Newer
Older
from utils import Expr, expr, first
from logic import FolKB, conjuncts, unify
from collections import deque
from functools import reduce as _reduce
Planning Domain Definition Language (PlanningProblem) used to define a search problem.
It stores states in a knowledge base consisting of first order logic statements.
The conjunction of these logical statements completely defines a state.
def __init__(self, init, goals, actions):
self.init = self.convert(init)
if not isinstance(clauses, Expr):
if len(clauses) > 0:
clauses = expr(clauses)
else:
clauses = []
new_clauses = []
for clause in clauses:
if clause.op == '~':
new_clauses.append(expr('Not' + str(clause.args[0])))
else:
new_clauses.append(clause)
return new_clauses
"""Checks if the goals have been reached"""
return all(goal in self.init for goal in self.goals)
Note that action is an Expr like expr('Remove(Glass, Table)') or expr('Eat(Sandwich)')
action_name = action.op
args = action.args
list_action = first(a for a in self.actions if a.name == action_name)
if list_action is None:
raise Exception("Action '{}' not found".format(action_name))
if not list_action.check_precond(self.init, args):
raise Exception("Action '{}' pre-conditions not satisfied".format(action))
self.init = list_action(self.init, args).clauses
Defines an action schema using preconditions and effects.
Use this to describe actions in PlanningProblem.
action is an Expr where variables are given as arguments(args).
Precondition and effect are both lists with positive and negative literals.
Negative preconditions and effects are defined by adding a 'Not' before the name of the clause
precond = [expr("Human(person)"), expr("Hungry(Person)"), expr("NotEaten(food)")]
effect = [expr("Eaten(food)"), expr("Hungry(person)")]
eat = Action(expr("Eat(person, food)"), precond, effect)
def __init__(self, action, precond, effect):
if isinstance(action, str):
action = expr(action)
self.precond = self.convert(precond)
self.effect = self.convert(effect)
def __call__(self, kb, args):
return self.act(kb, args)
def __repr__(self):
return '{}({})'.format(self.__class__.__name__, Expr(self.name, *self.args))
if isinstance(clauses, Expr):
clauses = conjuncts(clauses)
for i in range(len(clauses)):
if clauses[i].op == '~':
clauses[i] = expr('Not' + str(clauses[i].args[0]))
elif isinstance(clauses, str):
clauses = clauses.replace('~', 'Not')
if len(clauses) > 0:
clauses = expr(clauses)
try:
clauses = conjuncts(clauses)
except AttributeError:
pass
"""Replaces variables in expression with their respective Propositional symbol"""
new_args = list(e.args)
for num, x in enumerate(e.args):
for i, _ in enumerate(self.args):
return Expr(e.op, *new_args)
def check_precond(self, kb, args):
"""Checks if the precondition is satisfied in the current state"""
if isinstance(kb, list):
kb = FolKB(kb)
for clause in self.precond:
if self.substitute(clause, args) not in kb.clauses:
return False
return True
def act(self, kb, args):
"""Executes the action on the state's knowledge base"""
if isinstance(kb, list):
kb = FolKB(kb)
if not self.check_precond(kb, args):
raise Exception('Action pre-conditions not satisfied')
for clause in self.effect:
kb.tell(self.substitute(clause, args))
if clause.op[:3] == 'Not':
new_clause = Expr(clause.op[3:], *clause.args)
if kb.ask(self.substitute(new_clause, args)) is not False:
kb.retract(self.substitute(new_clause, args))
else:
new_clause = Expr('Not' + clause.op, *clause.args)
if kb.ask(self.substitute(new_clause, args)) is not False:
kb.retract(self.substitute(new_clause, args))
def goal_test(goals, state):
"""Generic goal testing helper function"""
if isinstance(state, list):
kb = FolKB(state)
else:
kb = state
return all(kb.ask(q) is not False for q in goals)
"""
[Figure 10.1] AIR-CARGO-PROBLEM
An air-cargo shipment problem for delivering cargo to different locations,
given the starting location and airplanes.
Example:
>>> from planning import *
>>> ac = air_cargo()
>>> ac.goal_test()
False
>>> ac.act(expr('Load(C2, P2, JFK)'))
>>> ac.act(expr('Load(C1, P1, SFO)'))
>>> ac.act(expr('Fly(P1, SFO, JFK)'))
>>> ac.act(expr('Fly(P2, JFK, SFO)'))
>>> ac.act(expr('Unload(C2, P2, SFO)'))
>>> ac.goal_test()
False
>>> ac.act(expr('Unload(C1, P1, JFK)'))
>>> ac.goal_test()
True
>>>
"""
return PlanningProblem(init='At(C1, SFO) & At(C2, JFK) & At(P1, SFO) & At(P2, JFK) & Cargo(C1) & Cargo(C2) & Plane(P1) & Plane(P2) & Airport(SFO) & Airport(JFK)',
goals='At(C1, JFK) & At(C2, SFO)',
precond='At(c, a) & At(p, a) & Cargo(c) & Plane(p) & Airport(a)',
effect='In(c, p) & ~At(c, a)'),
Action('Unload(c, p, a)',
precond='In(c, p) & At(p, a) & Cargo(c) & Plane(p) & Airport(a)',
effect='At(c, a) & ~In(c, p)'),
Action('Fly(p, f, to)',
precond='At(p, f) & Plane(p) & Airport(f) & Airport(to)',
effect='At(p, to) & ~At(p, f)')])
"""[Figure 10.2] SPARE-TIRE-PROBLEM
A problem involving changing the flat tire of a car
with a spare tire from the trunk.
Example:
>>> from planning import *
>>> st = spare_tire()
>>> st.goal_test()
False
>>> st.act(expr('Remove(Spare, Trunk)'))
>>> st.act(expr('Remove(Flat, Axle)'))
>>> st.goal_test()
False
>>> st.act(expr('PutOn(Spare, Axle)'))
>>> st.goal_test()
True
>>>
"""
return PlanningProblem(init='Tire(Flat) & Tire(Spare) & At(Flat, Axle) & At(Spare, Trunk)',
goals='At(Spare, Axle) & At(Flat, Ground)',
actions=[Action('Remove(obj, loc)',
precond='At(obj, loc)',
effect='At(obj, Ground) & ~At(obj, loc)'),
Action('PutOn(t, Axle)',
precond='Tire(t) & At(t, Ground) & ~At(Flat, Axle)',
effect='At(t, Axle) & ~At(t, Ground)'),
Action('LeaveOvernight',
precond='',
effect='~At(Spare, Ground) & ~At(Spare, Axle) & ~At(Spare, Trunk) & \
~At(Flat, Ground) & ~At(Flat, Axle) & ~At(Flat, Trunk)')])
opensourceware
a validé
"""
[Figure 10.3] THREE-BLOCK-TOWER
A blocks-world problem of stacking three blocks in a certain configuration,
also known as the Sussman Anomaly.
