mdp_apps.ipynb 40,1 ko
Newer Older
1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316
    "For example, as we have the same reward regardless of the action, let's consider a reward of **r** units for a particular state and let's assume the transition probabilities to be 0.1, 0.2, 0.3 and 0.4 for 4 possible actions for that state.\n",
    "We will further assume that a particular action in a state leads to the same state every time we take that action.\n",
    "The first term inside the summation for this case will evaluate to (0.1 + 0.2 + 0.3 + 0.4)r = r which is equal to R(s) in the first update equation.\n",
    "<br>\n",
    "There are many ways to write value iteration for this situation, but we will go with the most intuitive method.\n",
    "One that can be implemented with minor alterations to the existing `value_iteration` algorithm.\n",
    "<br>\n",
    "Our `DMDP` class will be slightly different.\n",
    "More specifically, the `R` method will have one more index to go through now that we have three levels of nesting in the reward model.\n",
    "We will call the new class `DMDP2` as I have run out of creative names."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class DMDP2:\n",
    "\n",
    "    \"\"\"A Markov Decision Process, defined by an initial state, transition model,\n",
    "    and reward model. We also keep track of a gamma value, for use by\n",
    "    algorithms. The transition model is represented somewhat differently from\n",
    "    the text. Instead of P(s' | s, a) being a probability number for each\n",
    "    state/state/action triplet, we instead have T(s, a) return a\n",
    "    list of (p, s') pairs. The reward function is very similar.\n",
    "    We also keep track of the possible states,\n",
    "    terminal states, and actions for each state.\"\"\"\n",
    "\n",
    "    def __init__(self, init, actlist, terminals, transitions={}, rewards={}, states=None, gamma=.9):\n",
    "        if not (0 < gamma <= 1):\n",
    "            raise ValueError(\"An MDP must have 0 < gamma <= 1\")\n",
    "\n",
    "        if states:\n",
    "            self.states = states\n",
    "        else:\n",
    "            self.states = set()\n",
    "        self.init = init\n",
    "        self.actlist = actlist\n",
    "        self.terminals = terminals\n",
    "        self.transitions = transitions\n",
    "        self.rewards = rewards\n",
    "        self.gamma = gamma\n",
    "\n",
    "    def R(self, state, action, state_):\n",
    "        \"\"\"Return a numeric reward for this state, this action and the next state_\"\"\"\n",
    "        if (self.rewards == {}):\n",
    "            raise ValueError('Reward model is missing')\n",
    "        else:\n",
    "            return self.rewards[state][action][state_]\n",
    "\n",
    "    def T(self, state, action):\n",
    "        \"\"\"Transition model. From a state and an action, return a list\n",
    "        of (probability, result-state) pairs.\"\"\"\n",
    "        if(self.transitions == {}):\n",
    "            raise ValueError(\"Transition model is missing\")\n",
    "        else:\n",
    "            return self.transitions[state][action]\n",
    "\n",
    "    def actions(self, state):\n",
    "        \"\"\"Set of actions that can be performed in this state. By default, a\n",
    "        fixed list of actions, except for terminal states. Override this\n",
    "        method if you need to specialize by state.\"\"\"\n",
    "        if state in self.terminals:\n",
    "            return [None]\n",
    "        else:\n",
    "            return self.actlist\n",
    "        \n",
    "    def actions(self, state):\n",
    "        \"\"\"Set of actions that can be performed in this state. By default, a\n",
    "        fixed list of actions, except for terminal states. Override this\n",
    "        method if you need to specialize by state.\"\"\"\n",
    "        if state in self.terminals:\n",
    "            return [None]\n",
    "        else:\n",
    "            return self.actlist"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Only the `R` method is different from the previous `DMDP` class.\n",
    "<br>\n",
    "Our traditional custom class will be required to implement the transition model and the reward model.\n",
    "<br>\n",
    "We call this class `CustomDMDP2`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class CustomDMDP2(DMDP2):\n",
