search-4e.ipynb 258 ko
Newer Older
   "outputs": [],
   "source": [
    "dirt  = '*'\n",
    "clean = ' '\n",
    "\n",
    "class TwoLocationVacuumProblem(Problem):\n",
    "    \"\"\"A Vacuum in a world with two locations, and dirt.\n",
    "    Each state is a tuple of (location, dirt_in_W, dirt_in_E).\"\"\"\n",
    "\n",
    "    def actions(self, state): return ('W', 'E', 'Suck')\n",
    "    \n",
    "    def is_goal(self, state): return dirt not in state\n",
    " \n",
    "    def result(self, state, action):\n",
    "        \"The state that results from executing this action in this state.\"        \n",
    "        (loc, dirtW, dirtE) = state\n",
    "        if   action == 'W':                   return ('W', dirtW, dirtE)\n",
    "        elif action == 'E':                   return ('E', dirtW, dirtE)\n",
    "        elif action == 'Suck' and loc == 'W': return (loc, clean, dirtE)\n",
    "        elif action == 'Suck' and loc == 'E': return (loc, dirtW, clean) \n",
    "        else: raise ValueError('unknown action: ' + action)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Node ('E', ' ', ' '): 3>"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "problem = TwoLocationVacuumProblem(initial=('W', dirt, dirt))\n",
    "result = uniform_cost_search(problem)\n",
    "result"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Suck', 'E', 'Suck']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('W', '*', '*'), ('W', ' ', '*'), ('E', ' ', '*'), ('E', ' ', ' ')]"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "state_sequence(result)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Suck']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "problem = TwoLocationVacuumProblem(initial=('E', clean, dirt))\n",
    "result = uniform_cost_search(problem)\n",
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Water Pouring Problem\n",
    "\n",
    "Here is another problem domain, to show you how to define one. The idea is that we have a number of water jugs and a water tap and the goal is to measure out a specific amount of water (in, say, ounces or liters). You can completely fill or empty a jug, but because the jugs don't have markings on them, you can't partially fill them with a specific amount. You can, however, pour one jug into another, stopping when the seconfd is full or the first is empty."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class PourProblem(Problem):\n",
    "    \"\"\"Problem about pouring water between jugs to achieve some water level.\n",
    "    Each state is a tuples of levels. In the initialization, provide a tuple of \n",
    "    capacities, e.g. PourProblem(capacities=(8, 16, 32), initial=(2, 4, 3), goals={7}), \n",
    "    which means three jugs of capacity 8, 16, 32, currently filled with 2, 4, 3 units of \n",
    "    water, respectively, and the goal is to get a level of 7 in any one of the jugs.\"\"\"\n",
    "    \n",
    "    def actions(self, state):\n",
    "        \"\"\"The actions executable in this state.\"\"\"\n",
    "        jugs = range(len(state))\n",
    "        return ([('Fill', i)    for i in jugs if state[i] != self.capacities[i]] +\n",
    "                [('Dump', i)    for i in jugs if state[i] != 0] +\n",
    "                [('Pour', i, j) for i in jugs for j in jugs if i != j])\n",
    "\n",
    "    def result(self, state, action):\n",
    "        \"\"\"The state that results from executing this action in this state.\"\"\"\n",
    "        result = list(state)\n",
    "        act, i, j = action[0], action[1], action[-1]\n",
    "        if act == 'Fill': # Fill i to capacity\n",
    "            result[i] = self.capacities[i]\n",
    "        elif act == 'Dump': # Empty i\n",
    "            result[i] = 0\n",
    "        elif act == 'Pour':\n",
    "            a, b = state[i], state[j]\n",
    "            result[i], result[j] = ((0, a + b) \n",
    "                                    if (a + b <= self.capacities[j]) else\n",
    "                                    (a + b - self.capacities[j], self.capacities[j]))\n",
    "        else:\n",
    "            raise ValueError('unknown action', action)\n",
    "        return tuple(result)\n",
    "\n",
    "    def is_goal(self, state):\n",
    "        \"\"\"True if any of the jugs has a level equal to one of the goal levels.\"\"\"\n",
    "        return any(level in self.goals for level in state)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(2, 13)"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "p7 = PourProblem(initial=(2, 0), capacities=(5, 13), goals={7})\n",
    "p7.result((2, 0),  ('Fill', 1))"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result = uniform_cost_search(p7)\n",
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Visualization Output"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def showpath(searcher, problem):\n",
    "    \"Show what happens when searcvher solves problem.\"\n",
    "    problem = Instrumented(problem)\n",
    "    print('\\n{}:'.format(searcher.__name__))\n",
    "    result = searcher(problem)\n",
    "    if result:\n",
    "        actions = action_sequence(result)\n",
    "        state = problem.initial\n",
    "        path_cost = 0\n",
    "        for steps, action in enumerate(actions, 1):\n",
    "            path_cost += problem.step_cost(state, action, 0)\n",
    "            result = problem.result(state, action)\n",
    "            print('  {} =={}==> {}; cost {} after {} steps'\n",
    "                  .format(state, action, result, path_cost, steps,\n",
    "                          '; GOAL!' if problem.is_goal(result) else ''))\n",
    "            state = result\n",
    "    msg = 'GOAL FOUND' if result else 'no solution'\n",
    "    print('{} after {} results and {} goal checks'\n",
    "          .format(msg, problem._counter['result'], problem._counter['is_goal']))\n",
    "        \n",
    "from collections import Counter\n",
    "\n",
    "class Instrumented:\n",
    "    \"Instrument an object to count all the attribute accesses in _counter.\"\n",
    "    def __init__(self, obj):\n",
    "        self._object = obj\n",
    "        self._counter = Counter()\n",
    "    def __getattr__(self, attr):\n",