Example:
>>> from planning import *
>>> tbt = three_block_tower()
>>> tbt.goal_test()
False
>>> tbt.act(expr('MoveToTable(C, A)'))
>>> tbt.act(expr('Move(B, Table, C)'))
>>> tbt.goal_test()
False
>>> tbt.act(expr('Move(A, Table, B)'))
>>> tbt.goal_test()
True
>>>
"""
return PlanningProblem(init='On(A, Table) & On(B, Table) & On(C, A) & Block(A) & Block(B) & Block(C) & Clear(B) & Clear(C)',
goals='On(A, B) & On(B, C)',
actions=[Action('Move(b, x, y)',
precond='On(b, x) & Clear(b) & Clear(y) & Block(b) & Block(y)',
effect='On(b, y) & Clear(x) & ~On(b, x) & ~Clear(y)'),
Action('MoveToTable(b, x)',
precond='On(b, x) & Clear(b) & Block(b)',
effect='On(b, Table) & Clear(x) & ~On(b, x)')])
opensourceware
a validé
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def simple_blocks_world():
"""
SIMPLE-BLOCKS-WORLD
A simplified definition of the Sussman Anomaly problem.
Example:
>>> from planning import *
>>> sbw = simple_blocks_world()
>>> sbw.goal_test()
False
>>> sbw.act(expr('ToTable(A, B)'))
>>> sbw.act(expr('FromTable(B, A)'))
>>> sbw.goal_test()
False
>>> sbw.act(expr('FromTable(C, B)'))
>>> sbw.goal_test()
True
>>>
"""
return PlanningProblem(init='On(A, B) & Clear(A) & OnTable(B) & OnTable(C) & Clear(C)',
goals='On(B, A) & On(C, B)',
actions=[Action('ToTable(x, y)',
precond='On(x, y) & Clear(x)',
effect='~On(x, y) & Clear(y) & OnTable(x)'),
Action('FromTable(y, x)',
precond='OnTable(y) & Clear(y) & Clear(x)',
effect='~OnTable(y) & ~Clear(x) & On(y, x)')])
opensourceware
a validé
def have_cake_and_eat_cake_too():
"""
[Figure 10.7] CAKE-PROBLEM
A problem where we begin with a cake and want to
reach the state of having a cake and having eaten a cake.
The possible actions include baking a cake and eating a cake.
Example:
>>> from planning import *
>>> cp = have_cake_and_eat_cake_too()
>>> cp.goal_test()
False
>>> cp.act(expr('Eat(Cake)'))
>>> cp.goal_test()
False
>>> cp.act(expr('Bake(Cake)'))
>>> cp.goal_test()
True
>>>
"""
opensourceware
a validé
return PlanningProblem(init='Have(Cake)',
goals='Have(Cake) & Eaten(Cake)',
actions=[Action('Eat(Cake)',
precond='Have(Cake)',
effect='Eaten(Cake) & ~Have(Cake)'),
Action('Bake(Cake)',
precond='~Have(Cake)',
effect='Have(Cake)')])
opensourceware
a validé
"""
SHOPPING-PROBLEM
A problem of acquiring some items given their availability at certain stores.
Example:
>>> from planning import *
>>> sp = shopping_problem()
>>> sp.goal_test()
False
>>> sp.act(expr('Go(Home, HW)'))
>>> sp.act(expr('Buy(Drill, HW)'))
>>> sp.act(expr('Go(HW, SM)'))
>>> sp.act(expr('Buy(Banana, SM)'))
>>> sp.goal_test()
False
>>> sp.act(expr('Buy(Milk, SM)'))
>>> sp.goal_test()
True
>>>
"""
opensourceware
a validé
return PlanningProblem(init='At(Home) & Sells(SM, Milk) & Sells(SM, Banana) & Sells(HW, Drill)',
goals='Have(Milk) & Have(Banana) & Have(Drill)',
actions=[Action('Buy(x, store)',
precond='At(store) & Sells(store, x)',
effect='Have(x)'),
Action('Go(x, y)',
precond='At(x)',
effect='At(y) & ~At(x)')])
"""
SOCKS-AND-SHOES-PROBLEM
A task of wearing socks and shoes on both feet
Example:
>>> from planning import *
>>> ss = socks_and_shoes()
>>> ss.goal_test()
False
>>> ss.act(expr('RightSock'))
>>> ss.act(expr('RightShoe'))
>>> ss.act(expr('LeftSock'))
>>> ss.goal_test()
False
>>> ss.act(expr('LeftShoe'))
>>> ss.goal_test()
True
>>>
"""
goals='RightShoeOn & LeftShoeOn',
actions=[Action('RightShoe',
precond='RightSockOn',
effect='RightShoeOn'),
Action('RightSock',
precond='',
effect='RightSockOn'),
Action('LeftShoe',
precond='LeftSockOn',
effect='LeftShoeOn'),
Action('LeftSock',
precond='',
effect='LeftSockOn')])
"""
[Figure 11.10] DOUBLE-TENNIS-PROBLEM
A multiagent planning problem involving two partner tennis players
trying to return an approaching ball and repositioning around in the court.
Example:
>>> from planning import *
>>> dtp = double_tennis_problem()
>>> goal_test(dtp.goals, dtp.init)
False
>>> dtp.act(expr('Go(A, RightBaseLine, LeftBaseLine)'))
>>> dtp.act(expr('Hit(A, Ball, RightBaseLine)'))
>>> goal_test(dtp.goals, dtp.init)
False
>>> dtp.act(expr('Go(A, LeftNet, RightBaseLine)'))
>>> goal_test(dtp.goals, dtp.init)
True
>>>
"""
return PlanningProblem(init='At(A, LeftBaseLine) & At(B, RightNet) & Approaching(Ball, RightBaseLine) & Partner(A, B) & Partner(B, A)',
goals='Returned(Ball) & At(a, LeftNet) & At(a, RightNet)',
actions=[Action('Hit(actor, Ball, loc)',
precond='Approaching(Ball, loc) & At(actor, loc)',
effect='Returned(Ball)'),
Action('Go(actor, to, loc)',
precond='At(actor, loc)',
effect='At(actor, to) & ~At(actor, loc)')])
"""
Contains the state of the planning problem
and exhaustive list of actions which use the
states as pre-condition.
