mdp_apps.ipynb 40,1 ko
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# APPLICATIONS OF MARKOV DECISION PROCESSES\n",
    "---\n",
    "In this notebook we will take a look at some indicative applications of markov decision processes. \n",
    "We will cover content from [`mdp.py`](https://github.com/aimacode/aima-python/blob/master/mdp.py), for chapter 17 of Stuart Russel's and Peter Norvig's book [*Artificial Intelligence: A Modern Approach*](http://aima.cs.berkeley.edu/)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "from mdp import *\n",
    "from notebook import psource, pseudocode"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## CONTENTS\n",
    "- Simple MDP\n",
    "    - State dependent reward function\n",
    "    - State and action dependent reward function\n",
    "    - State, action and next state dependent reward function\n",
    "\n",
    "\n",
    "## SIMPLE MDP\n",
    "---\n",
    "### State dependent reward function\n",
    "\n",
    "Markov Decision Processes are formally described as processes that follow the Markov property which states that \"The future is independent of the past given the present\". \n",
    "MDPs formally describe environments for reinforcement learning and we assume that the environment is *fully observable*. \n",
    "Let us take a toy example MDP and solve it using the functions in `mdp.py`.\n",
    "This is a simple example adapted from a [similar problem](http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching_files/MDP.pdf) by Dr. David Silver, tweaked to fit the limitations of the current functions.\n",
    "![title](images/mdp-b.png)\n",
    "\n",
    "Let's say you're a student attending lectures in a university.\n",
    "There are three lectures you need to attend on a given day.\n",
    "<br>\n",
    "Attending the first lecture gives you 4 points of reward.\n",
    "After the first lecture, you have a 0.6 probability to continue into the second one, yielding 6 more points of reward.\n",
    "<br>\n",
    "But, with a probability of 0.4, you get distracted and start using Facebook instead and get a reward of -1.\n",
    "From then onwards, you really can't let go of Facebook and there's just a 0.1 probability that you will concentrate back on the lecture.\n",
    "<br>\n",
    "After the second lecture, you have an equal chance of attending the next lecture or just falling asleep.\n",
    "Falling asleep is the terminal state and yields you no reward, but continuing on to the final lecture gives you a big reward of 10 points.\n",
    "<br>\n",
    "From there on, you have a 40% chance of going to study and reach the terminal state, \n",
    "but a 60% chance of going to the pub with your friends instead. \n",
    "You end up drunk and don't know which lecture to attend, so you go to one of the lectures according to the probabilities given above.\n",
    "<br> \n",
    "We now have an outline of our stochastic environment and we need to maximize our reward by solving this MDP.\n",
    "<br>\n",
    "<br>\n",
    "We first have to define our Transition Matrix as a nested dictionary to fit the requirements of the MDP class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "t = {\n",
    "    'leisure': {\n",
    "                    'facebook': {'leisure':0.9, 'class1':0.1},\n",
    "                    'quit': {'leisure':0.1, 'class1':0.9},\n",
    "                    'study': {},\n",
    "                    'sleep': {},\n",
    "                    'pub': {}\n",
    "               },\n",
    "    'class1': {\n",
    "                    'study': {'class2':0.6, 'leisure':0.4},\n",
    "                    'facebook': {'class2':0.4, 'leisure':0.6},\n",
    "                    'quit': {},\n",
    "                    'sleep': {},\n",
    "                    'pub': {}\n",
    "              },\n",
    "    'class2': {\n",
    "                    'study': {'class3':0.5, 'end':0.5},\n",
    "                    'sleep': {'end':0.5, 'class3':0.5},\n",
    "                    'facebook': {},\n",
    "                    'quit': {},\n",
    "                    'pub': {},\n",
    "              },\n",
    "    'class3': {\n",
    "                    'study': {'end':0.6, 'class1':0.08, 'class2':0.16, 'class3':0.16},\n",
    "                    'pub': {'end':0.4, 'class1':0.12, 'class2':0.24, 'class3':0.24},\n",
    "                    'facebook': {},\n",
    "                    'quit': {},\n",
    "                    'sleep': {}\n",
    "              },\n",
    "    'end': {}\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We now need to define the reward for each state."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "rewards = {\n",
    "    'class1': 4,\n",
    "    'class2': 6,\n",
    "    'class3': 10,\n",
    "    'leisure': -1,\n",
    "    'end': 0\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This MDP has only one terminal state."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "terminals = ['end']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's now set the initial state to Class 1."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "init = 'class1'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will write a CustomMDP class to extend the MDP class for the problem at hand. \n",
    "This class will implement the `T` method to implement the transition model. This is the exact same class as given in [`mdp.ipynb`](https://github.com/aimacode/aima-python/blob/master/mdp.ipynb#MDP)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class CustomMDP(MDP):\n",
    "\n",
    "    def __init__(self, transition_matrix, rewards, terminals, init, gamma=.9):\n",
    "        # All possible actions.\n",
    "        actlist = []\n",
    "        for state in transition_matrix.keys():\n",
    "            actlist.extend(transition_matrix[state])\n",
    "        actlist = list(set(actlist))\n",
    "        print(actlist)\n",
    "\n",
    "        MDP.__init__(self, init, actlist, terminals=terminals, gamma=gamma)\n",
    "        self.t = transition_matrix\n",
    "        self.reward = rewards\n",
    "        for state in self.t:\n",
    "            self.states.add(state)\n",
    "\n",