    "        self._counter[attr] += 1\n",
    "        return getattr(self._object, attr)    "
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (2, 0) ==('Pour', 0, 1)==> (0, 2); cost 1 after 1 steps\n",
      "  (0, 2) ==('Fill', 0)==> (5, 2); cost 2 after 2 steps\n",
      "  (5, 2) ==('Pour', 0, 1)==> (0, 7); cost 3 after 3 steps\n",
      "GOAL FOUND after 83 results and 22 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(uniform_cost_search, p7)"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 1 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 2 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 3 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 4 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 5 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 6 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 7 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 8 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 9 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 10 after 10 steps\n",
      "GOAL FOUND after 110 results and 32 goal checks\n"
     ]
    }
   ],
   "source": [
    "p = PourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
    "showpath(uniform_cost_search, p)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class GreenPourProblem(PourProblem):    \n",
    "    def step_cost(self, state, action, result=None):\n",
    "        \"The cost is the amount of water used in a fill.\"\n",
    "        if action[0] == 'Fill':\n",
    "            i = action[1]\n",
    "            return self.capacities[i] - state[i]\n",
    "        return 0"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 184 results and 48 goal checks\n"
     ]
    }
   ],
   "source": [
    "p = GreenPourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
    "showpath(uniform_cost_search, p)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def compare_searchers(problem, searchers=None):\n",
    "    \"Apply each of the search algorithms to the problem, and show results\"\n",
    "    if searchers is None: \n",
    "        searchers = (breadth_first_search, uniform_cost_search)\n",
    "    for searcher in searchers:\n",
    "        showpath(searcher, problem)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 100 results and 31 goal checks\n",
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 184 results and 48 goal checks\n"
     ]
    }
   ],
   "source": [
    "compare_searchers(p)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Random Grid\n",
    "\n",
    "An environment where you can move in any of 4 directions, unless there is an obstacle there.\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{(0, 0): [(0, 1), (1, 0)],\n",
       " (0, 1): [(0, 2), (0, 0), (1, 1)],\n",
       " (0, 2): [(0, 3), (0, 1), (1, 2)],\n",
       " (0, 3): [(0, 4), (0, 2), (1, 3)],\n",
       " (0, 4): [(0, 3), (1, 4)],\n",
       " (1, 0): [(1, 1), (2, 0), (0, 0)],\n",
       " (1, 1): [(1, 2), (1, 0), (2, 1), (0, 1)],\n",
       " (1, 2): [(1, 3), (1, 1), (2, 2), (0, 2)],\n",
       " (1, 3): [(1, 4), (1, 2), (2, 3), (0, 3)],\n",
       " (1, 4): [(1, 3), (2, 4), (0, 4)],\n",
       " (2, 0): [(2, 1), (3, 0), (1, 0)],\n",
       " (2, 1): [(2, 2), (2, 0), (3, 1), (1, 1)],\n",
       " (2, 2): [(2, 3), (2, 1), (1, 2)],\n",
       " (2, 3): [(2, 4), (2, 2), (3, 3), (1, 3)],\n",
       " (2, 4): [(2, 3), (1, 4)],\n",
       " (3, 0): [(3, 1), (4, 0), (2, 0)],\n",
       " (3, 1): [(3, 0), (4, 1), (2, 1)],\n",
       " (3, 2): [(3, 3), (3, 1), (4, 2), (2, 2)],\n",
       " (3, 3): [(4, 3), (2, 3)],\n",
       " (3, 4): [(3, 3), (4, 4), (2, 4)],\n",
       " (4, 0): [(4, 1), (3, 0)],\n",
       " (4, 1): [(4, 2), (4, 0), (3, 1)],\n",
       " (4, 2): [(4, 3), (4, 1)],\n",
       " (4, 3): [(4, 4), (4, 2), (3, 3)],\n",
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import random\n",
    "\n",
    "N, S, E, W = DIRECTIONS = [(0, 1), (0, -1), (1, 0), (-1, 0)]\n",
    "\n",
    "def Grid(width, height, obstacles=0.1):\n",
    "    \"\"\"A 2-D grid, width x height, with obstacles that are either a collection of points,\n",
    "    or a fraction between 0 and 1 indicating the density of obstacles, chosen at random.\"\"\"\n",
    "    grid = {(x, y) for x in range(width) for y in range(height)}\n",
    "    if isinstance(obstacles, (float, int)):\n",
    "        obstacles = random.sample(grid, int(width * height * obstacles))\n",
    "    def neighbors(x, y):\n",
    "        for (dx, dy) in DIRECTIONS:\n",
    "            (nx, ny) = (x + dx, y + dy)\n",
    "            if (nx, ny) not in obstacles and 0 <= nx < width and 0 <= ny < height:\n",
    "                yield (nx, ny)\n",
    "    return {(x, y): list(neighbors(x, y))\n",
    "            for x in range(width) for y in range(height)}\n",
    "\n",
    "Grid(5, 5)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class GridProblem(Problem):\n",
    "    \"Create with a call like GridProblem(grid=Grid(10, 10), initial=(0, 0), goal=(9, 9))\"\n",
    "    def actions(self, state): return DIRECTIONS\n",
    "    def result(self, state, action):\n",
    "        #print('ask for result of', state, action)\n",
    "        (x, y) = state\n",
    "        (dx, dy) = action\n",
    "        r = (x + dx, y + dy)\n",
    "        return r if r in self.grid[state] else state"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==(0, 1)==> (0, 1); cost 1 after 1 steps\n",
      "  (0, 1) ==(0, 1)==> (0, 2); cost 2 after 2 steps\n",
      "  (0, 2) ==(0, 1)==> (0, 3); cost 3 after 3 steps\n",
      "  (0, 3) ==(1, 0)==> (1, 3); cost 4 after 4 steps\n",
      "  (1, 3) ==(1, 0)==> (2, 3); cost 5 after 5 steps\n",
      "  (2, 3) ==(0, 1)==> (2, 4); cost 6 after 6 steps\n",
      "  (2, 4) ==(1, 0)==> (3, 4); cost 7 after 7 steps\n",
      "  (3, 4) ==(1, 0)==> (4, 4); cost 8 after 8 steps\n",
      "GOAL FOUND after 248 results and 69 goal checks\n"
     ]
    }
   ],
   "source": [
    "gp = GridProblem(grid=Grid(5, 5, 0.3), initial=(0, 0), goals={(4, 4)})\n",
    "showpath(uniform_cost_search, gp)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Finding a hard PourProblem\n",
    "\n",
