planning.py 79 ko
Newer Older
Aman Deep Singh's avatar
Aman Deep Singh a validé
            self.graph.expand_graph()
            if (self.goal_test(self.graph.levels[-1].kb) and self.graph.non_mutex_goals(
                    self.graph.planning_problem.goals, -1)):
                solution = self.extract_solution(self.graph.planning_problem.goals, -1)
Aman Deep Singh's avatar
Aman Deep Singh a validé
                if solution:
                    return solution
Aman Deep Singh's avatar
Aman Deep Singh a validé
            if len(self.graph.levels) >= 2 and self.check_leveloff():
                return None
class Linearize:
    def __init__(self, planning_problem):
        self.planning_problem = planning_problem
Aman Deep Singh's avatar
Aman Deep Singh a validé
    def filter(self, solution):
        """Filter out persistence actions from a solution"""

        new_solution = []
        for section in solution[0]:
            new_section = []
            for operation in section:
                if not (operation.op[0] == 'P' and operation.op[1].isupper()):
                    new_section.append(operation)
            new_solution.append(new_section)
        return new_solution

Aman Deep Singh's avatar
Aman Deep Singh a validé
        """Return valid linear order of actions for a given level"""

        for permutation in itertools.permutations(level):
Aman Deep Singh's avatar
Aman Deep Singh a validé
            count = 0
            for action in permutation:
                try:
                    temp.act(action)
                    count += 1
                except:
                    count = 0
Aman Deep Singh's avatar
Aman Deep Singh a validé
                    break
            if count == len(permutation):
                return list(permutation), temp
        return None
Aman Deep Singh's avatar
Aman Deep Singh a validé
    def execute(self):
        """Finds total-order solution for a planning graph"""
        graphPlan_solution = GraphPlan(self.planning_problem).execute()
        filtered_solution = self.filter(graphPlan_solution)
Aman Deep Singh's avatar
Aman Deep Singh a validé
        ordered_solution = []
Aman Deep Singh's avatar
Aman Deep Singh a validé
        for level in filtered_solution:
            level_solution, planning_problem = self.orderlevel(level, planning_problem)
Aman Deep Singh's avatar
Aman Deep Singh a validé
            for element in level_solution:
                ordered_solution.append(element)
Aman Deep Singh's avatar
Aman Deep Singh a validé
        return ordered_solution
def linearize(solution):
    """Converts a level-ordered solution into a linear solution"""

    linear_solution = []
    for section in solution[0]:
        for operation in section:
            if not (operation.op[0] == 'P' and operation.op[1].isupper()):
                linear_solution.append(operation)

    return linear_solution


class PartialOrderPlanner:
    """
    [Section 10.13] PARTIAL-ORDER-PLANNER

    Partially ordered plans are created by a search through the space of plans
    rather than a search through the state space. It views planning as a refinement of partially ordered plans.
    A partially ordered plan is defined by a set of actions and a set of constraints of the form A < B,
    which denotes that action A has to be performed before action B.
    To summarize the working of a partial order planner,
    1. An open precondition is selected (a sub-goal that we want to achieve).
    2. An action that fulfils the open precondition is chosen.
    3. Temporal constraints are updated.
    4. Existing causal links are protected. Protection is a method that checks if the causal links conflict
       and if they do, temporal constraints are added to fix the threats.
    5. The set of open preconditions is updated.
    6. Temporal constraints of the selected action and the next action are established.
    7. A new causal link is added between the selected action and the owner of the open precondition.
    8. The set of new causal links is checked for threats and if found, the threat is removed by either promotion or
       demotion. If promotion or demotion is unable to solve the problem, the planning problem cannot be solved with
       the current sequence of actions or it may not be solvable at all.
    9. These steps are repeated until the set of open preconditions is empty.
    """
    def __init__(self, planning_problem):
        self.tries = 1
        self.planning_problem = planning_problem
        self.causal_links = []
        self.start = Action('Start', [], self.planning_problem.initial)
        self.finish = Action('Finish', self.planning_problem.goals, [])
        self.actions = set()
        self.actions.add(self.start)
        self.actions.add(self.finish)
        self.constraints = set()
        self.constraints.add((self.start, self.finish))
        self.agenda = set()
        for precond in self.finish.precond:
            self.agenda.add((precond, self.finish))
        self.expanded_actions = planning_problem.expand_actions()

    def find_open_precondition(self):
        """Find open precondition with the least number of possible actions"""

