Newer
Older
"\n",
"* There are no new clauses that can be added, in which case $\\text{KB} \\nvDash \\alpha$.\n",
"* Two clauses resolve to yield the <em>empty clause</em>, in which case $\\text{KB} \\vDash \\alpha$.\n",
"\n",
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
"The <em>empty clause</em> is equivalent to <em>False</em> because it arises only from resolving two complementary\n",
"unit clauses such as $P$ and $\\neg P$ which is a contradiction as both $P$ and $\\neg P$ can't be <em>True</em> at the same time."
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource pl_resolution"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(True, False)"
]
},
"execution_count": 25,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pl_resolution(wumpus_kb, ~P11), pl_resolution(wumpus_kb, P11)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(False, False)"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"pl_resolution(wumpus_kb, ~P22), pl_resolution(wumpus_kb, P22)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## First-Order Logic Knowledge Bases: `FolKB`\n",
"\n",
"The class `FolKB` can be used to represent a knowledge base of First-order logic sentences. You would initialize and use it the same way as you would for `PropKB` except that the clauses are first-order definite clauses. We will see how to write such clauses to create a database and query them in the following sections."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Criminal KB\n",
"In this section we create a `FolKB` based on the following paragraph.<br/>\n",
"<em>The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.</em><br/>\n",
"The first step is to extract the facts and convert them into first-order definite clauses. Extracting the facts from data alone is a challenging task. Fortunately, we have a small paragraph and can do extraction and conversion manually. We'll store the clauses in list aptly named `clauses`."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clauses = []"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<em>“... it is a crime for an American to sell weapons to hostile nations”</em><br/>\n",
"The keywords to look for here are 'crime', 'American', 'sell', 'weapon' and 'hostile'. We use predicate symbols to make meaning of them.\n",
"\n",
"* `Criminal(x)`: `x` is a criminal\n",
"* `American(x)`: `x` is an American\n",
"* `Sells(x ,y, z)`: `x` sells `y` to `z`\n",
"* `Weapon(x)`: `x` is a weapon\n",
"* `Hostile(x)`: `x` is a hostile nation\n",
"\n",
"Let us now combine them with appropriate variable naming to depict the meaning of the sentence. The criminal `x` is also the American `x` who sells weapon `y` to `z`, which is a hostile nation.\n",
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
"\n",
"$\\text{American}(x) \\land \\text{Weapon}(y) \\land \\text{Sells}(x, y, z) \\land \\text{Hostile}(z) \\implies \\text{Criminal} (x)$"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clauses.append(expr(\"(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<em>\"The country Nono, an enemy of America\"</em><br/>\n",
"We now know that Nono is an enemy of America. We represent these nations using the constant symbols `Nono` and `America`. the enemy relation is show using the predicate symbol `Enemy`.\n",
"\n",
"$\\text{Enemy}(\\text{Nono}, \\text{America})$"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clauses.append(expr(\"Enemy(Nono, America)\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<em>\"Nono ... has some missiles\"</em><br/>\n",
"This states the existence of some missile which is owned by Nono. $\\exists x \\text{Owns}(\\text{Nono}, x) \\land \\text{Missile}(x)$. We invoke existential instantiation to introduce a new constant `M1` which is the missile owned by Nono.\n",
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
"\n",
"$\\text{Owns}(\\text{Nono}, \\text{M1}), \\text{Missile}(\\text{M1})$"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clauses.append(expr(\"Owns(Nono, M1)\"))\n",
"clauses.append(expr(\"Missile(M1)\"))"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"<em>\"All of its missiles were sold to it by Colonel West\"</em><br/>\n",
"If Nono owns something and it classifies as a missile, then it was sold to Nono by West.\n",
"\n",
"$\\text{Missile}(x) \\land \\text{Owns}(\\text{Nono}, x) \\implies \\text{Sells}(\\text{West}, x, \\text{Nono})$"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clauses.append(expr(\"(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<em>\"West, who is American\"</em><br/>\n",
"West is an American.\n",
"\n",
"$\\text{American}(\\text{West})$"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clauses.append(expr(\"American(West)\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also know, from our understanding of language, that missiles are weapons and that an enemy of America counts as “hostile”.\n",
"\n",
"$\\text{Missile}(x) \\implies \\text{Weapon}(x), \\text{Enemy}(x, \\text{America}) \\implies \\text{Hostile}(x)$"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"clauses.append(expr(\"Missile(x) ==> Weapon(x)\"))\n",
"clauses.append(expr(\"Enemy(x, America) ==> Hostile(x)\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now that we have converted the information into first-order definite clauses we can create our first-order logic knowledge base."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"crime_kb = FolKB(clauses)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Inference in First-Order Logic\n",
"In this section we look at a forward chaining and a backward chaining algorithm for `FolKB`. Both aforementioned algorithms rely on a process called <strong>unification</strong>, a key component of all first-order inference algorithms."
