Newer
Older
"""Probability models. (Chapter 13-15)
"""
# ______________________________________________________________________________
def DTAgentProgram(belief_state):
"A decision-theoretic agent. [Fig. 13.1]"
def program(percept):
belief_state.observe(program.action, percept)
belief_state.expected_outcome_utility)
return program.action
program.action = None
return program
# ______________________________________________________________________________
class ProbDist:
"""A discrete probability distribution. You name the random variable
in the constructor, then assign and query probability of values.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 0.25, 0.75; P['H']
0.25
>>> P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
>>> P['lo'], P['med'], P['hi']
(0.125, 0.375, 0.5)
def __init__(self, varname='?', freqs=None):
"""If freqs is given, it is a dictionary of value: frequency pairs,
and the ProbDist then is normalized."""
update(self, prob={}, varname=varname, values=[])
self[v] = p
self.normalize()
def __getitem__(self, val):
"Given a value, return P(value)."
try:
return self.prob[val]
except KeyError:
return 0
def __setitem__(self, val, p):
if val not in self.values:
self.values.append(val)
self.prob[val] = p
def normalize(self):
"""Make sure the probabilities of all values sum to 1.
Returns the normalized distribution.
Raises a ZeroDivisionError if the sum of the values is 0.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 35, 65
>>> P = P.normalize()
>>> print '%5.3f %5.3f' % (P.prob['H'], P.prob['T'])
0.350 0.650
"""
total = float(sum(self.prob.values()))
if not (1.0-epsilon < total < 1.0+epsilon):
for val in self.prob:
self.prob[val] /= total
return self
def show_approx(self, numfmt='%.3g'):
"""Show the probabilities rounded and sorted by key, for the
sake of portable doctests."""
return ', '.join([('%s: ' + numfmt) % (v, p)
for (v, p) in sorted(self.prob.items())])
epsilon = 0.001
class JointProbDist(ProbDist):
"""A discrete probability distribute over a set of variables.
>>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25
>>> P[1, 1]
0.25
>>> P[dict(X=0, Y=1)] = 0.5
>>> P[dict(X=0, Y=1)]
def __init__(self, variables):
update(self, prob={}, variables=variables, vals=defaultdict(list))
def __getitem__(self, values):
"Given a tuple or dict of values, return P(values)."
values = event_values(values, self.variables)
return ProbDist.__getitem__(self, values)
def __setitem__(self, values, p):
"""Set P(values) = p. Values can be a tuple or a dict; it must
have a value for each of the variables in the joint. Also keep track
of the values we have seen so far for each variable."""
values = event_values(values, self.variables)
self.prob[values] = p
if val not in self.vals[var]:
self.vals[var].append(val)
def values(self, var):
"Return the set of possible values for a variable."
return self.vals[var]
def __repr__(self):
return "P(%s)" % self.variables
def event_values(event, vars):
"""Return a tuple of the values of variables vars in event.
>>> event_values ({'A': 10, 'B': 9, 'C': 8}, ['C', 'A'])
(8, 10)
>>> event_values ((1, 2), ['C', 'A'])
(1, 2)
"""
if isinstance(event, tuple) and len(event) == len(vars):
return event
else:
return tuple([event[var] for var in vars])
# ______________________________________________________________________________
def enumerate_joint_ask(X, e, P):
"""Return a probability distribution over the values of the variable X,
given the {var:val} observations e, in the JointProbDist P. [Section 13.3]
>>> P = JointProbDist(['X', 'Y'])
>>> P[0,0] = 0.25; P[0,1] = 0.5; P[1,1] = P[2,1] = 0.125
>>> enumerate_joint_ask('X', dict(Y=1), P).show_approx()
'0: 0.667, 1: 0.167, 2: 0.167'
"""
assert X not in e, "Query variable must be distinct from evidence"
Q = ProbDist(X) # probability distribution for X, initially empty
Y = [v for v in P.variables if v != X and v not in e] # hidden vars.
for xi in P.values(X):
Q[xi] = enumerate_joint(Y, extend(e, X, xi), P)
return Q.normalize()
def enumerate_joint(vars, e, P):
"""Return the sum of those entries in P consistent with e,
provided vars is P's remaining variables (the ones not in e)."""
