search-4e.ipynb 258 ko
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "*Note: This is not yet ready, but shows the direction I'm leaning in for Fourth Edition Search.*\n",
    "\n",
    "# State-Space Search\n",
    "\n",
    "This notebook describes several state-space search algorithms, and how they can be used to solve a variety of problems. We start with a simple algorithm and a simple domain: finding a route from city to city.  Later we will explore other algorithms and domains.\n",
    "\n",
    "## The Route-Finding Domain\n",
    "\n",
    "Like all state-space search problems, in a route-finding problem you will be given:\n",
    "- A start state (for example, `'A'` for the city Arad).\n",
    "- A goal state (for example, `'B'` for the city Bucharest).\n",
    "- Actions that can change state (for example, driving from `'A'` to `'S'`).\n",
    "\n",
    "You will be asked to find:\n",
    "- A path from the start state, through intermediate states, to the goal state.\n",
    "\n",
    "We'll use this map:\n",
    "\n",
    "<img src=\"http://robotics.cs.tamu.edu/dshell/cs625/images/map.jpg\" height=\"366\" width=\"603\">\n",
    "\n",
    "A state-space search problem can be represented by a *graph*, where the vertexes of the graph are the states of the problem (in this case, cities) and the edges of the graph are the actions (in this case, driving along a road).\n",
    "\n",
    "We'll represent a city by its single initial letter. \n",
    "We'll represent the graph of connections as a `dict` that maps each city to a list of the neighboring cities (connected by a road). For now we don't explicitly represent the actions, nor the distances\n",
    "between cities."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "romania = {\n",
    " 'A': ['Z', 'T', 'S'],\n",
    " 'B': ['F', 'P', 'G', 'U'],\n",
    " 'C': ['D', 'R', 'P'],\n",
    " 'D': ['M', 'C'],\n",
    " 'E': ['H'],\n",
    " 'F': ['S', 'B'],\n",
    " 'G': ['B'],\n",
    " 'H': ['U', 'E'],\n",
    " 'I': ['N', 'V'],\n",
    " 'L': ['T', 'M'],\n",
    " 'M': ['L', 'D'],\n",
    " 'N': ['I'],\n",
    " 'O': ['Z', 'S'],\n",
    " 'P': ['R', 'C', 'B'],\n",
    " 'R': ['S', 'C', 'P'],\n",
    " 'S': ['A', 'O', 'F', 'R'],\n",
    " 'T': ['A', 'L'],\n",
    " 'U': ['B', 'V', 'H'],\n",
    " 'V': ['U', 'I'],\n",
    " 'Z': ['O', 'A']}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "Suppose we want to get from `A` to `B`. Where can we go from the start state, `A`?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Z', 'T', 'S']"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "romania['A']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "We see that from `A` we can get to any of the three cities `['Z', 'T', 'S']`. Which should we choose?  *We don't know.* That's the whole point of *search*: we don't know which immediate action is best, so we'll have to explore, until we find a *path* that leads to the goal. \n",
    "\n",
    "How do we explore? We'll start with a simple algorithm that will get us from `A` to `B`. We'll keep a *frontier*&mdash;a collection of not-yet-explored states&mdash;and expand the frontier outward until it reaches the goal. To be more precise:\n",
    "\n",
    "- Initially, the only state in the frontier is the start state, `'A'`.\n",
    "- Until we reach the goal, or run out of states in the frontier to explore, do the following:\n",
    "  - Remove the first state from the frontier. Call it `s`.\n",
    "  - If `s` is the goal, we're done. Return the path to `s`.\n",
    "  - Otherwise, consider all the neighboring states of `s`. For each one:\n",
    "    - If we have not previously explored the state, add it to the end of the frontier.\n",
    "    - Also keep track of the previous state that led to this new neighboring state; we'll need this to reconstruct the path to the goal, and to keep us from re-visiting previously explored states.\n",
    "    \n",
    "# A Simple Search Algorithm: `breadth_first`\n",
    "    \n",
    "The function `breadth_first` implements this strategy:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "from collections import deque # Doubly-ended queue: pop from left, append to right.\n",
    "\n",
    "def breadth_first(start, goal, neighbors):\n",
    "    \"Find a shortest sequence of states from start to the goal.\"\n",
    "    frontier = deque([start]) # A queue of states\n",
    "    previous = {start: None}  # start has no previous state; other states will\n",
    "    while frontier:\n",
    "        s = frontier.popleft()\n",
    "        if s == goal:\n",
    "            return path(previous, s)\n",
    "        for s2 in neighbors[s]:\n",
    "            if s2 not in previous:\n",
    "                frontier.append(s2)\n",
    "                previous[s2] = s\n",
    "                \n",
    "def path(previous, s): \n",
    "    \"Return a list of states that lead to state s, according to the previous dict.\"\n",
    "    return [] if (s is None) else path(previous, previous[s]) + [s]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "A couple of things to note: \n",
    "\n",
    "1. We always add new states to the end of the frontier queue. That means that all the states that are adjacent to the start state will come first in the queue, then all the states that are two steps away, then three steps, etc.\n",
    "That's what we mean by *breadth-first* search.\n",
    "2. We recover the path to an `end` state by following the trail of `previous[end]` pointers, all the way back to `start`.\n",
    "The dict `previous` is a map of `{state: previous_state}`. \n",
    "3. When we finally get an `s` that is the goal state, we know we have found a shortest path, because any other state in the queue must correspond to a path that is as long or longer.\n",
    "3. Note that `previous`  contains all the states that are currently in `frontier` as well as all the states that were in `frontier` in the past.\n",
    "4. If no path to the goal is found, then `breadth_first` returns `None`. If a path is found, it returns the sequence of states on the path.\n",
    "\n",
    "Some examples:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['A', 'S', 'F', 'B']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('A', 'B', romania)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['L', 'T', 'A', 'S', 'F', 'B', 'U', 'V', 'I', 'N']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('L', 'N', romania)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['N', 'I', 'V', 'U', 'B', 'F', 'S', 'A', 'T', 'L']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('N', 'L', romania)"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['E']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('E', 'E', romania)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "Now let's try a different  kind of problem that can be solved with the same search function.\n",
    "\n",
    "## Word Ladders Problem\n",
    "\n",
    "A *word ladder* problem is this: given a start word and a goal word, find the shortest way to transform the start word into the goal word by changing one letter at a time, such that each change results in a word. For example starting with `green` we can reach `grass` in 7 steps:\n",
    "\n",
    "`green` &rarr; `greed` &rarr; `treed` &rarr; `trees` &rarr; `tress` &rarr; `cress` &rarr; `crass` &rarr; `grass`\n",
    "\n",
    "We will need a dictionary of words. We'll use 5-letter words from the [Stanford GraphBase](http://www-cs-faculty.stanford.edu/~uno/sgb.html) project for this purpose. Let's get that file from aimadata."
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "from search import *\n",
    "sgb_words = open_data(\"EN-text/sgb-words.txt\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "We can assign `WORDS` to be the set of all the words in this file:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "5757"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WORDS = set(sgb_words.read().split())\n",
    "len(WORDS)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "And define `neighboring_words` to return the set of all words that are a one-letter change away from a given `word`:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def neighboring_words(word):\n",
    "    \"All words that are one letter away from this word.\"\n",
    "    neighbors = {word[:i] + c + word[i+1:]\n",
    "                 for i in range(len(word))\n",
    "                 for c in 'abcdefghijklmnopqrstuvwxyz'\n",
    "                 if c != word[i]}\n",
    "    return neighbors & WORDS"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For example:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'cello', 'hallo', 'hells', 'hullo', 'jello'}"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "neighboring_words('hello')"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'would'}"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "neighboring_words('world')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "Now we can create  `word_neighbors` as a dict of `{word: {neighboring_word, ...}}`: "
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "word_neighbors = {word: neighboring_words(word)\n",
    "                  for word in WORDS}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "Now the `breadth_first` function can be used to solve a word ladder problem:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['green', 'greed', 'treed', 'trees', 'treys', 'trays', 'grays', 'grass']"
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('green', 'grass', word_neighbors)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['smart',\n",
       " 'start',\n",
       " 'stars',\n",
       " 'sears',\n",
       " 'bears',\n",
       " 'beans',\n",
       " 'brans',\n",
       " 'brand',\n",
       " 'braid',\n",
       " 'brain']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('smart', 'brain', word_neighbors)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['frown',\n",
       " 'flown',\n",
       " 'flows',\n",
       " 'slows',\n",
       " 'slots',\n",
       " 'slits',\n",
       " 'spits',\n",
       " 'spite',\n",
       " 'smite',\n",
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('frown', 'smile', word_neighbors)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# More General Search Algorithms\n",
    "\n",
    "Now we'll embelish the `breadth_first` algorithm to make a family of search algorithms with more capabilities:\n",
    "\n",
    "1. We distinguish between an *action* and the *result* of an action.\n",
    "3. We allow different measures of the cost of a solution (not just the number of steps in the sequence).\n",
    "4. We search through the state space in an order that is more likely to lead to an optimal solution quickly.\n",
    "\n",
    "Here's how we do these things:\n",
    "\n",
    "1. Instead of having a graph of neighboring states, we instead have an object of type *Problem*. A Problem\n",
    "has one method, `Problem.actions(state)` to return a collection of the actions that are allowed in a state,\n",
    "and another method, `Problem.result(state, action)` that says what happens when you take an action.\n",
    "2. We keep a set, `explored` of states that have already been explored. We also have a class, `Frontier`, that makes it efficient to ask if a state is on the frontier.\n",
    "3. Each action has a cost associated with it (in fact, the cost can vary with both the state and the action).\n",
    "4. The `Frontier` class acts as a priority queue, allowing the \"best\" state to be explored next.\n",
    "We represent a sequence of actions and resulting states as a linked list of `Node` objects.\n",
    "\n",
    "The algorithm `breadth_first_search` is basically the same  as `breadth_first`, but using our new conventions:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def breadth_first_search(problem):\n",
    "    \"Search for goal; paths with least number of steps first.\"\n",
    "    if problem.is_goal(problem.initial): \n",
    "        return Node(problem.initial)\n",
    "    frontier = FrontierQ(Node(problem.initial), LIFO=False)\n",
    "    explored = set()\n",
    "    while frontier:\n",
    "        node = frontier.pop()\n",
    "        explored.add(node.state)\n",
    "        for action in problem.actions(node.state):\n",
    "            child = node.child(problem, action)\n",
    "            if child.state not in explored and child.state not in frontier:\n",
    "                if problem.is_goal(child.state):\n",
    "                    return child\n",
    "                frontier.add(child)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next is `uniform_cost_search`, in which each step can have a different cost, and we still consider first one os the states with minimum cost so far."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def uniform_cost_search(problem, costfn=lambda node: node.path_cost):\n",
    "    frontier = FrontierPQ(Node(problem.initial), costfn)\n",
    "    explored = set()\n",
    "    while frontier:\n",
    "        node = frontier.pop()\n",
    "        if problem.is_goal(node.state):\n",
    "            return node\n",
    "        explored.add(node.state)\n",
    "        for action in problem.actions(node.state):\n",
    "            child = node.child(problem, action)\n",
    "            if child.state not in explored and child not in frontier:\n",
    "                frontier.add(child)\n",
    "            elif child in frontier and frontier.cost[child] < child.path_cost:\n",