        number_of_ways = dict()
        actions_for_precondition = dict()
        for element in self.agenda:
            open_precondition = element[0]
            possible_actions = list(self.actions) + self.expanded_actions
            for action in possible_actions:
                for effect in action.effect:
                    if effect == open_precondition:
                        if open_precondition in number_of_ways:
                            number_of_ways[open_precondition] += 1
                            actions_for_precondition[open_precondition].append(action)
                        else:
                            number_of_ways[open_precondition] = 1
                            actions_for_precondition[open_precondition] = [action]

        number = sorted(number_of_ways, key=number_of_ways.__getitem__)
        for k, v in number_of_ways.items():
            if v == 0:
                return None, None, None

        act1 = None
        for element in self.agenda:
            if element[0] == number[0]:
                act1 = element[1]
                break

        if number[0] in self.expanded_actions:
            self.expanded_actions.remove(number[0])

        return number[0], act1, actions_for_precondition[number[0]]

    def find_action_for_precondition(self, oprec):
        """Find action for a given precondition"""

        # either
        #   choose act0 E Actions such that act0 achieves G
        for action in self.actions:
            for effect in action.effect:
                if effect == oprec:
                    return action, 0

        # or
        #   choose act0 E Actions such that act0 achieves G
            for effect in action.effect:
                if effect.op == oprec.op:
                    bindings = unify(effect, oprec)
                    if bindings is None:
                        break
                    return action, bindings

    def generate_expr(self, clause, bindings):
        """Generate atomic expression from generic expression given variable bindings"""

        new_args = []
        for arg in clause.args:
            if arg in bindings:
                new_args.append(bindings[arg])
            else:
                new_args.append(arg)

        try:
            return Expr(str(clause.name), *new_args)
        except:
            return Expr(str(clause.op), *new_args)
    def generate_action_object(self, action, bindings):
        """Generate action object given a generic action and variable bindings"""

        # if bindings is 0, it means the action already exists in self.actions
        if bindings == 0:
            return action

        # bindings cannot be None
        else:
            new_expr = self.generate_expr(action, bindings)
            new_preconds = []
            for precond in action.precond:
                new_precond = self.generate_expr(precond, bindings)
                new_preconds.append(new_precond)
            new_effects = []
            for effect in action.effect:
                new_effect = self.generate_expr(effect, bindings)
                new_effects.append(new_effect)
            return Action(new_expr, new_preconds, new_effects)

    def cyclic(self, graph):
        """Check cyclicity of a directed graph"""

        new_graph = dict()
        for element in graph:
            if element[0] in new_graph:
                new_graph[element[0]].append(element[1])
            else:
                new_graph[element[0]] = [element[1]]

        path = set()

        def visit(vertex):
            path.add(vertex)
            for neighbor in new_graph.get(vertex, ()):
                if neighbor in path or visit(neighbor):
                    return True
            path.remove(vertex)
            return False

        value = any(visit(v) for v in new_graph)
        return value

    def add_const(self, constraint, constraints):
        """Add the constraint to constraints if the resulting graph is acyclic"""

        if constraint[0] == self.finish or constraint[1] == self.start:
            return constraints

        new_constraints = set(constraints)
        new_constraints.add(constraint)

        if self.cyclic(new_constraints):
            return constraints
        return new_constraints

    def is_a_threat(self, precondition, effect):
        """Check if effect is a threat to precondition"""

        if (str(effect.op) == 'Not' + str(precondition.op)) or ('Not' + str(effect.op) == str(precondition.op)):
            if effect.args == precondition.args:
                return True
        return False

    def protect(self, causal_link, action, constraints):
        """Check and resolve threats by promotion or demotion"""

        threat = False
        for effect in action.effect:
            if self.is_a_threat(causal_link[1], effect):
                threat = True
                break

        if action != causal_link[0] and action != causal_link[2] and threat:
            # try promotion
            new_constraints = set(constraints)
            new_constraints.add((action, causal_link[0]))
            if not self.cyclic(new_constraints):
                constraints = self.add_const((action, causal_link[0]), constraints)
            else:
                # try demotion
                new_constraints = set(constraints)
                new_constraints.add((causal_link[2], action))
                if not self.cyclic(new_constraints):
                    constraints = self.add_const((causal_link[2], action), constraints)
                else:
                    # both promotion and demotion fail
                    print('Unable to resolve a threat caused by', action, 'onto', causal_link)
                    return
        return constraints