return sum([enumerate_joint(rest, extend(e, Y, y), P)
# ______________________________________________________________________________
class BayesNet:
"Bayesian network containing only boolean-variable nodes."
withal
a validé
def __init__(self, node_specs=[]):
"nodes must be ordered with parents before children."
update(self, nodes=[], vars=[])
withal
a validé
for node_spec in node_specs:
self.add(node_spec)
withal
a validé
def add(self, node_spec):
"""Add a node to the net. Its parents must already be in the
withal
a validé
net, and its variable must not."""
node = BayesNode(*node_spec)
assert node.variable not in self.vars
assert every(lambda parent: parent in self.vars, node.parents)
self.nodes.append(node)
self.vars.append(node.variable)
for parent in node.parents:
self.variable_node(parent).children.append(node)
"""Return the node for the variable named var.
>>> burglary.variable_node('Burglary').variable
for n in self.nodes:
if n.variable == var:
return n
raise Exception("No such variable: %s" % var)
def __repr__(self):
return 'BayesNet(%r)' % self.nodes
class BayesNode:
"""A conditional probability distribution for a boolean variable,
P(X | parents). Part of a BayesNet."""
def __init__(self, X, parents, cpt):
"""X is a variable name, and parents a sequence of variable
names or a space-separated string. cpt, the conditional
probability table, takes one of these forms:
* A number, the unconditional probability P(X=true). You can
use this form when there are no parents.
* A dict {v: p, ...}, the conditional probability distribution
P(X=true | parent=v) = p. When there's just one parent.
* A dict {(v1, v2, ...): p, ...}, the distribution P(X=true |
parent1=v1, parent2=v2, ...) = p. Each key must have as many
values as there are parents. You can use this form always;
the first two are just conveniences.
In all cases the probability of X being false is left implicit,
since it follows from P(X=true).
>>> X = BayesNode('X', '', 0.2)
>>> Y = BayesNode('Y', 'P', {T: 0.2, F: 0.7})
... {(T, T): 0.2, (T, F): 0.3, (F, T): 0.5, (F, F): 0.7})
"""
if isinstance(parents, str):
parents = parents.split()
# We store the table always in the third form above.
if isinstance(cpt, (float, int)): # no parents, 0-tuple
cpt = {(): cpt}
elif isinstance(cpt, dict):
# one parent, 1-tuple
if cpt and isinstance(list(cpt.keys())[0], bool):
cpt = dict(((v,), p) for v, p in list(cpt.items()))
assert isinstance(cpt, dict)
assert isinstance(vs, tuple) and len(vs) == len(parents)
assert every(lambda v: isinstance(v, bool), vs)
assert 0 <= p <= 1
update(self, variable=X, parents=parents, cpt=cpt, children=[])
P(X=value | parents=parent_values), where parent_values
are the values of parents in event. (event must assign each
parent a value.)
>>> bn = BayesNode('X', 'Burglary', {T: 0.2, F: 0.625})
>>> bn.p(False, {'Burglary': False, 'Earthquake': True})
0.375"""
assert isinstance(value, bool)
ptrue = self.cpt[event_values(event, self.parents)]
return (ptrue if value else 1 - ptrue)
def sample(self, event):
"""Sample from the distribution for this variable conditioned
on event's values for parent_vars. That is, return True/False
at random according with the conditional probability given the
parents."""
withal
a validé
return repr((self.variable, ' '.join(self.parents)))
# Burglary example [Fig. 14.2]
T, F = True, False
burglary = BayesNet([
withal
a validé
('Burglary', '', 0.001),
('Earthquake', '', 0.002),
('Alarm', 'Burglary Earthquake',
{(T, T): 0.95, (T, F): 0.94, (F, T): 0.29, (F, F): 0.001}),
withal
a validé
('JohnCalls', 'Alarm', {T: 0.90, F: 0.05}),
('MaryCalls', 'Alarm', {T: 0.70, F: 0.01})
# ______________________________________________________________________________
"""Return the conditional probability distribution of variable X
given evidence e, from BayesNet bn. [Fig. 14.9]
>>> enumeration_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
... ).show_approx()
assert X not in e, "Query variable must be distinct from evidence"
for xi in bn.variable_values(X):
Q[xi] = enumerate_all(bn.vars, extend(e, X, xi), bn)
return Q.normalize()
"""Return the sum of those entries in P(vars | e{others})
consistent with e, where P is the joint distribution represented
by bn, and e{others} means e restricted to bn's other variables
(the ones other than vars). Parents must precede children in vars."""
