Newer
Older
from utils import Expr, expr, first
from collections import deque
Luke Schoen
a validé
class PDDL:
Luke Schoen
a validé
Planning Domain Definition Language (PDDL) used to define a search problem.
It stores states in a knowledge base consisting of first order logic statements.
The conjunction of these logical statements completely defines a state.
def __init__(self, init, goals, actions):
self.init = self.convert(init)
if not isinstance(clauses, Expr):
if len(clauses) > 0:
clauses = expr(clauses)
else:
clauses = []
"""Checks if the goals have been reached"""
return all(goal in self.init for goal in self.goals)
Note that action is an Expr like expr('Remove(Glass, Table)') or expr('Eat(Sandwich)')
action_name = action.op
args = action.args
list_action = first(a for a in self.actions if a.name == action_name)
if list_action is None:
raise Exception("Action '{}' not found".format(action_name))
if not list_action.check_precond(self.init, args):
raise Exception("Action '{}' pre-conditions not satisfied".format(action))
self.init = list_action(self.init, args).clauses
Defines an action schema using preconditions and effects.
Use this to describe actions in PDDL.
action is an Expr where variables are given as arguments(args).
Precondition and effect are both lists with positive and negative literals.
Negative preconditions and effects are defined by adding a 'Not' before the name of the clause
precond = [expr("Human(person)"), expr("Hungry(Person)"), expr("NotEaten(food)")]
effect = [expr("Eaten(food)"), expr("Hungry(person)")]
eat = Action(expr("Eat(person, food)"), precond, effect)
def __init__(self, action, precond, effect):
if isinstance(action, str):
action = expr(action)
self.precond = self.convert(precond)
self.effect = self.convert(effect)
def __call__(self, kb, args):
return self.act(kb, args)
if isinstance(clauses, Expr):
clauses = conjuncts(clauses)
for i in range(len(clauses)):
if clauses[i].op == '~':
clauses[i] = expr('Not' + str(clauses[i].args[0]))
elif isinstance(clauses, str):
clauses = clauses.replace('~', 'Not')
if len(clauses) > 0:
clauses = expr(clauses)
try:
clauses = conjuncts(clauses)
except AttributeError:
pass
"""Replaces variables in expression with their respective Propositional symbol"""
new_args = list(e.args)
for num, x in enumerate(e.args):
for i, _ in enumerate(self.args):
return Expr(e.op, *new_args)
def check_precond(self, kb, args):
"""Checks if the precondition is satisfied in the current state"""
if isinstance(kb, list):
kb = FolKB(kb)
for clause in self.precond:
if self.substitute(clause, args) not in kb.clauses:
return False
return True
def act(self, kb, args):
"""Executes the action on the state's knowledge base"""
if isinstance(kb, list):
kb = FolKB(kb)
if not self.check_precond(kb, args):
raise Exception('Action pre-conditions not satisfied')
for clause in self.effect:
kb.tell(self.substitute(clause, args))
if clause.op[:3] == 'Not':
new_clause = Expr(clause.op[3:], *clause.args)
if kb.ask(self.substitute(new_clause, args)) is not False:
kb.retract(self.substitute(new_clause, args))
else:
new_clause = Expr('Not' + clause.op, *clause.args)
if kb.ask(self.substitute(new_clause, args)) is not False:
kb.retract(self.substitute(new_clause, args))
def air_cargo():
"""Air cargo problem"""
return PDDL(init='At(C1, SFO) & At(C2, JFK) & At(P1, SFO) & At(P2, JFK) & Cargo(C1) & Cargo(C2) & Plane(P1) & Plane(P2) & Airport(SFO) & Airport(JFK)',
goals='At(C1, JFK) & At(C2, SFO)',
actions=[Action('Load(c, p, a)',
precond='At(c, a) & At(p, a) & Cargo(c) & Plane(p) & Airport(a)',
effect='In(c, p) & ~At(c, a)'),
Action('Unload(c, p, a)',
precond='In(c, p) & At(p, a) & Cargo(c) & Plane(p) & Airport(a)',
effect='At(c, a) & ~In(c, p)'),
Action('Fly(p, f, to)',
precond='At(p, f) & Plane(p) & Airport(f) & Airport(to)',
effect='At(p, to) & ~At(p, f)')])
"""Spare tire problem"""
return PDDL(init='Tire(Flat) & Tire(Spare) & At(Flat, Axle) & At(Spare, Trunk)',
goals='At(Spare, Axle) & At(Flat, Ground)',
actions=[Action('Remove(obj, loc)',
