Newer
Older
"""Probability models. (Chapter 13-15)
"""
# (Written for the second edition of AIMA; expect some discrepanciecs
# from the third edition until this gets reviewed.)
from utils import *
from logic import extend
import agents
from random import random, seed
#______________________________________________________________________________
class DTAgent(agents.Agent):
"A decision-theoretic agent. [Fig. 13.1]"
def __init__(self, belief_state):
def program(percept):
belief_state.observe(program.action, percept)
program.action = argmax(belief_state.actions(),
belief_state.expected_outcome_utility)
return program.action
program.action = None
agents.Agent.__init__(self, program)
#______________________________________________________________________________
class ProbDist:
"""A discrete probability distribution. You name the random variable
in the constructor, then assign and query probability of values.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 0.25, 0.75; P['H']
0.25
>>> P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
>>> [P['lo'], P['med'], P['hi']]
[0.125, 0.375, 0.5]
>>> P = ProbDist('X', {'lo': 0.125, 'med': 0.250, 'hi': 0.625})
>>> [P['lo'], P['med'], P['hi']]
[0.125, 0.25, 0.625]
def __init__(self, varname='?', freqs=None):
"""If freqs is given, it is a dictionary of value: frequency pairs,
and the ProbDist then is normalized."""
update(self, prob={}, varname=varname, values=[])
if freqs:
for (v, p) in freqs.items():
self[v] = p
self.normalize()
def __getitem__(self, val):
"Given a value, return P(value)."
try: return self.prob[val]
except KeyError: return 0
def __setitem__(self, val, p):
"Set P(val) = p"
if val not in self.values:
self.values.append(val)
self.prob[val] = p
def normalize(self):
"""Make sure the probabilities of all values sum to 1.
Returns the normalized distribution.
Raises a ZeroDivisionError if the sum of the values is 0.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 35, 65
>>> P = P.normalize()
>>> print '%5.3f %5.3f' % (P.prob['H'], P.prob['T'])
0.350 0.650
"""
total = float(sum(self.prob.values()))
if not (1.0-epsilon < total < 1.0+epsilon):
for val in self.prob:
self.prob[val] /= total
return self
def show_approx(self, ndigits=3):
"""Show the probabilities rounded and sorted by key, for the
sake of portable doctests."""
return ', '.join(['%s: %.*g' % (v, ndigits, p)
for (v, p) in sorted(self.prob.items())])
epsilon = 0.001
class JointProbDist(ProbDist):
"""A discrete probability distribute over a set of variables.
>>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25
>>> P[1, 1]
0.25
>>> P[dict(X=0, Y=1)] = 0.5
>>> P[dict(X=0, Y=1)]
def __init__(self, variables):
update(self, prob={}, variables=variables, vals=DefaultDict([]))
def __getitem__(self, values):
"Given a tuple or dict of values, return P(values)."
values = event_values(values, self.variables)
return ProbDist.__getitem__(self, values)
def __setitem__(self, values, p):
"""Set P(values) = p. Values can be a tuple or a dict; it must
have a value for each of the variables in the joint. Also keep track
of the values we have seen so far for each variable."""
values = event_values(values, self.variables)
self.prob[values] = p
if val not in self.vals[var]:
self.vals[var].append(val)
def values(self, var):
"Return the set of possible values for a variable."
return self.vals[var]
def __repr__(self):
return "P(%s)" % self.variables
#______________________________________________________________________________
def enumerate_joint_ask(X, e, P):
"""Return a probability distribution over the values of the variable X,
given the {var:val} observations e, in the JointProbDist P. [Fig. 13.4]
>>> P = JointProbDist(['X', 'Y'])
>>> P[0,0] = 0.25; P[0,1] = 0.5; P[1,1] = P[2,1] = 0.125
>>> enumerate_joint_ask('X', dict(Y=1), P).show_approx()
'0: 0.667, 1: 0.167, 2: 0.167'
"""
Q = ProbDist(X) # probability distribution for X, initially empty
Y = [v for v in P.variables if v != X and v not in e] # hidden vars.
for xi in P.values(X):
Q[xi] = enumerate_joint(Y, extend(e, X, xi), P)
return Q.normalize()
def enumerate_joint(vars, values, P):
"As in Fig 13.4, except x and e are already incorporated in values."
if not vars:
return P[values]
Y, rest = vars[0], vars[1:]
return sum([enumerate_joint(rest, extend(values, Y, y), P)
for y in P.values(Y)])
#______________________________________________________________________________
class BoolCpt:
"""Conditional probability table for a boolean (True/False)
random variable conditioned on its parents."""
