Newer
Older
"""Probability models. (Chapter 13-15)
"""
from utils import *
from logic import extend
import agents
from random import random, seed
#______________________________________________________________________________
class DTAgent(agents.Agent):
"A decision-theoretic agent. [Fig. 13.1]"
def __init__(self, belief_state):
agents.Agent.__init__(self)
def program(percept):
belief_state.observe(action, percept)
program.action = argmax(belief_state.actions(),
belief_state.expected_outcome_utility)
return program.action
program.action = None
self.program = program
#______________________________________________________________________________
class ProbDist:
"""A discrete probability distribution. You name the random variable
in the constructor, then assign and query probability of values.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 0.25, 0.75; P['H']
0.25
>>> P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
>>> [P['lo'], P['med'], P['hi']]
[0.125, 0.375, 0.5]
>>> P = ProbDist('X', {'lo': 0.125, 'med': 0.250, 'hi': 0.625})
>>> [P['lo'], P['med'], P['hi']]
[0.125, 0.25, 0.625]
def __init__(self, varname='?', freqs=None):
"""If freqs is given, it is a dictionary of value: frequency pairs,
and the ProbDist then is normalized."""
update(self, prob={}, varname=varname, values=[])
if freqs:
for (v, p) in freqs.items():
self[v] = p
self.normalize()
def __getitem__(self, val):
"Given a value, return P(value)."
return self.prob[val]
def __setitem__(self, val, p):
"Set P(val) = p"
if val not in self.values:
self.values.append(val)
self.prob[val] = p
def normalize(self):
"""Make sure the probabilities of all values sum to 1.
Returns the normalized distribution.
Raises a ZeroDivisionError if the sum of the values is 0.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 35, 65
>>> P = P.normalize()
>>> print '%5.3f %5.3f' % (P.prob['H'], P.prob['T'])
0.350 0.650
"""
total = float(sum(self.prob.values()))
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
if not (1.0-epsilon < total < 1.0+epsilon):
for val in self.prob:
self.prob[val] /= total
return self
epsilon = 0.001
class JointProbDist(ProbDist):
"""A discrete probability distribute over a set of variables.
>>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25
>>> P[1, 1]
0.25
"""
def __init__(self, variables):
update(self, prob={}, variables=variables, vals=DefaultDict([]))
def __getitem__(self, values):
"Given a tuple or dict of values, return P(values)."
if isinstance(values, dict):
values = tuple([values[var] for var in self.variables])
return self.prob[values]
def __setitem__(self, values, p):
"""Set P(values) = p. Values can be a tuple or a dict; it must
have a value for each of the variables in the joint. Also keep track
of the values we have seen so far for each variable."""
if isinstance(values, dict):
values = [values[var] for var in self.variables]
self.prob[values] = p
for var,val in zip(self.variables, values):
if val not in self.vals[var]:
self.vals[var].append(val)
def values(self, var):
"Return the set of possible values for a variable."
return self.vals[var]
def __repr__(self):
return "P(%s)" % self.variables
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
#______________________________________________________________________________
class BoolCpt:
"""Conditional probability table for a boolean (True/False)
random variable conditioned on its parents."""
def __init__ (self, table_data):
"""Initialize the table.
table_data may have one of three forms, depending on the
number of parents:
1. If the variable has no parents, table_data MAY be
a single number (float), representing P(X = True).
2. If the variable has one parent, table_data MAY be
a dictionary containing items of the form v: p,
where p is P(X = True | parent = v).
3. If the variable has n parents, n > 1, table_data MUST be
a dictionary containing items (v1, ..., vn): p,
where p is P(P = True | parent1 = v1, ..., parentn = vn).
(Form 3 is also allowed in the case of zero or one parent.)
