probability.py 19,1 ko
Newer Older
"""Probability models. (Chapter 13-15)
"""

from utils import *
from logic import extend
import random 
from collections import defaultdict

#______________________________________________________________________________

def DTAgentProgram(belief_state):
    "A decision-theoretic agent. [Fig. 13.1]"
    def program(percept):
        belief_state.observe(program.action, percept)
withal's avatar
withal a validé
        program.action = argmax(belief_state.actions(),
                                belief_state.expected_outcome_utility)
        return program.action
    program.action = None
    return program

#______________________________________________________________________________

class ProbDist:
    """A discrete probability distribution.  You name the random variable
    in the constructor, then assign and query probability of values.
    >>> P = ProbDist('Flip'); P['H'], P['T'] = 0.25, 0.75; P['H']
    0.25
    >>> P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
withal's avatar
withal a validé
    >>> P['lo'], P['med'], P['hi']
    (0.125, 0.375, 0.5)
    def __init__(self, varname='?', freqs=None):
        """If freqs is given, it is a dictionary of value: frequency pairs,
        and the ProbDist then is normalized."""
        update(self, prob={}, varname=varname, values=[])
        if freqs:
            for (v, p) in freqs.items():
                self[v] = p
            self.normalize()

    def __getitem__(self, val):
        "Given a value, return P(value)."
        try: return self.prob[val]
        except KeyError: return 0
withal's avatar
withal a validé
        "Set P(val) = p."
        if val not in self.values:
            self.values.append(val)
        self.prob[val] = p

    def normalize(self):
        """Make sure the probabilities of all values sum to 1.
        Returns the normalized distribution.
        Raises a ZeroDivisionError if the sum of the values is 0.
        >>> P = ProbDist('Flip'); P['H'], P['T'] = 35, 65
        >>> P = P.normalize()
        >>> print '%5.3f %5.3f' % (P.prob['H'], P.prob['T'])
        0.350 0.650
        """
        total = float(sum(self.prob.values()))
        if not (1.0-epsilon < total < 1.0+epsilon):
            for val in self.prob:
                self.prob[val] /= total
        return self

    def show_approx(self, numfmt='%.3g'):
        """Show the probabilities rounded and sorted by key, for the
        sake of portable doctests."""
        return ', '.join([('%s: ' + numfmt) % (v, p)
                          for (v, p) in sorted(self.prob.items())])

epsilon = 0.001

class JointProbDist(ProbDist):
    """A discrete probability distribute over a set of variables.
    >>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25
    >>> P[1, 1]
    0.25
    >>> P[dict(X=0, Y=1)] = 0.5
    >>> P[dict(X=0, Y=1)]
    def __init__(self, variables):
        update(self, prob={}, variables=variables, vals=defaultdict(list))

    def __getitem__(self, values):
        "Given a tuple or dict of values, return P(values)."
        values = event_values(values, self.variables)
        return ProbDist.__getitem__(self, values)

    def __setitem__(self, values, p):
        """Set P(values) = p.  Values can be a tuple or a dict; it must
        have a value for each of the variables in the joint. Also keep track
        of the values we have seen so far for each variable."""
        values = event_values(values, self.variables)
withal's avatar
withal a validé
        for var, val in zip(self.variables, values):
            if val not in self.vals[var]:
                self.vals[var].append(val)

    def values(self, var):
        "Return the set of possible values for a variable."
        return self.vals[var]

    def __repr__(self):
        return "P(%s)" % self.variables

def event_values(event, vars):
    """Return a tuple of the values of variables vars in event.
    >>> event_values ({'A': 10, 'B': 9, 'C': 8}, ['C', 'A'])
    (8, 10)
    >>> event_values ((1, 2), ['C', 'A'])
    (1, 2)
    """
    if isinstance(event, tuple) and len(event) == len(vars):
        return event
    else:
        return tuple([event[var] for var in vars])