"""Initialize the table.
table may have one of three forms, depending on the
number of parents:
1. If the variable has no parents, table MAY be
a single number (float), representing P(X = True).
2. If the variable has one parent, table MAY be
a dictionary containing items of the form v: p,
where p is P(X = True | parent = v).
3. If the variable has n parents, n > 1, table MUST be
a dictionary containing items (v1, ..., vn): p,
where p is P(P = True | parent1 = v1, ..., parentn = vn).
(Form 3 is also allowed in the case of zero or one parent.)
>>> cpt = BoolCpt(0.2)
>>> T = True; F = False
>>> cpt = BoolCpt({T: 0.2, F: 0.7})
>>> cpt = BoolCpt({(T, T): 0.2, (T, F): 0.3, (F, T): 0.5, (F, F): 0.7})
"""
# A little work here makes looking up values MUCH simpler
# later on. We transform table into the standard form
# of a dictionary {(value, ...): number, ...} even if
# the tuple has just 0 or 1 value.
if isinstance(table, (float, int)): # no parents, 0-tuple
self.table = {(): table}
elif isinstance(table, dict):
withal
a validé
if table: key = table.keys()[0]
else: key = None
if isinstance(key, bool): # one parent, 1-tuple
self.table = dict(((k,), v) for k, v in table.items())
elif isinstance(key, tuple): # normal case, n-tuple
self.table = table
raise Exception("wrong key type: %s" % table)
raise Exception("wrong table type: %s" % table)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""Return the conditional probability P(value | parent_vars =
parent_values), where parent_values are the values of
parent_vars in event.
value is True or False.
parent_vars is a list or tuple of variable names (strings).
event is a dictionary of variable-name: value pairs.
Preconditions:
1. each variable in parent_vars is bound to a value in event.
2. the variables are listed in parent_vars in the same order
in which they are listed in the Cpt.
>>> cpt = burglary.variable_node('Alarm').cpt
>>> parents = ['Burglary', 'Earthquake']
>>> event = {'Burglary': True, 'Earthquake': True}
>>> print '%4.2f' % cpt.p(True, parents, event)
0.95
>>> event = {'Burglary': False, 'Earthquake': True}
>>> print '%4.2f' % cpt.p(False, parents, event)
0.71
>>> BoolCpt({T: 0.2, F: 0.625}).p(False, ['Burglary'], event)
0.375
>>> BoolCpt(0.75).p(False, [], {})
0.25
"""
return self.p_values(value, event_values(event, parent_vars))
"""Return P(X = xvalue | parents = parent_values),
where parent_values is a tuple, even if of only 0 or 1 element.
>>> cpt = BoolCpt(0.25)
>>> cpt.p_values(F, ())
0.75
>>> cpt = BoolCpt({T: 0.25, F: 0.625})
>>> cpt.p_values(T, (T,))
0.25
>>> cpt.p_values(F, (F,))
0.375
>>> cpt = BoolCpt({(T, T): 0.2, (T, F): 0.31,
... (F, T): 0.5, (F, F): 0.62})
>>> cpt.p_values(T, (T, F))
0.31
>>> cpt.p_values(F, (F, F))
0.38
"""
ptrue = self.table[parent_values] # True or False
if xvalue:
return ptrue
else:
return 1.0 - ptrue
"""Generate and return a random sample value True or False
given that the parent variables have the values they have in
event.
parents is a list of variable names (strings).
event is a dictionary of variable-name: value pairs.
>>> cpt = BoolCpt({True: 0.2, False: 0.7})
>>> cpt.rand(['A'], {'A': True}) in [True, False]
True
>>> cpt = BoolCpt({(True, True): 0.1, (True, False): 0.3,
... (False, True): 0.5, (False, False): 0.7})
>>> cpt.rand(['A', 'B'], {'A': True, 'B': False}) in [True, False]
True
"""
return (random() <= self.p(True, parents, event))
def event_values(event, vars):
"""Return a tuple of the values of variables vars in event.
>>> event_values ({'A': 10, 'B': 9, 'C': 8}, ['C', 'A'])
(8, 10)
>>> event_values ((1, 2), ['C', 'A'])
(1, 2)
if isinstance(event, tuple) and len(event) == len(vars):
return event
else:
return tuple([event[var] for var in vars])
#______________________________________________________________________________
class BayesNet:
"""Bayesian network containing only boolean variable nodes."""
def __init__(self, nodes=[]):
update(self, nodes=[], vars=[], evidence={})
for node in nodes:
self.add(node)
def add(self, node):
self.nodes.append(node)
self.vars.append(node.variable)
def observe(self, var, val):
self.evidence[var] = val
"""Return the node for the variable named var.