>>> cpt = BoolCpt(0.2)
>>> T = True; F = False
>>> cpt = BoolCpt({T: 0.2, F: 0.7})
>>> cpt = BoolCpt({(T, T): 0.2, (T, F): 0.3, (F, T): 0.5, (F, F): 0.7})
"""
# A little work here makes looking up values MUCH simpler
# later on. We transform table_data into the standard form
# of a dictionary {(value, ...): number, ...} even if
# the tuple has just 0 or 1 value.
if type(table_data) == float: # no parents, 0-tuple
self.table_data = {(): table_data}
elif type(table_data) == dict:
keys = table_data.keys()
if type(keys[0]) == bool: # one parent, 1-tuple
d = {}
for k in keys:
d[(k,)] = table_data[k]
self.table_data = d
elif type(keys[0]) == tuple: # normal case, n-tuple
self.table_data = table_data
else:
raise Exception("wrong key type: %s" % table_data)
else:
raise Exception("wrong table_data type: %s" % table_data)
def p (self, value, parent_vars, event):
"""Return the conditional probability P(value | parent_vars =
parent_values), where parent_values are the values of
parent_vars in event.
value is True or False.
parent_vars is a list or tuple of variable names (strings).
event is a dictionary of variable-name: value pairs.
Preconditions:
1. each variable in parent_vars is bound to a value in event.
2. the variables are listed in parent_vars in the same order
in which they are listed in the Cpt.
>>> cpt = burglary.variable_node('Alarm').cpt
>>> parents = ['Burglary', 'Earthquake']
>>> event = {'Burglary': True, 'Earthquake': True}
>>> print '%4.2f' % cpt.p(True, parents, event)
0.95
>>> event = {'Burglary': False, 'Earthquake': True}
>>> print '%4.2f' % cpt.p(False, parents, event)
0.71
>>> BoolCpt({T: 0.2, F: 0.625}).p(False, ['Burglary'], event)
0.375
>>> BoolCpt(0.75).p(False, [], {})
0.25
"""
return self.p_values(value, event_values(event, parent_vars))
def p_values (self, xvalue, parent_values):
"""Return P(X = xvalue | parents = parent_values),
where parent_values is a tuple, even if of only 0 or 1 element.
>>> cpt = BoolCpt(0.25)
>>> cpt.p_values(F, ())
0.75
>>> cpt = BoolCpt({T: 0.25, F: 0.625})
>>> cpt.p_values(T, (T,))
0.25
>>> cpt.p_values(F, (F,))
0.375
>>> cpt = BoolCpt({(T, T): 0.2, (T, F): 0.31,
... (F, T): 0.5, (F, F): 0.62})
>>> cpt.p_values(T, (T, F))
0.31
>>> cpt.p_values(F, (F, F))
0.38
"""
ptrue = self.table_data[parent_values] # True or False
if xvalue:
return ptrue
else:
return 1.0 - ptrue
def rand (self, parents, event):
"""Generate and return a random sample value True or False
given that the parent variables have the values they have in
event.
parents is a list of variable names (strings).
event is a dictionary of variable-name: value pairs.
>>> cpt = BoolCpt({True: 0.2, False: 0.7})
>>> cpt.rand(['A'], {'A': True}) in [True, False]
True
>>> cpt = BoolCpt({(True, True): 0.1, (True, False): 0.3,
... (False, True): 0.5, (False, False): 0.7})
>>> cpt.rand(['A', 'B'], {'A': True, 'B': False}) in [True, False]
True
"""
return (random() <= self.p(True, parents, event))
def event_values (event, vars):
"""Return a tuple of the values of variables vars in event.
>>> event_values ({'A': 10, 'B': 9, 'C': 8}, ['C', 'A'])
(8, 10)
"""
return tuple([event[parent] for parent in vars])
#______________________________________________________________________________
def enumerate_joint_ask(X, e, P):
"""Return a probability distribution over the values of the variable X,
given the {var:val} observations e, in the JointProbDist P.
Works for Boolean variables only. [Fig. 13.4].
X is a string (variable name).
e is a dictionary of variable-name value pairs.
P is an instance of JointProbDist."""