#______________________________________________________________________________

def enumerate_joint_ask(X, e, P):
    """Return a probability distribution over the values of the variable X,
    given the {var:val} observations e, in the JointProbDist P. [Section 13.3]
    >>> P = JointProbDist(['X', 'Y'])
    >>> P[0,0] = 0.25; P[0,1] = 0.5; P[1,1] = P[2,1] = 0.125
    >>> enumerate_joint_ask('X', dict(Y=1), P).show_approx()
    '0: 0.667, 1: 0.167, 2: 0.167'
    """
    assert X not in e, "Query variable must be distinct from evidence"
    Q = ProbDist(X) # probability distribution for X, initially empty
    Y = [v for v in P.variables if v != X and v not in e] # hidden vars.
    for xi in P.values(X):
        Q[xi] = enumerate_joint(Y, extend(e, X, xi), P)
    return Q.normalize()

def enumerate_joint(vars, e, P):
withal's avatar
withal a validé
    """Return the sum of those entries in P consistent with e,
    provided vars is P's remaining variables (the ones not in e)."""
withal's avatar
withal a validé
    if not vars:
        return P[e]
    Y, rest = vars[0], vars[1:]
withal's avatar
withal a validé
    return sum([enumerate_joint(rest, extend(e, Y, y), P)
                for y in P.values(Y)])

#______________________________________________________________________________

withal's avatar
withal a validé
    "Bayesian network containing only boolean-variable nodes."
withal's avatar
withal a validé
        "nodes must be ordered with parents before children."
        update(self, nodes=[], vars=[])
withal's avatar
withal a validé
        """Add a node to the net. Its parents must already be in the
        net, and its variable must not."""
        node = BayesNode(*node_spec)
        assert node.variable not in self.vars
        assert every(lambda parent: parent in self.vars, node.parents)
        self.nodes.append(node)
        self.vars.append(node.variable)
withal's avatar
withal a validé
        for parent in node.parents:
            self.variable_node(parent).children.append(node)
withal's avatar
withal a validé
    def variable_node(self, var):
        """Return the node for the variable named var.
        >>> burglary.variable_node('Burglary').variable
        'Burglary'"""
        for n in self.nodes:
            if n.variable == var:
                return n
        raise Exception("No such variable: %s" % var)

withal's avatar
withal a validé
    def variable_values(self, var):
withal's avatar
withal a validé
        "Return the domain of var."
        return [True, False]
withal's avatar
withal a validé
    def __repr__(self):
        return 'BayesNet(%r)' % self.nodes
    """A conditional probability distribution for a boolean variable,
    P(X | parents). Part of a BayesNet."""

    def __init__(self, X, parents, cpt):
        """X is a variable name, and parents a sequence of variable
        names or a space-separated string.  cpt, the conditional
        probability table, takes one of these forms:

        * A number, the unconditional probability P(X=true). You can
          use this form when there are no parents.

        * A dict {v: p, ...}, the conditional probability distribution
          P(X=true | parent=v) = p. When there's just one parent.

        * A dict {(v1, v2, ...): p, ...}, the distribution P(X=true |
          parent1=v1, parent2=v2, ...) = p. Each key must have as many
          values as there are parents. You can use this form always;
          the first two are just conveniences.

        In all cases the probability of X being false is left implicit,
        since it follows from P(X=true).

        >>> X = BayesNode('X', '', 0.2)
        >>> Y = BayesNode('Y', 'P', {T: 0.2, F: 0.7})
withal's avatar
withal a validé
        >>> Z = BayesNode('Z', 'P Q',
        ...    {(T, T): 0.2, (T, F): 0.3, (F, T): 0.5, (F, F): 0.7})
        """
        if isinstance(parents, str): parents = parents.split()

        # We store the table always in the third form above.
        if isinstance(cpt, (float, int)): # no parents, 0-tuple
            cpt = {(): cpt}
        elif isinstance(cpt, dict):
            if cpt and isinstance(cpt.keys()[0], bool): # one parent, 1-tuple
withal's avatar
withal a validé
                cpt = dict(((v,), p) for v, p in cpt.items())

        assert isinstance(cpt, dict)
        for vs, p in cpt.items():
            assert isinstance(vs, tuple) and len(vs) == len(parents)
            assert every(lambda v: isinstance(v, bool), vs)
            assert 0 <= p <= 1
withal's avatar
withal a validé
        update(self, variable=X, parents=parents, cpt=cpt, children=[])

    def p(self, value, event):
withal's avatar
withal a validé
        """Return the conditional probability
        P(X=value | parents=parent_values), where parent_values
        are the values of parents in event. (event must assign each
        parent a value.)
        >>> bn = BayesNode('X', 'Burglary', {T: 0.2, F: 0.625})
        >>> bn.p(False, {'Burglary': False, 'Earthquake': True})
        0.375"""
        assert isinstance(value, bool)
        ptrue = self.cpt[event_values(event, self.parents)]
        return if_(value, ptrue, 1 - ptrue)

    def sample(self, event):
        """Sample from the distribution for this variable conditioned
        on event's values for parent_vars. That is, return True/False
        at random according with the conditional probability given the
        parents."""
withal's avatar
withal a validé
        return probability(self.p(True, event))
withal's avatar
withal a validé
    def __repr__(self):
        return repr((self.variable, ' '.join(self.parents)))
# Burglary example [Fig. 14.2]

