logic.ipynb 193 ko
Newer Older
Aman Deep Singh's avatar
Aman Deep Singh a validé
    "We already know that *every sentence of a propositional logic is logically equivalent to a conjunction of clauses*.\n",
    "We will use this fact to our advantage and simplify the input sentence into the **conjunctive normal form** (CNF) which is a conjunction of disjunctions of literals.\n",
    "For eg:\n",
    "<br>\n",
    "$$(A\\lor B)\\land (\\neg B\\lor C\\lor\\neg D)\\land (D\\lor\\neg E)$$\n",
    "This is equivalent to the POS (Product of sums) form in digital electronics.\n",
    "<br>\n",
    "Here's an outline of how the conversion is done:\n",
    "1. Convert bi-implications to implications\n",
    "<br>\n",
    "$\\alpha\\iff\\beta$ can be written as $(\\alpha\\implies\\beta)\\land(\\beta\\implies\\alpha)$\n",
    "<br>\n",
    "This also applies to compound sentences\n",
    "<br>\n",
    "$\\alpha\\iff(\\beta\\lor\\gamma)$ can be written as $(\\alpha\\implies(\\beta\\lor\\gamma))\\land((\\beta\\lor\\gamma)\\implies\\alpha)$\n",
    "<br>\n",
    "2. Convert implications to their logical equivalents\n",
    "<br>\n",
    "$\\alpha\\implies\\beta$ can be written as $\\neg\\alpha\\lor\\beta$\n",
    "<br>\n",
    "3. Move negation inwards\n",
    "<br>\n",
    "CNF requires atomic literals. Hence, negation cannot appear on a compound statement.\n",
    "De Morgan's laws will be helpful here.\n",
    "<br>\n",
    "$\\neg(\\alpha\\land\\beta)\\equiv(\\neg\\alpha\\lor\\neg\\beta)$\n",
    "<br>\n",
    "$\\neg(\\alpha\\lor\\beta)\\equiv(\\neg\\alpha\\land\\neg\\beta)$\n",
    "<br>\n",
    "4. Distribute disjunction over conjunction\n",
    "<br>\n",
    "Disjunction and conjunction are distributive over each other.\n",
    "Now that we only have conjunctions, disjunctions and negations in our expression, \n",
    "we will distribute disjunctions over conjunctions wherever possible as this will give us a sentence which is a conjunction of simpler clauses, \n",
    "which is what we wanted in the first place.\n",
    "<br>\n",
    "We need a term of the form\n",
    "<br>\n",
    "$(\\alpha_{1}\\lor\\alpha_{2}\\lor\\alpha_{3}...)\\land(\\beta_{1}\\lor\\beta_{2}\\lor\\beta_{3}...)\\land(\\gamma_{1}\\lor\\gamma_{2}\\lor\\gamma_{3}...)\\land...$\n",
    "<br>\n",
    "<br>\n",
    "The `to_cnf` function executes this conversion using helper subroutines."