"""
def __init__(self, kb):
"""Initializes variables to hold state and action details of a level"""
self.kb = kb
# current state
self.current_state = kb.clauses
# current action to state link
self.current_action_links = {}
# current state to action link
self.current_state_links = {}
# current action to next state link
# next state to current action link
self.next_state_links = {}
# mutually exclusive actions
self.mutex = []
def __call__(self, actions, objects):
self.build(actions, objects)
self.find_mutex()
def separate(self, e):
"""Separates an iterable of elements into positive and negative parts"""
positive = []
negative = []
for clause in e:
if clause.op[:3] == 'Not':
negative.append(clause)
else:
positive.append(clause)
return positive, negative
"""Finds mutually exclusive actions"""
pos_nsl, neg_nsl = self.separate(self.next_state_links)
for negeff in neg_nsl:
new_negeff = Expr(negeff.op[3:], *negeff.args)
for poseff in pos_nsl:
if new_negeff == poseff:
for a in self.next_state_links[poseff]:
for b in self.next_state_links[negeff]:
if {a, b} not in self.mutex:
self.mutex.append({a, b})
# Interference will be calculated with the last step
pos_csl, neg_csl = self.separate(self.current_state_links)
for posprecond in pos_csl:
for negprecond in neg_csl:
new_negprecond = Expr(negprecond.op[3:], *negprecond.args)
if new_negprecond == posprecond:
for a in self.current_state_links[posprecond]:
for b in self.current_state_links[negprecond]:
if {a, b} not in self.mutex:
self.mutex.append({a, b})
state_mutex = []
for pair in self.mutex:
next_state_0 = self.next_action_links[list(pair)[0]]
if len(pair) == 2:
next_state_1 = self.next_action_links[list(pair)[1]]
else:
next_state_1 = self.next_action_links[list(pair)[0]]
if (len(next_state_0) == 1) and (len(next_state_1) == 1):
state_mutex.append({next_state_0[0], next_state_1[0]})
self.mutex = self.mutex + state_mutex
"""Populates the lists and dictionaries containing the state action dependencies"""
for clause in self.current_state:
p_expr = Expr('P' + clause.op, *clause.args)
self.current_action_links[p_expr] = [clause]
self.next_action_links[p_expr] = [clause]
self.current_state_links[clause] = [p_expr]
self.next_state_links[clause] = [p_expr]
for a in actions:
num_args = len(a.args)
possible_args = tuple(itertools.permutations(objects, num_args))
for arg in possible_args:
for num, symbol in enumerate(a.args):
if not symbol.op.islower():
arg = list(arg)
arg[num] = symbol
arg = tuple(arg)
new_action = a.substitute(Expr(a.name, *a.args), arg)
self.current_action_links[new_action] = []
self.current_action_links[new_action].append(new_clause)
if new_clause in self.current_state_links:
self.current_state_links[new_clause].append(new_action)
self.current_state_links[new_clause] = [new_action]
new_clause = a.substitute(clause, arg)
self.next_action_links[new_action].append(new_clause)
if new_clause in self.next_state_links:
self.next_state_links[new_clause].append(new_action)
self.next_state_links[new_clause] = [new_action]
"""Performs the necessary actions and returns a new Level"""
new_kb = FolKB(list(set(self.next_state_links.keys())))
return Level(new_kb)
class Graph:
"""
Contains levels of state and actions
Used in graph planning algorithm to extract a solution
"""
def __init__(self, planningproblem):
self.planningproblem = planningproblem
self.kb = FolKB(planningproblem.init)
self.levels = [Level(self.kb)]
self.objects = set(arg for clause in self.kb.clauses for arg in clause.args)
def __call__(self):
self.expand_graph()
"""Expands the graph by a level"""
last_level(self.planningproblem.actions, self.objects)
self.levels.append(last_level.perform_actions())
def non_mutex_goals(self, goals, index):
"""Checks whether the goals are mutually exclusive"""
goal_perm = itertools.combinations(goals, 2)
for g in goal_perm:
if set(g) in self.levels[index].mutex:
return False
return True
class GraphPlan:
"""
Class for formulation GraphPlan algorithm
Constructs a graph of state and action space
Returns solution for the planning problem
"""
def __init__(self, planningproblem):
self.graph = Graph(planningproblem)
self.nogoods = []
self.solution = []
def check_leveloff(self):
"""Checks if the graph has levelled off"""
check = (set(self.graph.levels[-1].current_state) == set(self.graph.levels[-2].current_state))
if check:
def extract_solution(self, goals, index):
"""Extracts the solution"""
level = self.graph.levels[index]
if not self.graph.non_mutex_goals(goals, index):
self.nogoods.append((level, goals))
# Create all combinations of actions that satisfy the goal
for goal in goals:
actions.append(level.next_state_links[goal])
all_actions = list(itertools.product(*actions))
# Filter out non-mutex actions
non_mutex_actions = []
action_pairs = itertools.combinations(list(set(action_tuple)), 2)
non_mutex_actions.append(list(set(action_tuple)))
for pair in action_pairs:
if set(pair) in level.mutex:
non_mutex_actions.pop(-1)
break
for action_list in non_mutex_actions:
if [action_list, index] not in self.solution:
self.solution.append([action_list, index])
new_goals = []
for act in set(action_list):
if act in level.current_action_links:
new_goals = new_goals + level.current_action_links[act]
if abs(index) + 1 == len(self.graph.levels):
elif (level, new_goals) in self.nogoods:
self.extract_solution(new_goals, index - 1)
solution = []
for item in self.solution:
if item[1] == -1:
solution.append([])
solution[-1].append(item[0])
else:
solution[-1].append(item[0])
for num, item in enumerate(solution):
item.reverse()
solution[num] = item
return solution
return all(kb.ask(q) is not False for q in self.graph.planningproblem.goals)
def execute(self):
"""Executes the GraphPlan algorithm for the given problem"""
if (self.goal_test(self.graph.levels[-1].kb) and self.graph.non_mutex_goals(self.graph.planningproblem.goals, -1)):
solution = self.extract_solution(self.graph.planningproblem.goals, -1)
if solution:
return solution
if len(self.graph.levels) >= 2 and self.check_leveloff():
return None
def __init__(self, planningproblem):
self.planningproblem = planningproblem
def filter(self, solution):
"""Filter out persistence actions from a solution"""
new_solution = []
for section in solution[0]:
new_section = []
for operation in section:
if not (operation.op[0] == 'P' and operation.op[1].isupper()):
new_section.append(operation)
new_solution.append(new_section)
return new_solution
def orderlevel(self, level, planningproblem):
"""Return valid linear order of actions for a given level"""
for permutation in itertools.permutations(level):
count = 0
for action in permutation:
try:
temp.act(action)
count += 1
except:
count = 0
break
if count == len(permutation):
return list(permutation), temp
return None
def execute(self):
"""Finds total-order solution for a planning graph"""
graphplan_solution = GraphPlan(self.planningproblem).execute()
filtered_solution = self.filter(graphplan_solution)
ordered_solution = []
planningproblem = self.planningproblem
level_solution, planningproblem = self.orderlevel(level, planningproblem)
for element in level_solution:
ordered_solution.append(element)
def linearize(solution):
"""Converts a level-ordered solution into a linear solution"""
linear_solution = []
for section in solution[0]:
for operation in section:
if not (operation.op[0] == 'P' and operation.op[1].isupper()):
linear_solution.append(operation)
return linear_solution
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
'''
[Section 10.13] PARTIAL-ORDER-PLANNER
Partially ordered plans are created by a search through the space of plans
rather than a search through the state space. It views planning as a refinement of partially ordered plans.
