Newer
Older
self.tell(~percept_breeze(time))
elif i == 4:
self.tell(~percept_scream(time))
def add_temporal_sentences(self, time):
if time == 0:
return
t = time - 1
# current location rules
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
self.tell(implies(location(i, j, time), equiv(percept_breeze(time), breeze(i, j))))
self.tell(implies(location(i, j, time), equiv(percept_stench(time), stench(i, j))))
s = list()
s.append(
location(i, j, time), location(i, j, time) & ~move_forward(time) | percept_bump(time)))
s.append(location(i - 1, j, t) & facing_east(t) & move_forward(t))
s.append(location(i + 1, j, t) & facing_west(t) & move_forward(t))
s.append(location(i, j - 1, t) & facing_north(t) & move_forward(t))
if j != self.dimrow:
s.append(location(i, j + 1, t) & facing_south(t) & move_forward(t))
self.tell(new_disjunction(s))
# add sentence about safety of location i,j
self.tell(
equiv(ok_to_move(i, j, time), ~pit(i, j) & ~wumpus(i, j) & wumpus_alive(time))
)
a = facing_north(t) & turn_right(t)
b = facing_south(t) & turn_left(t)
c = facing_east(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_east(time), a | b | c)
self.tell(s)
a = facing_north(t) & turn_left(t)
b = facing_south(t) & turn_right(t)
c = facing_west(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_west(time), a | b | c)
self.tell(s)
a = facing_east(t) & turn_left(t)
b = facing_west(t) & turn_right(t)
c = facing_north(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_north(time), a | b | c)
self.tell(s)
a = facing_west(t) & turn_left(t)
b = facing_east(t) & turn_right(t)
c = facing_south(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_south(time), a | b | c)
self.tell(s)
self.tell(equiv(move_forward(t), ~turn_right(t) & ~turn_left(t)))
self.tell(equiv(have_arrow(time), have_arrow(t) & ~shoot(t)))
# Rule about Wumpus (dead or alive)
self.tell(equiv(wumpus_alive(time), wumpus_alive(t) & ~percept_scream(time)))
def ask_if_true(self, query):
return pl_resolution(self, query)
# ______________________________________________________________________________
def __init__(self, x, y, orientation):
self.X = x
self.Y = y
self.orientation = orientation
def get_location(self):
return self.X, self.Y
def set_location(self, x, y):
self.X = x
self.Y = y
def get_orientation(self):
return self.orientation
def set_orientation(self, orientation):
self.orientation = orientation
def __eq__(self, other):
Donato Meoli
a validé
if other.get_location() == self.get_location() and other.get_orientation() == self.get_orientation():
return True
else:
return False
# ______________________________________________________________________________
"""An agent for the wumpus world that does logical inference. [Figure 7.20]"""
self.kb = WumpusKB(self.dimrow)
self.t = 0
self.plan = list()
self.current_position = WumpusPosition(1, 1, 'UP')
def execute(self, percept):
self.kb.make_percept_sentence(percept, self.t)
self.kb.add_temporal_sentences(self.t)
temp = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if self.kb.ask_if_true(location(i, j, self.t)):
temp.append(i)
temp.append(j)
if self.kb.ask_if_true(facing_north(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'UP')
elif self.kb.ask_if_true(facing_south(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'DOWN')
elif self.kb.ask_if_true(facing_west(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'LEFT')
elif self.kb.ask_if_true(facing_east(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'RIGHT')
safe_points = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if self.kb.ask_if_true(ok_to_move(i, j, self.t)):
if self.kb.ask_if_true(percept_glitter(self.t)):
goals = list()
goals.append([1, 1])
self.plan.append('Grab')
actions = self.plan_route(self.current_position, goals, safe_points)
self.plan.extend(actions)
self.plan.append('Climb')
if len(self.plan) == 0:
unvisited = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
for k in range(self.t):
if self.kb.ask_if_true(location(i, j, k)):
unvisited.append([i, j])
unvisited_and_safe = list()
for u in unvisited:
for s in safe_points:
if u not in unvisited_and_safe and s == u:
unvisited_and_safe.append(u)
temp = self.plan_route(self.current_position, unvisited_and_safe, safe_points)
if len(self.plan) == 0 and self.kb.ask_if_true(have_arrow(self.t)):
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if not self.kb.ask_if_true(wumpus(i, j)):
possible_wumpus.append([i, j])
temp = self.plan_shot(self.current_position, possible_wumpus, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0:
not_unsafe = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if not self.kb.ask_if_true(ok_to_move(i, j, self.t)):