>>> burglary.variable_node('Burglary').variable
for n in self.nodes:
if n.variable == var:
return n
raise Exception("No such variable: %s" % var)
"""Return the list of names of the variables.
>>> burglary.variables()
['Burglary', 'Earthquake', 'Alarm', 'JohnCalls', 'MaryCalls']"""
return [n.variable for n in self.nodes]
return [True, False]
class BayesNode:
def __init__(self, variable, parents, cpt):
if isinstance(parents, str): parents = parents.split()
update(self, variable=variable, parents=parents, cpt=cpt)
node = BayesNode
# Burglary example [Fig. 14.2]
T, F = True, False
burglary = BayesNet([
# It seems important in enumerate_all that variables (nodes)
# be ordered with parents before their children.
node('Burglary', '', BoolCpt(0.001)),
node('Earthquake', '', BoolCpt(0.002)),
node('Alarm', 'Burglary Earthquake',
BoolCpt({(T, T): 0.95, (T, F): 0.94, (F, T): 0.29, (F, F): 0.001})),
node('JohnCalls', 'Alarm', BoolCpt({T: 0.90, F: 0.05})),
node('MaryCalls', 'Alarm', BoolCpt({T: 0.70, F: 0.01}))
])
#______________________________________________________________________________
"""Returns a distribution of X given e from bayes net bn. [Fig. 14.9]
X is a string (variable name).
e is a dictionary of variablename: value pairs.
bn is an instance of BayesNet.
>>> p = enumeration_ask('Earthquake', {}, burglary)
>>> [p[True], p[False]]
[0.002, 0.998]
>>> p = enumeration_ask('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary)
Q = ProbDist(X) # empty probability distribution for X
for xi in bn.variable_values(X):
Q[xi] = enumerate_all(bn.variables(), extend(e, X, xi), bn)
# Assume that parents precede children in bn.variables.
# Otherwise, in enumerate_all, the values of Y's parents
# may be unspecified.
return Q.normalize()
"""Returns the probability that X = xi given e.
vars is a list of variables, the parents of X in bn.
e is a dictionary of variable-name: value pairs
bn is an instance of BayesNet.
Precondition: no variable in vars precedes its parents."""
Ynode = bn.variable_node(Y)
parents = Ynode.parents
cpt = Ynode.cpt
cp = cpt.p(y, parents, e) # P(y | parents(Y))
return cp * enumerate_all(rest, e, bn)
else:
result = 0
for y in bn.variable_values(Y):
cp = cpt.p(y, parents, e) # P(y | parents(Y))
result += cp * enumerate_all(rest, extend(e, Y, y), bn)
#______________________________________________________________________________
# elimination_ask: implementation is incomplete
def elimination_ask(X, e, bn):
"[Fig. 14.10]"
factors = []
for var in reverse(bn.vars):
factors.append(Factor(var, e))
if is_hidden(var, X, e):
factors = sum_out(var, factors)
return pointwise_product(factors).normalize()
def pointwise_product(factors):
pass
def sum_out(var, factors):
pass
#______________________________________________________________________________
# Fig. 14.11a: sprinkler network
sprinkler = BayesNet([
node('Cloudy', '', BoolCpt(0.5)),
node('Sprinkler', 'Cloudy', BoolCpt({T: 0.10, F: 0.50})),
node('Rain', 'Cloudy', BoolCpt({T: 0.80, F: 0.20})),
node('WetGrass', 'Sprinkler Rain',
BoolCpt({(T, T): 0.99, (T, F): 0.90, (F, T): 0.90, (F, F): 0.00}))])
#______________________________________________________________________________
def prior_sample(bn):
"""[Fig. 14.12]
Argument: bn is an instance of BayesNet.
Returns: one sample, a dictionary of variable-name: value pairs.
>>> s = prior_sample(burglary)
>>> s['Burglary'] in [True, False]
True
>>> s['Alarm'] in [True, False]
True
>>> s['JohnCalls'] in [True, False]
True
>>> len(s)
5
"""
sample = {} # boldface x in Fig. 14.12
for node in bn.nodes:
var = node.variable
sample[var] = node.cpt.rand(node.parents, sample)
return sample
#_______________________________________________________________________________
def rejection_sampling(X, e, bn, N):
"""Estimates probability distribution of X given evidence e
in BayesNet bn, using N samples. [Fig. 14.13]
Arguments:
X is a variable name (string).
e is a dictionary of variable-name: value pairs.
bn is an instance of BayesNet.
