self.levels[-1]
last_level(self.pdll.actions, self.objects)
self.levels.append(last_level.perform_actions())
def non_mutex_goals(self, goals, index):
goal_perm = itertools.combinations(goals, 2)
for g in goal_perm:
if set(g) in self.levels[index].mutex:
return False
return True
class GraphPlan:
"""
Class for formulation GraphPlan algorithm
Constructs a graph of state and action space
Returns solution for the planning problem
"""
def __init__(self, pdll, negkb):
self.graph = Graph(pdll, negkb)
self.nogoods = []
self.solution = []
def check_leveloff(self):
if (set(self.graph.levels[-1].current_state_pos) == set(self.graph.levels[-2].current_state_pos)) and (set(lf.graph.levels[-1].current_state_neg) == set(self.graph.levels[-2].current_state_neg)):
return True
def extract_solution(self, goals_pos, goals_neg, index):
level = self.graph.levels[index]
if not self.graph.non_mutex_goals(goals_pos+goals_neg, index):
self.nogoods.append((level, goals_pos, goals_neg))
return
level = self.graph.levels[index-1]
#Create all combinations of actions that satisfy the goal
actions = []
for goal in goals_pos:
actions.append(level.next_state_links_pos[goal])
for goal in goals_neg:
actions.append(level.next_state_links_neg[goal])
all_actions = list(itertools.product(*actions))
#Filter out the action combinations which contain mutexes
non_mutex_actions = []
for action_tuple in all_actions:
action_pairs = itertools.combinations(list(set(action_tuple)), 2)
non_mutex_actions.append(list(set(action_tuple)))
for pair in action_pairs:
if set(pair) in level.mutex:
non_mutex_actions.pop(-1)
break
#Recursion
for action_list in non_mutex_actions:
if [action_list, index] not in self.solution:
self.solution.append([action_list, index])
new_goals_pos = []
new_goals_neg = []
for act in set(action_list):
if act in level.current_action_links_pos:
new_goals_pos = new_goals_pos + level.current_action_links_pos[act]
for act in set(action_list):
if act in level.current_action_links_neg:
new_goals_neg = new_goals_neg + level.current_action_links_neg[act]
if abs(index)+1 == len(self.graph.levels):
return
elif (level, new_goals_pos, new_goals_neg) in self.nogoods:
return
else:
self.extract_solution(new_goals_pos, new_goals_neg, index-1)
#Level-Order multiple solutions
solution = []
for item in self.solution:
if item[1] == -1:
solution.append([])
solution[-1].append(item[0])
else:
solution[-1].append(item[0])
for num, item in enumerate(solution):
item.reverse()
solution[num] = item
return solution
def goal_test(kb, goals):
for q in goals:
if kb.ask(q) is False:
return False
return True
def spare_tire_graphplan():
pdll = spare_tire()
negkb = FolKB([expr('At(Flat, Trunk)')])
graphplan = GraphPlan(pdll, negkb)
##Not sure
goals_pos = [expr('At(Spare, Axle)'), expr('At(Flat, Ground)')]
goals_neg = []
while True:
if goal_test(graphplan.graph.levels[-1].poskb, goals_pos) and graphplan.graph.non_mutex_goals(goals_pos+goals_neg, -1):
solution = graphplan.extract_solution(goals_pos, goals_neg, -1)
if solution:
return solution
graphplan.graph.expand_graph()
if len(graphplan.graph.levels)>=2 and graphplan.check_leveloff():
return None