temp = self.plan_route(self.current_position, not_unsafe, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0:
start = list()
start.append([1, 1])
temp = self.plan_route(self.current_position, start, safe_points)
self.plan.extend(temp)
action = self.plan[0]
self.plan = self.plan[1:]
self.kb.make_action_sentence(action, self.t)
self.t += 1
return action
def plan_route(self, current, goals, allowed):
problem = PlanRoute(current, goals, allowed, self.dimrow)
return astar_search(problem).solution()
def plan_shot(self, current, goals, allowed):
shooting_positions = set()
for loc in goals:
x = loc[0]
y = loc[1]
for i in range(1, self.dimrow + 1):
if i < x:
shooting_positions.add(WumpusPosition(i, y, 'EAST'))
if i > x:
shooting_positions.add(WumpusPosition(i, y, 'WEST'))
if i < y:
shooting_positions.add(WumpusPosition(x, i, 'NORTH'))
if i > y:
shooting_positions.add(WumpusPosition(x, i, 'SOUTH'))
# Can't have a shooting position from any of the rooms the Wumpus could reside
orientations = ['EAST', 'WEST', 'NORTH', 'SOUTH']
for orientation in orientations:
shooting_positions.remove(WumpusPosition(loc[0], loc[1], orientation))
actions = list()
actions.extend(self.plan_route(current, shooting_positions, allowed))
actions.append('Shoot')
return actions
# ______________________________________________________________________________
def SAT_plan(init, transition, goal, t_max, SAT_solver=dpll_satisfiable):
"""Converts a planning problem to Satisfaction problem by translating it to a cnf sentence.
[Figure 7.22]
>>> transition = {'A': {'Left': 'A', 'Right': 'B'}, 'B': {'Left': 'A', 'Right': 'C'}, 'C': {'Left': 'B', 'Right': 'C'}}
Donato Meoli
a validé
>>> SAT_plan('A', transition, 'C', 1) is None
def translate_to_SAT(init, transition, goal, time):
clauses = []
states = [state for state in transition]
Surya Teja Cheedella
a validé
state_sym[s, t] = Expr("State_{}".format(next(state_counter)))
Donato Meoli
a validé
clauses.append(state_sym[first(clause[0] for clause in state_sym
if set(conjuncts(clause[0])).issuperset(conjuncts(goal))), time]) \
if isinstance(goal, Expr) else clauses.append(state_sym[goal, time])
transition_counter = itertools.count()
for s in states:
for action in transition[s]:
s_ = transition[s][action]
for t in range(time):
# Action 'action' taken from state 's' at time 't' to reach 's_'
Donato Meoli
a validé
action_sym[s, action, t] = Expr("Transition_{}".format(next(transition_counter)))
clauses.append(action_sym[s, action, t] | '==>' | state_sym[s, t])
clauses.append(action_sym[s, action, t] | '==>' | state_sym[s_, t + 1])
# must be a state at any time
clauses.append(associate('|', [state_sym[s, t] for s in states]))
for s_ in states[states.index(s) + 1:]:
# for each pair of states s, s_ only one is possible at time t
clauses.append((~state_sym[s, t]) | (~state_sym[s_, t]))
transitions_t = [tr for tr in action_sym if tr[2] == t]
# make sure at least one of the transitions happens
clauses.append(associate('|', [action_sym[tr] for tr in transitions_t]))
for tr_ in transitions_t[transitions_t.index(tr) + 1:]:
# there cannot be two transitions tr and tr_ at time t
clauses.append(~action_sym[tr] | ~action_sym[tr_])
return associate('&', clauses)
def extract_solution(model):
true_transitions = [t for t in action_sym if model[action_sym[t]]]
# Sort transitions based on time, which is the 3rd element of the tuple
true_transitions.sort(key=lambda x: x[2])
return [action for s, action, time in true_transitions]
Donato Meoli
a validé
for t in range(t_max + 1):
# dictionaries to help extract the solution from model
state_sym = {}
action_sym = {}
cnf = translate_to_SAT(init, transition, goal, t)
model = SAT_solver(cnf)
if model is not False:
return extract_solution(model)
return None
# ______________________________________________________________________________
"""Unify expressions x,y with substitution s; return a substitution that
would make x,y equal, or None if x,y can not unify. x and y can be
variables (e.g. Expr('x')), constants, lists, or Exprs. [Figure 9.1]
>>> unify(x, 3, {})
{x: 3}
"""
return None
elif x == y:
return s
elif is_variable(x):
return unify_var(x, y, s)
elif is_variable(y):
return unify_var(y, x, s)
elif isinstance(x, Expr) and isinstance(y, Expr):
return unify(x.args, y.args, unify(x.op, y.op, s))
elif isinstance(x, str) or isinstance(y, str):
elif issequence(x) and issequence(y) and len(x) == len(y):
return unify(x[1:], y[1:], unify(x[0], y[0], s))
else:
return None
def is_variable(x):
"""A variable is an Expr with no args and a lowercase symbol as the op."""