precond='At(obj, loc)',
effect='At(obj, Ground) & ~At(obj, loc)'),
Action('PutOn(t, Axle)',
precond='Tire(t) & At(t, Ground) & ~At(Flat, Axle)',
effect='At(t, Axle) & ~At(t, Ground)'),
Action('LeaveOvernight',
precond='',
effect='~At(Spare, Ground) & ~At(Spare, Axle) & ~At(Spare, Trunk) & \
~At(Flat, Ground) & ~At(Flat, Axle) & ~At(Flat, Trunk)')])
opensourceware
a validé
return PDDL(init='On(A, Table) & On(B, Table) & On(C, A) & Block(A) & Block(B) & Block(C) & Clear(B) & Clear(C)',
goals='On(A, B) & On(B, C)',
actions=[Action('Move(b, x, y)',
precond='On(b, x) & Clear(b) & Clear(y) & Block(b) & Block(y)',
effect='On(b, y) & Clear(x) & ~On(b, x) & ~Clear(y)'),
Action('MoveToTable(b, x)',
precond='On(b, x) & Clear(b) & Block(b)',
effect='On(b, Table) & Clear(x) & ~On(b, x)')])
opensourceware
a validé
opensourceware
a validé
def have_cake_and_eat_cake_too():
opensourceware
a validé
return PDDL(init='Have(Cake)',
goals='Have(Cake) & Eaten(Cake)',
actions=[Action('Eat(Cake)',
precond='Have(Cake)',
effect='Eaten(Cake) & ~Have(Cake)'),
Action('Bake(Cake)',
precond='~Have(Cake)',
effect='Have(Cake)')])
opensourceware
a validé
def shopping_problem():
"""Shopping problem"""
opensourceware
a validé
return PDDL(init='At(Home) & Sells(SM, Milk) & Sells(SM, Banana) & Sells(HW, Drill)',
goals='Have(Milk) & Have(Banana) & Have(Drill)',
actions=[Action('Buy(x, store)',
precond='At(store) & Sells(store, x)',
effect='Have(x)'),
Action('Go(x, y)',
precond='At(x)',
effect='At(y) & ~At(x)')])
def socks_and_shoes():
"""Socks and shoes problem"""
return PDDL(init='',
goals='RightShoeOn & LeftShoeOn',
actions=[Action('RightShoe',
precond='RightSockOn',
effect='RightShoeOn'),
Action('RightSock',
precond='',
effect='RightSockOn'),
Action('LeftShoe',
precond='LeftSockOn',
effect='LeftShoeOn'),
Action('LeftSock',
precond='',
effect='LeftSockOn')])
"""
Contains the state of the planning problem
and exhaustive list of actions which use the
states as pre-condition.
"""
def __init__(self, kb):
"""Initializes variables to hold state and action details of a level"""
self.kb = kb
# current state
self.current_state = kb.clauses
# current action to state link
self.current_action_links = {}
# current state to action link
self.current_state_links = {}
# current action to next state link
# next state to current action link
self.next_state_links = {}
# mutually exclusive actions
self.mutex = []
def __call__(self, actions, objects):
self.build(actions, objects)
self.find_mutex()
def separate(self, e):
"""Separates an iterable of elements into positive and negative parts"""
positive = []
negative = []
for clause in e:
if clause.op[:3] == 'Not':
negative.append(clause)
else:
positive.append(clause)
return positive, negative
"""Finds mutually exclusive actions"""
pos_nsl, neg_nsl = self.separate(self.next_state_links)
for negeff in neg_nsl:
new_negeff = Expr(negeff.op[3:], *negeff.args)
for poseff in pos_nsl:
if new_negeff == poseff:
for a in self.next_state_links[poseff]:
for b in self.next_state_links[negeff]:
if {a, b} not in self.mutex:
self.mutex.append({a, b})
# Interference will be calculated with the last step
pos_csl, neg_csl = self.separate(self.current_state_links)
for posprecond in pos_csl:
for negprecond in neg_csl:
new_negprecond = Expr(negprecond.op[3:], *negprecond.args)
if new_negprecond == posprecond:
for a in self.current_state_links[posprecond]:
for b in self.current_state_links[negprecond]:
if {a, b} not in self.mutex:
self.mutex.append({a, b})
state_mutex = []
for pair in self.mutex:
next_state_0 = self.next_action_links[list(pair)[0]]
if len(pair) == 2:
next_state_1 = self.next_action_links[list(pair)[1]]
else:
next_state_1 = self.next_action_links[list(pair)[0]]
if (len(next_state_0) == 1) and (len(next_state_1) == 1):
state_mutex.append({next_state_0[0], next_state_1[0]})
self.mutex = self.mutex + state_mutex
"""Populates the lists and dictionaries containing the state action dependencies"""
for clause in self.current_state:
p_expr = Expr('P' + clause.op, *clause.args)
self.current_action_links[p_expr] = [clause]
self.next_action_links[p_expr] = [clause]
self.current_state_links[clause] = [p_expr]
self.next_state_links[clause] = [p_expr]
for a in actions:
num_args = len(a.args)
possible_args = tuple(itertools.permutations(objects, num_args))
for arg in possible_args:
for num, symbol in enumerate(a.args):
if not symbol.op.islower():
arg = list(arg)
arg[num] = symbol
arg = tuple(arg)
new_action = a.substitute(Expr(a.name, *a.args), arg)
self.current_action_links[new_action] = []
self.current_action_links[new_action].append(new_clause)
if new_clause in self.current_state_links:
self.current_state_links[new_clause].append(new_action)
self.current_state_links[new_clause] = [new_action]
new_clause = a.substitute(clause, arg)
self.next_action_links[new_action].append(new_clause)
if new_clause in self.next_state_links:
self.next_state_links[new_clause].append(new_action)
self.next_state_links[new_clause] = [new_action]
"""Performs the necessary actions and returns a new Level"""
new_kb = FolKB(list(set(self.next_state_links.keys())))
return Level(new_kb)
class Graph:
"""
Contains levels of state and actions
Used in graph planning algorithm to extract a solution
"""
Luke Schoen
a validé
self.pddl = pddl
self.kb = FolKB(pddl.init)
self.levels = [Level(self.kb)]
self.objects = set(arg for clause in self.kb.clauses for arg in clause.args)
def __call__(self):
self.expand_graph()
"""Expands the graph by a level"""
Luke Schoen
a validé
last_level(self.pddl.actions, self.objects)
self.levels.append(last_level.perform_actions())
def non_mutex_goals(self, goals, index):
"""Checks whether the goals are mutually exclusive"""
goal_perm = itertools.combinations(goals, 2)
for g in goal_perm:
if set(g) in self.levels[index].mutex:
return False
return True
class GraphPlan:
"""
Class for formulation GraphPlan algorithm
Constructs a graph of state and action space
Returns solution for the planning problem
"""
def __init__(self, pddl):
self.graph = Graph(pddl)
self.nogoods = []
self.solution = []
def check_leveloff(self):
"""Checks if the graph has levelled off"""
check = (set(self.graph.levels[-1].current_state) == set(self.graph.levels[-2].current_state))
if check:
def extract_solution(self, goals, index):
"""Extracts the solution"""
level = self.graph.levels[index]
if not self.graph.non_mutex_goals(goals, index):
self.nogoods.append((level, goals))
# Create all combinations of actions that satisfy the goal
for goal in goals:
actions.append(level.next_state_links[goal])
all_actions = list(itertools.product(*actions))
# Filter out non-mutex actions
non_mutex_actions = []
action_pairs = itertools.combinations(list(set(action_tuple)), 2)
non_mutex_actions.append(list(set(action_tuple)))
for pair in action_pairs:
if set(pair) in level.mutex:
non_mutex_actions.pop(-1)
break
for action_list in non_mutex_actions:
if [action_list, index] not in self.solution:
self.solution.append([action_list, index])
new_goals = []
for act in set(action_list):
if act in level.current_action_links:
new_goals = new_goals + level.current_action_links[act]
if abs(index) + 1 == len(self.graph.levels):
elif (level, new_goals) in self.nogoods:
self.extract_solution(new_goals, index - 1)
solution = []
for item in self.solution:
if item[1] == -1:
solution.append([])
solution[-1].append(item[0])
else:
solution[-1].append(item[0])
for num, item in enumerate(solution):
item.reverse()
solution[num] = item
return solution
def spare_tire_graphplan():
"""Solves the spare tire problem using GraphPlan"""
Luke Schoen
a validé
pddl = spare_tire()
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
graphplan = GraphPlan(pddl)
def goal_test(kb, goals):
return all(kb.ask(q) is not False for q in goals)
goals = expr('At(Spare, Axle), At(Flat, Ground)')
while True:
graphplan.graph.expand_graph()
if (goal_test(graphplan.graph.levels[-1].kb, goals) and graphplan.graph.non_mutex_goals(goals, -1)):
solution = graphplan.extract_solution(goals, -1)