    def convert(self, constraints):
        """Convert constraints into a dict of Action to set orderings"""

        graph = dict()
        for constraint in constraints:
            if constraint[0] in graph:
                graph[constraint[0]].add(constraint[1])
            else:
                graph[constraint[0]] = set()
                graph[constraint[0]].add(constraint[1])
        return graph

    def toposort(self, graph):
        """Generate topological ordering of constraints"""

        if len(graph) == 0:
            return

        graph = graph.copy()

        for k, v in graph.items():
            v.discard(k)

        extra_elements_in_dependencies = _reduce(set.union, graph.values()) - set(graph.keys())

        graph.update({element: set() for element in extra_elements_in_dependencies})
        while True:
            ordered = set(element for element, dependency in graph.items() if len(dependency) == 0)
            if not ordered:
                break
            yield ordered
            graph = {element: (dependency - ordered)
                     for element, dependency in graph.items()
                     if element not in ordered}
        if len(graph) != 0:
            raise ValueError('The graph is not acyclic and cannot be linearly ordered')

    def display_plan(self):
        """Display causal links, constraints and the plan"""

        print('Causal Links')
        for causal_link in self.causal_links:
            print(causal_link)

        print('\nConstraints')
        for constraint in self.constraints:
            print(constraint[0], '<', constraint[1])

        print('\nPartial Order Plan')
        print(list(reversed(list(self.toposort(self.convert(self.constraints))))))

    def execute(self, display=True):
        """Execute the algorithm"""

        step = 1
        while len(self.agenda) > 0:
            step += 1
            # select <G, act1> from Agenda
            try:
                G, act1, possible_actions = self.find_open_precondition()
            except IndexError:
                print('Probably Wrong')
                break

            act0 = possible_actions[0]
            # remove <G, act1> from Agenda
            self.agenda.remove((G, act1))

            # For actions with variable number of arguments, use least commitment principle
            # act0_temp, bindings = self.find_action_for_precondition(G)
            # act0 = self.generate_action_object(act0_temp, bindings)

            # Actions = Actions U {act0}
            self.actions.add(act0)

            # Constraints = add_const(start < act0, Constraints)
            self.constraints = self.add_const((self.start, act0), self.constraints)

            # for each CL E CausalLinks do
            #   Constraints = protect(CL, act0, Constraints)
            for causal_link in self.causal_links:
                self.constraints = self.protect(causal_link, act0, self.constraints)

            # Agenda = Agenda U {<P, act0>: P is a precondition of act0}
            for precondition in act0.precond:
                self.agenda.add((precondition, act0))

            # Constraints = add_const(act0 < act1, Constraints)
            self.constraints = self.add_const((act0, act1), self.constraints)

            # CausalLinks U {<act0, G, act1>}
            if (act0, G, act1) not in self.causal_links:
                self.causal_links.append((act0, G, act1))

            # for each A E Actions do
            #   Constraints = protect(<act0, G, act1>, A, Constraints)
            for action in self.actions:
                self.constraints = self.protect((act0, G, act1), action, self.constraints)

            if step > 200:
                return None, None

        if display:
            self.display_plan()
        else:
Aman Deep Singh's avatar
Aman Deep Singh a validé
    """Solves the spare tire problem using GraphPlan"""
    return GraphPlan(spare_tire()).execute()
Aman Deep Singh's avatar
Aman Deep Singh a validé
    """Solves the Sussman Anomaly problem using GraphPlan"""
    return GraphPlan(three_block_tower()).execute()
Aman Deep Singh's avatar
Aman Deep Singh a validé
    """Solves the air cargo problem using GraphPlan"""
    return GraphPlan(air_cargo()).execute()
Aman Deep Singh's avatar
Aman Deep Singh a validé
    """Solves the cake problem using GraphPlan"""
    return [GraphPlan(have_cake_and_eat_cake_too()).execute()[1]]
Aman Deep Singh's avatar
Aman Deep Singh a validé
    """Solves the shopping problem using GraphPlan"""
    return GraphPlan(shopping_problem()).execute()

def socks_and_shoes_graphPlan():
    """Solves the socks and shoes problem using GraphPlan"""
Aman Deep Singh's avatar
Aman Deep Singh a validé
    return GraphPlan(socks_and_shoes()).execute()
    """Solves the simple blocks world problem"""
    return GraphPlan(simple_blocks_world()).execute()


class HLA(Action):
    """
    Define Actions for the real-world (that may be refined further), and satisfy resource
    constraints.
    """
    unique_group = 1