return isinstance(x, Expr) and not x.args and x.op[0].islower()
def unify_var(var, x, s):
if var in s:
return unify(s[var], x, s)
return None
else:
new_s = extend(s, var, x)
cascade_substitution(new_s)
return new_s
def occur_check(var, x, s):
"""Return true if variable var occurs anywhere in x
(or in subst(s, x), if s has a binding for x)."""
if var == x:
return True
elif isinstance(x, Expr):
return (occur_check(var, x.op, s) or
occur_check(var, x.args, s))
def extend(s, var, val):
"""Copy the substitution s and extend it by setting var to val; return copy.
>>> extend({x: 1}, y, 2) == {x: 1, y: 2}
True
"""
s2 = s.copy()
s2[var] = val
return s2
def subst(s, x):
"""Substitute the substitution s into the expression x.
>>> subst({x: 42, y:0}, F(x) + y)
(F(42) + 0)
"""
return [subst(s, xi) for xi in x]
return tuple([subst(s, xi) for xi in x])
return x
return s.get(x, x)
return Expr(x.op, *[subst(s, arg) for arg in x.args])
Donato Meoli
a validé
def cascade_substitution(s):
"""This method allows to return a correct unifier in normal form
and perform a cascade substitution to s.
For every mapping in s perform a cascade substitution on s.get(x)
and if it is replaced with a function ensure that all the function
terms are correct updates by passing over them again.
This issue fix: https://github.com/aimacode/aima-python/issues/1053
unify(expr('P(A, x, F(G(y)))'), expr('P(z, F(z), F(u))'))
must return {z: A, x: F(A), u: G(y)} and not {z: A, x: F(z), u: G(y)}
Donato Meoli
a validé
Parameters
----------
s : Dictionary
Donato Meoli
a validé
This contain a substitution
>>> s = {x: y, y: G(z)}
>>> cascade_substitution(s)
>>> s == {x: G(z), y: G(z)}
True
"""
for x in s:
s[x] = subst(s, s.get(x))
if isinstance(s.get(x), Expr) and not is_variable(s.get(x)):
Donato Meoli
a validé
# Ensure Function Terms are correct updates by passing over them again.
s[x] = subst(s, s.get(x))
Donato Meoli
a validé
"""Replace all the variables in sentence with new variables."""
if not isinstance(sentence, Expr):
return sentence
if sentence in dic:
return dic[sentence]
else:
v = Expr('v_{}'.format(next(standardize_variables.counter)))
dic[sentence] = v
return v
return Expr(sentence.op,
*[standardize_variables(a, dic) for a in sentence.args])
standardize_variables.counter = itertools.count()
# ______________________________________________________________________________
class FolKB(KB):
"""A knowledge base consisting of first-order definite clauses.
>>> kb0 = FolKB([expr('Farmer(Mac)'), expr('Rabbit(Pete)'),
... expr('(Rabbit(r) & Farmer(f)) ==> Hates(f, r)')])
>>> kb0.tell(expr('Rabbit(Flopsie)'))
>>> kb0.retract(expr('Rabbit(Pete)'))
>>> kb0.ask(expr('Hates(Mac, x)'))[x]
Flopsie
>>> kb0.ask(expr('Wife(Pete, x)'))
False
def __init__(self, initial_clauses=None):
if initial_clauses:
for clause in initial_clauses:
self.tell(clause)
def tell(self, sentence):
if is_definite_clause(sentence):
self.clauses.append(sentence)
else:
raise Exception("Not a definite clause: {}".format(sentence))
def ask_generator(self, query):
def retract(self, sentence):
self.clauses.remove(sentence)
def fetch_rules_for_goal(self, goal):
return self.clauses
def fol_fc_ask(KB, alpha):
"""A simple forward-chaining algorithm. [Figure 9.3]"""
# TODO: Improve efficiency
kb_consts = list({c for clause in KB.clauses for c in constant_symbols(clause)})
def enum_subst(p):
query_vars = list({v for clause in p for v in variables(clause)})
for assignment_list in itertools.product(kb_consts, repeat=len(query_vars)):
theta = {x: y for x, y in zip(query_vars, assignment_list)}
yield theta
# check if we can answer without new inferences
for q in KB.clauses:
phi = unify(q, alpha, {})
if phi is not None:
yield phi
while True:
new = []
for rule in KB.clauses:
p, q = parse_definite_clause(rule)
for theta in enum_subst(p):
if set(subst(theta, p)).issubset(set(KB.clauses)):
q_ = subst(theta, q)
if all([unify(x, q_, {}) is None for x in KB.clauses + new]):
new.append(q_)
phi = unify(q_, alpha, {})
if phi is not None:
yield phi
if not new:
break
for clause in new:
KB.tell(clause)
return None
"""A simple backward-chaining algorithm for first-order logic. [Figure 9.6]
KB should be an instance of FolKB, and query an atomic sentence."""
