Newer
Older
>>> p = F(x) & G(y) & expr('H(z)')
>>> subst(s1, p)
((F(A) & G(B)) & H(z))
>>> subst(s2, p)
((F(C) & G(y)) & H(x))
>>> subst(s2, subst(s1, p))
((F(A) & G(B)) & H(x))
>>> subst(subst_compose(s1, s2), p)
((F(A) & G(B)) & H(x))
>>> subst(s1, subst(s2, p))
((F(C) & G(B)) & H(A))
>>> subst(subst_compose(s2, s1), p)
((F(C) & G(B)) & H(A))
>>> ppsubst(subst_compose(s1, s2))
{x: A, y: B, z: x}
>>> ppsubst(subst_compose(s2, s1))
{x: C, y: B, z: A}
>>> subst(subst_compose(s1, s2), p) == subst(s2, subst(s1, p))
True
>>> subst(subst_compose(s2, s1), p) == subst(s1, subst(s2, p))
True
"""
result = dict((x, s2.get(v, v)) for x, v in s1.items())
result.update((x, v) for x, v in s2.items() if x not in s1)
return result
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
#______________________________________________________________________________
# Example application (not in the book).
# You can use the Expr class to do symbolic differentiation. This used to be
# a part of AI; now it is considered a separate field, Symbolic Algebra.
def diff(y, x):
"""Return the symbolic derivative, dy/dx, as an Expr.
However, you probably want to simplify the results with simp.
>>> diff(x * x, x)
((x * 1) + (x * 1))
>>> simp(diff(x * x, x))
(2 * x)
"""
if y == x: return ONE
elif not y.args: return ZERO
else:
u, op, v = y.args[0], y.op, y.args[-1]
if op == '+': return diff(u, x) + diff(v, x)
elif op == '-' and len(args) == 1: return -diff(u, x)
elif op == '-': return diff(u, x) - diff(v, x)
elif op == '*': return u * diff(v, x) + v * diff(u, x)
elif op == '/': return (v*diff(u, x) - u*diff(v, x)) / (v * v)
elif op == '**' and isnumber(x.op):
return (v * u ** (v - 1) * diff(u, x))
elif op == '**': return (v * u ** (v - 1) * diff(u, x)
+ u ** v * Expr('log')(u) * diff(v, x))
elif op == 'log': return diff(u, x) / u
else: raise ValueError("Unknown op: %s in diff(%s, %s)" % (op, y, x))
def simp(x):
if not x.args: return x
args = map(simp, x.args)
u, op, v = args[0], x.op, args[-1]
if v == ZERO: return u
if u == ZERO: return v
if u == v: return TWO * u
if u == -v or v == -u: return ZERO
if u.op == '-' and len(u.args) == 1: return u.args[0] ## --y ==> y
if v == ZERO: return u
if u == ZERO: return -v
if u == v: return ZERO
if u == -v or v == -u: return ZERO
if u == ZERO or v == ZERO: return ZERO
if u == ONE: return v
if v == ONE: return u
if u == v: return u ** 2
if u == ZERO: return ZERO
if v == ZERO: return Expr('Undefined')
if u == v: return ONE
if u == -v or v == -u: return ZERO
if u == ZERO: return ZERO
if v == ZERO: return ONE
if u == ONE: return ONE
if v == ONE: return u
if u == ONE: return ZERO
else: raise ValueError("Unknown op: " + op)
## If we fall through to here, we can not simplify further
return Expr(op, *args)
def d(y, x):
"Differentiate and then simplify."
#_______________________________________________________________________________
# Utilities for doctest cases
# These functions print their arguments in a standard order
# to compensate for the random order in the standard representation
if t is dict: return pretty_dict(x)
elif t is set: return pretty_set(x)
else: return repr(x)
"""Return dictionary d's repr but with the items sorted.
>>> pretty_dict({'m': 'M', 'a': 'A', 'r': 'R', 'k': 'K'})
"{'a': 'A', 'k': 'K', 'm': 'M', 'r': 'R'}"
>>> pretty_dict({z: C, y: B, x: A})
'{x: A, y: B, z: C}'
return '{%s}' % ', '.join('%r: %r' % (k, v)
for k, v in sorted(d.items(), key=repr))
"""Return set s's repr but with the items sorted.
>>> pretty_set(set(['A', 'Q', 'F', 'K', 'Y', 'B']))
"set(['A', 'B', 'F', 'K', 'Q', 'Y'])"
>>> pretty_set(set([z, y, x]))
'set([x, y, z])'
return 'set(%r)' % sorted(s, key=repr)
def ppsubst(s):
"""Pretty-print substitution s"""
ppdict(s)
def ppdict(d):
print pretty_dict(d)
def ppset(s):
print pretty_set(s)
#________________________________________________________________________
class logicTest: """
### PropKB
>>> kb = PropKB()
>>> kb.tell(A & B)
>>> kb.tell(B >> C)
>>> kb.ask(C) ## The result {} means true, with no substitutions
{}
>>> pl_true(P, {})
>>> pl_true(P | Q, {P: True})
True
# Notice that the function pl_true cannot reason by cases:
True
# The following are tautologies from [Fig. 7.11]:
>>> tt_true("(A <=> B) <=> ((A >> B) & (B >> A))")
>>> tt_true("(A & (B | C)) <=> ((A & B) | (A & C))")
>>> tt_true("(A | (B & C)) <=> ((A | B) & (A | C))")
False
### [Fig. 7.13]
>>> alpha = expr("~P12")
>>> to_cnf(Fig[7,13] & ~alpha)
((~P12 | B11) & (~P21 | B11) & (P12 | P21 | ~B11) & ~B11 & P12)
>>> pl_fc_entails(Fig[7,15], expr('SomethingSilly'))