Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
new_constraints.add((causal_link[2], action))
if not self.cyclic(new_constraints):
constraints = self.add_const((causal_link[2], action), constraints)
else:
# both promotion and demotion fail
print('Unable to resolve a threat caused by', action, 'onto', causal_link)
return
return constraints
def convert(self, constraints):
"""Convert constraints into a dict of Action to set orderings"""
graph = dict()
for constraint in constraints:
if constraint[0] in graph:
graph[constraint[0]].add(constraint[1])
else:
graph[constraint[0]] = set()
graph[constraint[0]].add(constraint[1])
return graph
def toposort(self, graph):
"""Generate topological ordering of constraints"""
if len(graph) == 0:
return
graph = graph.copy()
for k, v in graph.items():
v.discard(k)
extra_elements_in_dependencies = _reduce(set.union, graph.values()) - set(graph.keys())
graph.update({element:set() for element in extra_elements_in_dependencies})
while True:
ordered = set(element for element, dependency in graph.items() if len(dependency) == 0)
if not ordered:
break
yield ordered
graph = {element: (dependency - ordered) for element, dependency in graph.items() if element not in ordered}
if len(graph) != 0:
raise ValueError('The graph is not acyclic and cannot be linearly ordered')
def display_plan(self):
"""Display causal links, constraints and the plan"""
print('Causal Links')
for causal_link in self.causal_links:
print(causal_link)
print('\nConstraints')
for constraint in self.constraints:
print(constraint[0], '<', constraint[1])
print('\nPartial Order Plan')
print(list(reversed(list(self.toposort(self.convert(self.constraints))))))
def execute(self, display=True):
"""Execute the algorithm"""
step = 1
self.tries = 1
while len(self.agenda) > 0:
step += 1
# select <G, act1> from Agenda
try:
G, act1, possible_actions = self.find_open_precondition()
except IndexError:
print('Probably Wrong')
break
act0 = possible_actions[0]
# remove <G, act1> from Agenda
self.agenda.remove((G, act1))
# For actions with variable number of arguments, use least commitment principle
# act0_temp, bindings = self.find_action_for_precondition(G)
# act0 = self.generate_action_object(act0_temp, bindings)
# Actions = Actions U {act0}
self.actions.add(act0)
# Constraints = add_const(start < act0, Constraints)
self.constraints = self.add_const((self.start, act0), self.constraints)
# for each CL E CausalLinks do
# Constraints = protect(CL, act0, Constraints)
for causal_link in self.causal_links:
self.constraints = self.protect(causal_link, act0, self.constraints)
# Agenda = Agenda U {<P, act0>: P is a precondition of act0}
for precondition in act0.precond:
self.agenda.add((precondition, act0))
# Constraints = add_const(act0 < act1, Constraints)
self.constraints = self.add_const((act0, act1), self.constraints)
# CausalLinks U {<act0, G, act1>}
if (act0, G, act1) not in self.causal_links:
self.causal_links.append((act0, G, act1))
# for each A E Actions do
# Constraints = protect(<act0, G, act1>, A, Constraints)
for action in self.actions:
self.constraints = self.protect((act0, G, act1), action, self.constraints)
if step > 200:
print('Couldn\'t find a solution')
return None, None
if display:
self.display_plan()
else:
return self.constraints, self.causal_links
def spare_tire_graphplan():
"""Solves the spare tire problem using GraphPlan"""
return GraphPlan(spare_tire()).execute()
def three_block_tower_graphplan():
"""Solves the Sussman Anomaly problem using GraphPlan"""
return GraphPlan(three_block_tower()).execute()
def air_cargo_graphplan():
"""Solves the air cargo problem using GraphPlan"""
return GraphPlan(air_cargo()).execute()
def have_cake_and_eat_cake_too_graphplan():
"""Solves the cake problem using GraphPlan"""
return [GraphPlan(have_cake_and_eat_cake_too()).execute()[1]]
def shopping_graphplan():
"""Solves the shopping problem using GraphPlan"""
return GraphPlan(shopping_problem()).execute()
def socks_and_shoes_graphplan():
"""Solves the socks and shoes problem using GraphpPlan"""
return GraphPlan(socks_and_shoes()).execute()
def simple_blocks_world_graphplan():
"""Solves the simple blocks world problem"""
return GraphPlan(simple_blocks_world()).execute()
class HLA(Action):
"""
Define Actions for the real-world (that may be refined further), and satisfy resource
constraints.