    "    \n",
    "    def __init__(self, transition_matrix, rewards, terminals, init, gamma=.9):\n",
    "        actlist = []\n",
    "        for state in transition_matrix.keys():\n",
    "            actlist.extend(transition_matrix[state])\n",
    "        actlist = list(set(actlist))\n",
    "        print(actlist)\n",
    "        \n",
    "        DMDP2.__init__(self, init, actlist, terminals=terminals, gamma=gamma)\n",
    "        self.t = transition_matrix\n",
    "        self.rewards = rewards\n",
    "        for state in self.t:\n",
    "            self.states.add(state)\n",
    "                      \n",
    "    def T(self, state, action):\n",
    "        if action is None:\n",
    "            return [(0.0, state)]\n",
    "        else:\n",
    "            return [(prob, new_state) for new_state, prob in self.t[state][action].items()]\n",
    "        \n",
    "    def R(self, state, action, state_):\n",
    "        if action is None:\n",
    "            return 0\n",
    "        else:\n",
    "            return self.rewards[state][action][state_]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can finally write value iteration for this problem.\n",
    "The latest update equation will be used."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def value_iteration_taxi_mdp(dmdp2, epsilon=0.001):\n",
    "    U1 = {s: 0 for s in dmdp2.states}\n",
    "    R, T, gamma = dmdp2.R, dmdp2.T, dmdp2.gamma\n",
    "    while True:\n",
    "        U = U1.copy()\n",
    "        delta = 0\n",
    "        for s in dmdp2.states:\n",
    "            U1[s] = max([sum([(p*(R(s, a, s1) + gamma*U[s1])) for (p, s1) in T(s, a)]) for a in dmdp2.actions(s)])\n",
    "            delta = max(delta, abs(U1[s] - U[s]))\n",
    "        if delta < epsilon * (1 - gamma) / gamma:\n",
    "            return U"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "These algorithms can be made more pythonic by using cleverer list comprehensions.\n",
    "We can also write the variants of value iteration in such a way that all problems are solved using the same base class, regardless of the reward function and the number of arguments it takes.\n",
    "Quite a few things can be done to refactor the code and reduce repetition, but we have done it this way for the sake of clarity.\n",
    "Perhaps you can try this as an exercise.\n",
    "<br>\n",
    "We now need to define terminals and initial state."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "terminals = ['end']\n",
    "init = 'A'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's instantiate our class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['cruise', 'dispatch', 'stand']\n"
     ]
    }
   ],
   "source": [
    "dmdp2 = CustomDMDP2(t, r, terminals, init, gamma=.9)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'A': 124.4881543573768, 'B': 137.70885410461636, 'C': 129.08041190693115}"
      ]
     },
     "execution_count": 31,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "value_iteration_taxi_mdp(dmdp2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "These are the expected utility values for the states of our MDP.\n",
    "Let's proceed to write a helper function to find the expected utility and another to find the best policy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def expected_utility_dmdp2(a, s, U, dmdp2):\n",
    "    return sum([(p*(dmdp2.R(s, a, s1) + dmdp2.gamma*U[s1])) for (p, s1) in dmdp2.T(s, a)])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "from utils import argmax\n",
    "def best_policy_dmdp2(dmdp2, U):\n",
    "    pi = {}\n",
    "    for s in dmdp2.states:\n",
    "        pi[s] = argmax(dmdp2.actions(s), key=lambda a: expected_utility_dmdp2(a, s, U, dmdp2))\n",
    "    return pi"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Find the best policy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'C': 'cruise', 'A': 'stand', 'B': 'stand'}\n"
     ]
    }
   ],
   "source": [
    "pi = best_policy_dmdp2(dmdp2, value_iteration_taxi_mdp(dmdp2, .01))\n",
    "print(pi)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We have successfully adapted the existing code to a different scenario yet again.\n",
    "The takeaway from this section is that you can convert the vast majority of reinforcement learning problems into MDPs and solve for the best policy using simple yet efficient tools."
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}