    "What solvable two-jug PourProblem requires the most steps? We can define the hardness as the number of steps, and then iterate over all PourProblems with capacities up to size M, keeping the hardest one."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def hardness(problem):\n",
    "    L = breadth_first_search(problem)\n",
    "    #print('hardness', problem.initial, problem.capacities, problem.goals, L)\n",
    "    return len(action_sequence(L)) if (L is not None) else 0"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "hardness(p7)"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "action_sequence(breadth_first_search(p7))"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((0, 0), (7, 9), {8})"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "C = 9 # Maximum capacity to consider\n",
    "\n",
    "phard = max((PourProblem(initial=(a, b), capacities=(A, B), goals={goal})\n",
    "             for A in range(C+1) for B in range(C+1)\n",
    "             for a in range(A) for b in range(B)\n",
    "             for goal in range(max(A, B))),\n",
    "            key=hardness)\n",
    "\n",
    "phard.initial, phard.capacities, phard.goals"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
      "  (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
      "  (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
      "  (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
      "  (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
      "  (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
      "  (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
      "  (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
      "  (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
      "  (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
      "  (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
      "  (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
      "  (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
      "  (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
      "GOAL FOUND after 150 results and 44 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(breadth_first_search, PourProblem(initial=(0, 0), capacities=(7, 9), goals={8}))"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
      "  (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
      "  (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
      "  (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
      "  (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
      "  (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
      "  (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
      "  (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
      "  (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
      "  (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
      "  (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
      "  (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
      "  (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
      "  (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
      "GOAL FOUND after 159 results and 45 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(uniform_cost_search, phard)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class GridProblem(Problem):\n",
    "    \"\"\"A Grid.\"\"\"\n",
    "\n",
    "    def actions(self, state): return ['N', 'S', 'E', 'W']        \n",
    " \n",
    "    def result(self, state, action):\n",
    "        \"\"\"The state that results from executing this action in this state.\"\"\"  \n",
    "        (W, H) = self.size\n",
    "        if action == 'N' and state > W:           return state - W\n",
    "        if action == 'S' and state + W < W * W:   return state + W\n",
    "        if action == 'E' and (state + 1) % W !=0: return state + 1\n",
    "        if action == 'W' and state % W != 0:      return state - 1\n",
    "        return state"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  0 ==S==> 10; cost 1 after 1 steps\n",
      "  10 ==S==> 20; cost 2 after 2 steps\n",
      "  20 ==S==> 30; cost 3 after 3 steps\n",
      "  30 ==S==> 40; cost 4 after 4 steps\n",
      "  40 ==E==> 41; cost 5 after 5 steps\n",
      "  41 ==E==> 42; cost 6 after 6 steps\n",
      "  42 ==E==> 43; cost 7 after 7 steps\n",
      "  43 ==E==> 44; cost 8 after 8 steps\n",
      "GOAL FOUND after 135 results and 49 goal checks\n",
      "\n",
      "uniform_cost_search:\n",
      "  0 ==S==> 10; cost 1 after 1 steps\n",
      "  10 ==S==> 20; cost 2 after 2 steps\n",
      "  20 ==E==> 21; cost 3 after 3 steps\n",
      "  21 ==E==> 22; cost 4 after 4 steps\n",
      "  22 ==E==> 23; cost 5 after 5 steps\n",
      "  23 ==S==> 33; cost 6 after 6 steps\n",
      "  33 ==S==> 43; cost 7 after 7 steps\n",
      "  43 ==E==> 44; cost 8 after 8 steps\n",
      "GOAL FOUND after 1036 results and 266 goal checks\n"
     ]
    }
   ],
   "source": [
    "compare_searchers(GridProblem(initial=0, goals={44}, size=(10, 10)))"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'test_frontier ok'"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def test_frontier():\n",
    "    \n",
    "    #### Breadth-first search with FIFO Q\n",
    "    f = FrontierQ(Node(1), LIFO=False)\n",
    "    assert 1 in f and len(f) == 1\n",
    "    f.add(Node(2))\n",
    "    f.add(Node(3))\n",
    "    assert 1 in f and 2 in f and 3 in f and len(f) == 3\n",
    "    assert f.pop().state == 1\n",
    "    assert 1 not in f and 2 in f and 3 in f and len(f) == 2\n",
    "    assert f\n",
    "    assert f.pop().state == 2\n",
    "    assert f.pop().state == 3\n",
    "    assert not f\n",
    "    \n",
    "    #### Depth-first search with LIFO Q\n",
    "    f = FrontierQ(Node('a'), LIFO=True)\n",
    "    for s in 'bcdef': f.add(Node(s))\n",
    "    assert len(f) == 6 and 'a' in f and 'c' in f and 'f' in f\n",
    "    for s in 'fedcba': assert f.pop().state == s\n",
    "    assert not f\n",
    "\n",
    "    #### Best-first search with Priority Q\n",
    "    f = FrontierPQ(Node(''), lambda node: len(node.state))\n",
    "    assert '' in f and len(f) == 1 and f\n",
    "    for s in ['book', 'boo', 'bookie', 'bookies', 'cook', 'look', 'b']:\n",
    "        assert s not in f\n",
    "        f.add(Node(s))\n",
    "        assert s in f\n",