A partially ordered plan is defined by a set of actions and a set of constraints of the form A < B,
which denotes that action A has to be performed before action B.
To summarize the working of a partial order planner,
1. An open precondition is selected (a sub-goal that we want to achieve).
2. An action that fulfils the open precondition is chosen.
3. Temporal constraints are updated.
4. Existing causal links are protected. Protection is a method that checks if the causal links conflict
and if they do, temporal constraints are added to fix the threats.
5. The set of open preconditions is updated.
6. Temporal constraints of the selected action and the next action are established.
7. A new causal link is added between the selected action and the owner of the open precondition.
8. The set of new causal links is checked for threats and if found, the threat is removed by either promotion or demotion.
If promotion or demotion is unable to solve the problem, the planning problem cannot be solved with the current sequence of actions
or it may not be solvable at all.
9. These steps are repeated until the set of open preconditions is empty.
'''
class PartialOrderPlanner:
def __init__(self, planningproblem):
self.planningproblem = planningproblem
self.initialize()
def initialize(self):
"""Initialize all variables"""
self.causal_links = []
self.start = Action('Start', [], self.planningproblem.init)
self.finish = Action('Finish', self.planningproblem.goals, [])
self.actions = set()
self.actions.add(self.start)
self.actions.add(self.finish)
self.constraints = set()
self.constraints.add((self.start, self.finish))
self.agenda = set()
for precond in self.finish.precond:
self.agenda.add((precond, self.finish))
self.expanded_actions = self.expand_actions()
def expand_actions(self, name=None):
"""Generate all possible actions with variable bindings for precondition selection heuristic"""
objects = set(arg for clause in self.planningproblem.init for arg in clause.args)
expansions = []
action_list = []
if name is not None:
for action in self.planningproblem.actions:
if str(action.name) == name:
action_list.append(action)
else:
action_list = self.planningproblem.actions
for action in action_list:
for permutation in itertools.permutations(objects, len(action.args)):
bindings = unify(Expr(action.name, *action.args), Expr(action.name, *permutation))
if bindings is not None:
new_args = []
for arg in action.args:
if arg in bindings:
new_args.append(bindings[arg])
else:
new_args.append(arg)
new_expr = Expr(str(action.name), *new_args)
new_preconds = []
for precond in action.precond:
new_precond_args = []
for arg in precond.args:
if arg in bindings:
new_precond_args.append(bindings[arg])
else:
new_precond_args.append(arg)
new_precond = Expr(str(precond.op), *new_precond_args)
new_preconds.append(new_precond)
new_effects = []
for effect in action.effect:
new_effect_args = []
for arg in effect.args:
if arg in bindings:
new_effect_args.append(bindings[arg])
else:
new_effect_args.append(arg)
new_effect = Expr(str(effect.op), *new_effect_args)
new_effects.append(new_effect)
expansions.append(Action(new_expr, new_preconds, new_effects))
return expansions
def find_open_precondition(self):
"""Find open precondition with the least number of possible actions"""
number_of_ways = dict()
actions_for_precondition = dict()
for element in self.agenda:
open_precondition = element[0]
possible_actions = list(self.actions) + self.expanded_actions
for action in possible_actions:
for effect in action.effect:
if effect == open_precondition:
if open_precondition in number_of_ways:
number_of_ways[open_precondition] += 1
actions_for_precondition[open_precondition].append(action)
else:
number_of_ways[open_precondition] = 1
actions_for_precondition[open_precondition] = [action]
number = sorted(number_of_ways, key=number_of_ways.__getitem__)
for k, v in number_of_ways.items():
if v == 0:
return None, None, None
act1 = None
for element in self.agenda:
if element[0] == number[0]:
act1 = element[1]
break
if number[0] in self.expanded_actions:
self.expanded_actions.remove(number[0])
return number[0], act1, actions_for_precondition[number[0]]
def find_action_for_precondition(self, oprec):
"""Find action for a given precondition"""
# either
# choose act0 E Actions such that act0 achieves G
for action in self.actions:
for effect in action.effect:
if effect == oprec:
return action, 0
# or
# choose act0 E Actions such that act0 achieves G
for action in self.planningproblem.actions:
for effect in action.effect:
if effect.op == oprec.op:
bindings = unify(effect, oprec)
if bindings is None:
break
return action, bindings
def generate_expr(self, clause, bindings):
"""Generate atomic expression from generic expression given variable bindings"""
new_args = []
for arg in clause.args:
if arg in bindings:
new_args.append(bindings[arg])
else:
new_args.append(arg)
try:
return Expr(str(clause.name), *new_args)
except:
return Expr(str(clause.op), *new_args)
def generate_action_object(self, action, bindings):
"""Generate action object given a generic action andvariable bindings"""
# if bindings is 0, it means the action already exists in self.actions
if bindings == 0:
return action
# bindings cannot be None
else:
new_expr = self.generate_expr(action, bindings)
new_preconds = []
for precond in action.precond:
new_precond = self.generate_expr(precond, bindings)
new_preconds.append(new_precond)
new_effects = []
for effect in action.effect:
new_effect = self.generate_expr(effect, bindings)
new_effects.append(new_effect)
return Action(new_expr, new_preconds, new_effects)
def cyclic(self, graph):
"""Check cyclicity of a directed graph"""
new_graph = dict()
for element in graph:
if element[0] in new_graph:
new_graph[element[0]].append(element[1])
else:
new_graph[element[0]] = [element[1]]
path = set()
def visit(vertex):
path.add(vertex)
for neighbor in new_graph.get(vertex, ()):
if neighbor in path or visit(neighbor):
return True
path.remove(vertex)
return False
value = any(visit(v) for v in new_graph)
return value
def add_const(self, constraint, constraints):
"""Add the constraint to constraints if the resulting graph is acyclic"""
if constraint[0] == self.finish or constraint[1] == self.start:
return constraints
new_constraints = set(constraints)
new_constraints.add(constraint)
if self.cyclic(new_constraints):
return constraints
return new_constraints
def is_a_threat(self, precondition, effect):
"""Check if effect is a threat to precondition"""
if (str(effect.op) == 'Not' + str(precondition.op)) or ('Not' + str(effect.op) == str(precondition.op)):
if effect.args == precondition.args:
return True
return False
def protect(self, causal_link, action, constraints):
"""Check and resolve threats by promotion or demotion"""
threat = False
for effect in action.effect:
if self.is_a_threat(causal_link[1], effect):
threat = True
break
if action != causal_link[0] and action != causal_link[2] and threat:
# try promotion
new_constraints = set(constraints)
new_constraints.add((action, causal_link[0]))
if not self.cyclic(new_constraints):
constraints = self.add_const((action, causal_link[0]), constraints)
else:
# try demotion
new_constraints = set(constraints)
new_constraints.add((causal_link[2], action))
if not self.cyclic(new_constraints):
constraints = self.add_const((causal_link[2], action), constraints)
else:
# both promotion and demotion fail
print('Unable to resolve a threat caused by', action, 'onto', causal_link)
return
return constraints
def convert(self, constraints):
"""Convert constraints into a dict of Action to set orderings"""
graph = dict()
for constraint in constraints:
if constraint[0] in graph:
graph[constraint[0]].add(constraint[1])
else:
graph[constraint[0]] = set()
graph[constraint[0]].add(constraint[1])
return graph
def toposort(self, graph):
"""Generate topological ordering of constraints"""
if len(graph) == 0:
return
graph = graph.copy()
for k, v in graph.items():
v.discard(k)
extra_elements_in_dependencies = _reduce(set.union, graph.values()) - set(graph.keys())
graph.update({element:set() for element in extra_elements_in_dependencies})
while True:
ordered = set(element for element, dependency in graph.items() if len(dependency) == 0)
if not ordered:
break
yield ordered
graph = {element: (dependency - ordered) for element, dependency in graph.items() if element not in ordered}
if len(graph) != 0:
raise ValueError('The graph is not acyclic and cannot be linearly ordered')
def display_plan(self):
"""Display causal links, constraints and the plan"""
print('Causal Links')
for causal_link in self.causal_links:
print(causal_link)
print('\nConstraints')
for constraint in self.constraints:
print(constraint[0], '<', constraint[1])
print('\nPartial Order Plan')
print(list(reversed(list(self.toposort(self.convert(self.constraints))))))
def execute(self, display=True):
"""Execute the algorithm"""
step = 1
self.tries = 1
while len(self.agenda) > 0:
step += 1
# select <G, act1> from Agenda
try:
G, act1, possible_actions = self.find_open_precondition()
except IndexError:
print('Probably Wrong')
break
act0 = possible_actions[0]
# remove <G, act1> from Agenda
self.agenda.remove((G, act1))
# For actions with variable number of arguments, use least commitment principle
# act0_temp, bindings = self.find_action_for_precondition(G)
# act0 = self.generate_action_object(act0_temp, bindings)
# Actions = Actions U {act0}
self.actions.add(act0)
# Constraints = add_const(start < act0, Constraints)
self.constraints = self.add_const((self.start, act0), self.constraints)
# for each CL E CausalLinks do
# Constraints = protect(CL, act0, Constraints)
for causal_link in self.causal_links:
self.constraints = self.protect(causal_link, act0, self.constraints)
# Agenda = Agenda U {<P, act0>: P is a precondition of act0}
for precondition in act0.precond:
self.agenda.add((precondition, act0))
# Constraints = add_const(act0 < act1, Constraints)
self.constraints = self.add_const((act0, act1), self.constraints)
# CausalLinks U {<act0, G, act1>}
if (act0, G, act1) not in self.causal_links:
self.causal_links.append((act0, G, act1))
# for each A E Actions do
# Constraints = protect(<act0, G, act1>, A, Constraints)
for action in self.actions:
self.constraints = self.protect((act0, G, act1), action, self.constraints)
if step > 200:
print('Couldn\'t find a solution')
return None, None
if display:
self.display_plan()
else:
return self.constraints, self.causal_links
def spare_tire_graphplan():
"""Solves the spare tire problem using GraphPlan"""
return GraphPlan(spare_tire()).execute()
def three_block_tower_graphplan():
"""Solves the Sussman Anomaly problem using GraphPlan"""
return GraphPlan(three_block_tower()).execute()
def air_cargo_graphplan():
"""Solves the air cargo problem using GraphPlan"""
return GraphPlan(air_cargo()).execute()
def have_cake_and_eat_cake_too_graphplan():
"""Solves the cake problem using GraphPlan"""
return [GraphPlan(have_cake_and_eat_cake_too()).execute()[1]]
def shopping_graphplan():
"""Solves the shopping problem using GraphPlan"""
return GraphPlan(shopping_problem()).execute()
def socks_and_shoes_graphplan():
"""Solves the socks and shoes problem using GraphpPlan"""
return GraphPlan(socks_and_shoes()).execute()
def simple_blocks_world_graphplan():
"""Solves the simple blocks world problem"""
return GraphPlan(simple_blocks_world()).execute()
MariannaSpyrakou
a validé
class HLA(Action):
"""
Define Actions for the real-world (that may be refined further), and satisfy resource
constraints.
"""
unique_group = 1
def __init__(self, action, precond=None, effect=None, duration=0,
consume=None, use=None):
"""
As opposed to actions, to define HLA, we have added constraints.
duration holds the amount of time required to execute the task
consumes holds a dictionary representing the resources the task consumes
uses holds a dictionary representing the resources the task uses
"""
precond = precond or [None]
effect = effect or [None]
super().__init__(action, precond, effect)
self.duration = duration
self.consumes = consume or {}
self.uses = use or {}
self.completed = False
# self.priority = -1 # must be assigned in relation to other HLAs
# self.job_group = -1 # must be assigned in relation to other HLAs
def do_action(self, job_order, available_resources, kb, args):
"""
An HLA based version of act - along with knowledge base updation, it handles
resource checks, and ensures the actions are executed in the correct order.