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Unification\n",
"We sometimes require finding substitutions that make different logical expressions look identical. This process, called unification, is done by the `unify` algorithm. It takes as input two sentences and returns a <em>unifier</em> for them if one exists. A unifier is a dictionary which stores the substitutions required to make the two sentences identical. It does so by recursively unifying the components of a sentence, where the unification of a variable symbol `var` with a constant symbol `Const` is the mapping `{var: Const}`. Let's look at a few examples."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{x: 3}"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unify(expr('x'), 3)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{x: B}"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unify(expr('A(x)'), expr('A(B)'))"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{x: Bella, y: Dobby}"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(y)'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In cases where there is no possible substitution that unifies the two sentences the function return `None`."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"None\n"
]
}
],
"source": [
"print(unify(expr('Cat(x)'), expr('Dog(Dobby)')))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also need to take care we do not unintentionally use the same variable name. Unify treats them as a single variable which prevents it from taking multiple value."
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"None\n"
]
}
],
"source": [
"print(unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(x)')))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Forward Chaining Algorithm\n",
"We consider the simple forward-chaining algorithm presented in <em>Figure 9.3</em>. We look at each rule in the knoweldge base and see if the premises can be satisfied. This is done by finding a substitution which unifies each of the premise with a clause in the `KB`. If we are able to unify the premises, the conclusion (with the corresponding substitution) is added to the `KB`. This inferencing process is repeated until either the query can be answered or till no new sentences can be added. We test if the newly added clause unifies with the query in which case the substitution yielded by `unify` is an answer to the query. If we run out of sentences to infer, this means the query was a failure.\n",
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
"The function `fol_fc_ask` is a generator which yields all substitutions which validate the query."
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource fol_fc_ask"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's find out all the hostile nations. Note that we only told the `KB` that Nono was an enemy of America, not that it was hostile."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{x: Nono}]\n"
]
}
],
"source": [
"answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
"print(list(answer))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The generator returned a single substitution which says that Nono is a hostile nation. See how after adding another enemy nation the generator returns two substitutions."
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{x: Nono}, {x: JaJa}]\n"
]
}
],
"source": [
"crime_kb.tell(expr('Enemy(JaJa, America)'))\n",
"answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
"print(list(answer))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<strong><em>Note</em>:</strong> `fol_fc_ask` makes changes to the `KB` by adding sentences to it."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Backward Chaining Algorithm\n",
"This algorithm works backward from the goal, chaining through rules to find known facts that support the proof. Suppose `goal` is the query we want to find the substitution for. We find rules of the form $\\text{lhs} \\implies \\text{goal}$ in the `KB` and try to prove `lhs`. There may be multiple clauses in the `KB` which give multiple `lhs`. It is sufficient to prove only one of these. But to prove a `lhs` all the conjuncts in the `lhs` of the clause must be proved. This makes it similar to <em>And/Or</em> search."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### OR\n",
"The <em>OR</em> part of the algorithm comes from our choice to select any clause of the form $\\text{lhs} \\implies \\text{goal}$. Looking at all rules's `lhs` whose `rhs` unify with the `goal`, we yield a substitution which proves all the conjuncts in the `lhs`. We use `parse_definite_clause` to attain `lhs` and `rhs` from a clause of the form $\\text{lhs} \\implies \\text{rhs}$. For atomic facts the `lhs` is an empty list."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource fol_bc_or"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### AND\n",
"The <em>AND</em> corresponds to proving all the conjuncts in the `lhs`. We need to find a substitution which proves each <em>and</em> every clause in the list of conjuncts."