"""
unique_group = 1
def __init__(self, action, precond=None, effect=None, duration=0,
consume=None, use=None):
"""
As opposed to actions, to define HLA, we have added constraints.
duration holds the amount of time required to execute the task
consumes holds a dictionary representing the resources the task consumes
uses holds a dictionary representing the resources the task uses
"""
precond = precond or [None]
effect = effect or [None]
super().__init__(action, precond, effect)
self.duration = duration
self.consumes = consume or {}
self.uses = use or {}
self.completed = False
# self.priority = -1 # must be assigned in relation to other HLAs
# self.job_group = -1 # must be assigned in relation to other HLAs
def do_action(self, job_order, available_resources, kb, args):
"""
An HLA based version of act - along with knowledge base updation, it handles
resource checks, and ensures the actions are executed in the correct order.
"""
# print(self.name)
if not self.has_usable_resource(available_resources):
raise Exception('Not enough usable resources to execute {}'.format(self.name))
if not self.has_consumable_resource(available_resources):
raise Exception('Not enough consumable resources to execute {}'.format(self.name))
if not self.inorder(job_order):
raise Exception("Can't execute {} - execute prerequisite actions first".
format(self.name))
kb = super().act(kb, args) # update knowledge base
for resource in self.consumes: # remove consumed resources
available_resources[resource] -= self.consumes[resource]
self.completed = True # set the task status to complete
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
def has_consumable_resource(self, available_resources):
"""
Ensure there are enough consumable resources for this action to execute.
"""
for resource in self.consumes:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.consumes[resource]:
return False
return True
def has_usable_resource(self, available_resources):
"""
Ensure there are enough usable resources for this action to execute.
"""
for resource in self.uses:
if available_resources.get(resource) is None:
return False
if available_resources[resource] < self.uses[resource]:
return False
return True
def inorder(self, job_order):
"""
Ensure that all the jobs that had to be executed before the current one have been
successfully executed.
"""
for jobs in job_order:
if self in jobs:
for job in jobs:
if job is self:
return True
if not job.completed:
return False
return True
"""
Define real-world problems by aggregating resources as numerical quantities instead of
named entities.
This class is identical to PDLL, except that it overloads the act function to handle
resource and ordering conditions imposed by HLA as opposed to Action.
"""
def __init__(self, init, goals, actions, jobs=None, resources=None):
super().__init__(init, goals, actions)
self.resources = resources or {}
def act(self, action):
"""
Performs the HLA given as argument.
Note that this is different from the superclass action - where the parameter was an
Expression. For real world problems, an Expr object isn't enough to capture all the
detail required for executing the action - resources, preconditions, etc need to be
checked for too.
"""
args = action.args
list_action = first(a for a in self.actions if a.name == action.name)
if list_action is None:
raise Exception("Action '{}' not found".format(action.name))
self.init = list_action.do_action(self.jobs, self.resources, self.init, args).clauses
def refinements(hla, state, library): # TODO - refinements may be (multiple) HLA themselves ...
"""
state is a Problem, containing the current state kb
library is a dictionary containing details for every possible refinement. eg:
{
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
'HLA': [
'Go(Home, SFO)',
'Go(Home, SFO)',
'Drive(Home, SFOLongTermParking)',
'Shuttle(SFOLongTermParking, SFO)',
'Taxi(Home, SFO)'
],
'steps': [
['Drive(Home, SFOLongTermParking)', 'Shuttle(SFOLongTermParking, SFO)'],
['Taxi(Home, SFO)'],
[],
[],
[]
],
# empty refinements indicate a primitive action
'precond': [
['At(Home)', 'Have(Car)'],
['At(Home)'],
['At(Home)', 'Have(Car)'],
['At(SFOLongTermParking)'],
['At(Home)']
],
'effect': [
['At(SFO)', '~At(Home)'],
['At(SFO)', '~At(Home)'],
['At(SFOLongTermParking)', '~At(Home)'],
['At(SFO)', '~At(SFOLongTermParking)'],
['At(SFO)', '~At(Home)']
]
}
"""
e = Expr(hla.name, hla.args)
indices = [i for i, x in enumerate(library['HLA']) if expr(x).op == hla.name]
# TODO multiple refinements
precond = []
for p in library['precond'][i]:
if p[0] == '~':
precond.append(expr('Not' + p[1:]))
else:
precond.append(expr(p))
effect = []
for e in library['effect'][i]:
if e[0] == '~':
effect.append(expr('Not' + e[1:]))
else:
effect.append(expr(e))
action = HLA(library['steps'][i][0], precond, effect)
if action.check_precond(state.init, action.args):
def hierarchical_search(problem, hierarchy):
"""
[Figure 11.5] 'Hierarchical Search, a Breadth First Search implementation of Hierarchical
Forward Planning Search'
The problem is a real-world problem defined by the problem class, and the hierarchy is
a dictionary of HLA - refinements (see refinements generator for details)
"""
act = Node(problem.actions[0])
frontier = deque()
plan = frontier.popleft()
prefix = None
if plan.parent:
prefix = plan.parent.state.action # prefix, suffix = subseq(plan.state, hla)
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
outcome = Problem.result(problem, prefix)
if hla is None:
if outcome.goal_test():
return plan.path()
else:
print("else")
for sequence in Problem.refinements(hla, outcome, hierarchy):
print("...")
frontier.append(Node(plan.state, plan.parent, sequence))
def result(problem, action):
"""The outcome of applying an action to the current problem"""
if action is not None:
problem.act(action)
return problem
else:
return problem
def job_shop_problem():
"""
A job-shop scheduling problem for assembling two cars,
with resource and ordering constraints.