Y, rest = vars[0], vars[1:]
Ynode = bn.variable_node(Y)
if Y in e:
return Ynode.p(e[Y], e) * enumerate_all(rest, e, bn)
return sum(Ynode.p(y, e) * enumerate_all(rest, extend(e, Y, y), bn)
# ______________________________________________________________________________
>>> elimination_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
... ).show_approx()
'False: 0.716, True: 0.284'"""
assert X not in e, "Query variable must be distinct from evidence"
factors = []
for var in reversed(bn.vars):
factors.append(make_factor(var, e, bn))
if is_hidden(var, X, e):
factors = sum_out(var, factors, bn)
return pointwise_product(factors, bn).normalize()
return var != X and var not in e
"""Return the factor for var in bn's joint distribution given e.
That is, bn's full joint distribution, projected to accord with e,
is the pointwise product of these factors for bn's variables."""
node = bn.variable_node(var)
vars = [X for X in [var] + node.parents if X not in e]
cpt = dict((event_values(e1, vars), node.p(e1[var], e1))
for e1 in all_events(vars, bn, e))
return Factor(vars, cpt)
def pointwise_product(factors, bn):
return reduce(lambda f, g: f.pointwise_product(g, bn), factors)
result, var_factors = [], []
for f in factors:
(var_factors if var in f.vars else result).append(f)
result.append(pointwise_product(var_factors, bn).sum_out(var, bn))
return result
def __init__(self, vars, cpt):
update(self, vars=vars, cpt=cpt)
def pointwise_product(self, other, bn):
vars = list(set(self.vars) | set(other.vars))
cpt = dict((event_values(e, vars), self.p(e) * other.p(e))
for e in all_events(vars, bn, {}))
return Factor(vars, cpt)
def sum_out(self, var, bn):
vars = [X for X in self.vars if X != var]
cpt = dict((event_values(e, vars),
sum(self.p(extend(e, var, val))
for val in bn.variable_values(var)))
for e in all_events(vars, bn, {}))
return Factor(vars, cpt)
def normalize(self):
assert len(self.vars) == 1
return ProbDist(self.vars[0],
dict((k, v) for ((k,), v) in list(self.cpt.items())))
return self.cpt[event_values(e, self.vars)]
def all_events(vars, bn, e):
"Yield every way of extending e with values for all vars."
# ______________________________________________________________________________
# Fig. 14.12a: sprinkler network
sprinkler = BayesNet([
withal
a validé
('Cloudy', '', 0.5),
('Sprinkler', 'Cloudy', {T: 0.10, F: 0.50}),
('Rain', 'Cloudy', {T: 0.80, F: 0.20}),
('WetGrass', 'Sprinkler Rain',
{(T, T): 0.99, (T, F): 0.90, (F, T): 0.90, (F, F): 0.00})])
# ______________________________________________________________________________
def prior_sample(bn):
"""Randomly sample from bn's full joint distribution. The result
is a {variable: value} dict. [Fig. 14.13]"""
event = {}
event[node.variable] = node.sample(event)
# _________________________________________________________________________
def rejection_sampling(X, e, bn, N):
"""Estimate the probability distribution of variable X given
evidence e in BayesNet bn, using N samples. [Fig. 14.14]
Raises a ZeroDivisionError if all the N samples are rejected,
i.e., inconsistent with e.
