Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def action_sequence(node):\n",
" \"The sequence of actions to get to this node.\"\n",
" actions = []\n",
" while node.previous:\n",
" actions.append(node.action)\n",
" node = node.previous\n",
" return actions[::-1]\n",
"\n",
"def state_sequence(node):\n",
" \"The sequence of states to get to this node.\"\n",
" states = [node.state]\n",
" while node.previous:\n",
" node = node.previous\n",
" states.append(node.state)\n",
" return states[::-1]"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Two Location Vacuum World"
]
},
{
"cell_type": "code",
"execution_count": 25,
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"dirt = '*'\n",
"clean = ' '\n",
"\n",
"class TwoLocationVacuumProblem(Problem):\n",
" \"\"\"A Vacuum in a world with two locations, and dirt.\n",
" Each state is a tuple of (location, dirt_in_W, dirt_in_E).\"\"\"\n",
"\n",
" def actions(self, state): return ('W', 'E', 'Suck')\n",
" \n",
" def is_goal(self, state): return dirt not in state\n",
" \n",
" def result(self, state, action):\n",
" \"The state that results from executing this action in this state.\" \n",
" (loc, dirtW, dirtE) = state\n",
" if action == 'W': return ('W', dirtW, dirtE)\n",
" elif action == 'E': return ('E', dirtW, dirtE)\n",
" elif action == 'Suck' and loc == 'W': return (loc, clean, dirtE)\n",
" elif action == 'Suck' and loc == 'E': return (loc, dirtW, clean) \n",
" else: raise ValueError('unknown action: ' + action)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"<Node ('E', ' ', ' '): 3>"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"problem = TwoLocationVacuumProblem(initial=('W', dirt, dirt))\n",
"result = uniform_cost_search(problem)\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"['Suck', 'E', 'Suck']"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"action_sequence(result)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[('W', '*', '*'), ('W', ' ', '*'), ('E', ' ', '*'), ('E', ' ', ' ')]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"state_sequence(result)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['Suck']"
]
},
"execution_count": 29,
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"problem = TwoLocationVacuumProblem(initial=('E', clean, dirt))\n",
"result = uniform_cost_search(problem)\n",
"action_sequence(result)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Water Pouring Problem\n",
"\n",
"Here is another problem domain, to show you how to define one. The idea is that we have a number of water jugs and a water tap and the goal is to measure out a specific amount of water (in, say, ounces or liters). You can completely fill or empty a jug, but because the jugs don't have markings on them, you can't partially fill them with a specific amount. You can, however, pour one jug into another, stopping when the seconfd is full or the first is empty."
]
},
{
"cell_type": "code",
"execution_count": 30,
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"class PourProblem(Problem):\n",
" \"\"\"Problem about pouring water between jugs to achieve some water level.\n",
" Each state is a tuples of levels. In the initialization, provide a tuple of \n",
" capacities, e.g. PourProblem(capacities=(8, 16, 32), initial=(2, 4, 3), goals={7}), \n",
" which means three jugs of capacity 8, 16, 32, currently filled with 2, 4, 3 units of \n",
" water, respectively, and the goal is to get a level of 7 in any one of the jugs.\"\"\"\n",
" \n",
" def actions(self, state):\n",
" \"\"\"The actions executable in this state.\"\"\"\n",
" jugs = range(len(state))\n",
" return ([('Fill', i) for i in jugs if state[i] != self.capacities[i]] +\n",
" [('Dump', i) for i in jugs if state[i] != 0] +\n",
" [('Pour', i, j) for i in jugs for j in jugs if i != j])\n",
"\n",
" def result(self, state, action):\n",
" \"\"\"The state that results from executing this action in this state.\"\"\"\n",
" result = list(state)\n",
" act, i, j = action[0], action[1], action[-1]\n",
" if act == 'Fill': # Fill i to capacity\n",
" result[i] = self.capacities[i]\n",
" elif act == 'Dump': # Empty i\n",
" result[i] = 0\n",
" elif act == 'Pour':\n",
" a, b = state[i], state[j]\n",
" result[i], result[j] = ((0, a + b) \n",
" if (a + b <= self.capacities[j]) else\n",
" (a + b - self.capacities[j], self.capacities[j]))\n",
" else:\n",
" raise ValueError('unknown action', action)\n",
" return tuple(result)\n",
"\n",
" def is_goal(self, state):\n",
" \"\"\"True if any of the jugs has a level equal to one of the goal levels.\"\"\"\n",
" return any(level in self.goals for level in state)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"(2, 13)"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p7 = PourProblem(initial=(2, 0), capacities=(5, 13), goals={7})\n",
"p7.result((2, 0), ('Fill', 1))"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
]
},
"execution_count": 32,
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result = uniform_cost_search(p7)\n",
"action_sequence(result)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Visualization Output"
]
},
{
"cell_type": "code",