T, F = True, False

burglary = BayesNet([
    ('Burglary', '', 0.001),
    ('Earthquake', '', 0.002),
    ('Alarm', 'Burglary Earthquake',
withal's avatar
withal a validé
         {(T, T): 0.95, (T, F): 0.94, (F, T): 0.29, (F, F): 0.001}),
    ('JohnCalls', 'Alarm', {T: 0.90, F: 0.05}),
    ('MaryCalls', 'Alarm', {T: 0.70, F: 0.01})
    ])

#______________________________________________________________________________

def enumeration_ask(X, e, bn):
withal's avatar
withal a validé
    """Return the conditional probability distribution of variable X
    given evidence e, from BayesNet bn. [Fig. 14.9]
withal's avatar
withal a validé
    >>> enumeration_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
    ...  ).show_approx()
    'False: 0.716, True: 0.284'"""
    assert X not in e, "Query variable must be distinct from evidence"
withal's avatar
withal a validé
    Q = ProbDist(X)
    for xi in bn.variable_values(X):
        Q[xi] = enumerate_all(bn.vars, extend(e, X, xi), bn)
def enumerate_all(vars, e, bn):
    """Return the sum of those entries in P(vars | e{others})
    consistent with e, where P is the joint distribution represented
    by bn, and e{others} means e restricted to bn's other variables
    (the ones other than vars). Parents must precede children in vars."""
withal's avatar
withal a validé
    if not vars:
withal's avatar
withal a validé
    Y, rest = vars[0], vars[1:]
    Ynode = bn.variable_node(Y)
    if Y in e:
        return Ynode.p(e[Y], e) * enumerate_all(rest, e, bn)
withal's avatar
withal a validé
    else:
        return sum(Ynode.p(y, e) * enumerate_all(rest, extend(e, Y, y), bn)
withal's avatar
withal a validé
                   for y in bn.variable_values(Y))
withal's avatar
withal a validé
#______________________________________________________________________________
def elimination_ask(X, e, bn):
withal's avatar
withal a validé
    """Compute bn's P(X|e) by variable elimination. [Fig. 14.11]
    >>> elimination_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
    ...  ).show_approx()
    'False: 0.716, True: 0.284'"""
withal's avatar
withal a validé
    assert X not in e, "Query variable must be distinct from evidence"
    for var in reversed(bn.vars):
        factors.append(make_factor(var, e, bn))
            factors = sum_out(var, factors, bn)
    return pointwise_product(factors, bn).normalize()
def is_hidden(var, X, e):
withal's avatar
withal a validé
    "Is var a hidden variable when querying P(X|e)?"
    return var != X and var not in e

def make_factor(var, e, bn):
withal's avatar
withal a validé
    """Return the factor for var in bn's joint distribution given e.
    That is, bn's full joint distribution, projected to accord with e,
    is the pointwise product of these factors for bn's variables."""
    node = bn.variable_node(var)
    vars = [X for X in [var] + node.parents if X not in e]
    cpt = dict((event_values(e1, vars), node.p(e1[var], e1))
               for e1 in all_events(vars, bn, e))
    return Factor(vars, cpt)

def pointwise_product(factors, bn):
    return reduce(lambda f, g: f.pointwise_product(g, bn), factors)

def sum_out(var, factors, bn):
withal's avatar
withal a validé
    "Eliminate var from all factors by summing over its values."
    result, var_factors = [], []
    for f in factors:
        (var_factors if var in f.vars else result).append(f)
    result.append(pointwise_product(var_factors, bn).sum_out(var, bn))
    return result

class Factor:
withal's avatar
withal a validé
    "A factor in a joint distribution."