    def __init__(self, action, precond=None, effect=None, duration=0, consume=None, use=None):
        """
        As opposed to actions, to define HLA, we have added constraints.
        duration holds the amount of time required to execute the task
        consumes holds a dictionary representing the resources the task consumes
        uses holds a dictionary representing the resources the task uses
        """
Aman Deep Singh's avatar
Aman Deep Singh a validé
        precond = precond or [None]
        effect = effect or [None]
        super().__init__(action, precond, effect)
        self.duration = duration
        self.consumes = consume or {}
        self.uses = use or {}
        self.completed = False
        # self.priority = -1 #  must be assigned in relation to other HLAs
        # self.job_group = -1 #  must be assigned in relation to other HLAs

    def do_action(self, job_order, available_resources, kb, args):
        """
        An HLA based version of act - along with knowledge base updation, it handles
        resource checks, and ensures the actions are executed in the correct order.
        """
        if not self.has_usable_resource(available_resources):
            raise Exception('Not enough usable resources to execute {}'.format(self.name))
        if not self.has_consumable_resource(available_resources):
            raise Exception('Not enough consumable resources to execute {}'.format(self.name))
        if not self.inorder(job_order):
            raise Exception("Can't execute {} - execute prerequisite actions first".
                            format(self.name))
Aman Deep Singh's avatar
Aman Deep Singh a validé
        kb = super().act(kb, args)  # update knowledge base
        for resource in self.consumes:  # remove consumed resources
            available_resources[resource] -= self.consumes[resource]
        self.completed = True  # set the task status to complete
Aman Deep Singh's avatar
Aman Deep Singh a validé
        return kb

    def has_consumable_resource(self, available_resources):
        """
        Ensure there are enough consumable resources for this action to execute.
        """
        for resource in self.consumes:
            if available_resources.get(resource) is None:
                return False
            if available_resources[resource] < self.consumes[resource]:
                return False
        return True

    def has_usable_resource(self, available_resources):
        """
        Ensure there are enough usable resources for this action to execute.
        """
        for resource in self.uses:
            if available_resources.get(resource) is None:
                return False
            if available_resources[resource] < self.uses[resource]:
                return False
        return True

    def inorder(self, job_order):
        """
        Ensure that all the jobs that had to be executed before the current one have been
        successfully executed.
        """
        for jobs in job_order:
            if self in jobs:
                for job in jobs:
                    if job is self:
                        return True
                    if not job.completed:
                        return False
        return True


class RealWorldPlanningProblem(PlanningProblem):
    """
    Define real-world problems by aggregating resources as numerical quantities instead of
    named entities.

    This class is identical to PDDL, except that it overloads the act function to handle
    resource and ordering conditions imposed by HLA as opposed to Action.
    """

    def __init__(self, initial, goals, actions, jobs=None, resources=None):
        super().__init__(initial, goals, actions)
        self.resources = resources or {}

    def act(self, action):
        """
        Performs the HLA given as argument.