if solution:
return solution
if len(graphplan.graph.levels) >= 2 and graphplan.check_leveloff():
return None
def have_cake_and_eat_cake_too_graphplan():
"""Solves the cake problem using GraphPlan"""
pddl = have_cake_and_eat_cake_too()
graphplan = GraphPlan(pddl)
def goal_test(kb, goals):
return all(kb.ask(q) is not False for q in goals)
goals = expr('Have(Cake), Eaten(Cake)')
while True:
graphplan.graph.expand_graph()
if (goal_test(graphplan.graph.levels[-1].kb, goals) and graphplan.graph.non_mutex_goals(goals, -1)):
solution = graphplan.extract_solution(goals, -1)
if solution:
return [solution[1]]
if len(graphplan.graph.levels) >= 2 and graphplan.check_leveloff():
return None
def three_block_tower_graphplan():
"""Solves the Sussman Anomaly problem using GraphPlan"""
pddl = three_block_tower()
graphplan = GraphPlan(pddl)
def goal_test(kb, goals):
return all(kb.ask(q) is not False for q in goals)
if (goal_test(graphplan.graph.levels[-1].kb, goals) and graphplan.graph.non_mutex_goals(goals, -1)):
solution = graphplan.extract_solution(goals, -1)
if len(graphplan.graph.levels) >= 2 and graphplan.check_leveloff():
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def air_cargo_graphplan():
"""Solves the air cargo problem using GraphPlan"""
pddl = air_cargo()
graphplan = GraphPlan(pddl)
def goal_test(kb, goals):
return all(kb.ask(q) is not False for q in goals)
goals = expr('At(C1, JFK), At(C2, SFO)')
while True:
if (goal_test(graphplan.graph.levels[-1].kb, goals) and graphplan.graph.non_mutex_goals(goals, -1)):
solution = graphplan.extract_solution(goals, -1)
if solution:
return solution
graphplan.graph.expand_graph()
if len(graphplan.graph.levels) >= 2 and graphplan.check_leveloff():
return None
def shopping_graphplan():
pddl = shopping_problem()
graphplan = GraphPlan(pddl)
def goal_test(kb, goals):
return all(kb.ask(q) is not False for q in goals)
goals = expr('Have(Milk), Have(Banana), Have(Drill)')
while True:
if (goal_test(graphplan.graph.levels[-1].kb, goals) and graphplan.graph.non_mutex_goals(goals, -1)):
solution = graphplan.extract_solution(goals, -1)
if solution:
return solution
graphplan.graph.expand_graph()
if len(graphplan.graph.levels) >= 2 and graphplan.check_leveloff():
return None
def socks_and_shoes_graphplan():
pddl = socks_and_shoes()
graphplan = GraphPlan(pddl)
def goal_test(kb, goals):
return all(kb.ask(q) is not False for q in goals)
goals = expr('RightShoeOn, LeftShoeOn')
while True:
if (goal_test(graphplan.graph.levels[-1].kb, goals) and graphplan.graph.non_mutex_goals(goals, -1)):
solution = graphplan.extract_solution(goals, -1)
if solution:
return solution
graphplan.graph.expand_graph()
if len(graphplan.graph.levels) >= 2 and graphplan.check_leveloff():
return None
def linearize(solution):
"""Converts a level-ordered solution into a linear solution"""
linear_solution = []
for section in solution[0]:
for operation in section:
if not (operation.op[0] == 'P' and operation.op[1].isupper()):
linear_solution.append(operation)
return linear_solution
def double_tennis_problem():
init = [expr('At(A, LeftBaseLine)'),
expr('At(B, RightNet)'),
expr('Approaching(Ball, RightBaseLine)'),
expr('Partner(A, B)'),
expr('Partner(B, A)')]
def goal_test(kb):
required = [expr('Returned(Ball)'), expr('At(a, LeftNet)'), expr('At(a, RightNet)')]
return all(kb.ask(q) is not False for q in required)
# Actions
# Hit
precond_pos = [expr("Approaching(Ball,loc)"), expr("At(actor,loc)")]
precond_neg = []
effect_add = [expr("Returned(Ball)")]
effect_rem = []
hit = Action(expr("Hit(actor, Ball, loc)"), [precond_pos, precond_neg], [effect_add, effect_rem])
precond_pos = [expr("At(actor, loc)")]
precond_neg = []
effect_add = [expr("At(actor, to)")]
effect_rem = [expr("At(actor, loc)")]
go = Action(expr("Go(actor, to, loc)"), [precond_pos, precond_neg], [effect_add, effect_rem])
Luke Schoen
a validé
return PDDL(init, [hit, go], goal_test)
class HLA(Action):
"""
Define Actions for the real-world (that may be refined further), and satisfy resource
constraints.