def fol_bc_or(KB, goal, theta):
for rule in KB.fetch_rules_for_goal(goal):
lhs, rhs = parse_definite_clause(standardize_variables(rule))
for theta1 in fol_bc_and(KB, lhs, unify(rhs, goal, theta)):
yield theta1
def fol_bc_and(KB, goals, theta):
if theta is None:
pass
elif not goals:
else:
first, rest = goals[0], goals[1:]
for theta1 in fol_bc_or(KB, subst(theta, first), theta):
for theta2 in fol_bc_and(KB, rest, theta1):
yield theta2
# A simple KB that defines the relevant conditions of the Wumpus World as in Fig 7.4.
# See Sec. 7.4.3
wumpus_kb = PropKB()
P11, P12, P21, P22, P31, B11, B21 = expr('P11, P12, P21, P22, P31, B11, B21')
wumpus_kb.tell(~P11)
wumpus_kb.tell(B11 | '<=>' | (P12 | P21))
wumpus_kb.tell(B21 | '<=>' | (P11 | P22 | P31))
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
test_kb = FolKB(
map(expr, ['Farmer(Mac)',
'Rabbit(Pete)',
'Mother(MrsMac, Mac)',
'Mother(MrsRabbit, Pete)',
'(Rabbit(r) & Farmer(f)) ==> Hates(f, r)',
'(Mother(m, c)) ==> Loves(m, c)',
'(Mother(m, r) & Rabbit(r)) ==> Rabbit(m)',
'(Farmer(f)) ==> Human(f)',
# Note that this order of conjuncts
# would result in infinite recursion:
# '(Human(h) & Mother(m, h)) ==> Human(m)'
'(Mother(m, h) & Human(h)) ==> Human(m)'
]))
crime_kb = FolKB(
map(expr, ['(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)',
'Owns(Nono, M1)',
'Missile(M1)',
'(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)',
'Missile(x) ==> Weapon(x)',
'Enemy(x, America) ==> Hostile(x)',
'American(West)',
'Enemy(Nono, America)'
]))
# ______________________________________________________________________________
# Example application (not in the book).
# You can use the Expr class to do symbolic differentiation. This used to be
# a part of AI; now it is considered a separate field, Symbolic Algebra.
def diff(y, x):
"""Return the symbolic derivative, dy/dx, as an Expr.
However, you probably want to simplify the results with simp.
>>> diff(x * x, x)
((x * 1) + (x * 1))
"""
else:
u, op, v = y.args[0], y.op, y.args[-1]
elif op == '-' and len(y.args) == 1:
return -diff(u, x)
elif op == '-':
return diff(u, x) - diff(v, x)
elif op == '*':
return u * diff(v, x) + v * diff(u, x)
elif op == '/':
return (v * diff(u, x) - u * diff(v, x)) / (v * v)
elif op == '**' and isnumber(x.op):
return v * u ** (v - 1) * diff(u, x)
return (v * u ** (v - 1) * diff(u, x) +
u ** v * Expr('log')(u) * diff(v, x))
elif op == 'log':
return diff(u, x) / u
else:
raise ValueError("Unknown op: {} in diff({}, {})".format(op, y, x))
def simp(x):
if isnumber(x) or not x.args:
u, op, v = args[0], x.op, args[-1]
if u.op == '-' and len(u.args) == 1:
return u.args[0] # --y ==> y
if u == 0 or v == 0:
return 0
if u == 1:
if u == 0:
return 0
if v == 0:
return 1
if u == 1:
return 1
if v == 1:
else:
raise ValueError("Unknown op: " + op)
# If we fall through to here, we can not simplify further
return Expr(op, *args)
def d(y, x):
"""Differentiate and then simplify.
>>> d(x * x - x, x)
((2 * x) - 1)
"""