   ]
  },
  {
   "cell_type": "code",
Aman Deep Singh's avatar
Aman Deep Singh a validé
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">to_cnf</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Convert a propositional logical sentence to conjunctive normal form.</span>\n",
       "<span class=\"sd\">    That is, to the form ((A | ~B | ...) &amp; (B | C | ...) &amp; ...) [p. 253]</span>\n",
       "<span class=\"sd\">    &gt;&gt;&gt; to_cnf(&#39;~(B | C)&#39;)</span>\n",
       "<span class=\"sd\">    (~B &amp; ~C)</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">expr</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">if</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"nb\">str</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">expr</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">eliminate_implications</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>  <span class=\"c1\"># Steps 1, 2 from p. 253</span>\n",
       "    <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">move_not_inwards</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>  <span class=\"c1\"># Step 3</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">distribute_and_over_or</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>  <span class=\"c1\"># Step 4</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(to_cnf)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`to_cnf` calls three subroutines.\n",
    "<br>\n",
    "`eliminate_implications` converts bi-implications and implications to their logical equivalents.\n",
    "<br>\n",
    "`move_not_inwards` removes negations from compound statements and moves them inwards using De Morgan's laws.\n",
    "<br>\n",
    "`distribute_and_over_or` distributes disjunctions over conjunctions.\n",
    "<br>\n",
    "Run the cells below for implementation details.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
Aman Deep Singh's avatar
Aman Deep Singh a validé
   "outputs": [],
   "source": [
    "%psource eliminate_implications"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [],
   "source": [
Aman Deep Singh's avatar
Aman Deep Singh a validé
    "%psource move_not_inwards"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {},
Aman Deep Singh's avatar
Aman Deep Singh a validé
   "outputs": [],
   "source": [
    "%psource distribute_and_over_or"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's convert some sentences to see how it works\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((A | ~B) & (B | ~A))"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "A, B, C, D = expr('A, B, C, D')\n",
    "to_cnf(A |'<=>'| B)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((A | ~B | ~C) & (B | ~A) & (C | ~A))"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "to_cnf(A |'<=>'| (B & C))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(A & (C | B) & (D | B))"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "to_cnf(A & (B | (C & D)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((B | ~A | C | ~D) & (A | ~A | C | ~D) & (B | ~B | C | ~D) & (A | ~B | C | ~D))"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "to_cnf((A |'<=>'| ~B) |'==>'| (C | ~D))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Coming back to our resolution problem, we can see how the `to_cnf` function is utilized here"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">pl_resolution</span><span class=\"p\">(</span><span class=\"n\">KB</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Propositional-logic resolution: say if alpha follows from KB. [Figure 7.12]&quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">clauses</span> <span class=\"o\">=</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span> <span class=\"o\">+</span> <span class=\"n\">conjuncts</span><span class=\"p\">(</span><span class=\"n\">to_cnf</span><span class=\"p\">(</span><span class=\"o\">~</span><span class=\"n\">alpha</span><span class=\"p\">))</span>\n",
       "    <span class=\"n\">new</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "    <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
       "        <span class=\"n\">n</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">pairs</span> <span class=\"o\">=</span> <span class=\"p\">[(</span><span class=\"n\">clauses</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">],</span> <span class=\"n\">clauses</span><span class=\"p\">[</span><span class=\"n\">j</span><span class=\"p\">])</span>\n",
       "                 <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">n</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">j</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">i</span><span class=\"o\">+</span><span class=\"mi\">1</span><span class=\"p\">,</span> <span class=\"n\">n</span><span class=\"p\">)]</span>\n",
       "        <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">ci</span><span class=\"p\">,</span> <span class=\"n\">cj</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"n\">pairs</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">resolvents</span> <span class=\"o\">=</span> <span class=\"n\">pl_resolve</span><span class=\"p\">(</span><span class=\"n\">ci</span><span class=\"p\">,</span> <span class=\"n\">cj</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"bp\">False</span> <span class=\"ow\">in</span> <span class=\"n\">resolvents</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">True</span>\n",