        Note that this is different from the superclass action - where the parameter was an
        Expression. For real world problems, an Expr object isn't enough to capture all the
        detail required for executing the action - resources, preconditions, etc need to be
        checked for too.
        """
        args = action.args
        list_action = first(a for a in self.actions if a.name == action.name)
        if list_action is None:
            raise Exception("Action '{}' not found".format(action.name))
        self.initial = list_action.do_action(self.jobs, self.resources, self.initial, args).clauses
    def refinements(self, library):  # refinements may be (multiple) HLA themselves ...
        State is a Problem, containing the current state kb library is a
        dictionary containing details for every possible refinement. e.g.:
        'HLA': [
            'Go(Home, SFO)',
            'Go(Home, SFO)',
            'Drive(Home, SFOLongTermParking)',
            'Shuttle(SFOLongTermParking, SFO)',
            'Taxi(Home, SFO)'
            ],
        'steps': [
            ['Drive(Home, SFOLongTermParking)', 'Shuttle(SFOLongTermParking, SFO)'],
            ['Taxi(Home, SFO)'],
            [],
            [],
            []
            ],
        # empty refinements indicate a primitive action
        'precond': [
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            ['At(Home) & Have(Car)'],
            ['At(Home)'],
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            ['At(Home) & Have(Car)'],
            ['At(SFOLongTermParking)'],
            ['At(Home)']
            ],
        'effect': [
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            ['At(SFO) & ~At(Home)'],
            ['At(SFO) & ~At(Home)'],
            ['At(SFOLongTermParking) & ~At(Home)'],
            ['At(SFO) & ~At(SFOLongTermParking)'],
            ['At(SFO) & ~At(Home)']
        indices = [i for i, x in enumerate(library['HLA']) if expr(x).op == self.name]
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            actions = []
            for j in range(len(library['steps'][i])):
                # find the index of the step [j]  of the HLA
                index_step = [k for k, x in enumerate(library['HLA']) if x == library['steps'][i][j]][0]
                precond = library['precond'][index_step][0]  # preconditions of step [j]
                effect = library['effect'][index_step][0]  # effect of step [j]
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                actions.append(HLA(library['steps'][i][j], precond, effect))
            yield actions
    def hierarchical_search(self, hierarchy):
        [Figure 11.5]
        'Hierarchical Search, a Breadth First Search implementation of Hierarchical
        Forward Planning Search'
        The problem is a real-world problem defined by the problem class, and the hierarchy is
        a dictionary of HLA - refinements (see refinements generator for details)
        """
        act = Node(self.initial, None, [self.actions[0]])
        frontier.append(act)
C.G.Vedant's avatar
C.G.Vedant a validé
            if not frontier:
            plan = frontier.popleft()
            # finds the first non primitive hla in plan actions
            (hla, index) = RealWorldPlanningProblem.find_hla(plan, hierarchy)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            prefix = plan.action[:index]
            outcome = RealWorldPlanningProblem(
                RealWorldPlanningProblem.result(self.initial, prefix), self.goals, self.actions)
            suffix = plan.action[index + 1:]
            if not hla:  # hla is None and plan is primitive
                if outcome.goal_test():
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                    return plan.action
                for sequence in RealWorldPlanningProblem.refinements(hla, hierarchy):  # find refinements
                    frontier.append(Node(outcome.initial, plan, prefix + sequence + suffix))
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
    def result(state, actions):
        """The outcome of applying an action to the current problem"""
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            if a.check_precond(state, a.args):
                state = a(state, a.args).clauses
        return state

    def angelic_search(self, hierarchy, initial_plan):
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        """
        [Figure 11.8]
        A hierarchical planning algorithm that uses angelic semantics to identify and
        commit to high-level plans that work while avoiding high-level plans that don’t.
        The predicate MAKING-PROGRESS checks to make sure that we aren’t stuck in an infinite regression
        of refinements.
        At top level, call ANGELIC-SEARCH with [Act] as the initialPlan.
        InitialPlan contains a sequence of HLA's with angelic semantics
        The possible effects of an angelic HLA in initialPlan are:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        ~ : effect remove
        $+: effect possibly add
        $-: effect possibly remove
        $$: possibly add or remove
        frontier = deque(initial_plan)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            if not frontier:
                return None
            plan = frontier.popleft()  # sequence of HLA/Angelic HLA's
            opt_reachable_set = RealWorldPlanningProblem.reach_opt(self.initial, plan)
            pes_reachable_set = RealWorldPlanningProblem.reach_pes(self.initial, plan)
            if self.intersects_goal(opt_reachable_set):
                if RealWorldPlanningProblem.is_primitive(plan, hierarchy):
                    return [x for x in plan.action]
                guaranteed = self.intersects_goal(pes_reachable_set)
                if guaranteed and RealWorldPlanningProblem.making_progress(plan, initial_plan):
                    final_state = guaranteed[0]  # any element of guaranteed
                    return RealWorldPlanningProblem.decompose(hierarchy, final_state, pes_reachable_set)
                # there should be at least one HLA/AngelicHLA, otherwise plan would be primitive
                hla, index = RealWorldPlanningProblem.find_hla(plan, hierarchy)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                prefix = plan.action[:index]
                outcome = RealWorldPlanningProblem(
                    RealWorldPlanningProblem.result(self.initial, prefix), self.goals, self.actions)
                for sequence in RealWorldPlanningProblem.refinements(hla, hierarchy):  # find refinements
                    frontier.append(
                        AngelicNode(outcome.initial, plan, prefix + sequence + suffix, prefix + sequence + suffix))
    def intersects_goal(self, reachable_set):
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        """
        Find the intersection of the reachable states and the goal
        """
        return [y for x in list(reachable_set.keys())
                for y in reachable_set[x]
                if all(goal in y for goal in self.goals)]
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        """
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        """
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            indices = [i for i, x in enumerate(library['HLA']) if expr(x).op == hla.name]
            for i in indices:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                    return False
        return True

MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        """
        Finds the optimistic reachable set of the sequence of actions in plan
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        """
        reachable_set = {0: [init]}
        optimistic_description = plan.action  # list of angelic actions with optimistic description
        return RealWorldPlanningProblem.find_reachable_set(reachable_set, optimistic_description)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        Finds the pessimistic reachable set of the sequence of actions in plan
        """
        reachable_set = {0: [init]}
        pessimistic_description = plan.action_pes  # list of angelic actions with pessimistic description
        return RealWorldPlanningProblem.find_reachable_set(reachable_set, pessimistic_description)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé

    def find_reachable_set(reachable_set, action_description):
        """
        Finds the reachable states of the action_description when applied in each state of reachable set.
        """
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        for i in range(len(action_description)):
            reachable_set[i + 1] = []
            if type(action_description[i]) is AngelicHLA:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                possible_actions = action_description[i].angelic_action()
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                possible_actions = action_description
            for action in possible_actions:
                for state in reachable_set[i]:
                    if action.check_precond(state, action.args):
                        if action.effect[0]:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                            new_state = action(state, action.args).clauses
                            reachable_set[i + 1].append(new_state)
                        else:
                            reachable_set[i + 1].append(state)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        return reachable_set

    def find_hla(plan, hierarchy):
        """
        Finds the the first HLA action in plan.action, which is not primitive
        and its corresponding index in plan.action
        """
        hla = None
        index = len(plan.action)
        for i in range(len(plan.action)):  # find the first HLA in plan, that is not primitive
            if not RealWorldPlanningProblem.is_primitive(Node(plan.state, plan.parent, [plan.action[i]]), hierarchy):
                hla = plan.action[i]
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                index = i
                break
    def making_progress(plan, initial_plan):
        (infinite regression of refinements happens when the algorithm finds a plan that
        its pessimistic reachable set intersects the goal inside a call to decompose on
        the same plan, in the same circumstances)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        """
        for i in range(len(initial_plan)):
            if plan == initial_plan[i]:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                return False
    def decompose(hierarchy, plan, s_f, reachable_set):
        solution = []
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        i = max(reachable_set.keys())
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            action = plan.action_pes.pop()
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                return solution
            s_i = RealWorldPlanningProblem.find_previous_state(s_f, reachable_set, i, action)
            problem = RealWorldPlanningProblem(s_i, s_f, plan.action)
            angelic_call = RealWorldPlanningProblem.angelic_search(problem, hierarchy,
                                                                   [AngelicNode(s_i, Node(None), [action], [action])])
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            if angelic_call:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                return None
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            s_f = s_i
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        return solution

    def find_previous_state(s_f, reachable_set, i, action):
        """
        Given a final state s_f and an action finds a state s_i in reachable_set
        such that when action is applied to state s_i returns s_f.
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        """
        s_i = reachable_set[i - 1][0]
        for state in reachable_set[i - 1]:
            if s_f in [x for x in RealWorldPlanningProblem.reach_pes(
                    state, AngelicNode(state, None, [action], [action]))[1]]:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                break
        return s_i
    [Figure 11.1] JOB-SHOP-PROBLEM

    A job-shop scheduling problem for assembling two cars,
    with resource and ordering constraints.

    Example:
Aman Deep Singh's avatar
Aman Deep Singh a validé
    >>> from planning import *
    >>> p = job_shop_problem()
    >>> p.goal_test()
    False
    >>> p.act(p.jobs[1][0])
    >>> p.act(p.jobs[1][1])
    >>> p.act(p.jobs[1][2])
    >>> p.act(p.jobs[0][0])
    >>> p.act(p.jobs[0][1])
    >>> p.goal_test()
    False
    >>> p.act(p.jobs[0][2])
    >>> p.goal_test()
    True
    >>>
    """
    resources = {'EngineHoists': 1, 'WheelStations': 2, 'Inspectors': 2, 'LugNuts': 500}