    "                frontier.replace(child)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, `astar_search`  in which the cost includes an estimate of the distance to the goal as well as the distance travelled so far."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def astar_search(problem, heuristic):\n",
    "    costfn = lambda node: node.path_cost + heuristic(node.state)\n",
    "    return uniform_cost_search(problem, costfn)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Search Tree Nodes\n",
    "\n",
    "The solution to a search problem is now a linked list of `Node`s, where each `Node`\n",
    "includes a `state` and the `path_cost` of getting to the state. In addition, for every `Node` except for the first (root) `Node`, there is a previous `Node` (indicating the state that lead to this `Node`) and an `action` (indicating the action taken to get here)."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class Node(object):\n",
    "    \"\"\"A node in a search tree. A search tree is spanning tree over states.\n",
    "    A Node contains a state, the previous node in the tree, the action that\n",
    "    takes us from the previous state to this state, and the path cost to get to \n",
    "    this state. If a state is arrived at by two paths, then there are two nodes \n",
    "    with the same state.\"\"\"\n",
    "\n",
    "    def __init__(self, state, previous=None, action=None, step_cost=1):\n",
    "        \"Create a search tree Node, derived from a previous Node by an action.\"\n",
    "        self.state     = state\n",
    "        self.previous  = previous\n",
    "        self.action    = action\n",
    "        self.path_cost = 0 if previous is None else (previous.path_cost + step_cost)\n",
    "\n",
    "    def __repr__(self): return \"<Node {}: {}>\".format(self.state, self.path_cost)\n",
    "    \n",
    "    def __lt__(self, other): return self.path_cost < other.path_cost\n",
    "    \n",
    "    def child(self, problem, action):\n",
    "        \"The Node you get by taking an action from this Node.\"\n",
    "        result = problem.result(self.state, action)\n",
    "        return Node(result, self, action, \n",
    "                    problem.step_cost(self.state, action, result))    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Frontiers\n",
    "\n",
    "A frontier is a collection of Nodes that acts like both a Queue and a Set. A frontier, `f`, supports these operations:\n",
    "\n",
    "* `f.add(node)`: Add a node to the Frontier.\n",
    "\n",
    "* `f.pop()`: Remove and return the \"best\" node from the frontier.\n",
    "\n",
    "* `f.replace(node)`: add this node and remove a previous node with the same state.\n",
    "\n",
    "* `state in f`: Test if some node in the frontier has arrived at state.\n",
    "\n",
    "* `f[state]`: returns the node corresponding to this state in frontier.\n",
    "\n",
    "* `len(f)`: The number of Nodes in the frontier. When the frontier is empty, `f` is *false*.\n",
    "\n",
    "We provide two kinds of frontiers: One for \"regular\" queues, either first-in-first-out (for breadth-first search) or last-in-first-out (for depth-first search), and one for priority queues, where you can specify what cost function on nodes you are trying to minimize."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "from collections import OrderedDict\n",
    "import heapq\n",
    "\n",
    "class FrontierQ(OrderedDict):\n",
    "    \"A Frontier that supports FIFO or LIFO Queue ordering.\"\n",
    "    \n",
    "    def __init__(self, initial, LIFO=False):\n",
    "        \"\"\"Initialize Frontier with an initial Node.\n",
    "        If LIFO is True, pop from the end first; otherwise from front first.\"\"\"\n",
Rishav1's avatar
Rishav1 a validé
    "        super(FrontierQ, self).__init__()\n",
    "        self.LIFO = LIFO\n",
    "        self.add(initial)\n",
    "    \n",
    "    def add(self, node):\n",
    "        \"Add a node to the frontier.\"\n",
    "        self[node.state] = node\n",
    "        \n",
    "    def pop(self):\n",
    "        \"Remove and return the next Node in the frontier.\"\n",
    "        (state, node) = self.popitem(self.LIFO)\n",
    "        return node\n",
    "    \n",
    "    def replace(self, node):\n",
    "        \"Make this node replace the nold node with the same state.\"\n",
    "        del self[node.state]\n",
    "        self.add(node)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class FrontierPQ:\n",
    "    \"A Frontier ordered by a cost function; a Priority Queue.\"\n",
    "    \n",
    "    def __init__(self, initial, costfn=lambda node: node.path_cost):\n",
    "        \"Initialize Frontier with an initial Node, and specify a cost function.\"\n",
    "        self.heap   = []\n",
    "        self.states = {}\n",
    "        self.costfn = costfn\n",
    "        self.add(initial)\n",
    "    \n",
    "    def add(self, node):\n",
    "        \"Add node to the frontier.\"\n",
    "        cost = self.costfn(node)\n",
    "        heapq.heappush(self.heap, (cost, node))\n",
    "        self.states[node.state] = node\n",
    "        \n",
    "    def pop(self):\n",
    "        \"Remove and return the Node with minimum cost.\"\n",
    "        (cost, node) = heapq.heappop(self.heap)\n",
    "        self.states.pop(node.state, None) # remove state\n",
    "        return node\n",
    "    \n",
    "    def replace(self, node):\n",
    "        \"Make this node replace a previous node with the same state.\"\n",
    "        if node.state not in self:\n",
    "            raise ValueError('{} not there to replace'.format(node.state))\n",
    "        for (i, (cost, old_node)) in enumerate(self.heap):\n",
    "            if old_node.state == node.state:\n",
    "                self.heap[i] = (self.costfn(node), node)\n",
    "                heapq._siftdown(self.heap, 0, i)\n",
    "                return\n",
    "\n",
    "    def __contains__(self, state): return state in self.states\n",
    "    \n",
    "    def __len__(self): return len(self.heap)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Search Problems\n",
    "\n",
    "`Problem` is the abstract class for all search problems. You can define your own class of problems as a subclass of `Problem`. You will need to override the `actions` and  `result` method to describe how your problem works. You will also have to either override `is_goal` or pass a collection of goal states to the initialization method.  If actions have different costs, you should override the `step_cost` method. "
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class Problem(object):\n",
    "    \"\"\"The abstract class for a search problem.\"\"\"\n",
    "\n",
    "    def __init__(self, initial=None, goals=(), **additional_keywords):\n",
    "        \"\"\"Provide an initial state and optional goal states.\n",
    "        A subclass can have additional keyword arguments.\"\"\"\n",
    "        self.initial = initial  # The initial state of the problem.\n",
Robert Hönig's avatar
Robert Hönig a validé
    "        self.goals = goals      # A collection of possible goal states.\n",
    "        self.__dict__.update(**additional_keywords)\n",
    "\n",
    "    def actions(self, state):\n",
    "        \"Return a list of actions executable in this state.\"\n",
    "        raise NotImplementedError # Override this!\n",
    "\n",
    "    def result(self, state, action):\n",
    "        \"The state that results from executing this action in this state.\"\n",
    "        raise NotImplementedError # Override this!\n",
    "\n",
    "    def is_goal(self, state):\n",
    "        \"True if the state is a goal.\" \n",
    "        return state in self.goals # Optionally override this!\n",
    "\n",
    "    def step_cost(self, state, action, result=None):\n",
    "        \"The cost of taking this action from this state.\"\n",
    "        return 1 # Override this if actions have different costs        "
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def action_sequence(node):\n",
    "    \"The sequence of actions to get to this node.\"\n",
    "    actions = []\n",
    "    while node.previous:\n",
    "        actions.append(node.action)\n",
    "        node = node.previous\n",
    "    return actions[::-1]\n",
    "\n",
    "def state_sequence(node):\n",
    "    \"The sequence of states to get to this node.\"\n",
    "    states = [node.state]\n",
    "    while node.previous:\n",
    "        node = node.previous\n",
    "        states.append(node.state)\n",
    "    return states[::-1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Two Location Vacuum World"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "dirt  = '*'\n",
    "clean = ' '\n",
    "\n",
    "class TwoLocationVacuumProblem(Problem):\n",
    "    \"\"\"A Vacuum in a world with two locations, and dirt.\n",
    "    Each state is a tuple of (location, dirt_in_W, dirt_in_E).\"\"\"\n",
    "\n",
    "    def actions(self, state): return ('W', 'E', 'Suck')\n",
    "    \n",
    "    def is_goal(self, state): return dirt not in state\n",
    " \n",
    "    def result(self, state, action):\n",
    "        \"The state that results from executing this action in this state.\"        \n",
    "        (loc, dirtW, dirtE) = state\n",
    "        if   action == 'W':                   return ('W', dirtW, dirtE)\n",
    "        elif action == 'E':                   return ('E', dirtW, dirtE)\n",
    "        elif action == 'Suck' and loc == 'W': return (loc, clean, dirtE)\n",
    "        elif action == 'Suck' and loc == 'E': return (loc, dirtW, clean) \n",
    "        else: raise ValueError('unknown action: ' + action)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Node ('E', ' ', ' '): 3>"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "problem = TwoLocationVacuumProblem(initial=('W', dirt, dirt))\n",
    "result = uniform_cost_search(problem)\n",
    "result"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Suck', 'E', 'Suck']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('W', '*', '*'), ('W', ' ', '*'), ('E', ' ', '*'), ('E', ' ', ' ')]"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "state_sequence(result)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Suck']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "problem = TwoLocationVacuumProblem(initial=('E', clean, dirt))\n",
    "result = uniform_cost_search(problem)\n",
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Water Pouring Problem\n",
    "\n",
    "Here is another problem domain, to show you how to define one. The idea is that we have a number of water jugs and a water tap and the goal is to measure out a specific amount of water (in, say, ounces or liters). You can completely fill or empty a jug, but because the jugs don't have markings on them, you can't partially fill them with a specific amount. You can, however, pour one jug into another, stopping when the seconfd is full or the first is empty."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class PourProblem(Problem):\n",
    "    \"\"\"Problem about pouring water between jugs to achieve some water level.\n",
    "    Each state is a tuples of levels. In the initialization, provide a tuple of \n",
    "    capacities, e.g. PourProblem(capacities=(8, 16, 32), initial=(2, 4, 3), goals={7}), \n",
    "    which means three jugs of capacity 8, 16, 32, currently filled with 2, 4, 3 units of \n",
    "    water, respectively, and the goal is to get a level of 7 in any one of the jugs.\"\"\"\n",
    "    \n",
    "    def actions(self, state):\n",
    "        \"\"\"The actions executable in this state.\"\"\"\n",
    "        jugs = range(len(state))\n",
    "        return ([('Fill', i)    for i in jugs if state[i] != self.capacities[i]] +\n",
    "                [('Dump', i)    for i in jugs if state[i] != 0] +\n",
    "                [('Pour', i, j) for i in jugs for j in jugs if i != j])\n",
    "\n",
    "    def result(self, state, action):\n",
    "        \"\"\"The state that results from executing this action in this state.\"\"\"\n",
    "        result = list(state)\n",
    "        act, i, j = action[0], action[1], action[-1]\n",
    "        if act == 'Fill': # Fill i to capacity\n",
    "            result[i] = self.capacities[i]\n",
    "        elif act == 'Dump': # Empty i\n",
    "            result[i] = 0\n",
    "        elif act == 'Pour':\n",
    "            a, b = state[i], state[j]\n",
    "            result[i], result[j] = ((0, a + b) \n",
    "                                    if (a + b <= self.capacities[j]) else\n",
    "                                    (a + b - self.capacities[j], self.capacities[j]))\n",
    "        else:\n",
    "            raise ValueError('unknown action', action)\n",
    "        return tuple(result)\n",
    "\n",
    "    def is_goal(self, state):\n",
    "        \"\"\"True if any of the jugs has a level equal to one of the goal levels.\"\"\"\n",
    "        return any(level in self.goals for level in state)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(2, 13)"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "p7 = PourProblem(initial=(2, 0), capacities=(5, 13), goals={7})\n",
    "p7.result((2, 0),  ('Fill', 1))"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result = uniform_cost_search(p7)\n",
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Visualization Output"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def showpath(searcher, problem):\n",
    "    \"Show what happens when searcvher solves problem.\"\n",
    "    problem = Instrumented(problem)\n",
    "    print('\\n{}:'.format(searcher.__name__))\n",
    "    result = searcher(problem)\n",
    "    if result:\n",
    "        actions = action_sequence(result)\n",