       "            <span class=\"n\">new</span> <span class=\"o\">=</span> <span class=\"n\">new</span><span class=\"o\">.</span><span class=\"n\">union</span><span class=\"p\">(</span><span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">resolvents</span><span class=\"p\">))</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">new</span><span class=\"o\">.</span><span class=\"n\">issubset</span><span class=\"p\">(</span><span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">)):</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">False</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">c</span> <span class=\"ow\">in</span> <span class=\"n\">new</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">c</span> <span class=\"ow\">not</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">c</span><span class=\"p\">)</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(pl_resolution)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(True, False)"
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_resolution(wumpus_kb, ~P11), pl_resolution(wumpus_kb, P11)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(False, False)"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_resolution(wumpus_kb, ~P22), pl_resolution(wumpus_kb, P22)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Forward and backward chaining\n",
    "Previously, we said we will look at two algorithms to check if a sentence is entailed by the `KB`, \n",
    "but here's a third one. \n",
    "The difference here is that our goal now is to determine if a knowledge base of definite clauses entails a single proposition symbol *q* - the query.\n",
    "There is a catch however, the knowledge base can only contain **Horn clauses**.\n",
    "<br>\n",
    "#### Horn Clauses\n",
    "Horn clauses can be defined as a *disjunction* of *literals* with **at most** one positive literal. \n",
    "<br>\n",
    "A Horn clause with exactly one positive literal is called a *definite clause*.\n",
    "<br>\n",
    "A Horn clause might look like \n",
    "<br>\n",
    "$\\neg a\\lor\\neg b\\lor\\neg c\\lor\\neg d... \\lor z$\n",
    "<br>\n",
    "This, coincidentally, is also a definite clause.\n",
    "<br>\n",
    "Using De Morgan's laws, the example above can be simplified to \n",
    "<br>\n",
    "$a\\land b\\land c\\land d ... \\implies z$\n",
    "<br>\n",
    "This seems like a logical representation of how humans process known data and facts. \n",
    "Assuming percepts `a`, `b`, `c`, `d` ... to be true simultaneously, we can infer `z` to also be true at that point in time. \n",
    "There are some interesting aspects of Horn clauses that make algorithmic inference or *resolution* easier.\n",
    "- Definite clauses can be written as implications:\n",
    "<br>\n",
    "The most important simplification a definite clause provides is that it can be written as an implication.\n",
    "The premise (or the knowledge that leads to the implication) is a conjunction of positive literals.\n",
    "The conclusion (the implied statement) is also a positive literal.\n",
    "The sentence thus becomes easier to understand.\n",
    "The premise and the conclusion are conventionally called the *body* and the *head* respectively.\n",
    "A single positive literal is called a *fact*.\n",
    "- Forward chaining and backward chaining can be used for inference from Horn clauses:\n",
    "<br>\n",
    "Forward chaining is semantically identical to `AND-OR-Graph-Search` from the chapter on search algorithms.\n",
    "Implementational details will be explained shortly.\n",
    "- Deciding entailment with Horn clauses is linear in size of the knowledge base:\n",
    "<br>\n",
    "Surprisingly, the forward and backward chaining algorithms traverse each element of the knowledge base at most once, greatly simplifying the problem.\n",
    "<br>\n",
    "<br>\n",
    "The function `pl_fc_entails` implements forward chaining to see if a knowledge base `KB` entails a symbol `q`.\n",
    "<br>\n",
    "Before we proceed further, note that `pl_fc_entails` doesn't use an ordinary `KB` instance. \n",
    "The knowledge base here is an instance of the `PropDefiniteKB` class, derived from the `PropKB` class, \n",
    "but modified to store definite clauses.\n",
    "<br>\n",
    "The main point of difference arises in the inclusion of a helper method to `PropDefiniteKB` that returns a list of clauses in KB that have a given symbol `p` in their premise."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span>    <span class=\"k\">def</span> <span class=\"nf\">clauses_with_premise</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">p</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return a list of the clauses in KB that have p in their premise.</span>\n",
       "<span class=\"sd\">        This could be cached away for O(1) speed, but we&#39;ll recompute it.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"p\">[</span><span class=\"n\">c</span> <span class=\"k\">for</span> <span class=\"n\">c</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">clauses</span>\n",