"execution_count": 33,
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def showpath(searcher, problem):\n",
" \"Show what happens when searcvher solves problem.\"\n",
" problem = Instrumented(problem)\n",
" print('\\n{}:'.format(searcher.__name__))\n",
" result = searcher(problem)\n",
" if result:\n",
" actions = action_sequence(result)\n",
" state = problem.initial\n",
" path_cost = 0\n",
" for steps, action in enumerate(actions, 1):\n",
" path_cost += problem.step_cost(state, action, 0)\n",
" result = problem.result(state, action)\n",
" print(' {} =={}==> {}; cost {} after {} steps'\n",
" .format(state, action, result, path_cost, steps,\n",
" '; GOAL!' if problem.is_goal(result) else ''))\n",
" state = result\n",
" msg = 'GOAL FOUND' if result else 'no solution'\n",
" print('{} after {} results and {} goal checks'\n",
" .format(msg, problem._counter['result'], problem._counter['is_goal']))\n",
" \n",
"from collections import Counter\n",
"\n",
"class Instrumented:\n",
" \"Instrument an object to count all the attribute accesses in _counter.\"\n",
" def __init__(self, obj):\n",
" self._object = obj\n",
" self._counter = Counter()\n",
" def __getattr__(self, attr):\n",
" self._counter[attr] += 1\n",
" return getattr(self._object, attr) "
]
},
{
"cell_type": "code",
"execution_count": 34,
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (2, 0) ==('Pour', 0, 1)==> (0, 2); cost 1 after 1 steps\n",
" (0, 2) ==('Fill', 0)==> (5, 2); cost 2 after 2 steps\n",
" (5, 2) ==('Pour', 0, 1)==> (0, 7); cost 3 after 3 steps\n",
"GOAL FOUND after 83 results and 22 goal checks\n"
]
}
],
"source": [
"showpath(uniform_cost_search, p7)"
]
},
{
"cell_type": "code",
"execution_count": 35,
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (0, 0) ==('Fill', 0)==> (7, 0); cost 1 after 1 steps\n",
" (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 2 after 2 steps\n",
" (0, 7) ==('Fill', 0)==> (7, 7); cost 3 after 3 steps\n",
" (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 4 after 4 steps\n",
" (1, 13) ==('Dump', 1)==> (1, 0); cost 5 after 5 steps\n",
" (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 6 after 6 steps\n",
" (0, 1) ==('Fill', 0)==> (7, 1); cost 7 after 7 steps\n",
" (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 8 after 8 steps\n",
" (0, 8) ==('Fill', 0)==> (7, 8); cost 9 after 9 steps\n",
" (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 10 after 10 steps\n",
"GOAL FOUND after 110 results and 32 goal checks\n"
]
}
],
"source": [
"p = PourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
"showpath(uniform_cost_search, p)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class GreenPourProblem(PourProblem): \n",
" def step_cost(self, state, action, result=None):\n",
" \"The cost is the amount of water used in a fill.\"\n",
" if action[0] == 'Fill':\n",
" i = action[1]\n",
" return self.capacities[i] - state[i]\n",
" return 0"
]
},
{
"cell_type": "code",
"execution_count": 37,
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
" (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
" (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
" (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
" (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
" (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
" (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
" (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
" (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
" (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
"GOAL FOUND after 184 results and 48 goal checks\n"
]
}
],
"source": [
"p = GreenPourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
"showpath(uniform_cost_search, p)"
]
},
{
"cell_type": "code",
"execution_count": 38,
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
"metadata": {
"button": false,
"collapsed": true,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def compare_searchers(problem, searchers=None):\n",
" \"Apply each of the search algorithms to the problem, and show results\"\n",
" if searchers is None: \n",
" searchers = (breadth_first_search, uniform_cost_search)\n",
" for searcher in searchers:\n",
" showpath(searcher, problem)"
]
},
{
"cell_type": "code",
"execution_count": 39,
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"breadth_first_search:\n",
" (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
" (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
" (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
" (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
" (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
" (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
" (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
" (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
" (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
" (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
"GOAL FOUND after 100 results and 31 goal checks\n",
"\n",
"uniform_cost_search:\n",
" (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
" (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