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource fol_bc_and"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the main function `fl_bc_ask` calls `fol_bc_or` with substitution initialized as empty. The `ask` method of `FolKB` uses `fol_bc_ask` and fetches the first substitution returned by the generator to answer query. Let's query the knowledge base we created from `clauses` to find hostile nations."
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Rebuild KB because running fol_fc_ask would add new facts to the KB\n",
"crime_kb = FolKB(clauses)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{v_5: x, x: Nono}"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crime_kb.ask(expr('Hostile(x)'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You may notice some new variables in the substitution. They are introduced to standardize the variable names to prevent naming problems as discussed in the [Unification section](#Unification)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix: The Implementation of `|'==>'|`\n",
"Consider the `Expr` formed by this syntax:"
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What is the funny `|'==>'|` syntax? The trick is that \"`|`\" is just the regular Python or-operator, and so is exactly equivalent to this: "
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In other words, there are two applications of or-operators. Here's the first one:"
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What is going on here is that the `__or__` method of `Expr` serves a dual purpose. If the right-hand-side is another `Expr` (or a number), then the result is an `Expr`, as in `(P | Q)`. But if the right-hand-side is a string, then the string is taken to be an operator, and we create a node in the abstract syntax tree corresponding to a partially-filled `Expr`, one where we know the left-hand-side is `P` and the operator is `==>`, but we don't yet know the right-hand-side.\n",
"The `PartialExpr` class has an `__or__` method that says to create an `Expr` node with the right-hand-side filled in. Here we can see the combination of the `PartialExpr` with `Q` to create a complete `Expr`:"
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"partial = PartialExpr('==>', P) \n",
"partial | ~Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This [trick](http://code.activestate.com/recipes/384122-infix-operators/) is due to [Ferdinand Jamitzky](http://code.activestate.com/recipes/users/98863/), with a modification by [C. G. Vedant](https://github.com/Chipe1),\n",
"who suggested using a string inside the or-bars.\n",
"\n",
"## Appendix: The Implementation of `expr`\n",
"\n",
"How does `expr` parse a string into an `Expr`? It turns out there are two tricks (besides the Jamitzky/Vedant trick):\n",
"\n",
"1. We do a string substitution, replacing \"`==>`\" with \"`|'==>'|`\" (and likewise for other operators).\n",
"2. We `eval` the resulting string in an environment in which every identifier\n",
"is bound to a symbol with that identifier as the `op`.\n",
"\n",
"In other words,"
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"P, Q = symbols('P, Q')\n",
"~(P & Q) |'==>'| (~P | ~Q)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One thing to beware of: this puts `==>` at the same precedence level as `\"|\"`, which is not quite right. For example, we get this:"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"(((P & Q) ==> P) | Q)"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"P & Q |'==>'| P | Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"which is probably not what we meant; when in doubt, put in extra parens:"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"((P & Q) ==> (P | Q))"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(P & Q) |'==>'| (P | Q)"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Examples"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"from notebook import Canvas_fol_bc_ask\n",
"canvas_bc_ask = Canvas_fol_bc_ask('canvas_bc_ask', crime_kb, expr('Criminal(x)'))"
]
},
"metadata": {
"collapsed": true
},
"This notebook by [Chirag Vartak](https://github.com/chiragvartak) and [Peter Norvig](https://github.com/norvig).\n",
}
],
"metadata": {
"kernelspec": {
"language": "python",
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
}
},
"nbformat": 4,