"""
# print(self.name)
if not self.has_usable_resource(available_resources):
raise Exception('Not enough usable resources to execute {}'.format(self.name))
if not self.has_consumable_resource(available_resources):
raise Exception('Not enough consumable resources to execute {}'.format(self.name))
if not self.inorder(job_order):
raise Exception("Can't execute {} - execute prerequisite actions first".
format(self.name))
kb = super().act(kb, args) # update knowledge base
for resource in self.consumes: # remove consumed resources
available_resources[resource] -= self.consumes[resource]
self.completed = True # set the task status to complete
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
def has_consumable_resource(self, available_resources):
"""
Ensure there are enough consumable resources for this action to execute.
"""
for resource in self.consumes:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.consumes[resource]:
return False
return True
def has_usable_resource(self, available_resources):
"""
Ensure there are enough usable resources for this action to execute.
"""
for resource in self.uses:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.uses[resource]:
return False
return True
def inorder(self, job_order):
"""
Ensure that all the jobs that had to be executed before the current one have been
successfully executed.
"""
for jobs in job_order:
if self in jobs:
for job in jobs:
if job is self:
return True
if not job.completed:
return False
return True
"""
Define real-world problems by aggregating resources as numerical quantities instead of
named entities.
This class is identical to PDLL, except that it overloads the act function to handle
resource and ordering conditions imposed by HLA as opposed to Action.
"""
def __init__(self, init, goals, actions, jobs=None, resources=None):
super().__init__(init, goals, actions)
self.resources = resources or {}
def act(self, action):
"""
Performs the HLA given as argument.
Note that this is different from the superclass action - where the parameter was an
Expression. For real world problems, an Expr object isn't enough to capture all the
detail required for executing the action - resources, preconditions, etc need to be
checked for too.
"""
args = action.args
list_action = first(a for a in self.actions if a.name == action.name)
if list_action is None:
raise Exception("Action '{}' not found".format(action.name))
self.init = list_action.do_action(self.jobs, self.resources, self.init, args).clauses
def refinements(hla, state, library): # refinements may be (multiple) HLA themselves ...
"""
state is a Problem, containing the current state kb
library is a dictionary containing details for every possible refinement. eg:
{
'HLA': [
'Go(Home, SFO)',
'Go(Home, SFO)',
'Drive(Home, SFOLongTermParking)',
'Shuttle(SFOLongTermParking, SFO)',
'Taxi(Home, SFO)'
],
'steps': [
['Drive(Home, SFOLongTermParking)', 'Shuttle(SFOLongTermParking, SFO)'],
['Taxi(Home, SFO)'],
[],
[],
[]
],
# empty refinements indicate a primitive action
'precond': [
['At(SFOLongTermParking)'],
['At(Home)']
],
'effect': [
['At(SFO) & ~At(Home)'],
['At(SFO) & ~At(Home)'],
['At(SFOLongTermParking) & ~At(Home)'],
['At(SFO) & ~At(SFOLongTermParking)'],
['At(SFO) & ~At(Home)']
}
"""
e = Expr(hla.name, hla.args)
indices = [i for i, x in enumerate(library['HLA']) if expr(x).op == hla.name]
actions = []
for j in range(len(library['steps'][i])):
# find the index of the step [j] of the HLA
index_step = [k for k,x in enumerate(library['HLA']) if x == library['steps'][i][j]][0]
precond = library['precond'][index_step][0] # preconditions of step [j]
effect = library['effect'][index_step][0] # effect of step [j]
actions.append(HLA(library['steps'][i][j], precond, effect))
yield actions
def hierarchical_search(problem, hierarchy):
"""
[Figure 11.5] 'Hierarchical Search, a Breadth First Search implementation of Hierarchical
Forward Planning Search'
The problem is a real-world problem defined by the problem class, and the hierarchy is
a dictionary of HLA - refinements (see refinements generator for details)
"""
act = Node(problem.init, None, [problem.actions[0]])
frontier = deque()
plan = frontier.popleft()
(hla, index) = Problem.find_hla(plan, hierarchy) # finds the first non primitive hla in plan actions
prefix = plan.action[:index]
outcome = Problem(Problem.result(problem.init, prefix), problem.goals , problem.actions )
suffix = plan.action[index+1:]
if not hla: # hla is None and plan is primitive
if outcome.goal_test():
for sequence in Problem.refinements(hla, outcome, hierarchy): # find refinements
frontier.append(Node(outcome.init, plan, prefix + sequence+ suffix))
"""The outcome of applying an action to the current problem"""
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
for a in actions:
if a.check_precond(state, a.args):
state = a(state, a.args).clauses
return state
def angelic_search(problem, hierarchy, initialPlan):
"""
[Figure 11.8] A hierarchical planning algorithm that uses angelic semantics to identify and
commit to high-level plans that work while avoiding high-level plans that don’t.
The predicate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression
of refinements.
At top level, call ANGELIC -SEARCH with [Act ] as the initialPlan .
initialPlan contains a sequence of HLA's with angelic semantics
The possible effects of an angelic HLA in initialPlan are :
~ : effect remove
$+: effect possibly add
$-: effect possibly remove
$$: possibly add or remove
"""
frontier = deque(initialPlan)
while True:
if not frontier:
return None
plan = frontier.popleft() # sequence of HLA/Angelic HLA's
opt_reachable_set = Problem.reach_opt(problem.init, plan)
pes_reachable_set = Problem.reach_pes(problem.init, plan)
if problem.intersects_goal(opt_reachable_set):
if Problem.is_primitive( plan, hierarchy ):
return ([x for x in plan.action])
guaranteed = problem.intersects_goal(pes_reachable_set)
if guaranteed and Problem.making_progress(plan, initialPlan):
final_state = guaranteed[0] # any element of guaranteed
return Problem.decompose(hierarchy, problem, plan, final_state, pes_reachable_set)
MariannaSpyrakou
a validé
hla, index = Problem.find_hla(plan, hierarchy) # there should be at least one HLA/Angelic_HLA, otherwise plan would be primitive.