    "        state = problem.initial\n",
    "        path_cost = 0\n",
    "        for steps, action in enumerate(actions, 1):\n",
    "            path_cost += problem.step_cost(state, action, 0)\n",
    "            result = problem.result(state, action)\n",
    "            print('  {} =={}==> {}; cost {} after {} steps'\n",
    "                  .format(state, action, result, path_cost, steps,\n",
    "                          '; GOAL!' if problem.is_goal(result) else ''))\n",
    "            state = result\n",
    "    msg = 'GOAL FOUND' if result else 'no solution'\n",
    "    print('{} after {} results and {} goal checks'\n",
    "          .format(msg, problem._counter['result'], problem._counter['is_goal']))\n",
    "        \n",
    "from collections import Counter\n",
    "\n",
    "class Instrumented:\n",
    "    \"Instrument an object to count all the attribute accesses in _counter.\"\n",
    "    def __init__(self, obj):\n",
    "        self._object = obj\n",
    "        self._counter = Counter()\n",
    "    def __getattr__(self, attr):\n",
    "        self._counter[attr] += 1\n",
    "        return getattr(self._object, attr)    "
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (2, 0) ==('Pour', 0, 1)==> (0, 2); cost 1 after 1 steps\n",
      "  (0, 2) ==('Fill', 0)==> (5, 2); cost 2 after 2 steps\n",
      "  (5, 2) ==('Pour', 0, 1)==> (0, 7); cost 3 after 3 steps\n",
      "GOAL FOUND after 83 results and 22 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(uniform_cost_search, p7)"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 1 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 2 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 3 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 4 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 5 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 6 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 7 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 8 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 9 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 10 after 10 steps\n",
      "GOAL FOUND after 110 results and 32 goal checks\n"
     ]
    }
   ],
   "source": [
    "p = PourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
    "showpath(uniform_cost_search, p)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class GreenPourProblem(PourProblem):    \n",
    "    def step_cost(self, state, action, result=None):\n",
    "        \"The cost is the amount of water used in a fill.\"\n",
    "        if action[0] == 'Fill':\n",
    "            i = action[1]\n",
    "            return self.capacities[i] - state[i]\n",
    "        return 0"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 184 results and 48 goal checks\n"
     ]
    }
   ],
   "source": [
    "p = GreenPourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
    "showpath(uniform_cost_search, p)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def compare_searchers(problem, searchers=None):\n",
    "    \"Apply each of the search algorithms to the problem, and show results\"\n",
    "    if searchers is None: \n",
    "        searchers = (breadth_first_search, uniform_cost_search)\n",
    "    for searcher in searchers:\n",
    "        showpath(searcher, problem)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 100 results and 31 goal checks\n",
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 184 results and 48 goal checks\n"
     ]
    }
   ],
   "source": [
    "compare_searchers(p)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Random Grid\n",
    "\n",
    "An environment where you can move in any of 4 directions, unless there is an obstacle there.\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{(0, 0): [(0, 1), (1, 0)],\n",
       " (0, 1): [(0, 2), (0, 0), (1, 1)],\n",
       " (0, 2): [(0, 3), (0, 1), (1, 2)],\n",
       " (0, 3): [(0, 4), (0, 2), (1, 3)],\n",
       " (0, 4): [(0, 3), (1, 4)],\n",
       " (1, 0): [(1, 1), (2, 0), (0, 0)],\n",
       " (1, 1): [(1, 2), (1, 0), (2, 1), (0, 1)],\n",
       " (1, 2): [(1, 3), (1, 1), (2, 2), (0, 2)],\n",
       " (1, 3): [(1, 4), (1, 2), (2, 3), (0, 3)],\n",
       " (1, 4): [(1, 3), (2, 4), (0, 4)],\n",
       " (2, 0): [(2, 1), (3, 0), (1, 0)],\n",
       " (2, 1): [(2, 2), (2, 0), (3, 1), (1, 1)],\n",
       " (2, 2): [(2, 3), (2, 1), (1, 2)],\n",
       " (2, 3): [(2, 4), (2, 2), (3, 3), (1, 3)],\n",
       " (2, 4): [(2, 3), (1, 4)],\n",
       " (3, 0): [(3, 1), (4, 0), (2, 0)],\n",
       " (3, 1): [(3, 0), (4, 1), (2, 1)],\n",
       " (3, 2): [(3, 3), (3, 1), (4, 2), (2, 2)],\n",
       " (3, 3): [(4, 3), (2, 3)],\n",
       " (3, 4): [(3, 3), (4, 4), (2, 4)],\n",
       " (4, 0): [(4, 1), (3, 0)],\n",
       " (4, 1): [(4, 2), (4, 0), (3, 1)],\n",
       " (4, 2): [(4, 3), (4, 1)],\n",
       " (4, 3): [(4, 4), (4, 2), (3, 3)],\n",
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import random\n",
    "\n",
    "N, S, E, W = DIRECTIONS = [(0, 1), (0, -1), (1, 0), (-1, 0)]\n",
    "\n",
    "def Grid(width, height, obstacles=0.1):\n",
    "    \"\"\"A 2-D grid, width x height, with obstacles that are either a collection of points,\n",
    "    or a fraction between 0 and 1 indicating the density of obstacles, chosen at random.\"\"\"\n",
    "    grid = {(x, y) for x in range(width) for y in range(height)}\n",
    "    if isinstance(obstacles, (float, int)):\n",
    "        obstacles = random.sample(grid, int(width * height * obstacles))\n",
    "    def neighbors(x, y):\n",
    "        for (dx, dy) in DIRECTIONS:\n",
    "            (nx, ny) = (x + dx, y + dy)\n",
    "            if (nx, ny) not in obstacles and 0 <= nx < width and 0 <= ny < height:\n",
    "                yield (nx, ny)\n",
    "    return {(x, y): list(neighbors(x, y))\n",
    "            for x in range(width) for y in range(height)}\n",
    "\n",
    "Grid(5, 5)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class GridProblem(Problem):\n",
    "    \"Create with a call like GridProblem(grid=Grid(10, 10), initial=(0, 0), goal=(9, 9))\"\n",
    "    def actions(self, state): return DIRECTIONS\n",
    "    def result(self, state, action):\n",
    "        #print('ask for result of', state, action)\n",
    "        (x, y) = state\n",
    "        (dx, dy) = action\n",
    "        r = (x + dx, y + dy)\n",
    "        return r if r in self.grid[state] else state"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==(0, 1)==> (0, 1); cost 1 after 1 steps\n",
      "  (0, 1) ==(0, 1)==> (0, 2); cost 2 after 2 steps\n",
      "  (0, 2) ==(0, 1)==> (0, 3); cost 3 after 3 steps\n",
      "  (0, 3) ==(1, 0)==> (1, 3); cost 4 after 4 steps\n",
      "  (1, 3) ==(1, 0)==> (2, 3); cost 5 after 5 steps\n",
      "  (2, 3) ==(0, 1)==> (2, 4); cost 6 after 6 steps\n",
      "  (2, 4) ==(1, 0)==> (3, 4); cost 7 after 7 steps\n",
      "  (3, 4) ==(1, 0)==> (4, 4); cost 8 after 8 steps\n",
      "GOAL FOUND after 248 results and 69 goal checks\n"
     ]
    }
   ],
   "source": [
    "gp = GridProblem(grid=Grid(5, 5, 0.3), initial=(0, 0), goals={(4, 4)})\n",
    "showpath(uniform_cost_search, gp)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Finding a hard PourProblem\n",
    "\n",
    "What solvable two-jug PourProblem requires the most steps? We can define the hardness as the number of steps, and then iterate over all PourProblems with capacities up to size M, keeping the hardest one."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def hardness(problem):\n",
    "    L = breadth_first_search(problem)\n",
    "    #print('hardness', problem.initial, problem.capacities, problem.goals, L)\n",
    "    return len(action_sequence(L)) if (L is not None) else 0"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "hardness(p7)"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "action_sequence(breadth_first_search(p7))"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((0, 0), (7, 9), {8})"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "C = 9 # Maximum capacity to consider\n",
    "\n",
    "phard = max((PourProblem(initial=(a, b), capacities=(A, B), goals={goal})\n",
    "             for A in range(C+1) for B in range(C+1)\n",
    "             for a in range(A) for b in range(B)\n",
    "             for goal in range(max(A, B))),\n",
    "            key=hardness)\n",
    "\n",
    "phard.initial, phard.capacities, phard.goals"
   ]
  },
  {
   "cell_type": "code",
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
      "  (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
      "  (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
      "  (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
      "  (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
      "  (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
      "  (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
      "  (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
      "  (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
      "  (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
      "  (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
      "  (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
      "  (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
      "  (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
      "GOAL FOUND after 150 results and 44 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(breadth_first_search, PourProblem(initial=(0, 0), capacities=(7, 9), goals={8}))"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
      "  (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
      "  (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
      "  (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
      "  (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
      "  (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
      "  (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
      "  (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
      "  (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
      "  (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
      "  (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
      "  (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
      "  (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
      "  (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
      "GOAL FOUND after 159 results and 45 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(uniform_cost_search, phard)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class GridProblem(Problem):\n",
    "    \"\"\"A Grid.\"\"\"\n",
    "\n",
    "    def actions(self, state): return ['N', 'S', 'E', 'W']        \n",
    " \n",
    "    def result(self, state, action):\n",
    "        \"\"\"The state that results from executing this action in this state.\"\"\"  \n",
    "        (W, H) = self.size\n",
    "        if action == 'N' and state > W:           return state - W\n",
    "        if action == 'S' and state + W < W * W:   return state + W\n",
    "        if action == 'E' and (state + 1) % W !=0: return state + 1\n",
    "        if action == 'W' and state % W != 0:      return state - 1\n",
    "        return state"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  0 ==S==> 10; cost 1 after 1 steps\n",
      "  10 ==S==> 20; cost 2 after 2 steps\n",
      "  20 ==S==> 30; cost 3 after 3 steps\n",
      "  30 ==S==> 40; cost 4 after 4 steps\n",
      "  40 ==E==> 41; cost 5 after 5 steps\n",
      "  41 ==E==> 42; cost 6 after 6 steps\n",
      "  42 ==E==> 43; cost 7 after 7 steps\n",
      "  43 ==E==> 44; cost 8 after 8 steps\n",
      "GOAL FOUND after 135 results and 49 goal checks\n",
      "\n",
      "uniform_cost_search:\n",
      "  0 ==S==> 10; cost 1 after 1 steps\n",
      "  10 ==S==> 20; cost 2 after 2 steps\n",
      "  20 ==E==> 21; cost 3 after 3 steps\n",
      "  21 ==E==> 22; cost 4 after 4 steps\n",
      "  22 ==E==> 23; cost 5 after 5 steps\n",
      "  23 ==S==> 33; cost 6 after 6 steps\n",
      "  33 ==S==> 43; cost 7 after 7 steps\n",
      "  43 ==E==> 44; cost 8 after 8 steps\n",
      "GOAL FOUND after 1036 results and 266 goal checks\n"
     ]
    }
   ],
   "source": [
    "compare_searchers(GridProblem(initial=0, goals={44}, size=(10, 10)))"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'test_frontier ok'"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def test_frontier():\n",
    "    \n",
    "    #### Breadth-first search with FIFO Q\n",
    "    f = FrontierQ(Node(1), LIFO=False)\n",
    "    assert 1 in f and len(f) == 1\n",
    "    f.add(Node(2))\n",
    "    f.add(Node(3))\n",
    "    assert 1 in f and 2 in f and 3 in f and len(f) == 3\n",
    "    assert f.pop().state == 1\n",
    "    assert 1 not in f and 2 in f and 3 in f and len(f) == 2\n",
    "    assert f\n",
    "    assert f.pop().state == 2\n",
    "    assert f.pop().state == 3\n",
    "    assert not f\n",
    "    \n",
    "    #### Depth-first search with LIFO Q\n",
    "    f = FrontierQ(Node('a'), LIFO=True)\n",
    "    for s in 'bcdef': f.add(Node(s))\n",
    "    assert len(f) == 6 and 'a' in f and 'c' in f and 'f' in f\n",
    "    for s in 'fedcba': assert f.pop().state == s\n",
    "    assert not f\n",
    "\n",
    "    #### Best-first search with Priority Q\n",
    "    f = FrontierPQ(Node(''), lambda node: len(node.state))\n",
    "    assert '' in f and len(f) == 1 and f\n",
    "    for s in ['book', 'boo', 'bookie', 'bookies', 'cook', 'look', 'b']:\n",
    "        assert s not in f\n",
    "        f.add(Node(s))\n",
    "        assert s in f\n",
    "    assert f.pop().state == ''\n",
    "    assert f.pop().state == 'b'\n",