"""
unique_group = 1
def __init__(self, action, precond=None, effect=None, duration=0,
consume=None, use=None):
"""
As opposed to actions, to define HLA, we have added constraints.
duration holds the amount of time required to execute the task
consumes holds a dictionary representing the resources the task consumes
uses holds a dictionary representing the resources the task uses
"""
precond = precond or [None, None]
effect = effect or [None, None]
super().__init__(action, precond, effect)
self.duration = duration
self.consumes = consume or {}
self.uses = use or {}
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
self.completed = False
# self.priority = -1 # must be assigned in relation to other HLAs
# self.job_group = -1 # must be assigned in relation to other HLAs
def do_action(self, job_order, available_resources, kb, args):
"""
An HLA based version of act - along with knowledge base updation, it handles
resource checks, and ensures the actions are executed in the correct order.
"""
# print(self.name)
if not self.has_usable_resource(available_resources):
raise Exception('Not enough usable resources to execute {}'.format(self.name))
if not self.has_consumable_resource(available_resources):
raise Exception('Not enough consumable resources to execute {}'.format(self.name))
if not self.inorder(job_order):
raise Exception("Can't execute {} - execute prerequisite actions first".
format(self.name))
super().act(kb, args) # update knowledge base
for resource in self.consumes: # remove consumed resources
available_resources[resource] -= self.consumes[resource]
self.completed = True # set the task status to complete
def has_consumable_resource(self, available_resources):
"""
Ensure there are enough consumable resources for this action to execute.
"""
for resource in self.consumes:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.consumes[resource]:
return False
return True
def has_usable_resource(self, available_resources):
"""
Ensure there are enough usable resources for this action to execute.
"""
for resource in self.uses:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.uses[resource]:
return False
return True
def inorder(self, job_order):
"""
Ensure that all the jobs that had to be executed before the current one have been
successfully executed.
"""
for jobs in job_order:
if self in jobs:
for job in jobs:
if job is self:
return True
if not job.completed:
return False
return True
class Problem(PDDL):
"""
Define real-world problems by aggregating resources as numerical quantities instead of
named entities.
This class is identical to PDLL, except that it overloads the act function to handle
resource and ordering conditions imposed by HLA as opposed to Action.
"""
def __init__(self, initial_state, actions, goal_test, jobs=None, resources=None):
super().__init__(initial_state, actions, goal_test)
self.jobs = jobs
self.resources = resources or {}
def act(self, action):
"""
Performs the HLA given as argument.
Note that this is different from the superclass action - where the parameter was an
Expression. For real world problems, an Expr object isn't enough to capture all the
detail required for executing the action - resources, preconditions, etc need to be
checked for too.
"""
args = action.args
list_action = first(a for a in self.actions if a.name == action.name)
if list_action is None:
raise Exception("Action '{}' not found".format(action.name))
list_action.do_action(self.jobs, self.resources, self.kb, args)
def refinements(hla, state, library): # TODO - refinements may be (multiple) HLA themselves ...