N is an integer > 0.
Returns: an instance of ProbDist representing P(X | e).
Raises a ZeroDivisionError if all the N samples are rejected,
i.e., inconsistent with e.
>>> seed(21); p = rejection_sampling('Earthquake', {}, burglary, 1000)
>>> [p[True], p[False]]
[0.001, 0.999]
>>> seed(47)
>>> p = rejection_sampling('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary, 10000)
>>> p.show_approx()
'False: 0.7, True: 0.3'
counts = {True: 0, False: 0} # boldface N in Fig. 14.13
sample = prior_sample(bn) # boldface x in Fig. 14.13
if consistent_with(sample, e):
counts[sample[X]] += 1
return ProbDist(X, counts)
def consistent_with(sample, evidence):
"""Returns True if sample is consistent with evidence, False otherwise.
sample is a dictionary of variable-name: value pairs.
evidence is a dictionary of variable-name: value pairs.
The variable names in evidence are a subset of the variable names
in sample.
>>> s = {'A': True, 'B': False, 'C': True, 'D': False}
>>> consistent_with(s, {})
True
>>> consistent_with(s, s)
True
>>> consistent_with(s, {'A': False})
False
>>> consistent_with(s, {'D': True})
False
"""
for (k, v) in evidence.items():
if sample[k] != v:
return False
return True
#_______________________________________________________________________________
def likelihood_weighting(X, e, bn, N):
"""Returns an estimate of P(X | e). [Fig. 14.14]
Arguments:
X is a variable name (string).
e is a dictionary of variable-name: value pairs (the evidence).
bn is an instance of BayesNet.
N is an integer, the number of samples to be generated.
Returns an instance of ProbDist.
>>> seed(71); p = likelihood_weighting('Earthquake', {}, burglary, 1000)
>>> [p[True], p[False]]
[0.002, 0.998]
>>> seed(1017)
>>> p = likelihood_weighting('Burglary',
... {'JohnCalls': True, 'MaryCalls': True}, burglary, 10000)
>>> p.show_approx()
'False: 0.702, True: 0.298'
"""
weights = {True: 0.0, False: 0.0} # boldface W in Fig. 14.14
for j in xrange(N):
sample, weight = weighted_sample(bn, e) # boldface x, w in Fig. 14.14
sample_X = sample[X] # value of X in sample
weights[sample_X] += weight
return ProbDist(X, weights)
"""Returns an event (a sample) and a weight."""
event = {} # boldface x in Fig. 14.14
weight = 1.0 # w in Fig. 14.14
for node in bn.nodes:
X = node.variable # X sub i in Fig. 14.14
parents = node.parents
cpt = node.cpt
if e.has_key(X):
value = e[X]
event[X] = value
weight *= cpt.p(value, parents, event)
event[X] = cpt.rand(parents, event)
return event, weight
#_______________________________________________________________________________
# MISSING
# Fig. 14.15: mcmc_ask
__doc__ += """
## We can build up a probability distribution like this (p. 469):
>>> P = ProbDist()
>>> P['sunny'] = 0.7
>>> P['rain'] = 0.2
>>> P['cloudy'] = 0.08
>>> P['snow'] = 0.02
## and query it like this: (Never mind this ELLIPSIS option
## added to make the doctest portable.)
>>> P['rain'] #doctest:+ELLIPSIS
0.2...
## A Joint Probability Distribution is dealt with like this (p. 475):
>>> P = JointProbDist(['Toothache', 'Cavity', 'Catch'])
>>> T, F = True, False
>>> P[T, T, T] = 0.108; P[T, T, F] = 0.012; P[F, T, T] = 0.072; P[F, T, F] = 0.008
>>> P[T, F, T] = 0.016; P[T, F, F] = 0.064; P[F, F, T] = 0.144; P[F, F, F] = 0.576
>>> P[T, T, T]
0.108
## Ask for P(Cavity|Toothache=T)
>>> PC = enumerate_joint_ask('Cavity', {'Toothache': T}, P)
>>> PC.show_approx()
'False: 0.4, True: 0.6'
>>> 0.6-epsilon < PC[T] < 0.6+epsilon
True
>>> 0.4-epsilon < PC[F] < 0.4+epsilon
True
"""