    "    assert f.pop().state == 'boo'\n",
    "    assert {f.pop().state for _ in '123'} == {'book', 'cook', 'look'}\n",
    "    assert f.pop().state == 'bookie'\n",
    "    \n",
    "    #### Romania: Two paths to Bucharest; cheapest one found first\n",
    "    S    = Node('S')\n",
    "    SF   = Node('F', S, 'S->F', 99)\n",
    "    SFB  = Node('B', SF, 'F->B', 211)\n",
    "    SR   = Node('R', S, 'S->R', 80)\n",
    "    SRP  = Node('P', SR, 'R->P', 97)\n",
    "    SRPB = Node('B', SRP, 'P->B', 101)\n",
    "    f = FrontierPQ(S)\n",
    "    f.add(SF); f.add(SR), f.add(SRP), f.add(SRPB); f.add(SFB)\n",
    "    def cs(n): return (n.path_cost, n.state) # cs: cost and state\n",
    "    assert cs(f.pop()) == (0, 'S')\n",
    "    assert cs(f.pop()) == (80, 'R')\n",
    "    assert cs(f.pop()) == (99, 'F')\n",
    "    assert cs(f.pop()) == (177, 'P')\n",
    "    assert cs(f.pop()) == (278, 'B')\n",
    "    return 'test_frontier ok'\n",
    "\n",
    "test_frontier()"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
    "# %matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "p = plt.plot([i**2 for i in range(10)])\n",
    "plt.savefig('destination_path.eps', format='eps', dpi=1200)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VOW9x/HPj5AAYUkghC0QArLL\nkkAExaUVsFevC7i1oiIqGtvrde2tou29tr22pdZra691QVHZBC2CUrVerTtakYQgYd/NQoAASQhk\nT577R8aKNshkmZyZyff9evmamZMzzNch+XLyzDnPY845REQk9LXxOoCIiDQPFbqISJhQoYuIhAkV\nuohImFChi4iECRW6iEiYUKGLiIQJFbqISJhQoYuIhIm2Lfli3bt3d0lJSS35kiIiIS8jI+Ogcy7+\nZPu1aKEnJSWRnp7eki8pIhLyzOwLf/bTkIuISJhQoYuIhAkVuohImFChi4iECRW6iEiYUKGLiIQJ\nFbqISJjwq9DN7C4z22hmG8xsiZm1N7MBZrbazLab2YtmFhXosCIioebQ0Qp++ZdNlFXWBPy1Tlro\nZpYA3A6kOudGAhHAVcBvgd875wYDhcCsQAYVEQk1ldW1/GjxWhav/oLdB48F/PX8HXJpC3Qws7ZA\nNJAPTAKW+b4+H5jW/PFERELXL1/byGe7D/PQFaMZ0adLwF/vpIXunMsDHgayqSvyYiADKHLOVft2\nywUSAhVSRCTULF79BYs+zeaW7wxkanLL1KM/Qy5dganAAKAP0BG4oJ5d3Qmen2Zm6WaWXlBQ0JSs\nIiIhYfWuQzzw6kbOHRrPPf8yrMVe158hlynAbudcgXOuClgOTARifUMwAH2BvfU92Tk31zmX6pxL\njY8/6WRhIiIhLbewlH9bvJbEuGgenZ5CRBtrsdf2p9CzgdPNLNrMDJgMbALeA67w7TMTeDUwEUVE\nQkNpZTVpCzKorKnl6etS6dI+skVf358x9NXUffi5FsjyPWcucC9wt5ntAOKAeQHMKSIS1Jxz/OTP\n69m87wh/nJ7CKfGdWjyDX/OhO+ceAB74xuZdwPhmTyQiEoIef38nr2flc98Fwzh3aA9PMuhKURGR\nJvrbpv08/NZWpiX3Ie2cgZ7lUKGLiDTB9v0l3PniOkYlxDDn8tHUfdToDRW6iEgjFZVWctOCdNpH\nRvDUjHG0j4zwNI8KXUSkEaprarltSSb5ReU8NWMsvWM6eB2pZReJFhEJF7/56xY+2n6Qhy4fzbj+\n3byOA+gIXUSkwZZl5DJv1W6un5jE90/r53Wcf1Chi4g0QGZ2Ifcvz2LiKXH89MLhXsf5GhW6iIif\n9h8p55aFGfSKac+frh5LZERwVWhwpRERCVLlVTWkLczgaEU1T1+XSteOwbemjz4UFRE5Cecc9y/P\n4vOcIp68dhxDe3X2OlK9dIQuInIS81btZnlmHndNGcL5I3t5HeeEVOgiIt/ig20F/PqNzVwwshe3\nTRrkdZxvpUIXETmB3QePcdsLaxnSszMPXzmGNi04t3ljqNBFROpRUl7FzQvSiWhjPH1dKh3bBf9H\njsGfUESkhdXUOu5cuo7dB4+xaNYE+nWL9jqSX/xZU3Soma077r8jZnanmXUzs7fNbLvvtmtLBBYR\nCbRH3t7KO1sO8MDFIzjjlDiv4/jNnxWLtjrnkp1zycA4oBRYAcwG3nHODQbe8T0WEQlpf/l8L396\nbyfTx/djxun9vY7TIA0dQ58M7HTOfQFMBeb7ts8HpjVnMBGRlrYhr5ifLPuc1P5d+cUlIz2d27wx\nGlroVwFLfPd7OufyAXy33qy5JCLSDA4erSBtQTrdoqN44tpxRLUNvXNG/E5sZlHAJcCfG/ICZpZm\nZulmll5QUNDQfCIiAVdZXcuPFmVwuLSSudelEt+5ndeRGqUh/wRdAKx1zu33Pd5vZr0BfLcH6nuS\nc26ucy7VOZcaHx/ftLQiIs3MOccDKzeyZk8hD10xhpEJMV5HarSGFPp0vhpuAVgJzPTdnwm82lyh\nRERayqLV2Sz5LJsfffcULhnTx+s4TeJXoZtZNHAesPy4zXOA88xsu+9rc5o/nohI4Hy66xC/WLmR\nScN68B/fG+p1nCbz68Ii51wpEPeNbYeoO+tFRCTk5Bwu5d8Wr6V/XDR/uCqZiCC/rN8fofcxrohI\nE5VWVnPzgnSqamp5+rpUurSP9DpSs1Chi0ir4pzjP/78Odv2l/DY1WMZGN/J60jNRoUuIq3K/767\ngzey9nHfBcP5zpDwOvNOhS4ircZbG/fxyNvbuDQlgZvOHuB1nGanQheRVmHrvhLuenEdY/rG8JvL\nRoXcZf3+UKGLSNgrPFbJzQvSiW7XlqdmpNI+MsLrSAGhQheRsFZdU8u/L1nLvuJynpoxjl4x7b2O\nFDBa4EJEwtqv3tjMxzsO8bsrRjM2MbyXbdARuoiErZfSc3ju4z3ceOYArkzt53WcgFOhi0hY+mTn\nQX62YgNnDerO/f86zOs4LUKFLiJhZ31uETfPT6d/XDSPXZ1C24jWUXWt4/9SRFqNHQeOcv1za+ja\nMYqFsyYQGx3ldaQWo0IXkbCxt6iM6+atpo3BwlkTwvqMlvqo0EUkLBw+VsmMeaspKa/m+RvGM6B7\nR68jtTidtigiIe9oRTXXP/cZuYVlLLhxfEivOtQUKnQRCWnlVTWkLUhn494jPHXtOCYMjDv5k8KU\nvysWxZrZMjPbYmabzewMM+tmZm+b2XbfbXifsS8iQae6ppY7lmbyyc66C4emjOjpdSRP+TuG/ijw\npnNuGDAG2AzMBt5xzg0G3vE9FhFpEc45frpiA/+3cT//ddEILhvb1+tInjtpoZtZF+AcYB6Ac67S\nOVcETAXm+3abD0wLVEgRkW+a8+YWXkzP4fZJg7jxrPCbCrcx/DlCHwgUAM+ZWaaZPWNmHYGezrl8\nAN9tj/qebGZpZpZuZukFBQXNFlxEWq8nP9jJUx/sYsbp/bnrvCFexwka/hR6W2As8IRzLgU4RgOG\nV5xzc51zqc651Pj48FodRERa3tLPspnz1y1cPKYPv7jk1LCc17yx/Cn0XCDXObfa93gZdQW/38x6\nA/huDwQmoohInTc35HP/iiy+MySe/7lyDG3aqMyPd9JCd87tA3LMbKhv02RgE7ASmOnbNhN4NSAJ\nRUSAj3cc5PYl60hJ7MoT144lqq2ui/wmf89Dvw1YbGZRwC7gBur+MXjJzGYB2cCVgYkoIq3d5zlF\npC1IZ0D3jjw78zSio3QJTX38elecc+uA1Hq+NLl544iIfN2OAyVc/9xndOsUxcJZ44mJjvQ6UtDS\n7ywiErTyisqYMe8zItq0YdGsCfTo0rom22ooFbqIBKVDRyuY8cxqjlZUs3DWePrHtb7JthpKhS4i\nQaekvIqZz33G3uIynr3+NIb37uJ1pJCgQheRoFJeVcPNC9LZkl/CE9eM47Skbl5HChn6qFhEgkZ1\nTS23Lcnk012HefSqZM4dVu8F6HICOkIXkaDgnGP28ize3rSfX1xyKlOTE7yOFHJU6CLiOeccv35j\nM8sycrlzymBmTkzyOlJIUqGLiOee+GAnT3+0m5ln9OeOyYO9jhOyVOgi4qkXVmfz0JtbmZrchwcu\n1mRbTaFCFxHPvJGVz09fyeLcofE8rMm2mkyFLiKe+Gh7AXcszWRcYlcev2YckRGqo6bSOygiLS4z\nu5BbFmZwSnwn5l1/Gh2iIryOFBZU6CLSorbtL+GG59cQ37kdC2aNJ6aDJttqLip0EWkxOYdLmTFv\nNVERbVh44wR6dNZkW81JhS4iLaKgpILrnv2MssoaFswaT2JctNeRwo5fl/6b2R6gBKgBqp1zqWbW\nDXgRSAL2AN93zhUGJqaIhLIj5VVc/9xn5BeXsfimCQzrpcm2AqEhR+jnOueSnXNfLnQxG3jHOTcY\neIcGLBwtIq1HeVUNN81PZ+u+Ep68dhzj+muyrUBpypDLVGC+7/58YFrT44hIOKmuqeXfX1jLmj2H\neeQHyXx3qCbbCiR/C90Bb5lZhpml+bb1dM7lA/hu9TclIv9QW+u45+X1/G3zAX45dSSXjOnjdaSw\n5+/0uWc65/aaWQ/gbTPb4u8L+P4BSANITExsREQRCTXOOR58fTPL1+Zx93lDmHF6f68jtQp+HaE7\n5/b6bg8AK4DxwH4z6w3guz1wgufOdc6lOudS4+Pjmye1iAS1P723g2c/3s0NZyZx26RBXsdpNU5a\n6GbW0cw6f3kf+B6wAVgJzPTtNhN4NVAhRSQ0OOd45O1tPPzWNi5LSeA/LxyhybZakD9DLj2BFb6/\nlLbAC865N81sDfCSmc0CsoErAxdTRIJdba3jl69t4vlP9vD91L785rLRmmyrhZ200J1zu4Ax9Ww/\nBEwORCgRCS3VNbXMXp7FsoxcZp01gJ9dOFxH5h7QmqIi0iQV1TXcsWQdb27cx93nDeG2SYNU5h5R\noYtIo5VWVnPLwgw+2n6Q/7poBDeeNcDrSK2aCl1EGqW4rIobn19DZnYhv7tiNFem9vM6UqunQheR\nBvtyoq0dB0p4/JqxnD+yt9eRBBW6iDRQXlEZ1z6zmn3F5cybeRrnDNH1JcFChS4ifttZcJQZz6ym\npKKaRTeN10RbQUaFLiJ+2bi3mOvmfYYZLE07nVP7xHgdSb5BhS4iJ5W+5zA3PL+Gzu3asuimCQyM\n7+R1JKmHCl1EvtWH2wq4ZWEGvWPas/CmCSTEdvA6kpyACl1ETuivWfncvjSTQT06s+DG8cR3bud1\nJPkWKnQRqddL6TnMfnk9KYldefb604jpEOl1JDkJFbqI/JNnV+3ml69t4uzB3Xlqxjiio1QVoUB/\nSyLyD845/vjODn7/t22cf2ovHp2eTLu2EV7HEj+p0EUE+GqVoXmrdnPFuL7MuWwUbSOasuywtDQV\nuohQU+u4b/l6XkrP5fqJSfzXRSM0l3kIUqGLtHIV1TXc9eI63sjaxx2TB3PnlMGa/jZE+f37lJlF\nmFmmmb3mezzAzFab2XYze9HMogIXU0QCobSympsXZPBG1j5+duFw7jpviMo8hDVkgOwOYPNxj38L\n/N45NxgoBGY1ZzARCazisiqum/cZq7YX8NDlo7np7IFeR5Im8qvQzawvcCHwjO+xAZOAZb5d5gPT\nAhFQRJrfwaMVTJ/7KZ/nFvHY1WP5/mmayzwc+DuG/gfgHqCz73EcUOScq/Y9zgUS6nuimaUBaQCJ\niYmNTyoizWKvb/rbvcVlPDPzNL6j6W/DxkmP0M3sIuCAcy7j+M317Orqe75zbq5zLtU5lxofr28c\nES/tKjjKlU/+nYKSChbOmqAyDzP+HKGfCVxiZv8KtAe6UHfEHmtmbX1H6X2BvYGLKSJNtWnvEa57\ndjXOwZK00xmZoOlvw81Jj9Cdc/c55/o655KAq4B3nXPXAO8BV/h2mwm8GrCUItIkGV8c5qq5fycy\nog0v3nKGyjxMNeUysHuBu81sB3Vj6vOaJ5KINKePthdw7TOf0a1jFH/+4RkM6qG5zMNVgy4scs69\nD7zvu78LGN/8kUSkuby5YR+3L8lkYHxHFswaT4/O7b2OJAGkK0VFwtTLGbnc8/J6RveN4fnrxxMT\nrelvw50KXSQMPf/xbn7+l02cOSiOuTNS6dhOP+qtgf6WRcKIc47H3t3B/7y9je+N6Mkfp6fQPlLT\n37YWKnSRMFFdU8uv3tjMcx/v4bKxCTx0+WhNf9vKqNBFwsDhY5XctmQtH+84xI1nDuBnFw7X9Let\nkApdJMRtyCvmloUZFByt4HdXjObKVM3L0lqp0EVC2MsZudy/Iou4jlEs++EZjO4b63Uk8ZAKXSQE\nVdXU8uBrm5j/9y84Y2Acj12dQlyndl7HEo+p0EVCzIGScm5dvJY1ewq5+ewB3Hv+MH34KYAKXSSk\nrM0u5EeLMiguq+LRq5KZmlzvrNXSSqnQRULEC6uzeWDlBnrHdGDFv41neO8uXkeSIKNCFwlyFdU1\nPPDqRpauyeGcIfH88apkYqO1hK/8MxW6SBDLLy7jh4vW8nlOEbeeewp3nzeUCJ1fLiegQhcJUqt3\nHeLWF9ZSVlnDk9eO4/yRvbyOJEFOhS4SZJxzPP/JHn71+mYS46JZmnY6g3p0PvkTpdU7aaGbWXvg\nQ6Cdb/9lzrkHzGwAsBToBqwFZjjnKgMZViTclVXWcP+KLFZk5jFleE8e+cEYurTXtLfiH39OXq0A\nJjnnxgDJwPlmdjrwW+D3zrnBQCEwK3AxRcJfzuFSLn/iE15Zl8fd5w1h7oxxKnNpEH/WFHXOuaO+\nh5G+/xwwCVjm2z4fmBaQhCKtwEfbC7j4sVXkFJYyb2Yqt08erMm1pMH8GkM3swggAxgE/AnYCRQ5\n56p9u+QCusJBpIGcczz14S4eenMLg3p04qkZqQzo3tHrWBKi/Cp051wNkGxmscAKYHh9u9X3XDNL\nA9IAEhMTGxlTJPwcq6jmnmXreT0rnwtH9eahK0ZrZSFpkoYuEl1kZu8DpwOxZtbWd5TeF9h7gufM\nBeYCpKam1lv6Iq3NnoPHSFuYzo4DR7nvgmGknTMQMw2xSNOcdAzdzOJ9R+aYWQdgCrAZeA+4wrfb\nTODVQIUUCSfvbtnPxY+t4kBJBQtunMAt3zlFZS7Nwp8j9N7AfN84ehvgJefca2a2CVhqZg8CmcC8\nAOYUCXm1tY7/fXcHf3hnGyN6d+HJa8fRr1u017EkjJy00J1z64GUerbvAsYHIpRIuDlSXsXdL37O\n3zbv57KUBH592Sgt3izNTp/AiATYjgMlpC3IIPtwKT+/eAQzJyZpiEUCQoUuEkBvbsjnxy99Toeo\nCBbfNIEJA+O8jiRhTIUuEgA1tY7/eWsrj7+/k+R+sTxx7Vh6x3TwOpaEORW6SDMrKq3k9qXr+HBb\nAdPH9+Pnl5xKu7YaL5fAU6GLNKNNe49wy6J09hdX8JvLRjF9vC6mk5ajQhdpJq+uy+Pel9cT0yGS\npbecztjErl5HklZGhS7SREcrqpnz180s+jSb8UndeOyaFHp0bu91LGmFVOgiTfDe1gP8dHkW+UfK\nuemsAdx7wTAiI/yZlVqk+anQRRqh8Fgl//3aJpZn5jGoRyeW/XAi4/priEW8pUIXaQDnHG9k7eOB\nlRsoKq3i9kmDuHXSIJ3FIkFBhS7ipwNHyvnZKxt4a9N+RiXEsODGCYzo08XrWCL/oEIXOQnnHH9O\nz+W/X99EZXUt910wjFlnDaCtxsolyKjQRb5F9qFS7luxno93HGL8gG789vLRWlFIgpYKXaQeNbWO\n5z/Zw8P/t5WINsaD00Zy9fhErfMpQU2FLvIN2/eXcM/L68nMLuLcofH86tJR9InVPCwS/E5a6GbW\nD1gA9AJqgbnOuUfNrBvwIpAE7AG+75wrDFxUkcCqrK7lyQ928ti7O+jYLoI//CCZqcl9NNWthAx/\njtCrgR8759aaWWcgw8zeBq4H3nHOzTGz2cBs4N7ARRUJnPW5RdyzbD1b9pVw8Zg+PHDxCLp3aud1\nLJEG8WfFonwg33e/xMw2AwnAVOC7vt3mA++jQpcQU1ZZwx/+to2nP9pFfOd2PH1dKueN6Ol1LJFG\nadAYupklUbcc3Wqgp6/scc7lm1mPZk8nEkCf7jrE7JfXs+dQKdPH92P2BcOJ6RDpdSyRRvO70M2s\nE/AycKdz7oi/44pmlgakASQmaipR8V5JeRVz/rqFxauzSewWzQs3TWDioO5exxJpMr8K3cwiqSvz\nxc655b7N+82st+/ovDdwoL7nOufmAnMBUlNTXTNkFmm0d7fs56crNrDfN5nWj783lA5RumxfwoM/\nZ7kYMA/Y7Jx75LgvrQRmAnN8t68GJKFIMzh8rJJf/mUjr6zby5CenXj8momkaL5yCTP+HKGfCcwA\nssxsnW/b/dQV+UtmNgvIBq4MTESRxnPO8Zf1+fx85UZKyqu4Y/Jgbj13EFFtddm+hB9/znJZBZxo\nwHxy88YRaT77iusm0/rb5v2M6RvDb6+YwLBemkxLwpeuFJWw45xj6Zocfv36Zqpqa/nZhcO54cwB\nROiyfQlzKnQJK18cOsbsl7P4+65DnDEwjjmXj6J/nCbTktZBhS5hoabW8dzHu3n4ra1EtmnDby4b\nxVWn9dNl+9KqqNAl5G3dVzeZ1uc5RUwZ3oMHp42iV4wWaZbWR4UuIetASTlPvL+TRZ9+Qef2kfxx\negoXj+6to3JptVToEnIKSip46oOdLPz0C6prHVeM7cu9FwyjW8cor6OJeEqFLiHj0NEKnvpwFwv+\nvofK6louTenLbZMGkaQVhEQAFbqEgMPHKpnrK/LyqhqmJSdw2+TBWgpO5BtU6BK0Co9V8vRHu5j/\nyR5Kq2q4ZEwfbp88mFPiO3kdTSQoqdAl6BSXVvHMql089/EejlVWc+Go3twxeTCDe3b2OppIUFOh\nS9AoLqvi2VW7eXbVbkoqqvnXUb24Y/IQhvZSkYv4Q4UunjtSXsVzq/Ywb9UujpRXc/6pvbhjymCG\n99a8KyINoUIXzxytqOb5j3fz9Ee7KS6r4rwRPblzymBO7RPjdTSRkKRClxZ3rKKa5z/Zw9Mf7aKo\ntIopw3tw55QhjExQkYs0hQpdWkxpZTUL/v4Fcz/cxeFjlZw7NJ47pwxhTL9Yr6OJhAUVugRcWWUN\niz79gic/2MmhY5WcMySeu6YM1opBIs3MnyXongUuAg4450b6tnUDXgSSgD3A951zhYGLKaGovOrL\nIt/FwaMVnD24O3dOGcK4/ipykUDw5wj9eeAxYMFx22YD7zjn5pjZbN/je5s/noSi8qoalnyWzePv\n76SgpIKJp8TxxLVjOS2pm9fRRMKaP0vQfWhmSd/YPBX4ru/+fOB9VOitXkV1DS+uyeFP7+1g/5EK\nJgzoxmPTU5gwMM7raCKtQmPH0Hs65/IBnHP5ZtajGTNJiKmoruGl9Fwef28H+cXljE/qxu9/kMzE\nU7p7HU2kVQn4h6JmlgakASQmJgb65aQFVVbXsiwjl8fe3c7e4nLG9e/K764Yw5mD4jQnuYgHGlvo\n+82st+/ovDdw4EQ7OufmAnMBUlNTXSNfT4JI9qFSXlmXx4trcsgrKiMlMZY5l4/m7MHdVeQiHmps\noa8EZgJzfLevNlsiCUqFxyp5PSufVzLzSP+i7oSmCQO68eClI/nukHgVuUgQ8Oe0xSXUfQDa3cxy\ngQeoK/KXzGwWkA1cGciQ4o3yqhre23KAFZl5vLf1AFU1jkE9OvGTfxnKtJQEEmI7eB1RRI7jz1ku\n00/wpcnNnEWCQG2tY82ew7yyLo/X1+dzpLya7p3acd0ZSVyaksCpfbroaFwkSOlKUQFgx4ESVmTm\n8UrmXvKKyugQGcH5I3txaUoCE0+Jo21EG68jishJqNBbsYKSClZ+vpdXMvPIyiumjcFZg+P5yb8M\n5bwRPenYTt8eIqFEP7GtTGllNW9t3M+KzDxW7ThITa1jZEIX/vOiEVw8pjc9Orf3OqKINJIKvRWo\nqXV8vOMgr2Tm8ebGfZRW1pAQ24Effmcg05ITtLSbSJhQoYcp5xyb8o+wYm0eKz/fy4GSCjq3b8vU\n5D5MS07gtKRutGmjDzdFwokKPczsLSrjlXV5vJKZx7b9R4mMML47tAeXpSRw7rAetI+M8DqiiASI\nCj0MHCmv4s2sfSzPzGX17sM4B+P6d+XBaSO5cFRvunaM8jqiiLQAFXqIqqyu5cNtBazIzOPtzfup\nrK5lQPeO3DVlCNOSE0iMi/Y6ooi0MBV6iHDOsedQKetyClmzp5C/ZuVTWFpFXMcorh6fyLSUBMb0\njdFFPyKtmAo9SBWXVrEut4jM7ELW5RTxeU4RhaVVAHSMimDS8J5cmtKHswfHE6mLfkQEFXpQqKqp\nZeu+EjJzvirwXQXHADCDIT06870RvUhJjCU5MZbBPToToTNUROQbVOgtzDlHfnE5644r76y8Ysqr\nagHo3qkdyf1iuXxsX1L6xTKqbwyd20d6nFpEQoEKPcCOVVSTlVdMZnYR63IKycwu4kBJBQBRbdsw\nsk8XrpnQn+R+sST3i6Vv1w4aBxeRRlGhN6PaWsfOgqNkZhf9Y/hk2/4San3LeiTFRTPxlDhSEruS\n3C+W4b27ENVW498i0jxU6E1w8GgF67KL6oZPcgpZn1NMSUU1AF3at2VMv1i+d2ovUvrFMqZfLN10\nPriIBFCTCt3MzgceBSKAZ5xzc5olVRApq6yhqKySwmNVFJVWssX34eW6nEJyDpcBENHGGNarM1NT\n+pDcryspibEMiOuoS+tFpEU1utDNLAL4E3AekAusMbOVzrlNzRWuOVVU11BcWkVhaV0xF5ZWUVxW\n6Xtct62otIrC0kqKy+pui0qrqKiu/ac/q3dMe1ISY5lxen9SErsysk8MHaJ0Sb2IeKspR+jjgR3O\nuV0AZrYUmAoEtNCramopLju+gL+6X+Qr6OLSrwq5qLSSorIqSitrTvhnRkYYsdFRdI2OJLZDFInd\nohndN4au0VHEREfSNTqK2A6RxERHMrB7J3rFaIpZEQk+TSn0BCDnuMe5wISmxanf/Suy+HBbAUWl\nVRz1jVHXJ6KNEdshktjoSGKjo+gT257hvbvUFbVvW6yvoGM6RNK1Y11RR0dF6MwSEQl5TSn0+hrQ\n/dNOZmlAGkBiYmKjXightgPjk7p9dbT8ZTn7yvvLI+nO7dqqmEWk1WpKoecC/Y573BfY+82dnHNz\ngbkAqamp/1T4/rj13EGNeZqISKvSlJOg1wCDzWyAmUUBVwErmyeWiIg0VKOP0J1z1Wb278D/UXfa\n4rPOuY3NlkxERBqkSeehO+feAN5opiwiItIEuu5cRCRMqNBFRMKECl1EJEyo0EVEwoQKXUQkTJhz\njbrWp3EvZlYAfNHIp3cHDjZjnFCn9+Mrei++Tu/H14XD+9HfORd/sp1atNCbwszSnXOpXucIFno/\nvqL34uv0fnxda3o/NOQiIhImVOgiImEilAp9rtcBgozej6/ovfg6vR9f12rej5AZQxcRkW8XSkfo\nIiLyLUKi0M3sfDPbamY7zGy213m8Ymb9zOw9M9tsZhvN7A6vMwUDM4sws0wze83rLF4zs1gzW2Zm\nW3zfJ2d4nckrZnaX7+dkg5mwtvk3AAACDklEQVQtMbOwXzsy6Av9uMWoLwBGANPNbIS3qTxTDfzY\nOTccOB24tRW/F8e7A9jsdYgg8SjwpnNuGDCGVvq+mFkCcDuQ6pwbSd0U31d5myrwgr7QOW4xaudc\nJfDlYtStjnMu3zm31ne/hLof1gRvU3nLzPoCFwLPeJ3Fa2bWBTgHmAfgnKt0zhV5m8pTbYEOZtYW\niKaeFdXCTSgUen2LUbfqEgMwsyQgBVjtbRLP/QG4B6j1OkgQGAgUAM/5hqCeMbOOXofygnMuD3gY\nyAbygWLn3Fvepgq8UCh0vxajbk3MrBPwMnCnc+6I13m8YmYXAQeccxleZwkSbYGxwBPOuRTgGNAq\nP3Mys67U/SY/AOgDdDSza71NFXihUOh+LUbdWphZJHVlvtg5t9zrPB47E7jEzPZQNxQ3ycwWeRvJ\nU7lArnPuy9/allFX8K3RFGC3c67AOVcFLAcmepwp4EKh0LUYtY+ZGXXjo5udc494ncdrzrn7nHN9\nnXNJ1H1fvOucC/ujsBNxzu0DcsxsqG/TZGCTh5G8lA2cbmbRvp+bybSCD4ibtKZoS9Bi1F9zJjAD\nyDKzdb5t9/vWdhUBuA1Y7Dv42QXc4HEeTzjnVpvZMmAtdWeHZdIKrhjVlaIiImEiFIZcRETEDyp0\nEZEwoUIXEQkTKnQRkTChQhcRCRMqdBGRMKFCFxEJEyp0EZEw8f/pavD4X6i2SQAAAABJRU5ErkJg\ngg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x7f876647a860>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAHSCAYAAAA5eGh0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt219Mk/f///9HaxOnNULI1iIWxrSi\nk8URHfFPYjK7g2YaiOhUkkUPdrIlLNmOfX8mduLigYdkMYsHYKIBBDM2o43GGNEjdIZEl2iE6JQ/\nFlw0bI1b4aLfA3/29674nuCAvvrifjuif676fPC6ruvRq0VXMpkUAAAwgzvTAwAAgP8fxQwAgEEo\nZgAADEIxAwBgEIoZAACDUMwAABjEk+kBXseBAwcejo2N+TM9x1Rzu91jY2Nj1r1ZSiaTYy6Xy7pc\nkr1r5vF4xkZHR63LJdm7P86ZM2fMcRzrctl6jEmS2+2OffPNN/kv3p+VxTw2Nubfvn17pseYcm1t\nbW5bc8VisUyPMS38fr+1a1