       "                <span class=\"k\">if</span> <span class=\"n\">c</span><span class=\"o\">.</span><span class=\"n\">op</span> <span class=\"o\">==</span> <span class=\"s1\">&#39;==&gt;&#39;</span> <span class=\"ow\">and</span> <span class=\"n\">p</span> <span class=\"ow\">in</span> <span class=\"n\">conjuncts</span><span class=\"p\">(</span><span class=\"n\">c</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">])]</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(PropDefiniteKB.clauses_with_premise)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's now have a look at the `pl_fc_entails` algorithm."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">pl_fc_entails</span><span class=\"p\">(</span><span class=\"n\">KB</span><span class=\"p\">,</span> <span class=\"n\">q</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Use forward chaining to see if a PropDefiniteKB entails symbol q.</span>\n",
       "<span class=\"sd\">    [Figure 7.15]</span>\n",
       "<span class=\"sd\">    &gt;&gt;&gt; pl_fc_entails(horn_clauses_KB, expr(&#39;Q&#39;))</span>\n",
       "<span class=\"sd\">    True</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">count</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">c</span><span class=\"p\">:</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">conjuncts</span><span class=\"p\">(</span><span class=\"n\">c</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]))</span>\n",
       "             <span class=\"k\">for</span> <span class=\"n\">c</span> <span class=\"ow\">in</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span>\n",
       "             <span class=\"k\">if</span> <span class=\"n\">c</span><span class=\"o\">.</span><span class=\"n\">op</span> <span class=\"o\">==</span> <span class=\"s1\">&#39;==&gt;&#39;</span><span class=\"p\">}</span>\n",
       "    <span class=\"n\">inferred</span> <span class=\"o\">=</span> <span class=\"n\">defaultdict</span><span class=\"p\">(</span><span class=\"nb\">bool</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">agenda</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">s</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span> <span class=\"k\">if</span> <span class=\"n\">is_prop_symbol</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">)]</span>\n",
       "    <span class=\"k\">while</span> <span class=\"n\">agenda</span><span class=\"p\">:</span>\n",
       "        <span class=\"n\">p</span> <span class=\"o\">=</span> <span class=\"n\">agenda</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">()</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">p</span> <span class=\"o\">==</span> <span class=\"n\">q</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">True</span>\n",
       "        <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">inferred</span><span class=\"p\">[</span><span class=\"n\">p</span><span class=\"p\">]:</span>\n",
       "            <span class=\"n\">inferred</span><span class=\"p\">[</span><span class=\"n\">p</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"bp\">True</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">c</span> <span class=\"ow\">in</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses_with_premise</span><span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">):</span>\n",
       "                <span class=\"n\">count</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"p\">]</span> <span class=\"o\">-=</span> <span class=\"mi\">1</span>\n",
       "                <span class=\"k\">if</span> <span class=\"n\">count</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "                    <span class=\"n\">agenda</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">c</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">])</span>\n",
       "    <span class=\"k\">return</span> <span class=\"bp\">False</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(pl_fc_entails)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The function accepts a knowledge base `KB` (an instance of `PropDefiniteKB`) and a query `q` as inputs.\n",
    "<br>\n",
    "<br>\n",
    "`count` initially stores the number of symbols in the premise of each sentence in the knowledge base.\n",
    "<br>\n",
    "The `conjuncts` helper function separates a given sentence at conjunctions.\n",
    "<br>\n",
    "`inferred` is initialized as a *boolean* defaultdict. \n",
    "This will be used later to check if we have inferred all premises of each clause of the agenda.\n",
    "<br>\n",
    "`agenda` initially stores a list of clauses that the knowledge base knows to be true.\n",
    "The `is_prop_symbol` helper function checks if the given symbol is a valid propositional logic symbol.\n",
    "<br>\n",
    "<br>\n",
    "We now iterate through `agenda`, popping a symbol `p` on each iteration.\n",
    "If the query `q` is the same as `p`, we know that entailment holds.\n",
    "<br>\n",
    "The agenda is processed, reducing `count` by one for each implication with a premise `p`.\n",
    "A conclusion is added to the agenda when `count` reaches zero. This means we know all the premises of that particular implication to be true.\n",
    "<br>\n",
    "`clauses_with_premise` is a helpful method of the `PropKB` class.\n",
    "It returns a list of clauses in the knowledge base that have `p` in their premise.\n",
    "<br>\n",
    "<br>\n",
    "Now that we have an idea of how this function works, let's see a few examples of its usage, but we first need to define our knowledge base. We assume we know the following clauses to be true."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [],