Q = ProbDist(X) # probability distribution for X, initially empty
Y = [v for v in P.variables if v != X and v not in e] # hidden vars.
for xi in P.values(X):
ext = extend(e, X, xi) # copies e and adds X: xi
Q[xi] = enumerate_joint(Y, ext, P)
return Q.normalize()
def enumerate_joint(vars, values, P):
"As in Fig 13.4, except x and e are already incorporated in values."
if not vars:
return P[values]
Y = vars[0]; rest = vars[1:]
return sum([enumerate_joint(rest, extend(values, Y, y), P)
for y in P.values(Y)])
#______________________________________________________________________________
class BayesNet:
"""Bayesian network containing only boolean variable nodes."""
def __init__(self, nodes=[]):
update(self, nodes=[], vars=[], evidence={})
for node in nodes:
self.add(node)
def add(self, node):
self.nodes.append(node)
self.vars.append(node.variable)
def observe(self, var, val):
self.evidence[var] = val
def variable_node (self, var):
"""Returns the node for the variable named var.
>>> burglary.variable_node('Burglary').variable
'Burglary'
"""
for n in self.nodes:
if n.variable == var:
return n
raise Exception("No such variable: %s" % var)
def variables (self):
"""Returns the list of names of the variables.
>>> burglary.variables()
['Burglary', 'Earthquake', 'Alarm', 'JohnCalls', 'MaryCalls']
"""
return [n.variable for n in self.nodes]
def variable_values (self, var):
return [True, False]
class BayesNode:
def __init__(self, variable, parents, cpt):
if isinstance(parents, str): parents = parents.split()
update(self, variable=variable, parents=parents, cpt=cpt)
node = BayesNode
# Burglary example [Fig. 14.2]
T, F = True, False
burglary = BayesNet([
# It seems important in enumerate_all that variables (nodes)
# be ordered with parents before their children.
node('Burglary', '', BoolCpt(0.001)),
node('Earthquake', '', BoolCpt(0.002)),
node('Alarm', 'Burglary Earthquake',
BoolCpt({(T, T): 0.95, (T, F): 0.94, (F, T): 0.29, (F, F): 0.001})),
node('JohnCalls', 'Alarm', BoolCpt({T: 0.90, F: 0.05})),
node('MaryCalls', 'Alarm', BoolCpt({T: 0.70, F: 0.01}))
])
#______________________________________________________________________________
def enumeration_ask (X, e, bn):
"""Returns a distribution of X given e from bayes net bn. [Fig. 14.9]
X is a string (variable name).
e is a dictionary of variablename: value pairs.
bn is an instance of BayesNet.
>>> p = enumeration_ask('Earthquake', {}, burglary)
>>> [p[True], p[False]]
[0.002, 0.998]
>>> p = enumeration_ask('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary)
>>> [p[True], p[False]]
[0.28417183536439289, 0.71582816463560706]
"""
Q = ProbDist(X) # empty probability distribution for X
for xi in bn.variable_values(X):
Q[xi] = enumerate_all(bn.variables(), extend(e, X, xi), bn)
# Assume that parents precede children in bn.variables.
# Otherwise, in enumerate_all, the values of Y's parents
# may be unspecified.
return Q.normalize()
def enumerate_all (vars, e, bn):
"""Returns the probability that X = xi given e.
vars is a list of variables, the parents of X in bn.
e is a dictionary of variable-name: value pairs
bn is an instance of BayesNet.
Precondition: no variable in vars precedes its parents."""
return 1.0
else:
Y = vars[0]
rest = vars[1:]
Ynode = bn.variable_node(Y)
parents = Ynode.parents
cpt = Ynode.cpt
if e.has_key(Y):
y = e[Y]
cp = cpt.p(y, parents, e) # P(y | parents(Y))
result = cp * enumerate_all(rest, e, bn)
else:
result = 0
for y in bn.variable_values(Y):
cp = cpt.p(y, parents, e) # P(y | parents(Y))
result += cp * enumerate_all(rest, extend(e, Y, y), bn)
return result
#______________________________________________________________________________
# elimination_ask: implementation is incomplete
def elimination_ask(X, e, bn):
"[Fig. 14.10]"
factors = []
for var in reverse(bn.vars):
factors.append(Factor(var, e))
if is_hidden(var, X, e):
factors = sum_out(var, factors)
return pointwise_product(factors).normalize()
def pointwise_product(factors):
pass
def sum_out(var, factors):
pass
#______________________________________________________________________________
# Fig. 14.11a: sprinkler network
sprinkler = BayesNet([
node('Cloudy', '', BoolCpt(0.5)),
node('Sprinkler', 'Cloudy', BoolCpt({T: 0.10, F: 0.50})),
node('Rain', 'Cloudy', BoolCpt({T: 0.80, F: 0.20})),
node('WetGrass', 'Sprinkler Rain',
BoolCpt({(T, T): 0.99, (T, F): 0.90, (F, T): 0.90, (F, F): 0.00}))])
#______________________________________________________________________________
def prior_sample(bn):
"""[Fig. 14.12]
Argument: bn is an instance of BayesNet.