ZbW5vpMaZFJBKxcn/0+/1WrlkkErHyGJOktra2l15gWvkuBACAbEUx\nAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAY\nhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGGTWFvOVK1dUUVGhzZs3\n6+jRo+Mev3btmnbu3KmysjKdO3cudf+tW7f06aefauvWrdq2bZui0ehMjj0htma7f/++Tpw4oePH\nj+v69evjHu/v79fJkyd15MgR9fT0pO5/9OiRTp06paamJjU3N6u7u3smx34lW9dLkqLRqJYvX65g\nMKhDhw6Ne7yjo0OrV6+Wx+NRa2tr6v6uri6tX79epaWlWrVqlZqbm2dy7FeydV+U7F2zbDrOPNP+\nLxjIcRwdPHhQP/zwg/Lz81VdXa1NmzZp6dKlqecsWrRIBw4cUGNjY9q2b7zxhr777ju9/fbbGhwc\n1K5du7RhwwYtXLhwpmO8lK3ZxsbGdPnyZVVUVMjr9aqtrU3FxcXKy8tLPWfBggUKhULq6upK29bj\n8SgUCik3N1fxeFytra0qLCzU3LlzZzrGOLaul/QsW01Njc6fP69AIKDy8nJVVlZq5cqVqecUFRWp\noaFBhw8fTtt2/vz5OnbsmJYtW6b+/n6tWbNG4XBYubm5Mx1jHFv3RcneNcu242xWFvONGzdUVFSk\nwsJCSdLHH3+sixcvpi3S4sWLJUkulytt2+Li4tTPPp9PeXl5evz4sTEnQ1uzDQ4OKicnJzVLMBjU\nvXv30k6Gzx97Mdd/nxi8Xq/mzZunp0+fGnEytHW9JKmzs1PBYFBLliyRJFVXV6u9vT3tJP88g9ud\n/uFdSUlJ6ueCggL5fD4NDQ0ZcZK3dV+U7F2zbDvOZuVH2YODg8rPz0/d9vv9isVik36dGzduaGRk\nJLXYJrA1Wzwel9frTd32er2Kx+OTfp1YLCbHcZSTkzOV4702W9dLkvr6+tLmCQQC6uvrm/TrdHZ2\nKpFIpJ1EM8nWfVGyd82y7TiblVfMyWRy3H0vvkt6laGhIe3du1d1dXXj3jlmks3Z/q14PK4LFy4o\nFApN+ncyXWxer6nINjAwoN27d6uxsdGobP+WifuiZO+aZdtxZsZvbYb5/X49fPgwdTsWi8nn8014\n+z///FM1NTX68ssv9f7770/HiK/N1mwvXpW8eNXyKolEQmfOnNHatWvT3jlnmq3rJT272nrw4EHq\ndm9vrwoKCia8/fDwsLZs2aK6ujqtW7duOkZ8Lbbui5K9a5Ztx9msLOb33ntPv/32m3p7ezUyMqKz\nZ8/qww8/nNC2IyMj+vrrr1VRUaFwODy9g74GW7P5fD49efJEw8PDchxH3d3dad/9/BPHcRSNRlVS\nUmLMR2vP2bpeklReXq47d+7o7t27SiQSampqUmVl5YS2TSQSqqqq0p49e7Rjx45pnnRybN0XJXvX\nLNuOs1n5UbbH49HevXv1xRdfyHEcVVVVKRgMqr6+XqWlpdq0aZNu3rypr776Sn/88YcuXbqk77//\nXj/++KOi0ah++eUXPXnyRO3t7ZKkuro6rVixIsOpnrE1m9vt1saNG3X69Gklk0mtWLFCeXl56uzs\n1FtvvaV33nlHg4ODikaj+vvvv3Xv3j1dvXpV1dXV6unp0cDAgP766y/dvn1bkhQKhfTmm29mOJW9\n6yU9y1ZfX69wOCzHcfTZZ5+ptLRU+/bt0wcffKDKykpdvXpVVVVVevz4sX7++WfV1tbq119/VUtL\nizo6OvT777+roaFBktTQ0KCysrLMhpK9+6Jk75pl23Hmetln76aLRCLJ7du3Z3qMKdfW1iZbc73O\nH1pkA7/fb+2a1dbWZnqMaRGJRKzcH/1+v5VrFolErDzGpNRxNu7L7ln5UTYAAKaimAEAMAjFDACA\nQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZ\nAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYxJVMJjM9\nw6QdPHjQGR0dte5Nhcfj0ejoaKbHmHLJZFIulyvTY0yLOXPmyHGcTI8x5WzdFyV7s7ndbo2NjWV6\njCln63pJksfjGfvPf/4zZ9z9mRjm3xodHXXX1tZmeowpF4lEZGuuWCyW6TGmhd/vt3bNbMwl2Zst\nEolo+/btmR5jyrW1tVm5XpIUiUReeoFp3VUnAADZjGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAM\nQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwA\nABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBZm0xR6NRLV++XMFgUIcOHRr3eEdHh1avXi2Px6PW1tbU\n/V1dXVq/fr1KS0u1atUqNTc3z+TYE2Jrtvv37+vEiRM6fvy4rl+/Pu7x/v5+nTx5UkeOHFFPT0/q\n/kePHunUqVNqampSc3Ozuru7Z3LsV7J1vSR7s9maS5KuXLmiiooKbd68WUePHh33+LVr17Rz506V\nlZXp3Llzqftv3bqlTz/9VFu3btW2bdsUjUZncuxXyqY180z7v2Agx3FUU1Oj8+fPKxAIqLy8XJWV\nlVq5cmXqOUVFRWpoaNDhw4fTtp0/f76OHTumZcuWqb+/X2vWrFE4HFZubu5Mx3gpW7ONjY3p8uXL\nqqiokNfrVVtbm4qLi5WXl5d6zoIFCxQKhdTV1ZW2rcfjUSgUUm5uruLxuFpbW1VYWKi5c+fOdIxx\nbF0vyd5stuaSnmU7ePCgfvjhB+Xn56u6ulqbNm3S0qVLU89ZtGiRDhw4oMbGxrRt33jjDX333Xd6\n++23NTg4qF27dmnDhg1auHDhTMcYJ9vWbFYWc2dnp4LBoJYsWSJJqq6uVnt7e9oiFRcXS5Lc7vQP\nFUpKSlI/FxQUyOfzaWhoyJgDy9Zsg4ODysnJSR3kwWBQ9+7dSyvm54+5XK60bf97fq/Xq3nz5unp\n06dGFLOt6yXZm83WXJJ048YNFRUVqbCwUJL08ccf6+LFi2nFvHjxYknjj7PnmSXJ5/MpLy9Pjx8/\nNqKYs23NZuVH2X19fakdT5ICgYD6+vom/TqdnZ1KJBJpO22m2ZotHo/L6/Wmbnu9XsXj8Um/TiwW\nk+M4ysnJmcrxXput6yXZm83WXNKzN8D5+fmp236/X7FYbNKvc+PGDY2MjKT9njIp29ZsVl4xJ5PJ\ncfe9+O7vVQYGBrR79241NjaOe4eVSTZn+7fi8bguXLigUCg06d/JdLF5vWzNZmsuaWqyDQ0Nae/e\nvaqrqzMmW7atmRm/tRkWCAT04MGD1O3e3l4VFBRMePvh4WFt2bJFdXV1Wrdu3XSM+NpszfbiFfKL\nV9CvkkgkdObMGa1duzbtiiDTbF0vyd5stuaSnl0hP3z4MHU7FovJ5/NNePs///xTNTU1+vLLL/X+\n++9Px4ivJdvWbFYWc3l5ue7cuaO7d+8qkUioqalJlZWVE9o2kUioqqpKe/bs0Y4dO6Z50smzNZvP\n59OTJ080PDwsx3HU3d2d9p3WP3EcR9FoVCUlJUZ9bCjZu16SvdlszSVJ7733nn777Tf19vZqZGRE\nZ8+e1YcffjihbUdGRvT111+roqJC4XB4egedpGxbs1lZzB6PR/X19QqHw3r33Xe1c+dOlZaWat++\nffrpp58kSVevXlUgENDJkyf1+eefq7S0VJLU0tKijo4ONTQ0qKysTGVlZeP+CjiTbM3mdru1ceNG\nnT59Wk1NTVq6dKny8vLU2dmpu3fvSnr2/dixY8fU09OjS5cuqampSZLU09OjgYEB3b59Wy0tLWpp\nadGjR48yGSfF1vWS7M1may7pWba9e/fqiy++UGVlpcLhsILBoOrr63Xx4kVJ0s2bN/XRRx/p/Pnz\n+vbbb7V161ZJz/470i+//KL29nZ98skn+uSTT3Tr1q1MxknJtjVzveyzd9NFIpFkbW1tpseYcpFI\nRLbmep0/IMkGfr/f2jWzMZdkb7ZIJKLt27dneowp19bWZuV6Sal9cdyX3bPyihkAAFNRzAAAGIRi\nBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAw\nCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAM4kom\nk5meYdIOHjzojI6OWvemwuPxaHR0NNNjTDm3262xsbFMjzEtbM2WTCblcrkyPca0sDWbrblsPcYk\nye12j33zzTdzXrzfk4lh/q3R0VF3bW1tpseYcpFIRLbm2r59e6bHmBZtbW1WZmtra1MsFsv0GNPC\n7/dbmc3mXDYeY5LU1tb20gtM6646AQDIZhQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACD\nUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMA\nAAahmAEAMAjFDACAQWZtMUejUS1fvlzBYFCHDh0a93hHR4dWr14tj8ej1tbW1P1dXV1av369SktL\ntWrVKjU3N8/k2BNia7YrV66ooqJCmzdv1tGjR8c9fu3aNe3cuVNlZWU6d+5c6v5bt27p008/1dat\nW7Vt2zZFo9GZHPuVbM0lSffv39eJEyd0/PhxXb9+fdzj/f39OnnypI4cOaKenp7U/Y8ePdKpU6fU\n1NSk5uZmdXd3z+TYr2RrLsnebNl0nHmm/V8wkOM4qqmp0fnz5xUIBFReXq7KykqtXLky9ZyioiI1\nNDTo8OHDadvOnz9fx44d07Jly9Tf3681a9YoHA4rNzd3pmO8lK3ZHMfRwYMH9cMPPyg/P1/V1dXa\ntGmTli5dmnrOokWLdODAATU2NqZt+8Ybb+i7777T22+/rcHBQe3atUsbNmzQwoULZzrGOLbmkqSx\nsTFdvnxZFRUV8nq9amtrU3FxsfLy8lLPWbBggUKhkLq6utK29Xg8CoVCys3NVTweV2trqwoLCzV3\n7tyZjjGOrbkke7Nl23E2K4u5s7NTwWBQS5YskSRVV1ervb09rbyKi4slSW53+ocKJSUlqZ8LCgrk\n8/k0NDRkRHlJ9ma7ceOGioqKVFhYKEn6+OOPdfHixbQDa/HixZIkl8uVtu3zvJLk8/mUl5enx48f\nG1FgtuaSpMHBQeXk5KTmCQaDunfvXtpJ/vljL2b7733O6/Vq3rx5evr0qREneVtzSfZmy7bjbFZ+\nlN3X15daIEkKBALq6+ub9Ot0dnYqkUikLW6m2ZptcHBQ+fn5qdt+v1+xWGzSr3Pjxg2NjIyk/Y4y\nydZckhSPx+X1elO3vV6v4vH4pF8nFovJcRzl5ORM5XivzdZckr3Zsu04m5VXzMlkctx9L75LepWB\ngQHt3r1bjY2N4648M8nWbFORa2hoSHv37lVdXR25skQ8HteFCxcUCoUm/Xsxma25JDOzZdtxZtdR\nPEGBQEAPHjxI3e7t7VVBQcGEtx8eHtaWLVtUV1endevWTceIr83WbH6/Xw8fPkzdjsVi8vl8E97+\nzz//VE1Njb788ku9//770zHia7E1lzT+auvFq7FXSSQSOnPmjNauXZt2tZNptuaS7M2WbcfZrCzm\n8vJy3blzR3fv3lUikVBTU5MqKysntG0ikVBVVZX27NmjHTt2TPOkk2drtvfee0+//fabent7NTIy\norNnz+rDDz+c0LYjIyP6+uuvVVFRoXA4PL2DTpKtuaRn38c9efJEw8PDchxH3d3dad/X/RPHcRSN\nRlVSUmLM1ynP2ZpLsjdbth1ns/KjbI/Ho/r6eoXDYTmOo88++0ylpaXat2+fPvjgA1VWVurq1auq\nqqrS48eP9fPPP6u2tla//vqrWlpa1NHRod9//10NDQ2SpIaGBpWVlWU21P/H1mwej0d79+7VF198\nIcdxVFVVpWAwqPr6epWWlmrTpk26efOmvvrqK/3xxx+6dOmSvv/+e/3444+KRqP65Zdf9OTJE7W3\nt0uS6urqtGLFigynsjeX9OyPCzdu3KjTp08rmUxqxYoVysvLU2dnp9566y298847GhwcVDQa1d9/\n/6179+7p6tWrqq6uVk9PjwYGBvTXX3/p9u3bkqRQKKQ333wzw6nszSXZmy3bjjPXyz57N10kEknW\n1tZmeowpF4lEZGuu7du3Z3qMadHW1mZltra2ttf645hs8Lp/+GM6m3PZeIxJz46z2tracV92z8qP\nsgEAMBXFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAA\nDEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DM\nAAAYhGIGAMAgrmQymekZJm3//v2Oy+Wy7k3FnDlz5DhOpseYch6PR6Ojo5keY1rYmi2ZTMrlcmV6\njGlhazZbzx+2rpckJZPJsf3798958X5PJob5t1wulzsWi2V6jCnn9/tVW1ub6TGmXCQSsTKXZG+2\nSCQiG48x6dlxZmM2m88fNq6XJPn9/pdeYFp31QkAQDajmAEAMAjFDACAQShmAAAMQjEDAGAQihkA\nAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAU\nMwAABqGYAQAwCMUMAIBBKGYAAAwya4v5/v37OnHihI4fP67r16+Pe7y/v18nT57UkSNH1NPTk7r/\n0aNHOnXqlJqamtTc3Kzu7u6ZHHtCotGoli9frmAwqEOHDo17vKOjQ6tXr5bH41Fra2vq/q6uLq1f\nv16lpaVatWqVmpubZ3LsVyJXduWS7D3ObM0l2bs/ZtOaeab9XzDQ2NiYLl++rIqKCnm9XrW1tam4\nuFh5eXmp5yxYsEChUEhdXV1p23o8HoVCIeXm5ioej6u1tVWFhYWaO3fuTMd4KcdxVFNTo/PnzysQ\nCKi8vFyVlZVauXJl6jlFRUVqaGjQ4cOH07adP3++jh07pmXLlqm/v19r1qxROBxWbm7uTMcYh1zZ\nlUuy9zizNZdk7/6YbWs2K4t5cHBQOTk5WrhwoSQpGAzq3r17aYv0/DGXy5W27X/vZF6vV/PmzdPT\np0+NObA6OzsVDAa1ZMkSSVJ1dbXa29vTDqzi4mJJktud/oFJSUlJ6ueCggL5fD4NDQ0ZcWCRK7ty\nSfYeZ7bmkuzdH7NtzWblR9nxeFxerzd12+v1Kh6PT/p1YrGYHMdRTk7OVI73r/T19amwsDB1OxAI\nqK+vb9Kv09nZqUQioaVLl07leK+NXP/MtFySvceZrbkke/fHbFuzWXnFPBXi8bguXLigUCg07h1W\nJiWTyXH3TXa+gYEB7d69W42NjePeFWcKuf43E3NNFVOPs3/L1Fzsj//bTK6ZPb+1SXjx3dKL76Ze\nJZFI6MyZM1q7dq3y8/OnY8TXFggE9ODBg9Tt3t5eFRQUTHj74eFhbdmyRXV1dVq3bt10jPhayPVy\npuaS7D3ObM0l2bs/Ztuazcpi9vl8evLkiYaHh+U4jrq7u1Pfm7yK4ziKRqMqKSkx5mOa/1ZeXq47\nd+7o7t27SiQSampqUmVl5YS2TSQSqqqq0p49e7Rjx45pnnRyyDWeybkke48zW3NJ9u6P2bZms/Kj\nbLfbrY0bN+r06dNKJpNasWKF8vLy1NnZqbfeekvvvPOOBgcHFY1G9ffff+vevXu6evWqqqur1dPT\no4GBAf3111+6ffu2JCkUCunNN9/McKpnPB6P6uvrFQ6H5TiOPvvsM5WWlmrfvn364IMPVFlZqatX\nr6qqqkqPHz/Wzz//rNraWv36669qaWlRR0eHfv/9dzU0NEiSGhoaVFZWltlQIle25ZLsPc5szSXZ\nuz9m25q5XvadgukikUgyFotleowp5/f7VVtbm+kxplwkErEyl2RvtkgkIhuPMenZcWZjNpvPHzau\nl5Ras3FfWM/Kj7IBADAVxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAw\nCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjED\nAGAQihkAAINQzAAAGIRiBgDAIK5kMpnpGSatrq7OcRzHujcVHo9Ho6OjmR5jyrndbo2NjWV6jGlh\n65olk0m5XK5MjzEt5syZI8dxMj3GlLN1X7T5/OF2u8e++eabOS/e78nEMP+W4zju2traTI8x5SKR\niGzNtX379kyPMS3a2tqsXbNYLJbpMaaF3++3ds1szWXx+eOlF5jWXXUCAJDNKGYAAAxCMQMAYBCK\nGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDA\nIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABhk1hZzNBrV8uXLFQwGdejQoXGP\nd3R0aPXq1fJ4PGptbU3d39XVpfXr16u0tFSrVq1Sc3PzTI49IbZmu3LliioqKrR582YdPXp03OPX\nrl3Tzp07VVZWpnPnzqXuv3Xrlj799FNt3bpV27ZtUzQancmxX8nW9ZKk+/fv68SJEzp+/LiuX78+\n7vH+/n6dPHlSR44cUU9PT+r+R48e6dSpU2pqalJzc7O6u7tncuxXsnnNbM2WTecPz7T/CwZyHEc1\nNTU6f/68AoGAysvLVVlZqZUrV6aeU1RUpIaGBh0+fDht2/nz5+vYsWNatmyZ+vv7tWbNGoXDYeXm\n5s50jJeyNZvjODp48KB++OEH5efnq7q6Wps2bdLSpUtTz1m0aJEOHDigxsbGtG3feOMNfffdd3r7\n7bc1ODioXbt2acOGDVq4cOFMxxjH1vWSpLGxMV2+fFkVFRXyer1qa2tTcXGx8vLyUs9ZsGCBQqGQ\nurq60rb1eDwKhULKzc1VPB5Xa2urCgsLNXfu3JmOMY7Na2Zrtmw7f8zKYu7s7FQwGNSSJUskSdXV\n1Wpvb0/b+YqLiyVJbnf6hwolJSWpnwsKCuTz+TQ0NGTEzifZm+3GjRsqKipSYWGhJOnjjz/WxYsX\n0w6sxYsXS5JcLlfats/zSpLP51NeXp4eP35sRDHbul6SNDg4qJycnNTvORgM6t69e2nF/PyxF9fs\nvzN4vV7NmzdPT58+NaKYbV4zW7Nl2/ljVn6U3dfXl1ogSQoEAurr65v063R2diqRSKQtbqbZmm1w\ncFD5+fmp236/X7FYbNKvc+PGDY2MjKT9jjLJ1vWSpHg8Lq/Xm7rt9XoVj8cn/TqxWEyO4ygnJ2cq\nx3ttNq+Zrdmy7fwxK6+Yk8nkuPtefJf0KgMDA9q9e7caGxvHvXPMJFuzTUWuoaEh7d27V3V1dVbl\nMnG9pko8HteFCxcUCoUm/XuZLjavma3Zsu38YcZvbYYFAgE9ePAgdbu3t1cFBQUT3n54eFhbtmxR\nXV2d1q1bNx0jvjZbs/n9fj18+DB1OxaLyefzTXj7P//8UzU1Nfryyy/1/vvvT8eIr8XW9ZLGXyG/\neAX9KolEQmfOnNHatWvTrnYyzeY1szVbtp0/ZmUxl5eX686dO7p7964SiYSamppUWVk5oW0TiYSq\nqqq0Z88e7dixY5onnTxbs7333nv67bff1Nvbq5GREZ09e1YffvjhhLYdGRnR119/rYqKCoXD4ekd\ndJJsXS/p2fdxT5480fDwsBzHUXd3d9r3df/EcRxFo1GVlJQY83Hoczavma3Zsu38MSuL2ePxqL6+\nXuFwWO+++6527typ0tJS7du3Tz/99JMk6erVqwoEAjp58qQ+//xzlZaWSpJaWlrU0dGhhoYGlZWV\nqaysbNxflGaSrdk8Ho/27t2rL774QpWVlQqHwwoGg6qvr9fFixclSTdv3tRHH32k8+fP69tvv9XW\nrVslPfvvH7/88ova29v1ySef6JNPPtGtW7cyGSfF1vWSnv1x0MaNG3X69Gk1NTVp6dKlysvLU2dn\np+7evSvp2Xd/x44dU09Pjy5duqSmpiZJUk9PjwYGBnT79m21tLSopaVFjx49ymScFJvXzNZs2Xb+\ncL3ss3fTRSKRZG1tbabHmHKRSES25tq+fXumx5gWbW1t1q7Z6/xxTDbw+/3WrpmtuSw/f4z7sntW\nXjEDAGAqihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwA\nABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAah\nmAEAMAjFDACAQVzJZDLTM0zagQMHnLGxMeveVHg8Ho2OjmZ6jClnay5JcrvdGhsby/QYU87WXJK9\n2Ww9zmxdL0lyu91j33zzzZy3SXG9AAARWUlEQVQX7/dkYph/a2xszL19+/ZMjzHl2traVFtbm+kx\nplwkErEyl/Qsm637oo25JHuz2Xz+sHG9JKmtre2lF5jWXXUCAJDNKGYAAAxCMQMAYBCKGQAAg1DM\nAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAG\noZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDzNpivnLliioqKrR582YdPXp03OPXrl3Tzp07VVZW\npnPnzqXuv3Xrlj799FNt3bpV27ZtUzQancmxJyQajWr58uUKBoM6dOjQuMc7Ojq0evVqeTwetba2\npu7v6urS+vXrVVpaqlWrVqm5uXkmx34lW3PZvC/ams3WXBLHmQlr5pn2f8FAjuPo4MGD+uGHH5Sf\nn6/q6mpt2rRJS5cuTT1n0aJFOnDggBobG9O2feONN/Tdd9/p7bff1uDgoHbt2qUNGzZo4cKFMx3j\npRzHUU1Njc6fP69AIKDy8nJVVlZq5cqVqecUFRWpoaFBhw8fTtt2/vz5OnbsmJYtW6b+/n6tWbNG\n4XBYubm5Mx1jHJtz2bwv2pjN1lwSx5kpazYri/nGjRsqKipSYWGhJOnjjz/WxYsX0xZp8eLFkiSX\ny5W2bXFxcepnn8+nvLw8PX782JgDq7OzU8FgUEuWLJEkVVdXq729Pe3Aep7B7U7/wKSkpCT1c0FB\ngXw+n4aGhow4sGzNZfO+aGs2W3NJHGeSGWs2Kz/KHhwcVH5+fuq23+9XLBab9OvcuHFDIyMjqcU2\nQV9fX9o8gUBAfX19k36dzs5OJRKJtB03k2zNZfO+aGs2W3NJHGevMlNrNiuvmJPJ5Lj7XnyX9CpD\nQ0Pau3ev6urqxr1zzKSpyDYwMKDdu3ersbHRmGzk+t9s3hdNzGZrLonj7J/M5JqZ8VubYX6/Xw8f\nPkzdjsVi8vl8E97+zz//VE1Njb788ku9//770zHiawsEAnrw4EHqdm9vrwoKCia8/fDwsLZs2aK6\nujqtW7duOkZ8LbbmsnlftDWbrbkkjrP/ZabXbFYW83vvvafffvtNvb29GhkZ0dmzZ/Xhhx9OaNuR\nkRF9/fXXqqioUDgcnt5BX0N5ebnu3Lmju3fvKpFIqKmpSZWVlRPaNpFIqKqqSnv27NGOHTumedLJ\nsTWXzfuirdlszSVxnL1MJtZsVhazx+PR3r179cUXX6iyslLhcFjBYFD19fW6ePGiJOnmzZv66KOP\ndP78eX377bfaunWrpGf/leCXX35Re3u7PvnkE33yySe6detWJuOk8Xg8qq+vVzgc1rvvvqudO3eq\ntLRU+/bt008//SRJunr1qgKBgE6ePKnPP/9cpaWlkqSWlhZ1dHSooaFBZWVlKisrU1dXVybjpNic\ny+Z90cZstuaSOM5MWTPXyz57N10kEklu374902NMuba2NtXW1mZ6jCkXiUSszCU9y2brvmhjLsne\nbDafP2xcLym1ZuO+7J6VV8wAAJiKYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAA\ng1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEFcymcz0DJO2f/9+x+VyWfemYs6cOXIcJ9NjTDmPx6PR\n0dFMjzEtbM1may7J3mzJZFIulyvTY0w5W3NJUjKZHNu/f/+cF+/3ZGKYf8vlcrljsVimx5hyfr9f\ntbW1mR5jykUiEStzSfZmszWXZG+2SCQiW8+LNuaSJL/f/9ILTOuuOgEAyGYUMwAABqGYAQAwCMUM\nAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQ\nihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADDJri/n+/fs6ceKEjh8/ruvXr497\nvL+/XydPntSRI0fU09OTuv/Ro0c6deqUmpqa1NzcrO7u7pkce0Ki0aiWL1+uYDCoQ4cOjXu8o6ND\nq1evlsfjUWtra+r+rq4urV+/XqWlpVq1apWam5tncuxXIld25ZLszWZrLsnec2M25fJM+79goLGx\nMV2+fFkVFRXyer1qa2tTcXGx8vLyUs9ZsGCBQqGQurq60rb1eDwKhULKzc1VPB5Xa2urCgsLNXfu\n3JmO8VKO46impkbnz59XIBBQeXm5KisrtXLlytRzioqK1NDQoMOHD6dtO3/+fB07dkzLli1Tf3+/\n1qxZo3A4rNzc3JmOMQ65siuXZG82W3NJ9p4bsy3XrCzmwcFB5eTkaOHChZKkYDCoe/fupS3S88dc\nLlfatv99AHm9Xs2bN09Pnz41YueTpM7OTgWDQS1ZskSSVF1drfb29rSTRnFxsSTJ7U7/wKSkpCT1\nc0FBgXw+n4aGhow4aZAru3JJ9mazNZdk77kx23LNyo+y4/G4vF5v6rbX61U8Hp/068RiMTmOo5yc\nnKkc71/p6+tTYWFh6nYgEFBfX9+kX6ezs1OJREJLly6dyvFeG7n+mWm5JHuz2ZpLsvfcmG25ZuUV\n81SIx+O6cOGCQqHQuHdYmZRMJsfdN9n5BgYGtHv3bjU2No57x58p5PrfTMwl2ZvN1lxTxdRz4781\nk7ns2iMm6MV3Sy++m3qVRCKhM2fOaO3atcrPz5+OEV9bIBDQgwcPUrd7e3tVUFAw4e2Hh4e1ZcsW\n1dXVad26ddMx4msh18uZmkuyN5utuSR7z43ZlmtWFrPP59OTJ080PDwsx3HU3d2d+k7oVRzHUTQa\nVUlJiVEfQT1XXl6uO3fu6O7du0okEmpqalJlZeWEtk0kEqqqqtKePXu0Y8eOaZ50csg1nsm5JHuz\n2ZpLsvfcmG25ZmUxu91ubdy4UadPn1ZTU5OWLl2qvLw8dXZ26u7du5Ke/bHAsWPH1NPTo0uXLqmp\nqUmS1NPTo4GBAd2+fVstLS1qaWnRo0ePMhknjcfjUX19vcLhsN59913t3LlTpaWl2rdvn3766SdJ\n0tWrVxUIBHTy5El9/vnnKi0tlSS1tLSoo6NDDQ0NKisrU1lZ2bi/UMwUcmVXLsnebLbmkuw9N2Zb\nLtfLvi8xXSQSScZisUyPMeX8fr9qa2szPcaUi0QiVuaS7M1may7J3myRSES2nhdtzCWlzvnjvrCe\nlVfMAACYimIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBB\nKGYAAAziSiaTmZ5h0vbv3++4XC7r3lQkk0m5XK5MjzHl5syZI8dxMj3GtLB1zdxut8bGxjI9xrTw\neDwaHR3N9BhTztZ90ebzx5w5c8b+7//+b86L93syMcy/5XK53LFYLNNjTDm/3y9bc9XW1mZ6jGkR\niUSsXbPt27dneoxp0dbWZuX+aPO+aON6SVIkEnnpBaZ1V50AAGQzihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBB\nKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAaZtcV8//59nThxQsePH9f169fHPd7f36+T\nJ0/qyJEj6unpSd3/6NEjnTp1Sk1NTWpublZ3d/dMjj0htmaLRqNavny5gsGgDh06NO7xjo4OrV69\nWh6PR62tran7u7q6tH79epWWlmrVqlVqbm6eybFfydb1kqQrV66ooqJCmzdv1tGjR8c9fu3aNe3c\nuVNlZWU6d+5c6v5bt27p008/1datW7Vt2zZFo9GZHPuVbN0XJXv3x2xaM8+0/wsGGhsb0+XLl1VR\nUSGv16u2tjYVFxcrLy8v9ZwFCxYoFAqpq6srbVuPx6NQKKTc3FzF43G1traqsLBQc+fOnekYL2Vr\nNsdxVFNTo/PnzysQCKi8vFyVlZVauXJl6jlFRUVqaGjQ4cOH07adP3++jh07pmXLlqm/v19r1qxR\nOBxWbm7uTMcYx9b1kp6t2cGDB/XDDz8oPz9f1dXV2rRpk5YuXZp6zqJFi3TgwAE1NjambfvGG2/o\nu+++09tvv63BwUHt2rVLGzZs0MKFC2c6xji27ouSvftjtq3ZrCzmwcFB5eTkpA7yYDCoe/fupe18\nzx9zuVxp2/73Yni9Xs2bN09Pnz41YueT7M3W2dmpYDCoJUuWSJKqq6vV3t6edmAVFxdLktzu9A+C\nSkpKUj8XFBTI5/NpaGjIiJOhreslSTdu3FBRUZEKCwslSR9//LEuXryYVsyLFy+WND7b87WUJJ/P\np7y8PD1+/NiIYrZ1X5Ts3R+zbc1m5UfZ8XhcXq83ddvr9Soej0/6dWKxmBzHUU5OzlSO96/Ymq2v\nry91gpekQCCgvr6+Sb9OZ2enEolEWjlkkq3rJT07yefn56du+/1+xWKxSb/OjRs3NDIykrb+mWTr\nvijZuz9m25rNyivmqRCPx3XhwgWFQqFx7xyznYnZksnkuPsmO9vAwIB2796txsbGce+Ks5mJ6yVN\nzZoNDQ1p7969qqurM2bN2Bf/mYn7Y7atmV17xAS9+C7wxXeJr5JIJHTmzBmtXbs27YrABLZmCwQC\nevDgQep2b2+vCgoKJrz98PCwtmzZorq6Oq1bt246Rnwttq6X9OwK+eHDh6nbsVhMPp9vwtv/+eef\nqqmp0Zdffqn3339/OkZ8Lbbui5K9+2O2rdmsLGafz6cnT55oeHhYjuOou7s77Tutf+I4jqLRqEpK\nSoz6COo5W7OVl5frzp07unv3rhKJhJqamlRZWTmhbROJhKqqqrRnzx7t2LFjmiedHFvXS5Lee+89\n/fbbb+rt7dXIyIjOnj2rDz/8cELbjoyM6Ouvv1ZFRYXC4fD0DjpJtu6Lkr37Y7at2az8KNvtdmvj\nxo06ffq0ksmkVqxYoby8PHV2duqtt97SO++8o8HBQUWjUf3999+6d++erl69qurqavX09GhgYEB/\n/fWXbt++LUkKhUJ68803M5zqGVuzeTwe1dfXKxwOy3EcffbZZyotLdW+ffv0wQcfqLKyUlevXlVV\nVZUeP36sn3/+WbW1tfr111/V0tKijo4O/f7772poaJAkNTQ0qKysLLOhZO96Sc/WbO/evfriiy/k\nOI6qqqoUDAZVX1+v0tJSbdq0STdv3tRXX32lP/74Q5cuXdL333+vH3/8UdFoVL/88ouePHmi9vZ2\nSVJdXZ1WrFiR4VT27ouSvftjtq2Z62WfvZsuEokkX+ePSEz3un8cYzq/36/a2tpMjzEtIpGItWu2\nffv2TI8xLdra2qzcH23eF21cL+nZmtXW1o77sntWfpQNAICpKGYAAAxCMQMAYBCKGQAAg1DMAAAY\nhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgB\nADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABnElk8lMzzBp+/fvf+hyufyZ\nnmOqJZPJMZfLZd2bpTlz5ow5jmNdLsneNXO73WNjY2PW5ZIkj8czNjo6al02W/dFm88fHo8n9p//\n/Cf/xfuzspgBALCVle9CAADIVhQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiE\nYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEA\nMAjFDACAQShmAAAMQjEDAGCQ/wdJuZEoaHGMKwAAAABJRU5ErkJggg==\n",
       "<matplotlib.figure.Figure at 0x7f874e648390>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import random\n",
    "# http://stackoverflow.com/questions/10194482/custom-matplotlib-plot-chess-board-like-table-with-colored-cells\n",
    "\n",
    "from matplotlib.table import Table\n",
    "\n",
    "def main():\n",
    "    grid_table(8, 8)\n",
    "    plt.axis('scaled')\n",
    "    plt.show()\n",
    "\n",
    "def grid_table(nrows, ncols):\n",
    "    fig, ax = plt.subplots()\n",
    "    ax.set_axis_off()\n",
    "    colors = ['white', 'lightgrey', 'dimgrey']\n",
    "    tb = Table(ax, bbox=[0,0,2,2])\n",
    "    for i,j in itertools.product(range(ncols), range(nrows)):\n",
    "        tb.add_cell(i, j, 2./ncols, 2./nrows, text='{:0.2f}'.format(0.1234), \n",
    "                    loc='center', facecolor=random.choice(colors), edgecolor='grey') # facecolors=\n",
    "    ax.add_table(tb)\n",
    "    #ax.plot([0, .3], [.2, .2])\n",
    "    #ax.add_line(plt.Line2D([0.3, 0.5], [0.7, 0.7], linewidth=2, color='blue'))\n",
    "    return fig\n",
    "\n",
    "main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   },
   "outputs": [],
   "source": [
    "class defaultkeydict(collections.defaultdict):\n",
    "    \"\"\"Like defaultdict, but the default_factory is a function of the key.\n",
    "    >>> d = defaultkeydict(abs); d[-42]\n",
    "    42\n",
    "    \"\"\"\n",
    "    def __missing__(self, key):\n",
    "        self[key] = self.default_factory(key)\n",
    "        return self[key]"
   ]
2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "# Simulated Annealing visualisation using TSP\n",
    "\n",
    "Applying simulated annealing in traveling salesman problem to find the shortest tour to travel all cities in Romania. Distance between two cities is taken as the euclidean distance."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class TSP_problem(Problem):\n",
    "\n",
    "    '''\n",
    "    subclass of Problem to define various functions \n",
    "    '''\n",
    "\n",
    "    def two_opt(self, state):\n",
    "        '''\n",
    "        Neighbour generating function for Traveling Salesman Problem\n",
    "        '''\n",
    "        state2 = state[:]\n",
    "        l = random.randint(0, len(state2) - 1)\n",
    "        r = random.randint(0, len(state2) - 1)\n",
    "        if l > r:\n",
    "            l, r = r,l\n",
    "        state2[l : r + 1] = reversed(state2[l : r + 1])\n",
    "        return state2\n",
    "\n",
    "    def actions(self, state):\n",
    "        '''\n",
    "        action that can be excuted in given state\n",
    "        '''\n",
    "        return [self.two_opt]\n",
    "    \n",
    "    def result(self, state, action):\n",
    "        '''\n",
    "        result after applying the given action on the given state\n",
    "        '''\n",
    "        return action(state)\n",
    "\n",
    "    def path_cost(self, c, state1, action, state2):\n",
    "        '''\n",
    "        total distance for the Traveling Salesman to be covered if in state2\n",
    "        '''\n",
    "        cost = 0\n",
    "        for i in range(len(state2) - 1):\n",
    "            cost += distances[state2[i]][state2[i + 1]]\n",
    "        cost += distances[state2[0]][state2[-1]]\n",
    "        return cost\n",
    " \n",
    "    def value(self, state):\n",
    "        '''\n",
    "        value of path cost given negative for the given state\n",
    "        '''\n",
    "        return -1 * self.path_cost(None, None, None, state)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def init():\n",
    "    ''' \n",
    "    Initialisation function for matplotlib animation\n",
    "    '''\n",
    "    line.set_data([], [])\n",
    "    for name, coordinates in romania_map.locations.items():\n",
    "            ax.annotate(\n",
    "            name,\n",
    "            xy=coordinates, xytext=(-10, 5), textcoords='offset points', size = 10)\n",
    "    text.set_text(\"Cost = 0 i = 0\" )\n",
    "\n",
    "    return line, \n",
    "\n",
    "def animate(i):\n",
    "    '''\n",
    "    Animation function to set next path and print its cost.\n",
    "    '''\n",
    "    x, y = [], []\n",
    "    for name in states[i]:\n",
    "        x.append(romania_map.locations[name][0])\n",
    "        y.append(romania_map.locations[name][1])\n",
    "    x.append(romania_map.locations[states[i][0]][0])\n",
    "    y.append(romania_map.locations[states[i][0]][1])\n",
    "    line.set_data(x,y) \n",
    "    text.set_text(\"Cost = \" + str('{:.2f}'.format(TSP_problem.path_cost(None, None, None, None, states[i]))))\n",
    "    return line,"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to  previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
Robert Hönig's avatar
Robert Hönig a validé
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"799.9999880790713\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib notebook\n",
    "import matplotlib.pyplot as plt\n",
    "from matplotlib import animation\n",
    "import numpy as np\n",
    "\n",
    "font = {'family': 'roboto',\n",
    "        'color':  'darkred',\n",
    "        'weight': 'normal',\n",
    "        'size': 12,\n",
    "        }\n",
    "\n",
    "cities = []\n",
    "distances ={}\n",
    "states = []\n",
    "\n",
    "# creating plotting area\n",
    "fig = plt.figure(figsize = (8,6))\n",
    "ax = plt.axes(xlim=(60, 600), ylim=(245, 600))\n",
    "line, = ax.plot([], [], c=\"b\",linewidth = 1.5, marker = 'o', markerfacecolor = 'r', markeredgecolor = 'r',markersize = 10)\n",
    "text = ax.text(450, 565, \"\", fontdict = font)\n",
    "\n",
    "# creating initial path\n",
    "for name in romania_map.locations.keys():    \n",
    "    distances[name] = {}\n",
    "    cities.append(name)\n",
    "\n",
    "\n",
    "# distances['city1']['city2'] contains euclidean distance between their coordinates\n",
    "for name_1,coordinates_1 in romania_map.locations.items():\n",
    "    for name_2,coordinates_2 in romania_map.locations.items():\n",
    "        distances[name_1][name_2] = np.linalg.norm([coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])\n",
    "        distances[name_2][name_1] = np.linalg.norm([coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])\n",
    "\n",
    "# creating the problem        \n",
    "tsp_problem = TSP_problem(cities)\n",
    "\n",
    "# all the states as a 2-D list of paths\n",
    "states = simulated_annealing_full(tsp_problem)\n",
    "\n",
    "# calling the matplotlib animation function \n",
    "anim = animation.FuncAnimation(fig, animate, init_func = init,\n",
    "                           frames = len(states), interval = len(states), blit = True, repeat = False)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Iterative Simulated Annealing\n",
    "\n",
    "Providing the output of the previous run as input to the next run to give better performance."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "application/javascript": [
       "/* Put everything inside the global mpl namespace */\n",
       "window.mpl = {};\n",
       "\n",
       "\n",
       "mpl.get_websocket_type = function() {\n",
       "    if (typeof(WebSocket) !== 'undefined') {\n",
       "        return WebSocket;\n",
       "    } else if (typeof(MozWebSocket) !== 'undefined') {\n",
       "        return MozWebSocket;\n",
       "    } else {\n",
       "        alert('Your browser does not have WebSocket support.' +\n",
       "              'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
       "              'Firefox 4 and 5 are also supported but you ' +\n",
       "              'have to enable WebSockets in about:config.');\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
       "    this.id = figure_id;\n",
       "\n",
       "    this.ws = websocket;\n",
       "\n",
       "    this.supports_binary = (this.ws.binaryType != undefined);\n",
       "\n",
       "    if (!this.supports_binary) {\n",
       "        var warnings = document.getElementById(\"mpl-warnings\");\n",
       "        if (warnings) {\n",
       "            warnings.style.display = 'block';\n",
       "            warnings.textContent = (\n",
       "                \"This browser does not support binary websocket messages. \" +\n",
       "                    \"Performance may be slow.\");\n",
       "        }\n",
       "    }\n",
       "\n",
       "    this.imageObj = new Image();\n",
       "\n",
       "    this.context = undefined;\n",
       "    this.message = undefined;\n",
       "    this.canvas = undefined;\n",
       "    this.rubberband_canvas = undefined;\n",
       "    this.rubberband_context = undefined;\n",
       "    this.format_dropdown = undefined;\n",
       "\n",
       "    this.image_mode = 'full';\n",
       "\n",
       "    this.root = $('<div/>');\n",
       "    this._root_extra_style(this.root)\n",
       "    this.root.attr('style', 'display: inline-block');\n",
       "\n",
       "    $(parent_element).append(this.root);\n",
       "\n",
       "    this._init_header(this);\n",
       "    this._init_canvas(this);\n",
       "    this._init_toolbar(this);\n",
       "\n",
       "    var fig = this;\n",
       "\n",
       "    this.waiting = false;\n",
       "\n",
       "    this.ws.onopen =  function () {\n",
       "            fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
       "            fig.send_message(\"send_image_mode\", {});\n",
       "            if (mpl.ratio != 1) {\n",
       "                fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
       "            }\n",
       "            fig.send_message(\"refresh\", {});\n",
       "        }\n",
       "\n",
       "    this.imageObj.onload = function() {\n",
       "            if (fig.image_mode == 'full') {\n",
       "                // Full images could contain transparency (where diff images\n",
       "                // almost always do), so we need to clear the canvas so that\n",
       "                // there is no ghosting.\n",
       "                fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
       "            }\n",
       "            fig.context.drawImage(fig.imageObj, 0, 0);\n",
       "        };\n",
       "\n",
       "    this.imageObj.onunload = function() {\n",
       "        fig.ws.close();\n",
       "    }\n",
       "\n",
       "    this.ws.onmessage = this._make_on_message_function(this);\n",
       "\n",
       "    this.ondownload = ondownload;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_header = function() {\n",
       "    var titlebar = $(\n",
       "        '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
       "        'ui-helper-clearfix\"/>');\n",
       "    var titletext = $(\n",
       "        '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
       "        'text-align: center; padding: 3px;\"/>');\n",