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
suffix = plan.action[index+1:]
outcome = Problem(Problem.result(problem.init, prefix), problem.goals , problem.actions )
for sequence in Problem.refinements(hla, outcome, hierarchy): # find refinements
frontier.append(Angelic_Node(outcome.init, plan, prefix + sequence+ suffix, prefix+sequence+suffix))
def intersects_goal(problem, reachable_set):
"""
Find the intersection of the reachable states and the goal
"""
return [y for x in list(reachable_set.keys()) for y in reachable_set[x] if all(goal in y for goal in problem.goals)]
def is_primitive(plan, library):
"""
checks if the hla is primitive action
"""
for hla in plan.action:
indices = [i for i, x in enumerate(library['HLA']) if expr(x).op == hla.name]
for i in indices:
if library["steps"][i]:
return False
return True
def reach_opt(init, plan):
"""
Finds the optimistic reachable set of the sequence of actions in plan
"""
reachable_set = {0: [init]}
optimistic_description = plan.action #list of angelic actions with optimistic description
return Problem.find_reachable_set(reachable_set, optimistic_description)
def reach_pes(init, plan):
"""
Finds the pessimistic reachable set of the sequence of actions in plan
"""
reachable_set = {0: [init]}
pessimistic_description = plan.action_pes # list of angelic actions with pessimistic description
return Problem.find_reachable_set(reachable_set, pessimistic_description)
def find_reachable_set(reachable_set, action_description):
"""
Finds the reachable states of the action_description when applied in each state of reachable set.
"""
for i in range(len(action_description)):
reachable_set[i+1]=[]
if type(action_description[i]) is Angelic_HLA:
possible_actions = action_description[i].angelic_action()
else:
possible_actions = action_description
for action in possible_actions:
for state in reachable_set[i]:
if action.check_precond(state , action.args) :
if action.effect[0] :
new_state = action(state, action.args).clauses
reachable_set[i+1].append(new_state)
else:
reachable_set[i+1].append(state)
return reachable_set
def find_hla(plan, hierarchy):
"""
Finds the the first HLA action in plan.action, which is not primitive
and its corresponding index in plan.action
"""
hla = None
index = len(plan.action)
for i in range(len(plan.action)): # find the first HLA in plan, that is not primitive
if not Problem.is_primitive(Node(plan.state, plan.parent, [plan.action[i]]), hierarchy):
hla = plan.action[i]
index = i
break
MariannaSpyrakou
a validé
return hla, index
def making_progress(plan, initialPlan):
"""
(infinite regression of refinements happens when the algorithm finds a plan that
its pessimistic reachable set intersects the goal inside a call to decompose on the same plan, in the same circumstances)
for i in range(len(initialPlan)):
if (plan == initialPlan[i]):
return False
return True
def decompose(hierarchy, s_0, plan, s_f, reachable_set):
solution = []
while plan.action_pes:
action = plan.action_pes.pop()
if (i==0):
return solution
s_i = Problem.find_previous_state(s_f, reachable_set,i, action)
problem = Problem(s_i, s_f , plan.action)
angelic_call = Problem.angelic_search(problem, hierarchy, [Angelic_Node(s_i, Node(None), [action],[action])])
if angelic_call:
for x in angelic_call:
solution.insert(0,x)
else:
return None
return solution
def find_previous_state(s_f, reachable_set, i, action):
"""
Given a final state s_f and an action finds a state s_i in reachable_set
such that when action is applied to state s_i returns s_f.
"""
s_i = reachable_set[i-1][0]
for state in reachable_set[i-1]:
if s_f in [x for x in Problem.reach_pes(state, Angelic_Node(state, None, [action],[action]))[1]]:
s_i =state
break
return s_i
def job_shop_problem():
"""
A job-shop scheduling problem for assembling two cars,
with resource and ordering constraints.
Example:
>>> from planning import *
>>> p = job_shop_problem()
>>> p.goal_test()
False
>>> p.act(p.jobs[1][0])
>>> p.act(p.jobs[1][1])
>>> p.act(p.jobs[1][2])
>>> p.act(p.jobs[0][0])
>>> p.act(p.jobs[0][1])
>>> p.goal_test()
False
>>> p.act(p.jobs[0][2])
>>> p.goal_test()
True
>>>
"""
resources = {'EngineHoists': 1, 'WheelStations': 2, 'Inspectors': 2, 'LugNuts': 500}
add_engine1 = HLA('AddEngine1', precond='~Has(C1, E1)', effect='Has(C1, E1)', duration=30, use={'EngineHoists': 1})
add_engine2 = HLA('AddEngine2', precond='~Has(C2, E2)', effect='Has(C2, E2)', duration=60, use={'EngineHoists': 1})
add_wheels1 = HLA('AddWheels1', precond='~Has(C1, W1)', effect='Has(C1, W1)', duration=30, use={'WheelStations': 1}, consume={'LugNuts': 20})
add_wheels2 = HLA('AddWheels2', precond='~Has(C2, W2)', effect='Has(C2, W2)', duration=15, use={'WheelStations': 1}, consume={'LugNuts': 20})
inspect1 = HLA('Inspect1', precond='~Inspected(C1)', effect='Inspected(C1)', duration=10, use={'Inspectors': 1})
inspect2 = HLA('Inspect2', precond='~Inspected(C2)', effect='Inspected(C2)', duration=10, use={'Inspectors': 1})
actions = [add_engine1, add_engine2, add_wheels1, add_wheels2, inspect1, inspect2]
job_group1 = [add_engine1, add_wheels1, inspect1]
job_group2 = [add_engine2, add_wheels2, inspect2]
return Problem(init='Car(C1) & Car(C2) & Wheels(W1) & Wheels(W2) & Engine(E2) & Engine(E2) & ~Has(C1, E1) & ~Has(C2, E2) & ~Has(C1, W1) & ~Has(C2, W2) & ~Inspected(C1) & ~Inspected(C2)',
goals='Has(C1, W1) & Has(C1, E1) & Inspected(C1) & Has(C2, W2) & Has(C2, E2) & Inspected(C2)',
actions=actions,
jobs=[job_group1, job_group2],
resources=resources)
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
def go_to_sfo():
"""Go to SFO Problem"""
go_home_sfo1 = HLA('Go(Home, SFO)', precond='At(Home) & Have(Car)', effect='At(SFO) & ~At(Home)')