    "    assert f.pop().state == ''\n",
    "    assert f.pop().state == 'b'\n",
    "    assert f.pop().state == 'boo'\n",
    "    assert {f.pop().state for _ in '123'} == {'book', 'cook', 'look'}\n",
    "    assert f.pop().state == 'bookie'\n",
    "    \n",
    "    #### Romania: Two paths to Bucharest; cheapest one found first\n",
    "    S    = Node('S')\n",
    "    SF   = Node('F', S, 'S->F', 99)\n",
    "    SFB  = Node('B', SF, 'F->B', 211)\n",
    "    SR   = Node('R', S, 'S->R', 80)\n",
    "    SRP  = Node('P', SR, 'R->P', 97)\n",
    "    SRPB = Node('B', SRP, 'P->B', 101)\n",
    "    f = FrontierPQ(S)\n",
    "    f.add(SF); f.add(SR), f.add(SRP), f.add(SRPB); f.add(SFB)\n",
    "    def cs(n): return (n.path_cost, n.state) # cs: cost and state\n",
    "    assert cs(f.pop()) == (0, 'S')\n",
    "    assert cs(f.pop()) == (80, 'R')\n",
    "    assert cs(f.pop()) == (99, 'F')\n",
    "    assert cs(f.pop()) == (177, 'P')\n",
    "    assert cs(f.pop()) == (278, 'B')\n",
    "    return 'test_frontier ok'\n",
    "\n",
    "test_frontier()"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
    "# %matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "p = plt.plot([i**2 for i in range(10)])\n",
    "plt.savefig('destination_path.eps', format='eps', dpi=1200)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VOW9x/HPj5AAYUkghC0QArLL\nkkAExaUVsFevC7i1oiIqGtvrde2tou29tr22pdZra691QVHZBC2CUrVerTtakYQgYd/NQoAASQhk\nT577R8aKNshkmZyZyff9evmamZMzzNch+XLyzDnPY845REQk9LXxOoCIiDQPFbqISJhQoYuIhAkV\nuohImFChi4iECRW6iEiYUKGLiIQJFbqISJhQoYuIhIm2Lfli3bt3d0lJSS35kiIiIS8jI+Ogcy7+\nZPu1aKEnJSWRnp7eki8pIhLyzOwLf/bTkIuISJhQoYuIhAkVuohImFChi4iECRW6iEiYUKGLiIQJ\nFbqISJjwq9DN7C4z22hmG8xsiZm1N7MBZrbazLab2YtmFhXosCIioebQ0Qp++ZdNlFXWBPy1Tlro\nZpYA3A6kOudGAhHAVcBvgd875wYDhcCsQAYVEQk1ldW1/GjxWhav/oLdB48F/PX8HXJpC3Qws7ZA\nNJAPTAKW+b4+H5jW/PFERELXL1/byGe7D/PQFaMZ0adLwF/vpIXunMsDHgayqSvyYiADKHLOVft2\nywUSAhVSRCTULF79BYs+zeaW7wxkanLL1KM/Qy5dganAAKAP0BG4oJ5d3Qmen2Zm6WaWXlBQ0JSs\nIiIhYfWuQzzw6kbOHRrPPf8yrMVe158hlynAbudcgXOuClgOTARifUMwAH2BvfU92Tk31zmX6pxL\njY8/6WRhIiIhLbewlH9bvJbEuGgenZ5CRBtrsdf2p9CzgdPNLNrMDJgMbALeA67w7TMTeDUwEUVE\nQkNpZTVpCzKorKnl6etS6dI+skVf358x9NXUffi5FsjyPWcucC9wt5ntAOKAeQHMKSIS1Jxz/OTP\n69m87wh/nJ7CKfGdWjyDX/OhO+ceAB74xuZdwPhmTyQiEoIef38nr2flc98Fwzh3aA9PMuhKURGR\nJvrbpv08/NZWpiX3Ie2cgZ7lUKGLiDTB9v0l3PniOkYlxDDn8tHUfdToDRW6iEgjFZVWctOCdNpH\nRvDUjHG0j4zwNI8KXUSkEaprarltSSb5ReU8NWMsvWM6eB2pZReJFhEJF7/56xY+2n6Qhy4fzbj+\n3byOA+gIXUSkwZZl5DJv1W6un5jE90/r53Wcf1Chi4g0QGZ2Ifcvz2LiKXH89MLhXsf5GhW6iIif\n9h8p55aFGfSKac+frh5LZERwVWhwpRERCVLlVTWkLczgaEU1T1+XSteOwbemjz4UFRE5Cecc9y/P\n4vOcIp68dhxDe3X2OlK9dIQuInIS81btZnlmHndNGcL5I3t5HeeEVOgiIt/ig20F/PqNzVwwshe3\nTRrkdZxvpUIXETmB3QePcdsLaxnSszMPXzmGNi04t3ljqNBFROpRUl7FzQvSiWhjPH1dKh3bBf9H\njsGfUESkhdXUOu5cuo7dB4+xaNYE+nWL9jqSX/xZU3Soma077r8jZnanmXUzs7fNbLvvtmtLBBYR\nCbRH3t7KO1sO8MDFIzjjlDiv4/jNnxWLtjrnkp1zycA4oBRYAcwG3nHODQbe8T0WEQlpf/l8L396\nbyfTx/djxun9vY7TIA0dQ58M7HTOfQFMBeb7ts8HpjVnMBGRlrYhr5ifLPuc1P5d+cUlIz2d27wx\nGlroVwFLfPd7OufyAXy33qy5JCLSDA4erSBtQTrdoqN44tpxRLUNvXNG/E5sZlHAJcCfG/ICZpZm\nZulmll5QUNDQfCIiAVdZXcuPFmVwuLSSudelEt+5ndeRGqUh/wRdAKx1zu33Pd5vZr0BfLcH6nuS\nc26ucy7VOZcaHx/ftLQiIs3MOccDKzeyZk8hD10xhpEJMV5HarSGFPp0vhpuAVgJzPTdnwm82lyh\nRERayqLV2Sz5LJsfffcULhnTx+s4TeJXoZtZNHAesPy4zXOA88xsu+9rc5o/nohI4Hy66xC/WLmR\nScN68B/fG+p1nCbz68Ii51wpEPeNbYeoO+tFRCTk5Bwu5d8Wr6V/XDR/uCqZiCC/rN8fofcxrohI\nE5VWVnPzgnSqamp5+rpUurSP9DpSs1Chi0ir4pzjP/78Odv2l/DY1WMZGN/J60jNRoUuIq3K/767\ngzey9nHfBcP5zpDwOvNOhS4ircZbG/fxyNvbuDQlgZvOHuB1nGanQheRVmHrvhLuenEdY/rG8JvL\nRoXcZf3+UKGLSNgrPFbJzQvSiW7XlqdmpNI+MsLrSAGhQheRsFZdU8u/L1nLvuJynpoxjl4x7b2O\nFDBa4EJEwtqv3tjMxzsO8bsrRjM2MbyXbdARuoiErZfSc3ju4z3ceOYArkzt53WcgFOhi0hY+mTn\nQX62YgNnDerO/f86zOs4LUKFLiJhZ31uETfPT6d/XDSPXZ1C24jWUXWt4/9SRFqNHQeOcv1za+ja\nMYqFsyYQGx3ldaQWo0IXkbCxt6iM6+atpo3BwlkTwvqMlvqo0EUkLBw+VsmMeaspKa/m+RvGM6B7\nR68jtTidtigiIe9oRTXXP/cZuYVlLLhxfEivOtQUKnQRCWnlVTWkLUhn494jPHXtOCYMjDv5k8KU\nvysWxZrZMjPbYmabzewMM+tmZm+b2XbfbXifsS8iQae6ppY7lmbyyc66C4emjOjpdSRP+TuG/ijw\npnNuGDAG2AzMBt5xzg0G3vE9FhFpEc45frpiA/+3cT//ddEILhvb1+tInjtpoZtZF+AcYB6Ac67S\nOVcETAXm+3abD0wLVEgRkW+a8+YWXkzP4fZJg7jxrPCbCrcx/DlCHwgUAM+ZWaaZPWNmHYGezrl8\nAN9tj/qebGZpZpZuZukFBQXNFlxEWq8nP9jJUx/sYsbp/bnrvCFexwka/hR6W2As8IRzLgU4RgOG\nV5xzc51zqc651Pj48FodRERa3tLPspnz1y1cPKYPv7jk1LCc17yx/Cn0XCDXObfa93gZdQW/38x6\nA/huDwQmoohInTc35HP/iiy+MySe/7lyDG3aqMyPd9JCd87tA3LMbKhv02RgE7ASmOnbNhN4NSAJ\nRUSAj3cc5PYl60hJ7MoT144lqq2ui/wmf89Dvw1YbGZRwC7gBur+MXjJzGYB2cCVgYkoIq3d5zlF\npC1IZ0D3jjw78zSio3QJTX38elecc+uA1Hq+NLl544iIfN2OAyVc/9xndOsUxcJZ44mJjvQ6UtDS\n7ywiErTyisqYMe8zItq0YdGsCfTo0rom22ooFbqIBKVDRyuY8cxqjlZUs3DWePrHtb7JthpKhS4i\nQaekvIqZz33G3uIynr3+NIb37uJ1pJCgQheRoFJeVcPNC9LZkl/CE9eM47Skbl5HChn6qFhEgkZ1\nTS23Lcnk012HefSqZM4dVu8F6HICOkIXkaDgnGP28ize3rSfX1xyKlOTE7yOFHJU6CLiOeccv35j\nM8sycrlzymBmTkzyOlJIUqGLiOee+GAnT3+0m5ln9OeOyYO9jhOyVOgi4qkXVmfz0JtbmZrchwcu\n1mRbTaFCFxHPvJGVz09fyeLcofE8rMm2mkyFLiKe+Gh7AXcszWRcYlcev2YckRGqo6bSOygiLS4z\nu5BbFmZwSnwn5l1/Gh2iIryOFBZU6CLSorbtL+GG59cQ37kdC2aNJ6aDJttqLip0EWkxOYdLmTFv\nNVERbVh44wR6dNZkW81JhS4iLaKgpILrnv2MssoaFswaT2JctNeRwo5fl/6b2R6gBKgBqp1zqWbW\nDXgRSAL2AN93zhUGJqaIhLIj5VVc/9xn5BeXsfimCQzrpcm2AqEhR+jnOueSnXNfLnQxG3jHOTcY\neIcGLBwtIq1HeVUNN81PZ+u+Ep68dhzj+muyrUBpypDLVGC+7/58YFrT44hIOKmuqeXfX1jLmj2H\neeQHyXx3qCbbCiR/C90Bb5lZhpml+bb1dM7lA/hu9TclIv9QW+u45+X1/G3zAX45dSSXjOnjdaSw\n5+/0uWc65/aaWQ/gbTPb4u8L+P4BSANITExsREQRCTXOOR58fTPL1+Zx93lDmHF6f68jtQp+HaE7\n5/b6bg8AK4DxwH4z6w3guz1wgufOdc6lOudS4+Pjmye1iAS1P723g2c/3s0NZyZx26RBXsdpNU5a\n6GbW0cw6f3kf+B6wAVgJzPTtNhN4NVAhRSQ0OOd45O1tPPzWNi5LSeA/LxyhybZakD9DLj2BFb6/\nlLbAC865N81sDfCSmc0CsoErAxdTRIJdba3jl69t4vlP9vD91L785rLRmmyrhZ200J1zu4Ax9Ww/\nBEwORCgRCS3VNbXMXp7FsoxcZp01gJ9dOFxH5h7QmqIi0iQV1TXcsWQdb27cx93nDeG2SYNU5h5R\noYtIo5VWVnPLwgw+2n6Q/7poBDeeNcDrSK2aCl1EGqW4rIobn19DZnYhv7tiNFem9vM6UqunQheR\nBvtyoq0dB0p4/JqxnD+yt9eRBBW6iDRQXlEZ1z6zmn3F5cybeRrnDNH1JcFChS4ifttZcJQZz6ym\npKKaRTeN10RbQUaFLiJ+2bi3mOvmfYYZLE07nVP7xHgdSb5BhS4iJ5W+5zA3PL+Gzu3asuimCQyM\n7+R1JKmHCl1EvtWH2wq4ZWEGvWPas/CmCSTEdvA6kpyACl1ETuivWfncvjSTQT06s+DG8cR3bud1\nJPkWKnQRqddL6TnMfnk9KYldefb604jpEOl1JDkJFbqI/JNnV+3ml69t4uzB3Xlqxjiio1QVoUB/\nSyLyD845/vjODn7/t22cf2ovHp2eTLu2EV7HEj+p0EUE+GqVoXmrdnPFuL7MuWwUbSOasuywtDQV\nuohQU+u4b/l6XkrP5fqJSfzXRSM0l3kIUqGLtHIV1TXc9eI63sjaxx2TB3PnlMGa/jZE+f37lJlF\nmFmmmb3mezzAzFab2XYze9HMogIXU0QCobSympsXZPBG1j5+duFw7jpviMo8hDVkgOwOYPNxj38L\n/N45NxgoBGY1ZzARCazisiqum/cZq7YX8NDlo7np7IFeR5Im8qvQzawvcCHwjO+xAZOAZb5d5gPT\nAhFQRJrfwaMVTJ/7KZ/nFvHY1WP5/mmayzwc+DuG/gfgHqCz73EcUOScq/Y9zgUS6nuimaUBaQCJ\niYmNTyoizWKvb/rbvcVlPDPzNL6j6W/DxkmP0M3sIuCAcy7j+M317Orqe75zbq5zLtU5lxofr28c\nES/tKjjKlU/+nYKSChbOmqAyDzP+HKGfCVxiZv8KtAe6UHfEHmtmbX1H6X2BvYGLKSJNtWnvEa57\ndjXOwZK00xmZoOlvw81Jj9Cdc/c55/o655KAq4B3nXPXAO8BV/h2mwm8GrCUItIkGV8c5qq5fycy\nog0v3nKGyjxMNeUysHuBu81sB3Vj6vOaJ5KINKePthdw7TOf0a1jFH/+4RkM6qG5zMNVgy4scs69\nD7zvu78LGN/8kUSkuby5YR+3L8lkYHxHFswaT4/O7b2OJAGkK0VFwtTLGbnc8/J6RveN4fnrxxMT\nrelvw50KXSQMPf/xbn7+l02cOSiOuTNS6dhOP+qtgf6WRcKIc47H3t3B/7y9je+N6Mkfp6fQPlLT\n37YWKnSRMFFdU8uv3tjMcx/v4bKxCTx0+WhNf9vKqNBFwsDhY5XctmQtH+84xI1nDuBnFw7X9Let\nkApdJMRtyCvmloUZFByt4HdXjObKVM3L0lqp0EVC2MsZudy/Iou4jlEs++EZjO4b63Uk8ZAKXSQE\nVdXU8uBrm5j/9y84Y2Acj12dQlyndl7HEo+p0EVCzIGScm5dvJY1ewq5+ewB3Hv+MH34KYAKXSSk\nrM0u5EeLMiguq+LRq5KZmlzvrNXSSqnQRULEC6uzeWDlBnrHdGDFv41neO8uXkeSIKNCFwlyFdU1\nPPDqRpauyeGcIfH88apkYqO1hK/8MxW6SBDLLy7jh4vW8nlOEbeeewp3nzeUCJ1fLiegQhcJUqt3\nHeLWF9ZSVlnDk9eO4/yRvbyOJEFOhS4SZJxzPP/JHn71+mYS46JZmnY6g3p0PvkTpdU7aaGbWXvg\nQ6Cdb/9lzrkHzGwAsBToBqwFZjjnKgMZViTclVXWcP+KLFZk5jFleE8e+cEYurTXtLfiH39OXq0A\nJjnnxgDJwPlmdjrwW+D3zrnBQCEwK3AxRcJfzuFSLn/iE15Zl8fd5w1h7oxxKnNpEH/WFHXOuaO+\nh5G+/xwwCVjm2z4fmBaQhCKtwEfbC7j4sVXkFJYyb2Yqt08erMm1pMH8GkM3swggAxgE/AnYCRQ5\n56p9u+QCusJBpIGcczz14S4eenMLg3p04qkZqQzo3tHrWBKi/Cp051wNkGxmscAKYHh9u9X3XDNL\nA9IAEhMTGxlTJPwcq6jmnmXreT0rnwtH9eahK0ZrZSFpkoYuEl1kZu8DpwOxZtbWd5TeF9h7gufM\nBeYCpKam1lv6Iq3NnoPHSFuYzo4DR7nvgmGknTMQMw2xSNOcdAzdzOJ9R+aYWQdgCrAZeA+4wrfb\nTODVQIUUCSfvbtnPxY+t4kBJBQtunMAt3zlFZS7Nwp8j9N7AfN84ehvgJefca2a2CVhqZg8CmcC8\nAOYUCXm1tY7/fXcHf3hnGyN6d+HJa8fRr1u017EkjJy00J1z64GUerbvAsYHIpRIuDlSXsXdL37O\n3zbv57KUBH592Sgt3izNTp/AiATYjgMlpC3IIPtwKT+/eAQzJyZpiEUCQoUuEkBvbsjnxy99Toeo\nCBbfNIEJA+O8jiRhTIUuEgA1tY7/eWsrj7+/k+R+sTxx7Vh6x3TwOpaEORW6SDMrKq3k9qXr+HBb\nAdPH9+Pnl5xKu7YaL5fAU6GLNKNNe49wy6J09hdX8JvLRjF9vC6mk5ajQhdpJq+uy+Pel9cT0yGS\npbecztjErl5HklZGhS7SREcrqpnz180s+jSb8UndeOyaFHp0bu91LGmFVOgiTfDe1gP8dHkW+UfK\nuemsAdx7wTAiI/yZlVqk+anQRRqh8Fgl//3aJpZn5jGoRyeW/XAi4/priEW8pUIXaQDnHG9k7eOB\nlRsoKq3i9kmDuHXSIJ3FIkFBhS7ipwNHyvnZKxt4a9N+RiXEsODGCYzo08XrWCL/oEIXOQnnHH9O\nz+W/X99EZXUt910wjFlnDaCtxsolyKjQRb5F9qFS7luxno93HGL8gG789vLRWlFIgpYKXaQeNbWO\n5z/Zw8P/t5WINsaD00Zy9fhErfMpQU2FLvIN2/eXcM/L68nMLuLcofH86tJR9InVPCwS/E5a6GbW\nD1gA9AJqgbnOuUfNrBvwIpAE7AG+75wrDFxUkcCqrK7lyQ928ti7O+jYLoI//CCZqcl9NNWthAx/\njtCrgR8759aaWWcgw8zeBq4H3nHOzTGz2cBs4N7ARRUJnPW5RdyzbD1b9pVw8Zg+PHDxCLp3aud1\nLJEG8WfFonwg33e/xMw2AwnAVOC7vt3mA++jQpcQU1ZZwx/+to2nP9pFfOd2PH1dKueN6Ol1LJFG\nadAYupklUbcc3Wqgp6/scc7lm1mPZk8nEkCf7jrE7JfXs+dQKdPH92P2BcOJ6RDpdSyRRvO70M2s\nE/AycKdz7oi/44pmlgakASQmaipR8V5JeRVz/rqFxauzSewWzQs3TWDioO5exxJpMr8K3cwiqSvz\nxc655b7N+82st+/ovDdwoL7nOufmAnMBUlNTXTNkFmm0d7fs56crNrDfN5nWj783lA5RumxfwoM/\nZ7kYMA/Y7Jx75LgvrQRmAnN8t68GJKFIMzh8rJJf/mUjr6zby5CenXj8momkaL5yCTP+HKGfCcwA\nssxsnW/b/dQV+UtmNgvIBq4MTESRxnPO8Zf1+fx85UZKyqu4Y/Jgbj13EFFtddm+hB9/znJZBZxo\nwHxy88YRaT77iusm0/rb5v2M6RvDb6+YwLBemkxLwpeuFJWw45xj6Zocfv36Zqpqa/nZhcO54cwB\nROiyfQlzKnQJK18cOsbsl7P4+65DnDEwjjmXj6J/nCbTktZBhS5hoabW8dzHu3n4ra1EtmnDby4b\nxVWn9dNl+9KqqNAl5G3dVzeZ1uc5RUwZ3oMHp42iV4wWaZbWR4UuIetASTlPvL+TRZ9+Qef2kfxx\negoXj+6to3JptVToEnIKSip46oOdLPz0C6prHVeM7cu9FwyjW8cor6OJeEqFLiHj0NEKnvpwFwv+\nvofK6louTenLbZMGkaQVhEQAFbqEgMPHKpnrK/LyqhqmJSdw2+TBWgpO5BtU6BK0Co9V8vRHu5j/\nyR5Kq2q4ZEwfbp88mFPiO3kdTSQoqdAl6BSXVvHMql089/EejlVWc+Go3twxeTCDe3b2OppIUFOh\nS9AoLqvi2VW7eXbVbkoqqvnXUb24Y/IQhvZSkYv4Q4UunjtSXsVzq/Ywb9UujpRXc/6pvbhjymCG\n99a8KyINoUIXzxytqOb5j3fz9Ee7KS6r4rwRPblzymBO7RPjdTSRkKRClxZ3rKKa5z/Zw9Mf7aKo\ntIopw3tw55QhjExQkYs0hQpdWkxpZTUL/v4Fcz/cxeFjlZw7NJ47pwxhTL9Yr6OJhAUVugRcWWUN\niz79gic/2MmhY5WcMySeu6YM1opBIs3MnyXongUuAg4450b6tnUDXgSSgD3A951zhYGLKaGovOrL\nIt/FwaMVnD24O3dOGcK4/ipykUDw5wj9eeAxYMFx22YD7zjn5pjZbN/je5s/noSi8qoalnyWzePv\n76SgpIKJp8TxxLVjOS2pm9fRRMKaP0vQfWhmSd/YPBX4ru/+fOB9VOitXkV1DS+uyeFP7+1g/5EK\nJgzoxmPTU5gwMM7raCKtQmPH0Hs65/IBnHP5ZtajGTNJiKmoruGl9Fwef28H+cXljE/qxu9/kMzE\nU7p7HU2kVQn4h6JmlgakASQmJgb65aQFVVbXsiwjl8fe3c7e4nLG9e/K764Yw5mD4jQnuYgHGlvo\n+82st+/ovDdw4EQ7OufmAnMBUlNTXSNfT4JI9qFSXlmXx4trcsgrKiMlMZY5l4/m7MHdVeQiHmps\noa8EZgJzfLevNlsiCUqFxyp5PSufVzLzSP+i7oSmCQO68eClI/nukHgVuUgQ8Oe0xSXUfQDa3cxy\ngQeoK/KXzGwWkA1cGciQ4o3yqhre23KAFZl5vLf1AFU1jkE9OvGTfxnKtJQEEmI7eB1RRI7jz1ku\n00/wpcnNnEWCQG2tY82ew7yyLo/X1+dzpLya7p3acd0ZSVyaksCpfbroaFwkSOlKUQFgx4ESVmTm\n8UrmXvKKyugQGcH5I3txaUoCE0+Jo21EG68jishJqNBbsYKSClZ+vpdXMvPIyiumjcFZg+P5yb8M\n5bwRPenYTt8eIqFEP7GtTGllNW9t3M+KzDxW7ThITa1jZEIX/vOiEVw8pjc9Orf3OqKINJIKvRWo\nqXV8vOMgr2Tm8ebGfZRW1pAQ24Effmcg05ITtLSbSJhQoYcp5xyb8o+wYm0eKz/fy4GSCjq3b8vU\n5D5MS07gtKRutGmjDzdFwokKPczsLSrjlXV5vJKZx7b9R4mMML47tAeXpSRw7rAetI+M8DqiiASI\nCj0MHCmv4s2sfSzPzGX17sM4B+P6d+XBaSO5cFRvunaM8jqiiLQAFXqIqqyu5cNtBazIzOPtzfup\nrK5lQPeO3DVlCNOSE0iMi/Y6ooi0MBV6iHDOsedQKetyClmzp5C/ZuVTWFpFXMcorh6fyLSUBMb0\njdFFPyKtmAo9SBWXVrEut4jM7ELW5RTxeU4RhaVVAHSMimDS8J5cmtKHswfHE6mLfkQEFXpQqKqp\nZeu+EjJzvirwXQXHADCDIT06870RvUhJjCU5MZbBPToToTNUROQbVOgtzDlHfnE5644r76y8Ysqr\nagHo3qkdyf1iuXxsX1L6xTKqbwyd20d6nFpEQoEKPcCOVVSTlVdMZnYR63IKycwu4kBJBQBRbdsw\nsk8XrpnQn+R+sST3i6Vv1w4aBxeRRlGhN6PaWsfOgqNkZhf9Y/hk2/4San3LeiTFRTPxlDhSEruS\n3C+W4b27ENVW498i0jxU6E1w8GgF67KL6oZPcgpZn1NMSUU1AF3at2VMv1i+d2ovUvrFMqZfLN10\nPriIBFCTCt3MzgceBSKAZ5xzc5olVRApq6yhqKySwmNVFJVWssX34eW6nEJyDpcBENHGGNarM1NT\n+pDcryspibEMiOuoS+tFpEU1utDNLAL4E3AekAusMbOVzrlNzRWuOVVU11BcWkVhaV0xF5ZWUVxW\n6Xtct62otIrC0kqKy+pui0qrqKiu/ac/q3dMe1ISY5lxen9SErsysk8MHaJ0Sb2IeKspR+jjgR3O\nuV0AZrYUmAoEtNCramopLju+gL+6X+Qr6OLSrwq5qLSSorIqSitrTvhnRkYYsdFRdI2OJLZDFInd\nohndN4au0VHEREfSNTqK2A6RxERHMrB7J3rFaIpZEQk+TSn0BCDnuMe5wISmxanf/Suy+HBbAUWl\nVRz1jVHXJ6KNEdshktjoSGKjo+gT257hvbvUFbVvW6yvoGM6RNK1Y11RR0dF6MwSEQl5TSn0+hrQ\n/dNOZmlAGkBiYmKjXightgPjk7p9dbT8ZTn7yvvLI+nO7dqqmEWk1WpKoecC/Y573BfY+82dnHNz\ngbkAqamp/1T4/rj13EGNeZqISKvSlJOg1wCDzWyAmUUBVwErmyeWiIg0VKOP0J1z1Wb278D/UXfa\n4rPOuY3NlkxERBqkSeehO+feAN5opiwiItIEuu5cRCRMqNBFRMKECl1EJEyo0EVEwoQKXUQkTJhz\njbrWp3EvZlYAfNHIp3cHDjZjnFCn9+Mrei++Tu/H14XD+9HfORd/sp1atNCbwszSnXOpXucIFno/\nvqL34uv0fnxda3o/NOQiIhImVOgiImEilAp9rtcBgozej6/ovfg6vR9f12rej5AZQxcRkW8XSkfo\nIiLyLUKi0M3sfDPbamY7zGy213m8Ymb9zOw9M9tsZhvN7A6vMwUDM4sws0wze83rLF4zs1gzW2Zm\nW3zfJ2d4nckrZnaX7+dkg5mwtvk3AAACDklEQVQtMbOwXzsy6Av9uMWoLwBGANPNbIS3qTxTDfzY\nOTccOB24tRW/F8e7A9jsdYgg8SjwpnNuGDCGVvq+mFkCcDuQ6pwbSd0U31d5myrwgr7QOW4xaudc\nJfDlYtStjnMu3zm31ne/hLof1gRvU3nLzPoCFwLPeJ3Fa2bWBTgHmAfgnKt0zhV5m8pTbYEOZtYW\niKaeFdXCTSgUen2LUbfqEgMwsyQgBVjtbRLP/QG4B6j1OkgQGAgUAM/5hqCeMbOOXofygnMuD3gY\nyAbygWLn3Fvepgq8UCh0vxajbk3MrBPwMnCnc+6I13m8YmYXAQeccxleZwkSbYGxwBPOuRTgGNAq\nP3Mys67U/SY/AOgDdDSza71NFXihUOh+LUbdWphZJHVlvtg5t9zrPB47E7jEzPZQNxQ3ycwWeRvJ\nU7lArnPuy9/allFX8K3RFGC3c67AOVcFLAcmepwp4EKh0LUYtY+ZGXXjo5udc494ncdrzrn7nHN9\nnXNJ1H1fvOucC/ujsBNxzu0DcsxsqG/TZGCTh5G8lA2cbmbRvp+bybSCD4ibtKZoS9Bi1F9zJjAD\nyDKzdb5t9/vWdhUBuA1Y7Dv42QXc4HEeTzjnVpvZMmAtdWeHZdIKrhjVlaIiImEiFIZcRETEDyp0\nEZEwoUIXEQkTKnQRkTChQhcRCRMqdBGRMKFCFxEJEyp0EZEw8f/pavD4X6i2SQAAAABJRU5ErkJg\ngg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f876647a860>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAHSCAYAAAA5eGh0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt219Mk/f///9HaxOnNULI1iIWxrSi\nk8URHfFPYjK7g2YaiOhUkkUPdrIlLNmOfX8mduLigYdkMYsHYKIBBDM2o43GGNEjdIZEl2iE6JQ/\nFlw0bI1b4aLfA3/29674nuCAvvrifjuif676fPC6ruvRq0VXMpkUAAAwgzvTAwAAgP8fxQwAgEEo\nZgAADEIxAwBgEIoZAACDUMwAABjEk+kBXseBAwcejo2N+TM9x1Rzu91jY2Nj1r1ZSiaTYy6Xy7pc\nkr1r5vF4xkZHR63LJdm7P86ZM2fMcRzrctl6jEmS2+2OffPNN/kv3p+VxTw2Nubfvn17pseYcm1t\nbW5bc8VisUyPMS38fr+1a1ZbW5vpMaZFJBKxcn/0+/1WrlkkErHyGJOktra2l15gWvkuBACAbEUx\nAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAY\nhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGGTWFvOVK1dUUVGhzZs3\n6+jRo+Mev3btmnbu3KmysjKdO3cudf+tW7f06aefauvWrdq2bZui0ehMjj0htma7f/++Tpw4oePH\nj+v69evjHu/v79fJkyd15MgR9fT0pO5/9OiRTp06paamJjU3N6u7u3smx34lW9dLkqLRqJYvX65g\nMKhDhw6Ne7yjo0OrV6+Wx+NRa2tr6v6uri6tX79epaWlWrVqlZqbm2dy7FeydV+U7F2zbDrOPNP+\nLxjIcRwdPHhQP/zwg/Lz81VdXa1NmzZp6dKlqecsWrRIBw4cUGNjY9q2b7zxhr777ju9/fbbGhwc\n1K5du7RhwwYtXLhwpmO8lK3ZxsbGdPnyZVVUVMjr9aqtrU3FxcXKy8tLPWfBggUKhULq6upK29bj\n8SgUCik3N1fxeFytra0qLCzU3LlzZzrGOLaul/QsW01Njc6fP69AIKDy8nJVVlZq5cqVqecUFRWp\noaFBhw8fTtt2/vz5OnbsmJYtW6b+/n6tWbNG4XBYubm5Mx1jHFv3RcneNcu242xWFvONGzdUVFSk\nwsJCSdLHH3+sixcvpi3S4sWLJUkulytt2+Li4tTPPp9PeXl5evz4sTEnQ1uzDQ4OKicnJzVLMBjU\nvXv30k6Gzx97Mdd/nxi8Xq/mzZunp0+fGnEytHW9JKmzs1PBYFBLliyRJFVXV6u9vT3tJP88g9ud\n/uFdSUlJ6ueCggL5fD4NDQ0ZcZK3dV+U7F2zbDvOZuVH2YODg8rPz0/d9vv9isVik36dGzduaGRk\nJLXYJrA1Wzwel9frTd32er2Kx+OTfp1YLCbHcZSTkzOV4702W9dLkvr6+tLmCQQC6uvrm/TrdHZ2\nKpFIpJ1EM8nWfVGyd82y7TiblVfMyWRy3H0vvkt6laGhIe3du1d1dXXj3jlmks3Z/q14PK4LFy4o\nFApN+ncyXWxer6nINjAwoN27d6uxsdGobP+WifuiZO+aZdtxZsZvbYb5/X49fPgwdTsWi8nn8014\n+z///FM1NTX68ssv9f7770/HiK/N1mwvXpW8eNXyKolEQmfOnNHatWvT3jlnmq3rJT272nrw4EHq\ndm9vrwoKCia8/fDwsLZs2aK6ujqtW7duOkZ8Lbbui5K9a5Ztx9msLOb33ntPv/32m3p7ezUyMqKz\nZ8/qww8/nNC2IyMj+vrrr1VRUaFwODy9g74GW7P5fD49efJEw8PDchxH3d3dad/9/BPHcRSNRlVS\nUmLMR2vP2bpeklReXq47d+7o7t27SiQSampqUmVl5YS2TSQSqqqq0p49e7Rjx45pnnRybN0XJXvX\nLNuOs1n5UbbH49HevXv1xRdfyHEcVVVVKRgMqr6+XqWlpdq0aZNu3rypr776Sn/88YcuXbqk77//\nXj/++KOi0ah++eUXPXnyRO3t7ZKkuro6rVixIsOpnrE1m9vt1saNG3X69Gklk0mtWLFCeXl56uzs\n1FtvvaV33nlHg4ODikaj+vvvv3Xv3j1dvXpV1dXV6unp0cDAgP766y/dvn1bkhQKhfTmm29mOJW9\n6yU9y1ZfX69wOCzHcfTZZ5+ptLRU+/bt0wcffKDKykpdvXpVVVVVevz4sX7++WfV1tbq119/VUtL\nizo6OvT777+roaFBktTQ0KCysrLMhpK9+6Jk75pl23Hmetln76aLRCLJ7du3Z3qMKdfW1iZbc73O\nH1pkA7/fb+2a1dbWZnqMaRGJRKzcH/1+v5VrFolErDzGpNRxNu7L7ln5UTYAAKaimAEAMAjFDACA\nQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZ\nAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYxJVMJjM9\nw6QdPHjQGR0dte5Nhcfj0ejoaKbHmHLJZFIulyvTY0yLOXPmyHGcTI8x5WzdFyV7s7ndbo2NjWV6\njCln63pJksfjGfvPf/4zZ9z9mRjm3xodHXXX1tZmeowpF4lEZGuuWCyW6TGmhd/vt3bNbMwl2Zst\nEolo+/btmR5jyrW1tVm5XpIUiUReeoFp3VUnAADZjGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAM\nQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwA\nABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBZm0xR6NRLV++XMFgUIcOHRr3eEdHh1avXi2Px6PW1tbU\n/V1dXVq/fr1KS0u1atUqNTc3z+TYE2Jrtvv37+vEiRM6fvy4rl+/Pu7x/v5+nTx5UkeOHFFPT0/q\n/kePHunUqVNqampSc3Ozuru7Z3LsV7J1vSR7s9maS5KuXLmiiooKbd68WUePHh33+LVr17Rz506V\nlZXp3Llzqftv3bqlTz/9VFu3btW2bdsUjUZncuxXyqY180z7v2Agx3FUU1Oj8+fPKxAIqLy8XJWV\nlVq5cmXqOUVFRWpoaNDhw4fTtp0/f76OHTumZcuWqb+/X2vWrFE4HFZubu5Mx3gpW7ONjY3p8uXL\nqqiokNfrVVtbm4qLi5WXl5d6zoIFCxQKhdTV1ZW2rcfjUSgUUm5uruLxuFpbW1VYWKi5c+fOdIxx\nbF0vyd5stuaSnmU7ePCgfvjhB+Xn56u6ulqbNm3S0qVLU89ZtGiRDhw4oMbGxrRt33jjDX333Xd6\n++23NTg4qF27dmnDhg1auHDhTMcYJ9vWbFYWc2dnp4LBoJYsWSJJqq6uVnt7e9oiFRcXS5Lc7vQP\nFUpKSlI/FxQUyOfzaWhoyJgDy9Zsg4ODysnJSR3kwWBQ9+7dSyvm54+5XK60bf97fq/Xq3nz5unp\n06dGFLOt6yXZm83WXJJ048YNFRUVqbCwUJL08ccf6+LFi2nFvHjxYknjj7PnmSXJ5/MpLy9Pjx8/\nNqKYs23NZuVH2X19fakdT5ICgYD6+vom/TqdnZ1KJBJpO22m2ZotHo/L6/Wmbnu9XsXj8Um/TiwW\nk+M4ysnJmcrxXput6yXZm83WXNKzN8D5+fmp236/X7FYbNKvc+PGDY2MjKT9njIp29ZsVl4xJ5PJ\ncfe9+O7vVQYGBrR79241NjaOe4eVSTZn+7fi8bguXLigUCg06d/JdLF5vWzNZmsuaWqyDQ0Nae/e\nvaqrqzMmW7atmRm/tRkWCAT04MGD1O3e3l4VFBRMePvh4WFt2bJFdXV1Wrdu3XSM+NpszfbiFfKL\nV9CvkkgkdObMGa1duzbtiiDTbF0vyd5stuaSnl0hP3z4MHU7FovJ5/NNePs///xTNTU1+vLLL/X+\n++9Px4ivJdvWbFYWc3l5ue7cuaO7d+8qkUioqalJlZWVE9o2kUioqqpKe/bs0Y4dO6Z50smzNZvP\n59OTJ080PDwsx3HU3d2d9p3WP3EcR9FoVCUlJUZ9bCjZu16SvdlszSVJ7733nn777Tf19vZqZGRE\nZ8+e1YcffjihbUdGRvT111+roqJC4XB4egedpGxbs1lZzB6PR/X19QqHw3r33Xe1c+dOlZaWat++\nffrpp58kSVevXlUgENDJkyf1+eefq7S0VJLU0tKijo4ONTQ0qKysTGVlZeP+CjiTbM3mdru1ceNG\nnT59Wk1NTVq6dKny8vLU2dmpu3fvSnr2/dixY8fU09OjS5cuqampSZLU09OjgYEB3b59Wy0tLWpp\nadGjR48yGSfF1vWS7M1may7pWba9e/fqiy++UGVlpcLhsILBoOrr63Xx4kVJ0s2bN/XRRx/p/Pnz\n+vbbb7V161ZJz/470i+//KL29nZ98skn+uSTT3Tr1q1MxknJtjVzveyzd9NFIpFkbW1tpseYcpFI\nRLbmep0/IMkGfr/f2jWzMZdkb7ZIJKLt27dneowp19bWZuV6Sal9cdyX3bPyihkAAFNRzAAAGIRi\nBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAw\nCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAM4kom\nk5meYdIOHjzojI6OWvemwuPxaHR0NNNjTDm3262xsbFMjzEtbM2WTCblcrkyPca0sDWbrblsPcYk\nye12j33zzTdzXrzfk4lh/q3R0VF3bW1tpseYcpFIRLbm2r59e6bHmBZtbW1WZmtra1MsFsv0GNPC\n7/dbmc3mXDYeY5LU1tb20gtM6646AQDIZhQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACD\nUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMA\nAAahmAEAMAjFDACAQWZtMUejUS1fvlzBYFCHDh0a93hHR4dWr14tj8ej1tbW1P1dXV1av369SktL\ntWrVKjU3N8/k2BNia7YrV66ooqJCmzdv1tGjR8c9fu3aNe3cuVNlZWU6d+5c6v5bt27p008/1dat\nW7Vt2zZFo9GZHPuVbM0lSffv39eJEyd0/PhxXb9+fdzj/f39OnnypI4cOaKenp7U/Y8ePdKpU6fU\n1NSk5uZmdXd3z+TYr2RrLsnebNl0nHmm/V8wkOM4qqmp0fnz5xUIBFReXq7KykqtXLky9ZyioiI