       "    titlebar.append(titletext)\n",
       "    this.root.append(titlebar);\n",
       "    this.header = titletext[0];\n",
       "}\n",
       "\n",
       "\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_canvas = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var canvas_div = $('<div/>');\n",
       "\n",
       "    canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
       "\n",
       "    function canvas_keyboard_event(event) {\n",
       "        return fig.key_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    canvas_div.keydown('key_press', canvas_keyboard_event);\n",
       "    canvas_div.keyup('key_release', canvas_keyboard_event);\n",
       "    this.canvas_div = canvas_div\n",
       "    this._canvas_extra_style(canvas_div)\n",
       "    this.root.append(canvas_div);\n",
       "\n",
       "    var canvas = $('<canvas/>');\n",
       "    canvas.addClass('mpl-canvas');\n",
       "    canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
       "\n",
       "    this.canvas = canvas[0];\n",
       "    this.context = canvas[0].getContext(\"2d\");\n",
       "\n",
       "    var backingStore = this.context.backingStorePixelRatio ||\n",
       "\tthis.context.webkitBackingStorePixelRatio ||\n",
       "\tthis.context.mozBackingStorePixelRatio ||\n",
       "\tthis.context.msBackingStorePixelRatio ||\n",
       "\tthis.context.oBackingStorePixelRatio ||\n",
       "\tthis.context.backingStorePixelRatio || 1;\n",
       "\n",
       "    mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
       "\n",
       "    var rubberband = $('<canvas/>');\n",
       "    rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
       "\n",
       "    var pass_mouse_events = true;\n",
       "\n",
       "    canvas_div.resizable({\n",
       "        start: function(event, ui) {\n",
       "            pass_mouse_events = false;\n",
       "        },\n",
       "        resize: function(event, ui) {\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "        stop: function(event, ui) {\n",
       "            pass_mouse_events = true;\n",
       "            fig.request_resize(ui.size.width, ui.size.height);\n",
       "        },\n",
       "    });\n",
       "\n",
       "    function mouse_event_fn(event) {\n",
       "        if (pass_mouse_events)\n",
       "            return fig.mouse_event(event, event['data']);\n",
       "    }\n",
       "\n",
       "    rubberband.mousedown('button_press', mouse_event_fn);\n",
       "    rubberband.mouseup('button_release', mouse_event_fn);\n",
       "    // Throttle sequential mouse events to 1 every 20ms.\n",
       "    rubberband.mousemove('motion_notify', mouse_event_fn);\n",
       "\n",
       "    rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
       "    rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
       "\n",
       "    canvas_div.on(\"wheel\", function (event) {\n",
       "        event = event.originalEvent;\n",
       "        event['data'] = 'scroll'\n",
       "        if (event.deltaY < 0) {\n",
       "            event.step = 1;\n",
       "        } else {\n",
       "            event.step = -1;\n",
       "        }\n",
       "        mouse_event_fn(event);\n",
       "    });\n",
       "\n",
       "    canvas_div.append(canvas);\n",
       "    canvas_div.append(rubberband);\n",
       "\n",
       "    this.rubberband = rubberband;\n",
       "    this.rubberband_canvas = rubberband[0];\n",
       "    this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
       "    this.rubberband_context.strokeStyle = \"#000000\";\n",
       "\n",
       "    this._resize_canvas = function(width, height) {\n",
       "        // Keep the size of the canvas, canvas container, and rubber band\n",
       "        // canvas in synch.\n",
       "        canvas_div.css('width', width)\n",
       "        canvas_div.css('height', height)\n",
       "\n",
       "        canvas.attr('width', width * mpl.ratio);\n",
       "        canvas.attr('height', height * mpl.ratio);\n",
       "        canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
       "\n",
       "        rubberband.attr('width', width);\n",
       "        rubberband.attr('height', height);\n",
       "    }\n",
       "\n",
       "    // Set the figure to an initial 600x600px, this will subsequently be updated\n",
       "    // upon first draw.\n",
       "    this._resize_canvas(600, 600);\n",
       "\n",
       "    // Disable right mouse context menu.\n",
       "    $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
       "        return false;\n",
       "    });\n",
       "\n",
       "    function set_focus () {\n",
       "        canvas.focus();\n",
       "        canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    window.setTimeout(set_focus, 100);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items) {\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) {\n",
       "            // put a spacer in here.\n",
       "            continue;\n",
       "        }\n",
       "        var button = $('<button/>');\n",
       "        button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
       "                        'ui-button-icon-only');\n",
       "        button.attr('role', 'button');\n",
       "        button.attr('aria-disabled', 'false');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "\n",
       "        var icon_img = $('<span/>');\n",
       "        icon_img.addClass('ui-button-icon-primary ui-icon');\n",
       "        icon_img.addClass(image);\n",
       "        icon_img.addClass('ui-corner-all');\n",
       "\n",
       "        var tooltip_span = $('<span/>');\n",
       "        tooltip_span.addClass('ui-button-text');\n",
       "        tooltip_span.html(tooltip);\n",
       "\n",
       "        button.append(icon_img);\n",
       "        button.append(tooltip_span);\n",
       "\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    var fmt_picker_span = $('<span/>');\n",
       "\n",
       "    var fmt_picker = $('<select/>');\n",
       "    fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
       "    fmt_picker_span.append(fmt_picker);\n",
       "    nav_element.append(fmt_picker_span);\n",
       "    this.format_dropdown = fmt_picker[0];\n",
       "\n",
       "    for (var ind in mpl.extensions) {\n",
       "        var fmt = mpl.extensions[ind];\n",
       "        var option = $(\n",
       "            '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
       "        fmt_picker.append(option)\n",
       "    }\n",
       "\n",
       "    // Add hover states to the ui-buttons\n",
       "    $( \".ui-button\" ).hover(\n",
       "        function() { $(this).addClass(\"ui-state-hover\");},\n",
       "        function() { $(this).removeClass(\"ui-state-hover\");}\n",
       "    );\n",
       "\n",
       "    var status_bar = $('<span class=\"mpl-message\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
       "    // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
       "    // which will in turn request a refresh of the image.\n",
       "    this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_message = function(type, properties) {\n",
       "    properties['type'] = type;\n",
       "    properties['figure_id'] = this.id;\n",
       "    this.ws.send(JSON.stringify(properties));\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.send_draw_message = function() {\n",
       "    if (!this.waiting) {\n",
       "        this.waiting = true;\n",
       "        this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
       "    }\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    var format_dropdown = fig.format_dropdown;\n",
       "    var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
       "    fig.ondownload(fig, format);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
       "    var size = msg['size'];\n",
       "    if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
       "        fig._resize_canvas(size[0], size[1]);\n",
       "        fig.send_message(\"refresh\", {});\n",
       "    };\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
       "    var x0 = msg['x0'] / mpl.ratio;\n",
       "    var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
       "    var x1 = msg['x1'] / mpl.ratio;\n",
       "    var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
       "    x0 = Math.floor(x0) + 0.5;\n",
       "    y0 = Math.floor(y0) + 0.5;\n",
       "    x1 = Math.floor(x1) + 0.5;\n",
       "    y1 = Math.floor(y1) + 0.5;\n",
       "    var min_x = Math.min(x0, x1);\n",
       "    var min_y = Math.min(y0, y1);\n",
       "    var width = Math.abs(x1 - x0);\n",
       "    var height = Math.abs(y1 - y0);\n",
       "\n",
       "    fig.rubberband_context.clearRect(\n",
       "        0, 0, fig.canvas.width, fig.canvas.height);\n",
       "\n",
       "    fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
       "    // Updates the figure title.\n",
       "    fig.header.textContent = msg['label'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
       "    var cursor = msg['cursor'];\n",
       "    switch(cursor)\n",
       "    {\n",
       "    case 0:\n",
       "        cursor = 'pointer';\n",
       "        break;\n",
       "    case 1:\n",
       "        cursor = 'default';\n",
       "        break;\n",
       "    case 2:\n",
       "        cursor = 'crosshair';\n",
       "        break;\n",
       "    case 3:\n",
       "        cursor = 'move';\n",
       "        break;\n",
       "    }\n",
       "    fig.rubberband_canvas.style.cursor = cursor;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_message = function(fig, msg) {\n",
       "    fig.message.textContent = msg['message'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
       "    // Request the server to send over a new figure.\n",
       "    fig.send_draw_message();\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
       "    fig.image_mode = msg['mode'];\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Called whenever the canvas gets updated.\n",
       "    this.send_message(\"ack\", {});\n",
       "}\n",
       "\n",
       "// A function to construct a web socket function for onmessage handling.\n",
       "// Called in the figure constructor.\n",
       "mpl.figure.prototype._make_on_message_function = function(fig) {\n",
       "    return function socket_on_message(evt) {\n",
       "        if (evt.data instanceof Blob) {\n",
       "            /* FIXME: We get \"Resource interpreted as Image but\n",
       "             * transferred with MIME type text/plain:\" errors on\n",
       "             * Chrome.  But how to set the MIME type?  It doesn't seem\n",
       "             * to be part of the websocket stream */\n",
       "            evt.data.type = \"image/png\";\n",
       "\n",
       "            /* Free the memory for the previous frames */\n",
       "            if (fig.imageObj.src) {\n",
       "                (window.URL || window.webkitURL).revokeObjectURL(\n",
       "                    fig.imageObj.src);\n",
       "            }\n",
       "\n",
       "            fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
       "                evt.data);\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "        else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
       "            fig.imageObj.src = evt.data;\n",
       "            fig.updated_canvas_event();\n",
       "            fig.waiting = false;\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        var msg = JSON.parse(evt.data);\n",
       "        var msg_type = msg['type'];\n",
       "\n",
       "        // Call the  \"handle_{type}\" callback, which takes\n",
       "        // the figure and JSON message as its only arguments.\n",
       "        try {\n",
       "            var callback = fig[\"handle_\" + msg_type];\n",
       "        } catch (e) {\n",
       "            console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
       "            return;\n",
       "        }\n",
       "\n",
       "        if (callback) {\n",
       "            try {\n",
       "                // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
       "                callback(fig, msg);\n",
       "            } catch (e) {\n",
       "                console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
       "            }\n",
       "        }\n",
       "    };\n",
       "}\n",
       "\n",
       "// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
       "mpl.findpos = function(e) {\n",
       "    //this section is from http://www.quirksmode.org/js/events_properties.html\n",
       "    var targ;\n",
       "    if (!e)\n",
       "        e = window.event;\n",
       "    if (e.target)\n",
       "        targ = e.target;\n",
       "    else if (e.srcElement)\n",
       "        targ = e.srcElement;\n",
       "    if (targ.nodeType == 3) // defeat Safari bug\n",
       "        targ = targ.parentNode;\n",
       "\n",
       "    // jQuery normalizes the pageX and pageY\n",
       "    // pageX,Y are the mouse positions relative to the document\n",
       "    // offset() returns the position of the element relative to the document\n",
       "    var x = e.pageX - $(targ).offset().left;\n",
       "    var y = e.pageY - $(targ).offset().top;\n",
       "\n",
       "    return {\"x\": x, \"y\": y};\n",
       "};\n",
       "\n",
       "/*\n",
       " * return a copy of an object with only non-object keys\n",
       " * we need this to avoid circular references\n",
       " * http://stackoverflow.com/a/24161582/3208463\n",