   "source": [
    "clauses = ['(B & F)==>E', \n",
    "           '(A & E & F)==>G', \n",
    "           '(B & C)==>F', \n",
    "           '(A & B)==>D', \n",
    "           '(E & F)==>H', \n",
    "           '(H & I)==>J',\n",
    "           'A', \n",
    "           'B', \n",
    "           'C']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will now `tell` this information to our knowledge base."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {},
   "outputs": [],
   "source": [
    "definite_clauses_KB = PropDefiniteKB()\n",
    "for clause in clauses:\n",
    "    definite_clauses_KB.tell(expr(clause))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can now check if our knowledge base entails the following queries."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
     "execution_count": 44,
Aman Deep Singh's avatar
Aman Deep Singh a validé
     "metadata": {},
     "output_type": "execute_result"
Aman Deep Singh's avatar
Aman Deep Singh a validé
    }
   ],
   "source": [
    "pl_fc_entails(definite_clauses_KB, expr('G'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
     "execution_count": 45,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_fc_entails(definite_clauses_KB, expr('H'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_fc_entails(definite_clauses_KB, expr('I'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 47,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_fc_entails(definite_clauses_KB, expr('J'))"
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Effective Propositional Model Checking\n",
    "\n",
    "The previous segments elucidate the algorithmic procedure for model checking. \n",
    "In this segment, we look at ways of making them computationally efficient.\n",
    "<br>\n",
    "The problem we are trying to solve is conventionally called the _propositional satisfiability problem_, abbreviated as the _SAT_ problem.\n",
    "In layman terms, if there exists a model that satisfies a given Boolean formula, the formula is called satisfiable.\n",
    "<br>\n",
    "The SAT problem was the first problem to be proven _NP-complete_.\n",
    "The main characteristics of an NP-complete problem are:\n",
    "- Given a solution to such a problem, it is easy to verify if the solution solves the problem.\n",
    "- The time required to actually solve the problem using any known algorithm increases exponentially with respect to the size of the problem.\n",
    "<br>\n",
    "<br>\n",
    "Due to these properties, heuristic and approximational methods are often applied to find solutions to these problems.\n",
    "<br>\n",
    "It is extremely important to be able to solve large scale SAT problems efficiently because \n",
    "many combinatorial problems in computer science can be conveniently reduced to checking the satisfiability of a propositional sentence under some constraints.\n",
    "<br>\n",
    "We will introduce two new algorithms that perform propositional model checking in a computationally effective way.\n",
    "<br>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 1. DPLL (Davis-Putnam-Logeman-Loveland) algorithm\n",
    "This algorithm is very similar to Backtracking-Search.\n",
    "It recursively enumerates possible models in a depth-first fashion with the following improvements over algorithms like `tt_entails`:\n",
    "1. Early termination:\n",
    "<br>\n",
    "In certain cases, the algorithm can detect the truth value of a statement using just a partially completed model.\n",
    "For example, $(P\\lor Q)\\land(P\\lor R)$ is true if P is true, regardless of other variables.\n",
    "This reduces the search space significantly.\n",
    "2. Pure symbol heuristic:\n",
    "<br>\n",
    "A symbol that has the same sign (positive or negative) in all clauses is called a _pure symbol_.\n",
    "It isn't difficult to see that any satisfiable model will have the pure symbols assigned such that its parent clause becomes _true_.\n",
    "For example, $(P\\lor\\neg Q)\\land(\\neg Q\\lor\\neg R)\\land(R\\lor P)$ has P and Q as pure symbols\n",
    "and for the sentence to be true, P _has_ to be true and Q _has_ to be false.\n",
    "The pure symbol heuristic thus simplifies the problem a bit.\n",
    "3. Unit clause heuristic:\n",
    "<br>\n",
    "In the context of DPLL, clauses with just one literal and clauses with all but one _false_ literals are called unit clauses.\n",
    "If a clause is a unit clause, it can only be satisfied by assigning the necessary value to make the last literal true.\n",
    "We have no other choice.\n",
    "<br>\n",
    "Assigning one unit clause can create another unit clause.\n",
    "For example, when P is false, $(P\\lor Q)$ becomes a unit clause, causing _true_ to be assigned to Q.\n",
    "A series of forced assignments derived from previous unit clauses is called _unit propagation_.\n",
    "In this way, this heuristic simplifies the problem further.\n",
    "<br>\n",
    "The algorithm often employs other tricks to scale up to large problems.\n",
    "However, these tricks are currently out of the scope of this notebook. Refer to section 7.6 of the book for more details.\n",
    "<br>\n",
    "<br>\n",
    "Let's have a look at the algorithm."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},