Newer
Older
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
"For example, as we have the same reward regardless of the action, let's consider a reward of **r** units for a particular state and let's assume the transition probabilities to be 0.1, 0.2, 0.3 and 0.4 for 4 possible actions for that state.\n",
"We will further assume that a particular action in a state leads to the same state every time we take that action.\n",
"The first term inside the summation for this case will evaluate to (0.1 + 0.2 + 0.3 + 0.4)r = r which is equal to R(s) in the first update equation.\n",
"<br>\n",
"There are many ways to write value iteration for this situation, but we will go with the most intuitive method.\n",
"One that can be implemented with minor alterations to the existing `value_iteration` algorithm.\n",
"<br>\n",
"Our `DMDP` class will be slightly different.\n",
"More specifically, the `R` method will have one more index to go through now that we have three levels of nesting in the reward model.\n",
"We will call the new class `DMDP2` as I have run out of creative names."
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class DMDP2:\n",
"\n",
" \"\"\"A Markov Decision Process, defined by an initial state, transition model,\n",
" and reward model. We also keep track of a gamma value, for use by\n",
" algorithms. The transition model is represented somewhat differently from\n",
" the text. Instead of P(s' | s, a) being a probability number for each\n",
" state/state/action triplet, we instead have T(s, a) return a\n",
" list of (p, s') pairs. The reward function is very similar.\n",
" We also keep track of the possible states,\n",
" terminal states, and actions for each state.\"\"\"\n",
"\n",
" def __init__(self, init, actlist, terminals, transitions={}, rewards={}, states=None, gamma=.9):\n",
" if not (0 < gamma <= 1):\n",
" raise ValueError(\"An MDP must have 0 < gamma <= 1\")\n",
"\n",
" if states:\n",
" self.states = states\n",
" else:\n",
" self.states = set()\n",
" self.init = init\n",
" self.actlist = actlist\n",
" self.terminals = terminals\n",
" self.transitions = transitions\n",
" self.rewards = rewards\n",
" self.gamma = gamma\n",
"\n",
" def R(self, state, action, state_):\n",
" \"\"\"Return a numeric reward for this state, this action and the next state_\"\"\"\n",
" if (self.rewards == {}):\n",
" raise ValueError('Reward model is missing')\n",
" else:\n",
" return self.rewards[state][action][state_]\n",
"\n",
" def T(self, state, action):\n",
" \"\"\"Transition model. From a state and an action, return a list\n",
" of (probability, result-state) pairs.\"\"\"\n",
" if(self.transitions == {}):\n",
" raise ValueError(\"Transition model is missing\")\n",
" else:\n",
" return self.transitions[state][action]\n",
"\n",
" def actions(self, state):\n",
" \"\"\"Set of actions that can be performed in this state. By default, a\n",
" fixed list of actions, except for terminal states. Override this\n",
" method if you need to specialize by state.\"\"\"\n",
" if state in self.terminals:\n",
" return [None]\n",
" else:\n",
" return self.actlist\n",
" \n",
" def actions(self, state):\n",
" \"\"\"Set of actions that can be performed in this state. By default, a\n",
" fixed list of actions, except for terminal states. Override this\n",
" method if you need to specialize by state.\"\"\"\n",
" if state in self.terminals:\n",
" return [None]\n",
" else:\n",
" return self.actlist"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Only the `R` method is different from the previous `DMDP` class.\n",
"<br>\n",
"Our traditional custom class will be required to implement the transition model and the reward model.\n",
"<br>\n",
"We call this class `CustomDMDP2`."
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class CustomDMDP2(DMDP2):\n",
" \n",
" def __init__(self, transition_matrix, rewards, terminals, init, gamma=.9):\n",
" actlist = []\n",
" for state in transition_matrix.keys():\n",
" actlist.extend(transition_matrix[state])\n",
" actlist = list(set(actlist))\n",
" print(actlist)\n",
" \n",
" DMDP2.__init__(self, init, actlist, terminals=terminals, gamma=gamma)\n",
" self.t = transition_matrix\n",
" self.rewards = rewards\n",
" for state in self.t:\n",
" self.states.add(state)\n",
" \n",
" def T(self, state, action):\n",
" if action is None:\n",
" return [(0.0, state)]\n",
" else:\n",
" return [(prob, new_state) for new_state, prob in self.t[state][action].items()]\n",
" \n",
" def R(self, state, action, state_):\n",
" if action is None:\n",
" return 0\n",
" else:\n",
" return self.rewards[state][action][state_]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can finally write value iteration for this problem.\n",
"The latest update equation will be used."
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def value_iteration_taxi_mdp(dmdp2, epsilon=0.001):\n",
" U1 = {s: 0 for s in dmdp2.states}\n",
" R, T, gamma = dmdp2.R, dmdp2.T, dmdp2.gamma\n",
" while True:\n",
" U = U1.copy()\n",
" delta = 0\n",
" for s in dmdp2.states:\n",
" U1[s] = max([sum([(p*(R(s, a, s1) + gamma*U[s1])) for (p, s1) in T(s, a)]) for a in dmdp2.actions(s)])\n",
" delta = max(delta, abs(U1[s] - U[s]))\n",
" if delta < epsilon * (1 - gamma) / gamma:\n",
" return U"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These algorithms can be made more pythonic by using cleverer list comprehensions.\n",
"We can also write the variants of value iteration in such a way that all problems are solved using the same base class, regardless of the reward function and the number of arguments it takes.\n",
"Quite a few things can be done to refactor the code and reduce repetition, but we have done it this way for the sake of clarity.\n",
"Perhaps you can try this as an exercise.\n",
"<br>\n",
"We now need to define terminals and initial state."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"terminals = ['end']\n",
"init = 'A'"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's instantiate our class."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['cruise', 'dispatch', 'stand']\n"
]
}
],
"source": [
"dmdp2 = CustomDMDP2(t, r, terminals, init, gamma=.9)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'A': 124.4881543573768, 'B': 137.70885410461636, 'C': 129.08041190693115}"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"value_iteration_taxi_mdp(dmdp2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"These are the expected utility values for the states of our MDP.\n",
"Let's proceed to write a helper function to find the expected utility and another to find the best policy."
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def expected_utility_dmdp2(a, s, U, dmdp2):\n",
" return sum([(p*(dmdp2.R(s, a, s1) + dmdp2.gamma*U[s1])) for (p, s1) in dmdp2.T(s, a)])"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"from utils import argmax\n",
"def best_policy_dmdp2(dmdp2, U):\n",
" pi = {}\n",
" for s in dmdp2.states:\n",
" pi[s] = argmax(dmdp2.actions(s), key=lambda a: expected_utility_dmdp2(a, s, U, dmdp2))\n",
" return pi"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Find the best policy."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'C': 'cruise', 'A': 'stand', 'B': 'stand'}\n"
]
}
],
"source": [
"pi = best_policy_dmdp2(dmdp2, value_iteration_taxi_mdp(dmdp2, .01))\n",
"print(pi)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have successfully adapted the existing code to a different scenario yet again.\n",
"The takeaway from this section is that you can convert the vast majority of reinforcement learning problems into MDPs and solve for the best policy using simple yet efficient tools."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}