       " */\n",
       "function simpleKeys (original) {\n",
       "  return Object.keys(original).reduce(function (obj, key) {\n",
       "    if (typeof original[key] !== 'object')\n",
       "        obj[key] = original[key]\n",
       "    return obj;\n",
       "  }, {});\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.mouse_event = function(event, name) {\n",
       "    var canvas_pos = mpl.findpos(event)\n",
       "\n",
       "    if (name === 'button_press')\n",
       "    {\n",
       "        this.canvas.focus();\n",
       "        this.canvas_div.focus();\n",
       "    }\n",
       "\n",
       "    var x = canvas_pos.x * mpl.ratio;\n",
       "    var y = canvas_pos.y * mpl.ratio;\n",
       "\n",
       "    this.send_message(name, {x: x, y: y, button: event.button,\n",
       "                             step: event.step,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "\n",
       "    /* This prevents the web browser from automatically changing to\n",
       "     * the text insertion cursor when the button is pressed.  We want\n",
       "     * to control all of the cursor setting manually through the\n",
       "     * 'cursor' event from matplotlib */\n",
       "    event.preventDefault();\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    // Handle any extra behaviour associated with a key event\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.key_event = function(event, name) {\n",
       "\n",
       "    // Prevent repeat events\n",
       "    if (name == 'key_press')\n",
       "    {\n",
       "        if (event.which === this._key)\n",
       "            return;\n",
       "        else\n",
       "            this._key = event.which;\n",
       "    }\n",
       "    if (name == 'key_release')\n",
       "        this._key = null;\n",
       "\n",
       "    var value = '';\n",
       "    if (event.ctrlKey && event.which != 17)\n",
       "        value += \"ctrl+\";\n",
       "    if (event.altKey && event.which != 18)\n",
       "        value += \"alt+\";\n",
       "    if (event.shiftKey && event.which != 16)\n",
       "        value += \"shift+\";\n",
       "\n",
       "    value += 'k';\n",
       "    value += event.which.toString();\n",
       "\n",
       "    this._key_event_extra(event, name);\n",
       "\n",
       "    this.send_message(name, {key: value,\n",
       "                             guiEvent: simpleKeys(event)});\n",
       "    return false;\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
       "    if (name == 'download') {\n",
       "        this.handle_save(this, null);\n",
       "    } else {\n",
       "        this.send_message(\"toolbar_button\", {name: name});\n",
       "    }\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
       "    this.message.textContent = tooltip;\n",
       "};\n",
       "mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to  previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
       "\n",
       "mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
       "\n",
       "mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
       "    // Create a \"websocket\"-like object which calls the given IPython comm\n",
       "    // object with the appropriate methods. Currently this is a non binary\n",
       "    // socket, so there is still some room for performance tuning.\n",
       "    var ws = {};\n",
       "\n",
       "    ws.close = function() {\n",
       "        comm.close()\n",
       "    };\n",
       "    ws.send = function(m) {\n",
       "        //console.log('sending', m);\n",
       "        comm.send(m);\n",
       "    };\n",
       "    // Register the callback with on_msg.\n",
       "    comm.on_msg(function(msg) {\n",
       "        //console.log('receiving', msg['content']['data'], msg);\n",
Robert Hönig's avatar
Robert Hönig a validé
       "        // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
       "        ws.onmessage(msg['content']['data'])\n",
       "    });\n",
       "    return ws;\n",
       "}\n",
       "\n",
       "mpl.mpl_figure_comm = function(comm, msg) {\n",
       "    // This is the function which gets called when the mpl process\n",
       "    // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
       "\n",
       "    var id = msg.content.data.id;\n",
       "    // Get hold of the div created by the display call when the Comm\n",
       "    // socket was opened in Python.\n",
       "    var element = $(\"#\" + id);\n",
       "    var ws_proxy = comm_websocket_adapter(comm)\n",
       "\n",
       "    function ondownload(figure, format) {\n",
       "        window.open(figure.imageObj.src);\n",
       "    }\n",
       "\n",
       "    var fig = new mpl.figure(id, ws_proxy,\n",
       "                           ondownload,\n",
       "                           element.get(0));\n",
       "\n",
       "    // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
       "    // web socket which is closed, not our websocket->open comm proxy.\n",
       "    ws_proxy.onopen();\n",
       "\n",
       "    fig.parent_element = element.get(0);\n",
       "    fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
       "    if (!fig.cell_info) {\n",
       "        console.error(\"Failed to find cell for figure\", id, fig);\n",
       "        return;\n",
       "    }\n",
       "\n",
       "    var output_index = fig.cell_info[2]\n",
       "    var cell = fig.cell_info[0];\n",
       "\n",
       "};\n",
       "\n",
       "mpl.figure.prototype.handle_close = function(fig, msg) {\n",
       "    var width = fig.canvas.width/mpl.ratio\n",
       "    fig.root.unbind('remove')\n",
       "\n",
       "    // Update the output cell to use the data from the current canvas.\n",
       "    fig.push_to_output();\n",
       "    var dataURL = fig.canvas.toDataURL();\n",
       "    // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
       "    // the notebook keyboard shortcuts fail.\n",
       "    IPython.keyboard_manager.enable()\n",
       "    $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
       "    fig.close_ws(fig, msg);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.close_ws = function(fig, msg){\n",
       "    fig.send_message('closing', msg);\n",
       "    // fig.ws.close()\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
       "    // Turn the data on the canvas into data in the output cell.\n",
       "    var width = this.canvas.width/mpl.ratio\n",
       "    var dataURL = this.canvas.toDataURL();\n",
       "    this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.updated_canvas_event = function() {\n",
       "    // Tell IPython that the notebook contents must change.\n",
       "    IPython.notebook.set_dirty(true);\n",
       "    this.send_message(\"ack\", {});\n",
       "    var fig = this;\n",
       "    // Wait a second, then push the new image to the DOM so\n",
       "    // that it is saved nicely (might be nice to debounce this).\n",
       "    setTimeout(function () { fig.push_to_output() }, 1000);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._init_toolbar = function() {\n",
       "    var fig = this;\n",
       "\n",
       "    var nav_element = $('<div/>')\n",
       "    nav_element.attr('style', 'width: 100%');\n",
       "    this.root.append(nav_element);\n",
       "\n",
       "    // Define a callback function for later on.\n",
       "    function toolbar_event(event) {\n",
       "        return fig.toolbar_button_onclick(event['data']);\n",
       "    }\n",
       "    function toolbar_mouse_event(event) {\n",
       "        return fig.toolbar_button_onmouseover(event['data']);\n",
       "    }\n",
       "\n",
       "    for(var toolbar_ind in mpl.toolbar_items){\n",
       "        var name = mpl.toolbar_items[toolbar_ind][0];\n",
       "        var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
       "        var image = mpl.toolbar_items[toolbar_ind][2];\n",
       "        var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
       "\n",
       "        if (!name) { continue; };\n",
       "\n",
       "        var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
       "        button.click(method_name, toolbar_event);\n",
       "        button.mouseover(tooltip, toolbar_mouse_event);\n",
       "        nav_element.append(button);\n",
       "    }\n",
       "\n",
       "    // Add the status bar.\n",
       "    var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
       "    nav_element.append(status_bar);\n",
       "    this.message = status_bar[0];\n",
       "\n",
       "    // Add the close button to the window.\n",
       "    var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
       "    var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
       "    button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
       "    button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
       "    buttongrp.append(button);\n",
       "    var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
       "    titlebar.prepend(buttongrp);\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._root_extra_style = function(el){\n",
       "    var fig = this\n",
       "    el.on(\"remove\", function(){\n",
       "\tfig.close_ws(fig, {});\n",
       "    });\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._canvas_extra_style = function(el){\n",
       "    // this is important to make the div 'focusable\n",
       "    el.attr('tabindex', 0)\n",
       "    // reach out to IPython and tell the keyboard manager to turn it's self\n",
       "    // off when our div gets focus\n",
       "\n",
       "    // location in version 3\n",
       "    if (IPython.notebook.keyboard_manager) {\n",
       "        IPython.notebook.keyboard_manager.register_events(el);\n",
       "    }\n",
       "    else {\n",
       "        // location in version 2\n",
       "        IPython.keyboard_manager.register_events(el);\n",
       "    }\n",
       "\n",
       "}\n",
       "\n",
       "mpl.figure.prototype._key_event_extra = function(event, name) {\n",
       "    var manager = IPython.notebook.keyboard_manager;\n",
       "    if (!manager)\n",
       "        manager = IPython.keyboard_manager;\n",
       "\n",
       "    // Check for shift+enter\n",
       "    if (event.shiftKey && event.which == 13) {\n",
       "        this.canvas_div.blur();\n",
       "        event.shiftKey = false;\n",
       "        // Send a \"J\" for go to next cell\n",
       "        event.which = 74;\n",
       "        event.keyCode = 74;\n",
       "        manager.command_mode();\n",
       "        manager.handle_keydown(event);\n",
       "    }\n",
       "}\n",
       "\n",
       "mpl.figure.prototype.handle_save = function(fig, msg) {\n",
       "    fig.ondownload(fig, null);\n",
       "}\n",
       "\n",
       "\n",
       "mpl.find_output_cell = function(html_output) {\n",
       "    // Return the cell and output element which can be found *uniquely* in the notebook.\n",
       "    // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
       "    // IPython event is triggered only after the cells have been serialised, which for\n",
       "    // our purposes (turning an active figure into a static one), is too late.\n",
       "    var cells = IPython.notebook.get_cells();\n",
       "    var ncells = cells.length;\n",
       "    for (var i=0; i<ncells; i++) {\n",
       "        var cell = cells[i];\n",
       "        if (cell.cell_type === 'code'){\n",
       "            for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
       "                var data = cell.output_area.outputs[j];\n",
       "                if (data.data) {\n",
       "                    // IPython >= 3 moved mimebundle to data attribute of output\n",
       "                    data = data.data;\n",
       "                }\n",
       "                if (data['text/html'] == html_output) {\n",
       "                    return [cell, data, j];\n",
       "                }\n",
       "            }\n",
       "        }\n",
       "    }\n",
       "}\n",
       "\n",
       "// Register the function which deals with the matplotlib target/channel.\n",
       "// The kernel may be null if the page has been refreshed.\n",
       "if (IPython.notebook.kernel != null) {\n",
       "    IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
       "}\n"
      ],
      "text/plain": [
       "<IPython.core.display.Javascript object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "data": {
      "text/html": [
       "<img src=\"\" width=\"799.9999880790713\">"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "next_state = cities\n",
    "states = []\n",
    "\n",
    "# creating plotting area\n",
    "fig = plt.figure(figsize = (8,6))\n",
    "ax = plt.axes(xlim=(60, 600), ylim=(245, 600))\n",
    "line, = ax.plot([], [], c=\"b\",linewidth = 1.5, marker = 'o', markerfacecolor = 'r', markeredgecolor = 'r',markersize = 10)\n",
    "text = ax.text(450, 565, \"\", fontdict = font)\n",
    "\n",
    "# to plot only the final states of every simulated annealing iteration\n",
    "for iterations in range(100):\n",
    "    tsp_problem = TSP_problem(next_state)  \n",
    "    states.append(simulated_annealing(tsp_problem))\n",
    "    next_state = states[-1]\n",
    "    \n",
    "anim = animation.FuncAnimation(fig, animate, init_func=init,\n",
    "                           frames=len(states),interval=len(states), blit=True, repeat = False)\n",
    "plt.show()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.1"
  },
  "widgets": {
   "state": {},
   "version": "1.1.1"