Example:
>>> from planning import *
>>> p = job_shop_problem()
>>> p.goal_test()
False
>>> p.act(p.jobs[1][0])
>>> p.act(p.jobs[1][1])
>>> p.act(p.jobs[1][2])
>>> p.act(p.jobs[0][0])
>>> p.act(p.jobs[0][1])
>>> p.goal_test()
False
>>> p.act(p.jobs[0][2])
>>> p.goal_test()
True
>>>
"""
resources = {'EngineHoists': 1, 'WheelStations': 2, 'Inspectors': 2, 'LugNuts': 500}
add_engine1 = HLA('AddEngine1', precond='~Has(C1, E1)', effect='Has(C1, E1)', duration=30, use={'EngineHoists': 1})
add_engine2 = HLA('AddEngine2', precond='~Has(C2, E2)', effect='Has(C2, E2)', duration=60, use={'EngineHoists': 1})
add_wheels1 = HLA('AddWheels1', precond='~Has(C1, W1)', effect='Has(C1, W1)', duration=30, use={'WheelStations': 1}, consume={'LugNuts': 20})
add_wheels2 = HLA('AddWheels2', precond='~Has(C2, W2)', effect='Has(C2, W2)', duration=15, use={'WheelStations': 1}, consume={'LugNuts': 20})
inspect1 = HLA('Inspect1', precond='~Inspected(C1)', effect='Inspected(C1)', duration=10, use={'Inspectors': 1})
inspect2 = HLA('Inspect2', precond='~Inspected(C2)', effect='Inspected(C2)', duration=10, use={'Inspectors': 1})
actions = [add_engine1, add_engine2, add_wheels1, add_wheels2, inspect1, inspect2]
job_group1 = [add_engine1, add_wheels1, inspect1]
job_group2 = [add_engine2, add_wheels2, inspect2]
return Problem(init='Car(C1) & Car(C2) & Wheels(W1) & Wheels(W2) & Engine(E2) & Engine(E2) & ~Has(C1, E1) & ~Has(C2, E2) & ~Has(C1, W1) & ~Has(C2, W2) & ~Inspected(C1) & ~Inspected(C2)',
goals='Has(C1, W1) & Has(C1, E1) & Inspected(C1) & Has(C2, W2) & Has(C2, E2) & Inspected(C2)',
actions=actions,
jobs=[job_group1, job_group2],
resources=resources)
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
def go_to_sfo():
"""Go to SFO Problem"""
go_home_sfo1 = HLA('Go(Home, SFO)', precond='At(Home) & Have(Car)', effect='At(SFO) & ~At(Home)')
go_home_sfo2 = HLA('Go(Home, SFO)', precond='At(Home)', effect='At(SFO) & ~At(Home)')
drive_home_sfoltp = HLA('Drive(Home, SFOLongTermParking)', precond='At(Home) & Have(Car)', effect='At(SFOLongTermParking) & ~At(Home)')
shuttle_sfoltp_sfo = HLA('Shuttle(SFOLongTermParking, SFO)', precond='At(SFOLongTermParking)', effect='At(SFO) & ~At(SFOLongTermParking)')
taxi_home_sfo = HLA('Taxi(Home, SFO)', precond='At(Home)', effect='At(SFO) & ~At(Home)')
actions = [go_home_sfo1, go_home_sfo2, drive_home_sfoltp, shuttle_sfoltp_sfo, taxi_home_sfo]
library = {
'HLA': [
'Go(Home, SFO)',
'Go(Home, SFO)',
'Drive(Home, SFOLongTermParking)',
'Shuttle(SFOLongTermParking, SFO)',
'Taxi(Home, SFO)'
],
'steps': [
['Drive(Home, SFOLongTermParking)', 'Shuttle(SFOLongTermParking, SFO)'],
['Taxi(Home, SFO)'],
[],
[],
[]
],
'precond': [
['At(Home)', 'Have(Car)'],
['At(Home)'],
['At(Home)', 'Have(Car)'],
['At(SFOLongTermParking)'],
['At(Home)']
],
'effect': [
['At(SFO)', '~At(Home)'],
['At(SFO)', '~At(Home)'],
['At(SFOLongTermParking)', '~At(Home)'],
['At(SFO)', '~At(SFOLongTermParking)'],
['At(SFO)', '~At(Home)']
]
}
return Problem(init='At(Home)', goals='At(SFO)', actions=actions), library