Aman Deep Singh's avatar
Aman Deep Singh a validé
    add_engine1 = HLA('AddEngine1', precond='~Has(C1, E1)', effect='Has(C1, E1)', duration=30, use={'EngineHoists': 1})
    add_engine2 = HLA('AddEngine2', precond='~Has(C2, E2)', effect='Has(C2, E2)', duration=60, use={'EngineHoists': 1})
    add_wheels1 = HLA('AddWheels1', precond='~Has(C1, W1)', effect='Has(C1, W1)', duration=30, use={'WheelStations': 1},
                      consume={'LugNuts': 20})
    add_wheels2 = HLA('AddWheels2', precond='~Has(C2, W2)', effect='Has(C2, W2)', duration=15, use={'WheelStations': 1},
                      consume={'LugNuts': 20})
Aman Deep Singh's avatar
Aman Deep Singh a validé
    inspect1 = HLA('Inspect1', precond='~Inspected(C1)', effect='Inspected(C1)', duration=10, use={'Inspectors': 1})
    inspect2 = HLA('Inspect2', precond='~Inspected(C2)', effect='Inspected(C2)', duration=10, use={'Inspectors': 1})

    actions = [add_engine1, add_engine2, add_wheels1, add_wheels2, inspect1, inspect2]

    job_group1 = [add_engine1, add_wheels1, inspect1]
    job_group2 = [add_engine2, add_wheels2, inspect2]

    return RealWorldPlanningProblem(
        initial='Car(C1) & Car(C2) & Wheels(W1) & Wheels(W2) & Engine(E2) & Engine(E2) & ~Has(C1, E1) & ~Has(C2, '
                'E2) & ~Has(C1, W1) & ~Has(C2, W2) & ~Inspected(C1) & ~Inspected(C2)',
        goals='Has(C1, W1) & Has(C1, E1) & Inspected(C1) & Has(C2, W2) & Has(C2, E2) & Inspected(C2)',
        actions=actions,
        jobs=[job_group1, job_group2],
        resources=resources)


def go_to_sfo():
    """Go to SFO Problem"""

    go_home_sfo1 = HLA('Go(Home, SFO)', precond='At(Home) & Have(Car)', effect='At(SFO) & ~At(Home)')
    go_home_sfo2 = HLA('Go(Home, SFO)', precond='At(Home)', effect='At(SFO) & ~At(Home)')
    drive_home_sfoltp = HLA('Drive(Home, SFOLongTermParking)', precond='At(Home) & Have(Car)',
                            effect='At(SFOLongTermParking) & ~At(Home)')
    shuttle_sfoltp_sfo = HLA('Shuttle(SFOLongTermParking, SFO)', precond='At(SFOLongTermParking)',
                             effect='At(SFO) & ~At(SFOLongTermParking)')
    taxi_home_sfo = HLA('Taxi(Home, SFO)', precond='At(Home)', effect='At(SFO) & ~At(Home)')

    actions = [go_home_sfo1, go_home_sfo2, drive_home_sfoltp, shuttle_sfoltp_sfo, taxi_home_sfo]

    library = {
        'HLA': [
            'Go(Home, SFO)',
            'Go(Home, SFO)',
            'Drive(Home, SFOLongTermParking)',
            'Shuttle(SFOLongTermParking, SFO)',
            'Taxi(Home, SFO)'
        ],
        'steps': [
            ['Drive(Home, SFOLongTermParking)', 'Shuttle(SFOLongTermParking, SFO)'],
            ['Taxi(Home, SFO)'],
            [],
            [],
            []
        ],
        'precond': [
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            ['At(Home) & Have(Car)'],
            ['At(Home)'],
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            ['At(Home) & Have(Car)'],
            ['At(SFOLongTermParking)'],
            ['At(Home)']
        ],
        'effect': [
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            ['At(SFO) & ~At(Home)'],
            ['At(SFO) & ~At(Home)'],
            ['At(SFOLongTermParking) & ~At(Home)'],
            ['At(SFO) & ~At(SFOLongTermParking)'],
            ['At(SFO) & ~At(Home)']]}
    return RealWorldPlanningProblem(initial='At(Home)', goals='At(SFO)', actions=actions), library
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
    """
    Define Actions for the real-world (that may be refined further), under angelic semantics
    """

    def __init__(self, action, precond, effect, duration=0, consume=None, use=None):
        super().__init__(action, precond, effect, duration, consume, use)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé

    def convert(self, clauses):
        """
        Converts strings into Exprs
        An HLA with angelic semantics can achieve the effects of simple HLA's (add / remove a variable)
        and furthermore can have following effects on the variables:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            Possibly add variable    ( $+ )
            Possibly remove variable ( $- )
            Possibly add or remove a variable ( $$ )