    def __init__(self, vars, cpt):
        update(self, vars=vars, cpt=cpt)

    def pointwise_product(self, other, bn):
withal's avatar
withal a validé
        "Multiply two factors, combining their variables."
        vars = list(set(self.vars) | set(other.vars))
        cpt = dict((event_values(e, vars), self.p(e) * other.p(e))
                   for e in all_events(vars, bn, {}))
        return Factor(vars, cpt)

    def sum_out(self, var, bn):
withal's avatar
withal a validé
        "Make a factor eliminating var by summing over its values."
        vars = [X for X in self.vars if X != var]
        cpt = dict((event_values(e, vars),
                    sum(self.p(extend(e, var, val))
                        for val in bn.variable_values(var)))
                   for e in all_events(vars, bn, {}))
        return Factor(vars, cpt)

    def normalize(self):
withal's avatar
withal a validé
        "Return my probabilities; must be down to one variable."
        assert len(self.vars) == 1
        return ProbDist(self.vars[0],
                        dict((k, v) for ((k,), v) in self.cpt.items()))
    def p(self, e):
withal's avatar
withal a validé
        "Look up my value tabulated for e."
        return self.cpt[event_values(e, self.vars)]
withal's avatar
withal a validé
def all_events(vars, bn, e):
    "Yield every way of extending e with values for all vars."
    if not vars:
withal's avatar
withal a validé
        yield e
    else:
        X, rest = vars[0], vars[1:]
withal's avatar
withal a validé
        for e1 in all_events(rest, bn, e):
            for x in bn.variable_values(X):
withal's avatar
withal a validé
                yield extend(e1, X, x)

#______________________________________________________________________________

# Fig. 14.12a: sprinkler network

sprinkler = BayesNet([
    ('Cloudy', '', 0.5),
    ('Sprinkler', 'Cloudy', {T: 0.10, F: 0.50}),
    ('Rain', 'Cloudy', {T: 0.80, F: 0.20}),
    ('WetGrass', 'Sprinkler Rain',
withal's avatar
withal a validé
         {(T, T): 0.99, (T, F): 0.90, (F, T): 0.90, (F, F): 0.00})])

#______________________________________________________________________________

withal's avatar
withal a validé
    """Randomly sample from bn's full joint distribution. The result
    is a {variable: value} dict. [Fig. 14.13]"""
    event = {}
    for node in bn.nodes:
        event[node.variable] = node.sample(event)
withal's avatar
withal a validé
    return event

#_______________________________________________________________________________

def rejection_sampling(X, e, bn, N):
withal's avatar
withal a validé
    """Estimate the probability distribution of variable X given
    evidence e in BayesNet bn, using N samples.  [Fig. 14.14]
    Raises a ZeroDivisionError if all the N samples are rejected,
    i.e., inconsistent with e.
    >>> random.seed(47)
withal's avatar
withal a validé
    >>> rejection_sampling('Burglary', dict(JohnCalls=T, MaryCalls=T),
    ...   burglary, 10000).show_approx()
    'False: 0.7, True: 0.3'
    counts = dict((x, 0) for x in bn.variable_values(X)) # bold N in Fig. 14.14
    for j in xrange(N):
withal's avatar
withal a validé
        sample = prior_sample(bn) # boldface x in Fig. 14.14
        if consistent_with(sample, e):
            counts[sample[X]] += 1
    return ProbDist(X, counts)
withal's avatar
withal a validé
def consistent_with(event, evidence):
    "Is event consistent with the given evidence?"
    return all(evidence.get(k, v) == v
               for k, v in event.items())

#_______________________________________________________________________________

def likelihood_weighting(X, e, bn, N):
withal's avatar
withal a validé
    """Estimate the probability distribution of variable X given
    evidence e in BayesNet bn.  [Fig. 14.15]
    >>> random.seed(1017)
withal's avatar
withal a validé
    >>> likelihood_weighting('Burglary', dict(JohnCalls=T, MaryCalls=T),
    ...   burglary, 10000).show_approx()
    'False: 0.702, True: 0.298'
    W = dict((x, 0) for x in bn.variable_values(X))
    for j in xrange(N):
withal's avatar
withal a validé
        sample, weight = weighted_sample(bn, e) # boldface x, w in Fig. 14.15
        W[sample[X]] += weight
    return ProbDist(X, W)
def weighted_sample(bn, e):
withal's avatar
withal a validé
    """Sample an event from bn that's consistent with the evidence e;
    return the event and its weight, the likelihood that the event
    accords to the evidence."""
    w = 1
    event = dict(e) # boldface x in Fig. 14.15
    for node in bn.nodes:
        Xi = node.variable
withal's avatar
withal a validé
        if Xi in e:
            w *= node.p(e[Xi], event)
            event[Xi] = node.sample(event)
withal's avatar
withal a validé
    return event, w
withal's avatar
withal a validé
#_______________________________________________________________________________