go_home_sfo2 = HLA('Go(Home, SFO)', precond='At(Home)', effect='At(SFO) & ~At(Home)')
drive_home_sfoltp = HLA('Drive(Home, SFOLongTermParking)', precond='At(Home) & Have(Car)', effect='At(SFOLongTermParking) & ~At(Home)')
shuttle_sfoltp_sfo = HLA('Shuttle(SFOLongTermParking, SFO)', precond='At(SFOLongTermParking)', effect='At(SFO) & ~At(SFOLongTermParking)')
taxi_home_sfo = HLA('Taxi(Home, SFO)', precond='At(Home)', effect='At(SFO) & ~At(Home)')
actions = [go_home_sfo1, go_home_sfo2, drive_home_sfoltp, shuttle_sfoltp_sfo, taxi_home_sfo]
library = {
'HLA': [
'Go(Home, SFO)',
'Go(Home, SFO)',
'Drive(Home, SFOLongTermParking)',
'Shuttle(SFOLongTermParking, SFO)',
'Taxi(Home, SFO)'
],
'steps': [
['Drive(Home, SFOLongTermParking)', 'Shuttle(SFOLongTermParking, SFO)'],
['Taxi(Home, SFO)'],
[],
[],
[]
],
'precond': [
['At(SFOLongTermParking)'],
['At(Home)']
],
'effect': [
['At(SFO) & ~At(Home)'],
['At(SFO) & ~At(Home)'],
['At(SFOLongTermParking) & ~At(Home)'],
['At(SFO) & ~At(SFOLongTermParking)'],
['At(SFO) & ~At(Home)']
]
}
return Problem(init='At(Home)', goals='At(SFO)', actions=actions), library
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
class Angelic_HLA(HLA):
"""
Define Actions for the real-world (that may be refined further), under angelic semantics
"""
def __init__(self, action, precond , effect, duration =0, consume = None, use = None):
super().__init__(action, precond, effect, duration, consume, use)
def convert(self, clauses):
"""
Converts strings into Exprs
An HLA with angelic semantics can achieve the effects of simple HLA's (add / remove a variable )
and furthermore can have following effects on the variables:
Possibly add variable ( $+ )
Possibly remove variable ( $- )
Possibly add or remove a variable ( $$ )
Overrides HLA.convert function
"""
lib = {'~': 'Not',
'$+': 'PosYes',
'$-': 'PosNot',
'$$' : 'PosYesNot'}
if isinstance(clauses, Expr):
clauses = conjuncts(clauses)
for i in range(len(clauses)):
for ch in lib.keys():
if clauses[i].op == ch:
clauses[i] = expr( lib[ch] + str(clauses[i].args[0]))
elif isinstance(clauses, str):
for ch in lib.keys():
clauses = clauses.replace(ch, lib[ch])
if len(clauses) > 0:
clauses = expr(clauses)
try:
clauses = conjuncts(clauses)
except AttributeError:
pass
return clauses
def angelic_action(self):
"""
Converts a high level action (HLA) with angelic semantics into all of its corresponding high level actions (HLA).
An HLA with angelic semantics can achieve the effects of simple HLA's (add / remove a variable)
and furthermore can have following effects for each variable:
Possibly add variable ( $+: 'PosYes' ) --> corresponds to two HLAs:
HLA_1: add variable
HLA_2: leave variable unchanged
Possibly remove variable ( $-: 'PosNot' ) --> corresponds to two HLAs:
HLA_1: remove variable
HLA_2: leave variable unchanged
Possibly add / remove a variable ( $$: 'PosYesNot' ) --> corresponds to three HLAs:
HLA_1: add variable
HLA_2: remove variable
HLA_3: leave variable unchanged
example: the angelic action with effects possibly add A and possibly add or remove B corresponds to the following 6 effects of HLAs:
'$+A & $$B': HLA_1: 'A & B' (add A and add B)
HLA_2: 'A & ~B' (add A and remove B)
HLA_3: 'A' (add A)
HLA_4: 'B' (add B)
HLA_5: '~B' (remove B)
HLA_6: ' ' (no effect)
"""
effects=[[]]
for clause in self.effect:
(n,w) = Angelic_HLA.compute_parameters(clause, effects)
effects = effects*n # create n copies of effects
it=range(1)
if len(effects)!=0:
# split effects into n sublists (seperate n copies created in compute_parameters)
it = range(len(effects)//n)
for i in it:
if effects[i]:
if clause.args:
effects[i] = expr(str(effects[i]) + '&' + str(Expr(clause.op[w:],clause.args[0]))) # make changes in the ith part of effects
if n==3:
effects[i+len(effects)//3]= expr(str(effects[i+len(effects)//3]) + '&' + str(Expr(clause.op[6:],clause.args[0])))
else:
effects[i] = expr(str(effects[i]) + '&' + str(expr(clause.op[w:]))) # make changes in the ith part of effects
if n==3:
effects[i+len(effects)//3] = expr(str(effects[i+len(effects)//3]) + '&' + str(expr(clause.op[6:])))
else:
if clause.args:
effects[i] = Expr(clause.op[w:], clause.args[0]) # make changes in the ith part of effects
if n==3:
effects[i+len(effects)//3] = Expr(clause.op[6:], clause.args[0])
else:
effects[i] = expr(clause.op[w:]) # make changes in the ith part of effects
if n==3:
effects[i+len(effects)//3] = expr(clause.op[6:])
#print('effects', effects)
return [ HLA(Expr(self.name, self.args), self.precond, effects[i] ) for i in range(len(effects)) ]
def compute_parameters(clause, effects):
"""
computes n,w
n = number of HLA effects that the anelic HLA corresponds to
w = length of representation of angelic HLA effect
n = 1, if effect is add
n = 1, if effect is remove
n = 2, if effect is possibly add
n = 2, if effect is possibly remove
n = 3, if effect is possibly add or remove
"""
if clause.op[:9] == 'PosYesNot':
# possibly add/remove variable: three possible effects for the variable
n=3
w=9
elif clause.op[:6] == 'PosYes': # possibly add variable: two possible effects for the variable
n=2
w=6
elif clause.op[:6] == 'PosNot': # possibly remove variable: two possible effects for the variable
n=2
w=3 # We want to keep 'Not' from 'PosNot' when adding action
else: # variable or ~variable
n=1
w=0
return (n,w)
class Angelic_Node(Node):
"""
Extends the class Node.
self.action: contains the optimistic description of an angelic HLA
self.action_pes: contains the pessimistic description of an angelic HLA
"""
def __init__(self, state, parent=None, action_opt=None, action_pes=None, path_cost=0):
super().__init__(state, parent, action_opt , path_cost)
self.action_pes = action_pes