>>> rejection_sampling('Burglary', dict(JohnCalls=T, MaryCalls=T),
... burglary, 10000).show_approx()
counts = dict((x, 0)
for x in bn.variable_values(X)) # bold N in Fig. 14.14
sample = prior_sample(bn) # boldface x in Fig. 14.14
if consistent_with(sample, e):
counts[sample[X]] += 1
return ProbDist(X, counts)
def consistent_with(event, evidence):
"Is event consistent with the given evidence?"
return all(evidence.get(k, v) == v
# _________________________________________________________________________
def likelihood_weighting(X, e, bn, N):
"""Estimate the probability distribution of variable X given
evidence e in BayesNet bn. [Fig. 14.15]
>>> likelihood_weighting('Burglary', dict(JohnCalls=T, MaryCalls=T),
... burglary, 10000).show_approx()
'False: 0.702, True: 0.298'
W = dict((x, 0) for x in bn.variable_values(X))
sample, weight = weighted_sample(bn, e) # boldface x, w in Fig. 14.15
"""Sample an event from bn that's consistent with the evidence e;
return the event and its weight, the likelihood that the event
accords to the evidence."""
w = 1
# _________________________________________________________________________
>>> gibbs_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary, 1000
... ).show_approx()
'False: 0.738, True: 0.262'
"""
assert X not in e, "Query variable must be distinct from evidence"
counts = dict((x, 0)
for x in bn.variable_values(X)) # bold N in Fig. 14.16
Z = [var for var in bn.vars if var not in e]
state[Zi] = random.choice(bn.variable_values(Zi))
counts[state[X]] += 1
return ProbDist(X, counts)
def markov_blanket_sample(X, e, bn):
"""Return a sample from P(X | mb) where mb denotes that the
variables in the Markov blanket of X take their values from event
e (which must assign a value to each). The Markov blanket of X is
X's parents, children, and children's parents."""
Xnode = bn.variable_node(X)
Q = ProbDist(X)
for xi in bn.variable_values(X):
ei = extend(e, X, xi)
# [Equation 14.12:]
Q[xi] = Xnode.p(xi, e) * product(Yj.p(ei[Yj.variable], ei)
for Yj in Xnode.children)
# (assuming a Boolean variable here)
return probability(Q.normalize()[True])
# _________________________________________________________________________
# Umbrella Example [Fig. 15.2]
class HiddenMarkovModel:
""" A Hidden markov model which takes Transition model and Sensor model as inputs"""
def __init__(self, transition_model, sensor_model):
self.transition_model = transition_model
self.sensor_model = sensor_model
def transition_model(self):
return self.transition_model
def sensor_dist(self, ev):
if ev is True:
return self.sensor_model[0]
else:
return self.sensor_model[1]
def forward(HMM, fv, ev):
prediction = vector_add(scalar_vector_product(fv[0], HMM.transition_model[0]),
scalar_vector_product(fv[1], HMM.transition_model[1]))
sensor_dist = HMM.sensor_dist(ev)
return(normalize(element_wise_product(sensor_dist, prediction)))
def backward(HMM, b, ev):
sensor_dist = HMM.sensor_dist(ev)
prediction = element_wise_product(sensor_dist, b)
return(normalize(vector_add(scalar_vector_product(prediction[0], HMM.transition_model[0]),
scalar_vector_product(prediction[1], HMM.transition_model[1]))))
def forward_backward(HMM, ev, prior):
"""[Fig. 15.4]
Forward-Backward algorithm for smoothing. Computes posterior probabilities
of a sequence of states given a sequence of observations.