" (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
" (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
" (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
" (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
" (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
" (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
" (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
" (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
"GOAL FOUND after 184 results and 48 goal checks\n"
]
}
],
"source": [
"compare_searchers(p)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Random Grid\n",
"\n",
"An environment where you can move in any of 4 directions, unless there is an obstacle there.\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"{(0, 0): [(0, 1), (1, 0)],\n",
" (0, 1): [(0, 2), (0, 0), (1, 1)],\n",
" (0, 2): [(0, 3), (0, 1), (1, 2)],\n",
" (0, 3): [(0, 4), (0, 2), (1, 3)],\n",
" (0, 4): [(0, 3), (1, 4)],\n",
" (1, 0): [(1, 1), (2, 0), (0, 0)],\n",
" (1, 1): [(1, 2), (1, 0), (2, 1), (0, 1)],\n",
" (1, 2): [(1, 3), (1, 1), (2, 2), (0, 2)],\n",
" (1, 3): [(1, 4), (1, 2), (2, 3), (0, 3)],\n",
" (1, 4): [(1, 3), (2, 4), (0, 4)],\n",
" (2, 0): [(2, 1), (3, 0), (1, 0)],\n",
" (2, 1): [(2, 2), (2, 0), (3, 1), (1, 1)],\n",
" (2, 2): [(2, 3), (2, 1), (3, 2), (1, 2)],\n",
" (2, 3): [(2, 4), (2, 2), (1, 3)],\n",
" (2, 4): [(2, 3), (1, 4)],\n",
" (3, 0): [(3, 1), (4, 0), (2, 0)],\n",
" (3, 1): [(3, 2), (3, 0), (4, 1), (2, 1)],\n",
" (3, 2): [(3, 1), (4, 2), (2, 2)],\n",
" (3, 3): [(3, 2), (4, 3), (2, 3)],\n",
" (3, 4): [(4, 4), (2, 4)],\n",
" (4, 0): [(4, 1), (3, 0)],\n",
" (4, 1): [(4, 2), (4, 0), (3, 1)],\n",
" (4, 2): [(4, 3), (4, 1), (3, 2)],\n",
" (4, 3): [(4, 4), (4, 2)],\n",
" (4, 4): [(4, 3)]}"
"execution_count": 40,
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import random\n",
"\n",
"N, S, E, W = DIRECTIONS = [(0, 1), (0, -1), (1, 0), (-1, 0)]\n",
"\n",
"def Grid(width, height, obstacles=0.1):\n",
" \"\"\"A 2-D grid, width x height, with obstacles that are either a collection of points,\n",
" or a fraction between 0 and 1 indicating the density of obstacles, chosen at random.\"\"\"\n",
" grid = {(x, y) for x in range(width) for y in range(height)}\n",
" if isinstance(obstacles, (float, int)):\n",
" obstacles = random.sample(grid, int(width * height * obstacles))\n",
" def neighbors(x, y):\n",
" for (dx, dy) in DIRECTIONS:\n",
" (nx, ny) = (x + dx, y + dy)\n",
" if (nx, ny) not in obstacles and 0 <= nx < width and 0 <= ny < height:\n",
" yield (nx, ny)\n",
" return {(x, y): list(neighbors(x, y))\n",
" for x in range(width) for y in range(height)}\n",
"\n",
"Grid(5, 5)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class GridProblem(Problem):\n",
" \"Create with a call like GridProblem(grid=Grid(10, 10), initial=(0, 0), goal=(9, 9))\"\n",
" def actions(self, state): return DIRECTIONS\n",
" def result(self, state, action):\n",
" #print('ask for result of', state, action)\n",
" (x, y) = state\n",
" (dx, dy) = action\n",
" r = (x + dx, y + dy)\n",
" return r if r in self.grid[state] else state"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
"no solution after 132 results and 33 goal checks\n"
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
]
}
],
"source": [
"gp = GridProblem(grid=Grid(5, 5, 0.3), initial=(0, 0), goals={(4, 4)})\n",
"showpath(uniform_cost_search, gp)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Finding a hard PourProblem\n",
"\n",
"What solvable two-jug PourProblem requires the most steps? We can define the hardness as the number of steps, and then iterate over all PourProblems with capacities up to size M, keeping the hardest one."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def hardness(problem):\n",
" L = breadth_first_search(problem)\n",
" #print('hardness', problem.initial, problem.capacities, problem.goals, L)\n",
" return len(action_sequence(L)) if (L is not None) else 0"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hardness(p7)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"action_sequence(breadth_first_search(p7))"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"((0, 0), (7, 9), {8})"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C = 9 # Maximum capacity to consider\n",
"\n",
"phard = max((PourProblem(initial=(a, b), capacities=(A, B), goals={goal})\n",
" for A in range(C+1) for B in range(C+1)\n",
" for a in range(A) for b in range(B)\n",
" for goal in range(max(A, B))),\n",
" key=hardness)\n",
"\n",
"phard.initial, phard.capacities, phard.goals"
]
},
{
"cell_type": "code",
"execution_count": 47,
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
"metadata": {
"collapsed": false
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"breadth_first_search:\n",
" (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
" (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
" (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
" (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
" (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
" (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