def gibbs_ask(X, e, bn, N):
withal's avatar
withal a validé
    """[Fig. 14.16]
    >>> random.seed(1017)
withal's avatar
withal a validé
    >>> gibbs_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary, 1000
    ...  ).show_approx()
    'False: 0.738, True: 0.262'
    """
    assert X not in e, "Query variable must be distinct from evidence"
withal's avatar
withal a validé
    counts = dict((x, 0) for x in bn.variable_values(X)) # bold N in Fig. 14.16
    Z = [var for var in bn.vars if var not in e]
withal's avatar
withal a validé
    state = dict(e) # boldface x in Fig. 14.16
    for Zi in Z:
        state[Zi] = random.choice(bn.variable_values(Zi))
withal's avatar
withal a validé
    for j in xrange(N):
        for Zi in Z:
withal's avatar
withal a validé
            state[Zi] = markov_blanket_sample(Zi, state, bn)
withal's avatar
withal a validé
            counts[state[X]] += 1
    return ProbDist(X, counts)

withal's avatar
withal a validé
def markov_blanket_sample(X, e, bn):
    """Return a sample from P(X | mb) where mb denotes that the
    variables in the Markov blanket of X take their values from event
    e (which must assign a value to each). The Markov blanket of X is
    X's parents, children, and children's parents."""
    Xnode = bn.variable_node(X)
    Q = ProbDist(X)
    for xi in bn.variable_values(X):
        ei = extend(e, X, xi)
        # [Equation 14.12:]
        Q[xi] = Xnode.p(xi, e) * product(Yj.p(ei[Yj.variable], ei)
                                         for Yj in Xnode.children)
    return probability(Q.normalize()[True]) # (assuming a Boolean variable here)

#_______________________________________________________________________________

withal's avatar
withal a validé
def forward_backward(ev, prior):
    """[Fig. 15.4]"""
    unimplemented()

def fixed_lag_smoothing(e_t, hmm, d):
    """[Fig. 15.6]"""
    unimplemented()
withal's avatar
withal a validé
def particle_filtering(e, N, dbn):
    """[Fig. 15.17]"""
    unimplemented()
withal's avatar
withal a validé
#_______________________________________________________________________________
peter.norvig's avatar
peter.norvig a validé
__doc__ += """
withal's avatar
withal a validé
# We can build up a probability distribution like this (p. 469):
peter.norvig's avatar
peter.norvig a validé
>>> P = ProbDist()
>>> P['sunny'] = 0.7
>>> P['rain'] = 0.2
>>> P['cloudy'] = 0.08
>>> P['snow'] = 0.02

withal's avatar
withal a validé
# and query it like this:  (Never mind this ELLIPSIS option
#                           added to make the doctest portable.)
>>> P['rain']               #doctest:+ELLIPSIS
0.2...
peter.norvig's avatar
peter.norvig a validé

withal's avatar
withal a validé
# A Joint Probability Distribution is dealt with like this (Fig. 13.3):
peter.norvig's avatar
peter.norvig a validé
>>> P = JointProbDist(['Toothache', 'Cavity', 'Catch'])
>>> T, F = True, False
>>> P[T, T, T] = 0.108; P[T, T, F] = 0.012; P[F, T, T] = 0.072; P[F, T, F] = 0.008
>>> P[T, F, T] = 0.016; P[T, F, F] = 0.064; P[F, F, T] = 0.144; P[F, F, F] = 0.576

withal's avatar
withal a validé
>>> P[T, T, T]
peter.norvig's avatar
peter.norvig a validé
0.108

withal's avatar
withal a validé
# Ask for P(Cavity|Toothache=T)
withal's avatar
withal a validé
>>> PC = enumerate_joint_ask('Cavity', {'Toothache': T}, P)
>>> PC.show_approx()
'False: 0.4, True: 0.6'
peter.norvig's avatar
peter.norvig a validé

withal's avatar
withal a validé
>>> 0.6-epsilon < PC[T] < 0.6+epsilon
peter.norvig's avatar
peter.norvig a validé
True

withal's avatar
withal a validé
>>> 0.4-epsilon < PC[F] < 0.4+epsilon
peter.norvig's avatar
peter.norvig a validé
True
"""