umbrella_evidence = [T, T, F, T, T]
umbrella_prior = [0.5, 0.5]
umbrella_transition = [[0.7, 0.3], [0.3, 0.7]]
umbrella_sensor = [[0.9, 0.2], [0.1, 0.8]]
umbrellaHMM = HiddenMarkovModel(umbrella_transition, umbrella_sensor)
>>> forward_backward(umbrellaHMM, umbrella_evidence, umbrella_prior)
[[0.6469, 0.3531], [0.8673, 0.1327], [0.8204, 0.1796], [0.3075, 0.6925], [0.8204, 0.1796], [0.8673, 0.1327]]
"""
t = len(ev)
ev.insert(0, None) # to make the code look similar to pseudo code
fv = [[0.0, 0.0] for i in range(len(ev))]
b = [1.0, 1.0]
bv = [b] # we don't need bv; but we will have a list of all backward messages here
sv = [[0, 0] for i in range(len(ev))]
fv[0] = prior
for i in range(1, t+ 1):
fv[i] = forward(HMM, fv[i- 1], ev[i])
for i in range(t, -1, -1):
sv[i- 1] = normalize(element_wise_product(fv[i], b))
b = backward(HMM, b, ev[i])
bv.append(b)
sv = sv[::-1]
# to have only 4 digits after decimal point
for i in range(len(sv)):
for j in range(len(sv[i])):
sv[i][j] = float("{0:.4f}".format(sv[i][j]))
return(sv)
# _________________________________________________________________________
def fixed_lag_smoothing(e_t, hmm, d):
"""[Fig. 15.6]"""
unimplemented()
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
def particle_filtering(e, N, HMM):
"""
Particle filtering considering two states variables
N = 10
umbrella_evidence = T
umbrella_prior = [0.5, 0.5]
umbrella_transition = [[0.7, 0.3], [0.3, 0.7]]
umbrella_sensor = [[0.9, 0.2], [0.1, 0.8]]
umbrellaHMM = HiddenMarkovModel(umbrella_transition, umbrella_sensor)
>>> particle_filtering(umbrella_evidence, N, umbrellaHMM)
['A', 'A', 'A', 'B', 'A', 'A', 'B', 'A', 'A', 'A', 'B']
NOTE: Output is an probabilistic answer, therfore can vary
"""
s = []
dist = [0.5, 0.5]
# State Initialization
s = ['A' if probability(dist[0]) else 'B' for i in range(N)]
# Weight Initialization
w = [0 for i in range(N)]
# STEP 1
# Propagate one step using transition model given prior state
dist = vector_add(scalar_vector_product(dist[0], HMM.transition_model[0]),
scalar_vector_product(dist[1], HMM.transition_model[1]))
# Assign state according to probability
s = ['A' if probability(dist[0]) else 'B' for i in range(N)]
w_tot = 0
# Calculate importance weight given evidence e
for i in range(N):
if s[i] == 'A':
# P(U|A)*P(A)
w_i = HMM.sensor_dist(e)[0]*dist[0]
if s[i] == 'B':
# P(U|B)*P(B)
w_i = HMM.sensor_dist(e)[1]*dist[1]
w[i] = w_i
w_tot += w_i
# Normalize all the weights
for i in range(N):
w[i] = w[i]/w_tot
# Limit weights to 4 digits
for i in range(N):
w[i] = float("{0:.4f}".format(w[i]))
# STEP 2
s = weighted_sample_with_replacement(N, s, w)
return s
def weighted_sample_with_replacement(N, s, w):
"""
Performs Weighted sampling over the paricles given weights of each particle.
We keep on picking random states unitll we fill N number states in new distribution
"""
s_wtd = []
cnt = 0
while (cnt <= N):
# Generate a random number from 0 to N-1
i = random.randint(0, N-1)
if (probability(w[i])):
s_wtd.append(s[i])
cnt += 1
return s_wtd
# _________________________________________________________________________
# We can build up a probability distribution like this (p. 469):
>>> P = ProbDist()
>>> P['sunny'] = 0.7
>>> P['rain'] = 0.2
>>> P['cloudy'] = 0.08
>>> P['snow'] = 0.02
# and query it like this: (Never mind this ELLIPSIS option
# added to make the doctest portable.)
>>> P['rain'] #doctest:+ELLIPSIS
0.2...
# A Joint Probability Distribution is dealt with like this (Fig. 13.3): # noqa
>>> P = JointProbDist(['Toothache', 'Cavity', 'Catch'])
>>> T, F = True, False
>>> P[T, T, T] = 0.108; P[T, T, F] = 0.012; P[F, T, T] = 0.072; P[F, T, F] = 0.008
>>> P[T, F, T] = 0.016; P[T, F, F] = 0.064; P[F, F, T] = 0.144; P[F, F, F] = 0.576
>>> PC = enumerate_joint_ask('Cavity', {'Toothache': T}, P)
>>> PC.show_approx()
'False: 0.4, True: 0.6'