1\nNDTo8OHDadvOnz9fx44d07Jly9Tf3681a9YoHA4rNzd3pmO8lK3ZHMfRwYMH9cMPPyg/P1/V1dXa\ntGmTli5dmnrOokWLdODAATU2NqZt+8Ybb+i7777T22+/rcHBQe3atUsbNmzQwoULZzrGOLbmkqSx\nsTFdvnxZFRUV8nq9amtrU3FxsfLy8lLPWbBggUKhkLq6utK29Xg8CoVCys3NVTweV2trqwoLCzV3\n7tyZjjGOrbkke7Nl23E2K4u5s7NTwWBQS5YskSRVV1ervb09rbyKi4slSW53+ocKJSUlqZ8LCgrk\n8/k0NDRkRHlJ9ma7ceOGioqKVFhYKEn6+OOPdfHixbQDa/HixZIkl8uVtu3zvJLk8/mUl5enx48f\nG1FgtuaSpMHBQeXk5KTmCQaDunfvXtpJ/vljL2b7733O6/Vq3rx5evr0qREneVtzSfZmy7bjbFZ+\nlN3X15daIEkKBALq6+ub9Ot0dnYqkUikLW6m2ZptcHBQ+fn5qdt+v1+xWGzSr3Pjxg2NjIyk/Y4y\nydZckhSPx+X1elO3vV6v4vH4pF8nFovJcRzl5ORM5XivzdZckr3Zsu04m5VXzMlkctx9L75LepWB\ngQHt3r1bjY2N4648M8nWbFORa2hoSHv37lVdXR25skQ8HteFCxcUCoUm/Xsxma25JDOzZdtxZtdR\nPEGBQEAPHjxI3e7t7VVBQcGEtx8eHtaWLVtUV1endevWTceIr83WbH6/Xw8fPkzdjsVi8vl8E97+\nzz//VE1Njb788ku9//770zHia7E1lzT+auvFq7FXSSQSOnPmjNauXZt2tZNptuaS7M2WbcfZrCzm\n8vJy3blzR3fv3lUikVBTU5MqKysntG0ikVBVVZX27NmjHTt2TPOkk2drtvfee0+//fabent7NTIy\norNnz+rDDz+c0LYjIyP6+uuvVVFRoXA4PL2DTpKtuaRn38c9efJEw8PDchxH3d3dad/X/RPHcRSN\nRlVSUmLM1ynP2ZpLsjdbth1ns/KjbI/Ho/r6eoXDYTmOo88++0ylpaXat2+fPvjgA1VWVurq1auq\nqqrS48eP9fPPP6u2tla//vqrWlpa1NHRod9//10NDQ2SpIaGBpWVlWU21P/H1mwej0d79+7VF198\nIcdxVFVVpWAwqPr6epWWlmrTpk26efOmvvrqK/3xxx+6dOmSvv/+e/3444+KRqP65Zdf9OTJE7W3\nt0uS6urqtGLFigynsjeX9OyPCzdu3KjTp08rmUxqxYoVysvLU2dnp9566y298847GhwcVDQa1d9/\n/6179+7p6tWrqq6uVk9PjwYGBvTXX3/p9u3bkqRQKKQ333wzw6nszSXZmy3bjjPXyz57N10kEknW\n1tZmeowpF4lEZGuu7du3Z3qMadHW1mZltra2ttf645hs8Lp/+GM6m3PZeIxJz46z2tracV92z8qP\nsgEAMBXFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAA\nDEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DM\nAAAYhGIGAMAgrmQymekZJm3//v2Oy+Wy7k3FnDlz5DhOpseYch6PR6Ojo5keY1rYmi2ZTMrlcmV6\njGlhazZbzx+2rpckJZPJsf3798958X5PJob5t1wulzsWi2V6jCnn9/tVW1ub6TGmXCQSsTKXZG+2\nSCQiG48x6dlxZmM2m88fNq6XJPn9/pdeYFp31QkAQDajmAEAMAjFDACAQShmAAAMQjEDAGAQihkA\nAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAU\nMwAABqGYAQAwCMUMAIBBKGYAAAwya4v5/v37OnHihI4fP67r16+Pe7y/v18nT57UkSNH1NPTk7r/\n0aNHOnXqlJqamtTc3Kzu7u6ZHHtCotGoli9frmAwqEOHDo17vKOjQ6tXr5bH41Fra2vq/q6uLq1f\nv16lpaVatWqVmpubZ3LsVyJXduWS7D3ObM0l2bs/ZtOaeab9XzDQ2NiYLl++rIqKCnm9XrW1tam4\nuFh5eXmp5yxYsEChUEhdXV1p23o8HoVCIeXm5ioej6u1tVWFhYWaO3fuTMd4KcdxVFNTo/PnzysQ\nCKi8vFyVlZVauXJl6jlFRUVqaGjQ4cOH07adP3++jh07pmXLlqm/v19r1qxROBxWbm7uTMcYh1zZ\nlUuy9zizNZdk7/6YbWs2K4t5cHBQOTk5WrhwoSQpGAzq3r17aYv0/DGXy5W27X/vZF6vV/PmzdPT\np0+NObA6OzsVDAa1ZMkSSVJ1dbXa29vTDqzi4mJJktud/oFJSUlJ6ueCggL5fD4NDQ0ZcWCRK7ty\nSfYeZ7bmkuzdH7NtzWblR9nxeFxerzd12+v1Kh6PT/p1YrGYHMdRTk7OVI73r/T19amwsDB1OxAI\nqK+vb9Kv09nZqUQioaVLl07leK+NXP/MtFySvceZrbkke/fHbFuzWXnFPBXi8bguXLigUCg07h1W\nJiWTyXH3TXa+gYEB7d69W42NjePeFWcKuf43E3NNFVOPs3/L1Fzsj//bTK6ZPb+1SXjx3dKL76Ze\nJZFI6MyZM1q7dq3y8/OnY8TXFggE9ODBg9Tt3t5eFRQUTHj74eFhbdmyRXV1dVq3bt10jPhayPVy\npuaS7D3ObM0l2bs/Ztuazcpi9vl8evLkiYaHh+U4jrq7u1Pfm7yK4ziKRqMqKSkx5mOa/1ZeXq47\nd+7o7t27SiQSampqUmVl5YS2TSQSqqqq0p49e7Rjx45pnnRyyDWeybkke48zW3NJ9u6P2bZms/Kj\nbLfbrY0bN+r06dNKJpNasWKF8vLy1NnZqbfeekvvvPOOBgcHFY1G9ffff+vevXu6evWqqqur1dPT\no4GBAf3111+6ffu2JCkUCunNN9/McKpnPB6P6uvrFQ6H5TiOPvvsM5WWlmrfvn364IMPVFlZqatX\nr6qqqkqPHz/Wzz//rNraWv36669qaWlRR0eHfv/9dzU0NEiSGhoaVFZWltlQIle25ZLsPc5szSXZ\nuz9m25q5XvadgukikUgyFotleowp5/f7VVtbm+kxplwkErEyl2RvtkgkIhuPMenZcWZjNpvPHzau\nl5Ras3FfWM/Kj7IBADAVxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAw\nCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjED\nAGAQihkAAINQzAAAGIRiBgDAIK5kMpnpGSatrq7OcRzHujcVHo9Ho6OjmR5jyrndbo2NjWV6jGlh\n65olk0m5XK5MjzEt5syZI8dxMj3GlLN1X7T5/OF2u8e++eabOS/e78nEMP+W4zju2traTI8x5SKR\niGzNtX379kyPMS3a2tqsXbNYLJbpMaaF3++3ds1szWXx+eOlF5jWXXUCAJDNKGYAAAxCMQMAYBCK\nGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDA\nIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABhk1hZzNBrV8uXLFQwGdejQoXGP\nd3R0aPXq1fJ4PGptbU3d39XVpfXr16u0tFSrVq1Sc3PzTI49IbZmu3LliioqKrR582YdPXp03OPX\nrl3Tzp07VVZWpnPnzqXuv3Xrlj799FNt3bpV27ZtUzQancmxX8nW9ZKk+/fv68SJEzp+/LiuX78+\n7vH+/n6dPHlSR44cUU9PT+r+R48e6dSpU2pqalJzc7O6u7tncuxXsnnNbM2WTecPz7T/CwZyHEc1\nNTU6f/68AoGAysvLVVlZqZUrV6aeU1RUpIaGBh0+fDht2/nz5+vYsWNatmyZ+vv7tWbNGoXDYeXm\n5s50jJeyNZvjODp48KB++OEH5efnq7q6Wps2bdLSpUtTz1m0aJEOHDigxsbGtG3feOMNfffdd3r7\n7bc1ODioXbt2acOGDVq4cOFMxxjH1vWSpLGxMV2+fFkVFRXyer1qa2tTcXGx8vLyUs9ZsGCBQqGQ\nurq60rb1eDwKhULKzc1VPB5Xa2urCgsLNXfu3JmOMY7Na2Zrtmw7f8zKYu7s7FQwGNSSJUskSdXV\n1Wpvb0/b+YqLiyVJbnf6hwolJSWpnwsKCuTz+TQ0NGTEzifZm+3GjRsqKipSYWGhJOnjjz/WxYsX\n0w6sxYsXS5JcLlfats/zSpLP51NeXp4eP35sRDHbul6SNDg4qJycnNTvORgM6t69e2nF/PyxF9fs\nvzN4vV7NmzdPT58+NaKYbV4zW7Nl2/ljVn6U3dfXl1ogSQoEAurr65v063R2diqRSKQtbqbZmm1w\ncFD5+fmp236/X7FYbNKvc+PGDY2MjKT9jjLJ1vWSpHg8Lq/Xm7rt9XoVj8cn/TqxWEyO4ygnJ2cq\nx3ttNq+Zrdmy7fwxK6+Yk8nkuPtefJf0KgMDA9q9e7caGxvHvXPMJFuzTUWuoaEh7d27V3V1dVbl\nMnG9pko8HteFCxcUCoUm/XuZLjavma3Zsu38YcZvbYYFAgE9ePAgdbu3t1cFBQUT3n54eFhbtmxR\nXV2d1q1bNx0jvjZbs/n9fj18+DB1OxaLyefzTXj7P//8UzU1Nfryyy/1/vvvT8eIr8XW9ZLGXyG/\neAX9KolEQmfOnNHatWvTrnYyzeY1szVbtp0/ZmUxl5eX686dO7p7964SiYSamppUWVk5oW0TiYSq\nqqq0Z88e7dixY5onnTxbs7333nv67bff1Nvbq5GREZ09e1YffvjhhLYdGRnR119/rYqKCoXD4ekd\ndJJsXS/p2fdxT5480fDwsBzHUXd3d9r3df/EcRxFo1GVlJQY83Hoczavma3Zsu38MSuL2ePxqL6+\nXuFwWO+++6527typ0tJS7du3Tz/99JMk6erVqwoEAjp58qQ+//xzlZaWSpJaWlrU0dGhhoYGlZWV\nqaysbNxflGaSrdk8Ho/27t2rL774QpWVlQqHwwoGg6qvr9fFixclSTdv3tRHH32k8+fP69tvv9XW\nrVslPfvvH7/88ova29v1ySef6JNPPtGtW7cyGSfF1vWSnv1x0MaNG3X69Gk1NTVp6dKlysvLU2dn\np+7evSvp2Xd/x44dU09Pjy5duqSmpiZJUk9PjwYGBnT79m21tLSopaVFjx49ymScFJvXzNZs2Xb+\ncL3ss3fTRSKRZG1tbabHmHKRSES25tq+fXumx5gWbW1t1q7Z6/xxTDbw+/3WrpmtuSw/f4z7sntW\nXjEDAGAqihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwA\nABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAah\nmAEAMAjFDACAQVzJZDLTM0zagQMHnLGxMeveVHg8Ho2OjmZ6jClnay5JcrvdGhsby/QYU87WXJK9\n2Ww9zmxdL0lyu91j33zzzZy3SXG9AAARWUlEQVQX7/dkYph/a2xszL19+/ZMjzHl2traVFtbm+kx\nplwkErEyl/Qsm637oo25JHuz2Xz+sHG9JKmtre2lF5jWXXUCAJDNKGYAAAxCMQMAYBCKGQAAg1DM\nAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAG\noZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDzNpivnLliioqKrR582YdPXp03OPXrl3Tzp07VVZW\npnPnzqXuv3Xrlj799FNt3bpV27ZtUzQancmxJyQajWr58uUKBoM6dOjQuMc7Ojq0evVqeTwetba2\npu7v6urS+vXrVVpaqlWrVqm5uXkmx34lW3PZvC/ams3WXBLHmQlr5pn2f8FAjuPo4MGD+uGHH5Sf\nn6/q6mpt2rRJS5cuTT1n0aJFOnDggBobG9O2feONN/Tdd9/p7bff1uDgoHbt2qUNGzZo4cKFMx3j\npRzHUU1Njc6fP69AIKDy8nJVVlZq5cqVqecUFRWpoaFBhw8fTtt2/vz5OnbsmJYtW6b+/n6tWbNG\n4XBYubm5Mx1jHJtz2bwv2pjN1lwSx5kpazYri/nGjRsqKipSYWGhJOnjjz/WxYsX0xZp8eLFkiSX\ny5W2bXFxcepnn8+nvLw8PX782JgDq7OzU8FgUEuWLJEkVVdXq729Pe3Aep7B7U7/wKSkpCT1c0FB\ngXw+n4aGhow4sGzNZfO+aGs2W3NJHGeSGWs2Kz/KHhwcVH5+fuq23+9XLBab9OvcuHFDIyMjqcU2\nQV9fX9o8gUBAfX19k36dzs5OJRKJtB03k2zNZfO+aGs2W3NJHGevMlNrNiuvmJPJ5Lj7XnyX9CpD\nQ0Pau3ev6urqxr1zzKSpyDYwMKDdu3ersbHRmGzk+t9s3hdNzGZrLonj7J/M5JqZ8VubYX6/Xw8f\nPkzdjsVi8vl8E97+zz//VE1Njb788ku9//770zHiawsEAnrw4EHqdm9vrwoKCia8/fDwsLZs2aK6\nujqtW7duOkZ8LbbmsnlftDWbrbkkjrP/ZabXbFYW83vvvafffvtNvb29GhkZ0dmzZ/Xhhx9OaNuR\nkRF9/fXXqqioUDgcnt5BX0N5ebnu3Lmju3fvKpFIqKmpSZWVlRPaNpFIqKqqSnv27NGOHTumedLJ\nsTWXzfuirdlszSVxnL1MJtZsVhazx+PR3r179cUXX6iyslLhcFjBYFD19fW6ePGiJOnmzZv66KOP\ndP78eX377bfaunWrpGf/leCXX35Re3u7PvnkE33yySe6detWJuOk8Xg8qq+vVzgc1rvvvqudO3eq\ntLRU+/bt008//SRJunr1qgKBgE6ePKnPP/9cpaWlkqSWlhZ1dHSooaFBZWVlKisrU1dXVybjpNic\ny+Z90cZstuaSOM5MWTPXyz57N10kEklu374902NMuba2NtXW1mZ6jCkXiUSszCU9y2brvmhjLsne\nbDafP2xcLym1ZuO+7J6VV8wAAJiKYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAA\ng1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEFcymcz0DJO2f/9+x+VyWfemYs6cOXIcJ9NjTDmPx6PR\n0dFMjzEtbM1may7J3mzJZFIulyvTY0w5W3NJUjKZHNu/f/+cF+/3ZGKYf8vlcrljsVimx5hyfr9f\ntbW1mR5jykUiEStzSfZmszWXZG+2SCQiW8+LNuaSJL/f/9ILTOuuOgEAyGYUMwAABqGYAQAwCMUM\nAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQ\nihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADDJri/n+/fs6ceKEjh8/ruvXr497\nvL+/XydPntSRI0fU09OTuv/Ro0c6deqUmpqa1NzcrO7u7pkce0Ki0aiWL1+uYDCoQ4cOjXu8o6ND\nq1evlsfjUWtra+r+rq4urV+/XqWlpVq1apWam5tncuxXIld25ZLszWZrLsnec2M25fJM+79goLGx\nMV2+fFkVFRXyer1qa2tTcXGx8vLyUs9ZsGCBQqGQurq60rb1eDwKhULKzc1VPB5Xa2urCgsLNXfu\n3JmO8VKO46impkbnz59XIBBQeXm5KisrtXLlytRzioqK1NDQoMOHD6dtO3/+fB07dkzLli1Tf3+/\n1qxZo3A4rNzc3JmOMQ65siuXZG82W3NJ9p4bsy3XrCzmwcFB5eTkaOHChZKkYDCoe/fupS3S88dc\nLlfatv99AHm9Xs2bN09Pnz41YueTpM7OTgWDQS1ZskSSVF1drfb29rSTRnFxsSTJ7U7/wKSkpCT1\nc0FBgXw+n4aGhow4aZAru3JJ9mazNZdk77kx23LNyo+y4/G4vF5v6rbX61U8Hp/068RiMTmOo5yc\nnKkc71/p6+tTYWFh6nYgEFBfX9+kX6ezs1OJREJLly6dyvFeG7n+mWm5JHuz2ZpLsvfcmG25ZuUV\n81SIx+O6cOGCQqHQuHdYmZRMJsfdN9n5BgYGtHv3bjU2No57x58p5PrfTMwl2ZvN1lxTxdRz4781\nk7ns2iMm6MV3Sy++m3qVRCKhM2fOaO3atcrPz5+OEV9bIBDQgwcPUrd7e3tVUFAw4e2Hh4e1ZcsW\n1dXVad26ddMx4msh18uZmkuyN5utuSR7z43ZlmtWFrPP59OTJ080PDwsx3HU3d2d+k7oVRzHUTQa\nVUlJiVEfQT1XXl6uO3fu6O7du0okEmpqalJlZeWEtk0kEqqqqtKePXu0Y8eOaZ50csg1nsm5JHuz\n2ZpLsvfcmG25ZmUxu91ubdy4UadPn1ZTU5OWLl2qvLw8dXZ26u7du5Ke/bHAsWPH1NPTo0uXLqmp\nqUmS1NPTo4GBAd2+fVstLS1qaWnRo0ePMhknjcfjUX19vcLhsN59913t3LlTpaWl2rdvn3766SdJ\n0tWrVxUIBHTy5El9/vnnKi0tlSS1tLSoo6NDDQ0NKisrU1lZ2bi/UMwUcmVXLsnebLbmkuw9N2Zb\nLtfLvi8xXSQSScZisUyPMeX8fr9qa2szPcaUi0QiVuaS7M1may7J3myRSES2nhdtzCWlzvnjvrCe\nlVfMAACYimIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBB\nKGYAAAziSiaTmZ5h0vbv3++4XC7r3lQkk0m5XK5MjzHl5syZI8dxMj3GtLB1zdxut8bGxjI9xrTw\neDwaHR3N9BhTztZ90ebzx5w5c8b+7//+b86L93syMcy/5XK53LFYLNNjTDm/3y9bc9XW1mZ6jGkR\niUSsXbPt27dneoxp0dbWZuX+aPO+aON6SVIkEnnpBaZ1V50AAGQzihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBB\nKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAaZtcV8//59nThxQsePH9f169fHPd7f36+T\nJ0/qyJEj6unpSd3/6NEjnTp1Sk1NTWpublZ3d/dMjj0htmaLRqNavny5gsGgDh06NO7xjo4OrV69\nWh6PR62tran7u7q6tH79epWWlmrVqlVqbm6eybFfydb1kqQrV66ooqJCmzdv1tGjR8c9fu3aNe3c\nuVNlZWU6d+5c6v5bt27p008/1datW7Vt2zZFo9GZHPuVbN0XJXv3x2xaM8+0/wsGGhsb0+XLl1VR\nUSGv16u2tjYVFxcrLy8v9ZwFCxYoFAqpq6srbVuPx6NQKKTc3FzF43G1traqsLBQc+fOnekYL2Vr\nNsdxVFNTo/PnzysQCKi8vFyVlZVauXJl6jlFRUVqaGjQ4cOH07adP3++jh07pmXLlqm/v19r1qxR\nOBxWbm7uTMcYx9b1kp6t2cGDB/XDDz8oPz9f1dXV2rRpk5YuXZp6zqJFi3TgwAE1NjambfvGG2/o\nu+++09tvv63BwUHt2rVLGzZs0MKFC2c6xji27ouSvftjtq3ZrCzmwcFB5eTkpA7yYDCoe/fupe18\nzx9zuVxp2/73Yni9Xs2bN09Pnz41YueT7M3W2dmpYDCoJUuWSJKqq6vV3t6edmAVFxdLktzu9A+C\nSkpKUj8XFBTI5/NpaGjIiJOhreslSTdu3FBRUZEKCwslSR9//LEuXryYVsyLFy+WND7b87WUJJ/P\np7y8PD1+/NiIYrZ1X5Ts3R+zbc1m5UfZ8XhcXq83ddvr9Soej0/6dWKxmBzHUU5OzlSO96/Ymq2v\nry91gpekQCCgvr6+Sb9OZ2enEolEWjlkkq3rJT07yefn56du+/1+xWKxSb/OjRs3NDIykrb+mWTr\nvijZuz9m25rNyivmqRCPx3XhwgWFQqFx7xyznYnZksnkuPsmO9vAwIB2796txsbGce+Ks5mJ6yVN\nzZoNDQ1p7969qqurM2bN2Bf/mYn7Y7atmV17xAS9+C7wxXeJr5JIJHTmzBmtXbs27YrABLZmCwQC\nevDgQep2b2+vCgoKJrz98PCwtmzZorq6Oq1bt246Rnwttq6X9OwK+eHDh6nbsVhMPp9vwtv/+eef\nqqmp0Zdffqn3339/OkZ8Lbbui5K9+2O2rdmsLGafz6cnT55oeHhYjuOou7s77Tutf+I4jqLRqEpK\nSoz6COo5W7OVl5frzp07unv3rhKJhJqamlRZWTmhbROJhKqqqrRnzx7t2LFjmiedHFvXS5Lee+89\n/fbbb+rt7dXIyIjOnj2rDz/8cELbjoyM6Ouvv1ZFRYXC4fD0DjpJtu6Lkr37Y7at2az8KNvtdmvj\nxo06ffq0ksmkVqxYoby8PHV2duqtt97SO++8o8HBQUWjUf3999+6d++erl69qurqavX09GhgYEB/\n/fWXbt++LUkKhUJ68803M5zqGVuzeTwe1dfXKxwOy3EcffbZZyotLdW+ffv0wQcfqLKyUlevXlVV\nVZUeP36sn3/+WbW1tfr111/V0tKijo4O/f7772poaJAkNTQ0qKysLLOhZO96Sc/WbO/evfriiy/k\nOI6qqqoUDAZVX1+v0tJSbdq0STdv3tRXX32lP/74Q5cuXdL333+vH3/8UdFoVL/88ouePHmi9vZ2\nSVJdXZ1WrFiR4VT27ouSvftjtq2Z62WfvZsuEokkX+ePSEz3un8cYzq/36/a2tpMjzEtIpGItWu2\nffv2TI8xLdra2qzcH23eF21cL+nZmtXW1o77sntWfpQNAICpKGYAAAxCMQMAYBCKGQAAg1DMAAAY\nhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgB\nADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABnElk8lMzzBp+/fvf+hyufyZ\nnmOqJZPJMZfLZd2bpTlz5ow5jmNdLsneNXO73WNjY2PW5ZIkj8czNjo6al02W/dFm88fHo8n9p//\n/Cf/xfuzspgBALCVle9CAADIVhQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiE\nYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEA\nMAjFDACAQShmAAAMQjEDAGCQ/wdJuZEoaHGMKwAAAABJRU5ErkJggg==\n",
       "<matplotlib.figure.Figure at 0x7f874e648390>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import random\n",
    "# http://stackoverflow.com/questions/10194482/custom-matplotlib-plot-chess-board-like-table-with-colored-cells\n",
    "\n",
    "from matplotlib.table import Table\n",
    "\n",
    "def main():\n",
    "    grid_table(8, 8)\n",
    "    plt.axis('scaled')\n",
    "    plt.show()\n",
    "\n",
    "def grid_table(nrows, ncols):\n",
    "    fig, ax = plt.subplots()\n",
    "    ax.set_axis_off()\n",
    "    colors = ['white', 'lightgrey', 'dimgrey']\n",
    "    tb = Table(ax, bbox=[0,0,2,2])\n",
    "    for i,j in itertools.product(range(ncols), range(nrows)):\n",
    "        tb.add_cell(i, j, 2./ncols, 2./nrows, text='{:0.2f}'.format(0.1234), \n",
    "                    loc='center', facecolor=random.choice(colors), edgecolor='grey') # facecolors=\n",
    "    ax.add_table(tb)\n",
    "    #ax.plot([0, .3], [.2, .2])\n",