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
"""
state is a Problem, containing the current state kb
library is a dictionary containing details for every possible refinement. eg:
{
"HLA": [
"Go(Home,SFO)",
"Go(Home,SFO)",
"Drive(Home, SFOLongTermParking)",
"Shuttle(SFOLongTermParking, SFO)",
"Taxi(Home, SFO)"
],
"steps": [
["Drive(Home, SFOLongTermParking)", "Shuttle(SFOLongTermParking, SFO)"],
["Taxi(Home, SFO)"],
[], # empty refinements ie primitive action
[],
[]
],
"precond_pos": [
["At(Home), Have(Car)"],
["At(Home)"],
["At(Home)", "Have(Car)"]
["At(SFOLongTermParking)"]
["At(Home)"]
],
"precond_neg": [[],[],[],[],[]],
"effect_pos": [
["At(SFO)"],
["At(SFO)"],
["At(SFOLongTermParking)"],
["At(SFO)"],
["At(SFO)"]
],
"effect_neg": [
["At(Home)"],
["At(Home)"],
["At(Home)"],
["At(SFOLongTermParking)"],
["At(Home)"]
]
}
"""
e = Expr(hla.name, hla.args)
indices = [i for i, x in enumerate(library["HLA"]) if expr(x).op == hla.name]
action = HLA(expr(library["steps"][i][0]), [ # TODO multiple refinements
[expr(x) for x in library["precond_pos"][i]],
[expr(x) for x in library["precond_neg"][i]]
[
[expr(x) for x in library["effect_pos"][i]],
[expr(x) for x in library["effect_neg"][i]]
])
if action.check_precond(state.kb, action.args):
yield action
def hierarchical_search(problem, hierarchy):
"""
[Figure 11.5] 'Hierarchical Search, a Breadth First Search implementation of Hierarchical
Forward Planning Search'
The problem is a real-world problem defined by the problem class, and the hierarchy is
a dictionary of HLA - refinements (see refinements generator for details)
"""
act = Node(problem.actions[0])
plan = frontier.popleft()
prefix = None
if plan.parent:
prefix = plan.parent.state.action # prefix, suffix = subseq(plan.state, hla)
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
outcome = Problem.result(problem, prefix)
if hla is None:
if outcome.goal_test():
return plan.path()
else:
print("else")
for sequence in Problem.refinements(hla, outcome, hierarchy):
print("...")
frontier.append(Node(plan.state, plan.parent, sequence))
def result(problem, action):
"""The outcome of applying an action to the current problem"""
if action is not None:
problem.act(action)
return problem
else:
return problem
def job_shop_problem():
"""
[figure 11.1] JOB-SHOP-PROBLEM
A job-shop scheduling problem for assembling two cars,
with resource and ordering constraints.
Example:
"""
init = [expr('Car(C1)'),
expr('Car(C2)'),
expr('Wheels(W1)'),
expr('Wheels(W2)'),
expr('Engine(E2)'),
expr('Engine(E2)')]
def goal_test(kb):
# print(kb.clauses)
required = [expr('Has(C1, W1)'), expr('Has(C1, E1)'), expr('Inspected(C1)'),
expr('Has(C2, W2)'), expr('Has(C2, E2)'), expr('Inspected(C2)')]
for q in required:
# print(q)
# print(kb.ask(q))
if kb.ask(q) is False:
return False
return True
resources = {'EngineHoists': 1, 'WheelStations': 2, 'Inspectors': 2, 'LugNuts': 500}
# AddEngine1
precond_pos = []
precond_neg = [expr("Has(C1,E1)")]
effect_add = [expr("Has(C1,E1)")]
effect_rem = []
add_engine1 = HLA(expr("AddEngine1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=30, use={'EngineHoists': 1})
# AddEngine2
precond_pos = []
precond_neg = [expr("Has(C2,E2)")]
effect_add = [expr("Has(C2,E2)")]
effect_rem = []
add_engine2 = HLA(expr("AddEngine2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=60, use={'EngineHoists': 1})
# AddWheels1
precond_pos = []
precond_neg = [expr("Has(C1,W1)")]
effect_add = [expr("Has(C1,W1)")]
effect_rem = []
add_wheels1 = HLA(expr("AddWheels1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=30, consume={'LugNuts': 20}, use={'WheelStations': 1})
# AddWheels2
precond_pos = []
precond_neg = [expr("Has(C2,W2)")]
effect_add = [expr("Has(C2,W2)")]
effect_rem = []
add_wheels2 = HLA(expr("AddWheels2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=15, consume={'LugNuts': 20}, use={'WheelStations': 1})
# Inspect1
precond_pos = []
precond_neg = [expr("Inspected(C1)")]
effect_add = [expr("Inspected(C1)")]
effect_rem = []
inspect1 = HLA(expr("Inspect1"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=10, use={'Inspectors': 1})
# Inspect2
precond_pos = []
precond_neg = [expr("Inspected(C2)")]
effect_add = [expr("Inspected(C2)")]
effect_rem = []
inspect2 = HLA(expr("Inspect2"),
[precond_pos, precond_neg], [effect_add, effect_rem],
duration=10, use={'Inspectors': 1})
job_group1 = [add_engine1, add_wheels1, inspect1]
job_group2 = [add_engine2, add_wheels2, inspect2]
return Problem(init, [add_engine1, add_engine2, add_wheels1, add_wheels2, inspect1, inspect2],
goal_test, [job_group1, job_group2], resources)