Returns: one sample, a dictionary of variable-name: value pairs.
>>> s = prior_sample(burglary)
>>> s['Burglary'] in [True, False]
True
>>> s['Alarm'] in [True, False]
True
>>> s['JohnCalls'] in [True, False]
True
>>> len(s)
5
"""
sample = {} # boldface x in Fig. 14.12
for node in bn.nodes:
var = node.variable
sample[var] = node.cpt.rand(node.parents, sample)
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
return sample
#_______________________________________________________________________________
def rejection_sampling (X, e, bn, N):
"""Estimates probability distribution of X given evidence e
in BayesNet bn, using N samples. [Fig. 14.13]
Arguments:
X is a variable name (string).
e is a dictionary of variable-name: value pairs.
bn is an instance of BayesNet.
N is an integer > 0.
Returns: an instance of ProbDist representing P(X | e).
Raises a ZeroDivisionError if all the N samples are rejected,
i.e., inconsistent with e.
>>> seed(21); p = rejection_sampling('Earthquake', {}, burglary, 1000)
>>> [p[True], p[False]]
[0.001, 0.999]
>>> seed(47)
>>> p = rejection_sampling('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary, 10000)
>>> [p[True], p[False]]
[0.29999999999999999, 0.69999999999999996]
"""
counts = {True: 0, False: 0} # boldface N in Fig. 14.13
sample = prior_sample(bn) # boldface x in Fig. 14.13
if consistent_with(sample, e):
counts[sample[X]] += 1
return ProbDist(X, counts)
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
def consistent_with (sample, evidence):
"""Returns True if sample is consistent with evidence, False otherwise.
sample is a dictionary of variable-name: value pairs.
evidence is a dictionary of variable-name: value pairs.
The variable names in evidence are a subset of the variable names
in sample.
>>> s = {'A': True, 'B': False, 'C': True, 'D': False}
>>> consistent_with(s, {})
True
>>> consistent_with(s, s)
True
>>> consistent_with(s, {'A': False})
False
>>> consistent_with(s, {'D': True})
False
"""
for (k, v) in evidence.items():
if sample[k] != v:
return False
return True
#_______________________________________________________________________________
def likelihood_weighting (X, e, bn, N):
"""Returns an estimate of P(X | e). [Fig. 14.14]
Arguments:
X is a variable name (string).
e is a dictionary of variable-name: value pairs (the evidence).
bn is an instance of BayesNet.
N is an integer, the number of samples to be generated.
Returns an instance of ProbDist.
>>> seed(71); p = likelihood_weighting('Earthquake', {}, burglary, 1000)
>>> [p[True], p[False]]
[0.002, 0.998]
>>> seed(1017)
>>> p = likelihood_weighting('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary, 10000)
>>> [p[True], p[False]]
[0.29801552320954111, 0.70198447679045894]
"""
weights = {True: 0.0, False: 0.0} # boldface W in Fig. 14.14
for j in xrange(N):
sample, weight = weighted_sample(bn, e) # boldface x, w in Fig. 14.14
sample_X = sample[X] # value of X in sample
weights[sample_X] += weight
return ProbDist(X, weights)
def weighted_sample (bn, e):
"""Returns an event (a sample) and a weight."""
event = {} # boldface x in Fig. 14.14
weight = 1.0 # w in Fig. 14.14
for node in bn.nodes:
X = node.variable # X sub i in Fig. 14.14
parents = node.parents
cpt = node.cpt
if e.has_key(X):
value = e[X]
event[X] = value
weight *= cpt.p(value, parents, event)
event[X] = cpt.rand(parents, event)
return event, weight
#_______________________________________________________________________________
# MISSING
# Fig. 14.15: mcmc_ask