        Overrides HLA.convert function
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
               '$-': 'PosNot',
MariannaSpyrakou's avatar
MariannaSpyrakou a validé

        if isinstance(clauses, Expr):
            clauses = conjuncts(clauses)
            for i in range(len(clauses)):
                for ch in lib.keys():
                    if clauses[i].op == ch:
                        clauses[i] = expr(lib[ch] + str(clauses[i].args[0]))
MariannaSpyrakou's avatar
MariannaSpyrakou a validé

        elif isinstance(clauses, str):
            for ch in lib.keys():
                clauses = clauses.replace(ch, lib[ch])
            if len(clauses) > 0:
                clauses = expr(clauses)

            try:
                clauses = conjuncts(clauses)
            except AttributeError:
                pass

        return clauses

    def angelic_action(self):
        """
        Converts a high level action (HLA) with angelic semantics into all of its corresponding high level actions (HLA).
        An HLA with angelic semantics can achieve the effects of simple HLA's (add / remove a variable)
        and furthermore can have following effects for each variable:
            Possibly add variable ( $+: 'PosYes' )        --> corresponds to two HLAs:
                                                                HLA_1: add variable
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                                                                HLA_2: leave variable unchanged

            Possibly remove variable ( $-: 'PosNot' )     --> corresponds to two HLAs:
                                                                HLA_1: remove variable
                                                                HLA_2: leave variable unchanged

            Possibly add / remove a variable ( $$: 'PosYesNot' )  --> corresponds to three HLAs:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                                                                        HLA_1: add variable
                                                                        HLA_2: remove variable
                                                                        HLA_3: leave variable unchanged


            example: the angelic action with effects possibly add A and possibly add or remove B corresponds to the
            following 6 effects of HLAs:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé


            '$+A & $$B':    HLA_1: 'A & B'   (add A and add B)
                            HLA_2: 'A & ~B'  (add A and remove B)
                            HLA_3: 'A'       (add A)
                            HLA_4: 'B'       (add B)
                            HLA_5: '~B'      (remove B)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
        for clause in self.effect:
            (n, w) = AngelicHLA.compute_parameters(clause)
            effects = effects * n  # create n copies of effects
            it = range(1)
            if len(effects) != 0:
                # split effects into n sublists (separate n copies created in compute_parameters)
                it = range(len(effects) // n)
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
            for i in it:
                if effects[i]:
                    if clause.args:
                        effects[i] = expr(str(effects[i]) + '&' + str(
                            Expr(clause.op[w:], clause.args[0])))  # make changes in the ith part of effects
                        if n == 3:
                            effects[i + len(effects) // 3] = expr(
                                str(effects[i + len(effects) // 3]) + '&' + str(Expr(clause.op[6:], clause.args[0])))
                    else:
                        effects[i] = expr(
                            str(effects[i]) + '&' + str(expr(clause.op[w:])))  # make changes in the ith part of effects
                        if n == 3:
                            effects[i + len(effects) // 3] = expr(
                                str(effects[i + len(effects) // 3]) + '&' + str(expr(clause.op[6:])))

                else:
                    if clause.args:
                        effects[i] = Expr(clause.op[w:], clause.args[0])  # make changes in the ith part of effects
                        if n == 3:
                            effects[i + len(effects) // 3] = Expr(clause.op[6:], clause.args[0])

                    else:
MariannaSpyrakou's avatar
MariannaSpyrakou a validé
                        effects[i] = expr(clause.op[w:])  # make changes in the ith part of effects
                        if n == 3:
                            effects[i + len(effects) // 3] = expr(clause.op[6:])
        return [HLA(Expr(self.name, self.args), self.precond, effects[i]) for i in range(len(effects))]
        n = number of HLA effects that the angelic HLA corresponds to
        w = length of representation of angelic HLA effect
MariannaSpyrakou's avatar
MariannaSpyrakou a validé

                    n = 1, if effect is add
                    n = 1, if effect is remove
                    n = 2, if effect is possibly add
                    n = 2, if effect is possibly remove
                    n = 3, if effect is possibly add or remove

        """
        if clause.op[:9] == 'PosYesNot':
            # possibly add/remove variable: three possible effects for the variable
            n = 3
            w = 9
        elif clause.op[:6] == 'PosYes':  # possibly add variable: two possible effects for the variable
            n = 2
            w = 6
        elif clause.op[:6] == 'PosNot':  # possibly remove variable: two possible effects for the variable
            n = 2
            w = 3  # We want to keep 'Not' from 'PosNot' when adding action
        else:  # variable or ~variable
            n = 1
            w = 0
        return n, w