" (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
" (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
" (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
" (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
" (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
" (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
" (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
" (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
"GOAL FOUND after 150 results and 44 goal checks\n"
]
}
],
"source": [
"showpath(breadth_first_search, PourProblem(initial=(0, 0), capacities=(7, 9), goals={8}))"
]
},
{
"cell_type": "code",
"execution_count": 48,
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
" (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
" (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
" (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
" (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
" (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
" (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
" (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
" (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
" (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
" (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
" (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
" (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
" (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
"GOAL FOUND after 159 results and 45 goal checks\n"
]
}
],
"source": [
"showpath(uniform_cost_search, phard)"
]
},
{
"cell_type": "code",
"execution_count": 49,
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
"metadata": {
"button": false,
"collapsed": true,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"class GridProblem(Problem):\n",
" \"\"\"A Grid.\"\"\"\n",
"\n",
" def actions(self, state): return ['N', 'S', 'E', 'W'] \n",
" \n",
" def result(self, state, action):\n",
" \"\"\"The state that results from executing this action in this state.\"\"\" \n",
" (W, H) = self.size\n",
" if action == 'N' and state > W: return state - W\n",
" if action == 'S' and state + W < W * W: return state + W\n",
" if action == 'E' and (state + 1) % W !=0: return state + 1\n",
" if action == 'W' and state % W != 0: return state - 1\n",
" return state"
]
},
{
"cell_type": "code",
"execution_count": 50,
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"breadth_first_search:\n",
" 0 ==S==> 10; cost 1 after 1 steps\n",
" 10 ==S==> 20; cost 2 after 2 steps\n",
" 20 ==S==> 30; cost 3 after 3 steps\n",
" 30 ==S==> 40; cost 4 after 4 steps\n",
" 40 ==E==> 41; cost 5 after 5 steps\n",
" 41 ==E==> 42; cost 6 after 6 steps\n",
" 42 ==E==> 43; cost 7 after 7 steps\n",
" 43 ==E==> 44; cost 8 after 8 steps\n",
"GOAL FOUND after 135 results and 49 goal checks\n",
"\n",
"uniform_cost_search:\n",
" 0 ==S==> 10; cost 1 after 1 steps\n",
" 10 ==S==> 20; cost 2 after 2 steps\n",
" 20 ==E==> 21; cost 3 after 3 steps\n",
" 21 ==E==> 22; cost 4 after 4 steps\n",
" 22 ==E==> 23; cost 5 after 5 steps\n",
" 23 ==S==> 33; cost 6 after 6 steps\n",
" 33 ==S==> 43; cost 7 after 7 steps\n",
" 43 ==E==> 44; cost 8 after 8 steps\n",
"GOAL FOUND after 1036 results and 266 goal checks\n"
]
}
],
"source": [
"compare_searchers(GridProblem(initial=0, goals={44}, size=(10, 10)))"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"button": false,
"collapsed": false,
"deletable": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"'test_frontier ok'"
]
},
"execution_count": 51,
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def test_frontier():\n",
" \n",
" #### Breadth-first search with FIFO Q\n",
" f = FrontierQ(Node(1), LIFO=False)\n",
" assert 1 in f and len(f) == 1\n",
" f.add(Node(2))\n",
" f.add(Node(3))\n",
" assert 1 in f and 2 in f and 3 in f and len(f) == 3\n",
" assert f.pop().state == 1\n",
" assert 1 not in f and 2 in f and 3 in f and len(f) == 2\n",
" assert f\n",
" assert f.pop().state == 2\n",
" assert f.pop().state == 3\n",
" assert not f\n",
" \n",
" #### Depth-first search with LIFO Q\n",
" f = FrontierQ(Node('a'), LIFO=True)\n",
" for s in 'bcdef': f.add(Node(s))\n",
" assert len(f) == 6 and 'a' in f and 'c' in f and 'f' in f\n",
" for s in 'fedcba': assert f.pop().state == s\n",
" assert not f\n",
"\n",
" #### Best-first search with Priority Q\n",
" f = FrontierPQ(Node(''), lambda node: len(node.state))\n",
" assert '' in f and len(f) == 1 and f\n",
" for s in ['book', 'boo', 'bookie', 'bookies', 'cook', 'look', 'b']:\n",
" assert s not in f\n",
" f.add(Node(s))\n",
" assert s in f\n",
" assert f.pop().state == ''\n",
" assert f.pop().state == 'b'\n",
" assert f.pop().state == 'boo'\n",
" assert {f.pop().state for _ in '123'} == {'book', 'cook', 'look'}\n",
" assert f.pop().state == 'bookie'\n",
" \n",
" #### Romania: Two paths to Bucharest; cheapest one found first\n",
" S = Node('S')\n",
" SF = Node('F', S, 'S->F', 99)\n",
" SFB = Node('B', SF, 'F->B', 211)\n",
" SR = Node('R', S, 'S->R', 80)\n",
" SRP = Node('P', SR, 'R->P', 97)\n",
" SRPB = Node('B', SRP, 'P->B', 101)\n",
" f = FrontierPQ(S)\n",