    "    def T(self, state, action):\n",
    "        if action is None:\n",
    "            return [(0.0, state)]\n",
    "        else: \n",
    "            return [(prob, new_state) for new_state, prob in self.t[state][action].items()]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We now need an instance of this class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['study', 'pub', 'sleep', 'facebook', 'quit']\n"
     ]
    }
   ],
   "source": [
    "mdp = CustomMDP(t, rewards, terminals, init, gamma=.9)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The utility of each state can be found by `value_iteration`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'class1': 16.90340650279542,\n",
       " 'class2': 14.597383430869879,\n",
       " 'class3': 19.10533144728953,\n",
       " 'end': 0.0,\n",
       " 'leisure': 13.946891353066082}"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "value_iteration(mdp)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we can compute the utility values, we can find the best policy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "pi = best_policy(mdp, value_iteration(mdp, .01))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`pi` stores the best action for each state."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'class3': 'pub', 'leisure': 'quit', 'class2': 'study', 'class1': 'study', 'end': None}\n"
     ]
    }
   ],
   "source": [
    "print(pi)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can confirm that this is the best policy by verifying this result against `policy_iteration`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'class1': 'study',\n",
       " 'class2': 'study',\n",
       " 'class3': 'pub',\n",
       " 'end': None,\n",
       " 'leisure': 'quit'}"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "policy_iteration(mdp)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "Everything looks perfect, but let us look at another possibility for an MDP.\n",
    "<br>\n",
    "Till now we have only dealt with rewards that the agent gets while it is **on** a particular state.\n",
    "What if we want to have different rewards for a state depending on the action that the agent takes next. \n",
    "The agent gets the reward _during its transition_ to the next state.\n",
    "<br>\n",
    "For the sake of clarity, we will call this the _transition reward_ and we will call this kind of MDP a _dynamic_ MDP. \n",
    "This is not a conventional term, we just use it to minimize confusion between the two.\n",
    "<br>\n",
    "This next section deals with how to create and solve a dynamic MDP."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### State and action dependent reward function\n",
    "Let us consider a very similar problem, but this time, we do not have rewards _on_ states, \n",
    "instead, we have rewards on the transitions between states. \n",
    "This state diagram will make it clearer.\n",
    "![title](images/mdp-c.png)\n",
    "\n",
    "A very similar scenario as the previous problem, but we have different rewards for the same state depending on the action taken.\n",
    "<br>\n",
    "To deal with this, we just need to change the `R` method of the `MDP` class, but to prevent confusion, we will write a new similar class `DMDP`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class DMDP:\n",
    "\n",
    "    \"\"\"A Markov Decision Process, defined by an initial state, transition model,\n",
    "    and reward model. We also keep track of a gamma value, for use by\n",
    "    algorithms. The transition model is represented somewhat differently from\n",
    "    the text. Instead of P(s' | s, a) being a probability number for each\n",
    "    state/state/action triplet, we instead have T(s, a) return a\n",
    "    list of (p, s') pairs. The reward function is very similar.\n",
    "    We also keep track of the possible states,\n",
    "    terminal states, and actions for each state.\"\"\"\n",
    "\n",
    "    def __init__(self, init, actlist, terminals, transitions={}, rewards={}, states=None, gamma=.9):\n",
    "        if not (0 < gamma <= 1):\n",
    "            raise ValueError(\"An MDP must have 0 < gamma <= 1\")\n",
    "\n",
    "        if states:\n",
    "            self.states = states\n",
    "        else:\n",
    "            self.states = set()\n",
    "        self.init = init\n",
    "        self.actlist = actlist\n",
    "        self.terminals = terminals\n",
    "        self.transitions = transitions\n",
    "        self.rewards = rewards\n",
    "        self.gamma = gamma\n",
    "\n",
    "    def R(self, state, action):\n",
    "        \"\"\"Return a numeric reward for this state and this action.\"\"\"\n",
    "        if (self.rewards == {}):\n",
    "            raise ValueError('Reward model is missing')\n",
    "        else:\n",
    "            return self.rewards[state][action]\n",
    "\n",
    "    def T(self, state, action):\n",
    "        \"\"\"Transition model. From a state and an action, return a list\n",
    "        of (probability, result-state) pairs.\"\"\"\n",
    "        if(self.transitions == {}):\n",
    "            raise ValueError(\"Transition model is missing\")\n",
    "        else:\n",
    "            return self.transitions[state][action]\n",
    "\n",
    "    def actions(self, state):\n",
    "        \"\"\"Set of actions that can be performed in this state. By default, a\n",
    "        fixed list of actions, except for terminal states. Override this\n",
    "        method if you need to specialize by state.\"\"\"\n",
    "        if state in self.terminals:\n",
    "            return [None]\n",
    "        else:\n",
    "            return self.actlist"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The transition model will be the same"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "t = {\n",
    "    'leisure': {\n",
    "                    'facebook': {'leisure':0.9, 'class1':0.1},\n",
    "                    'quit': {'leisure':0.1, 'class1':0.9},\n",
    "                    'study': {},\n",
    "                    'sleep': {},\n",
    "                    'pub': {}\n",
    "               },\n",
    "    'class1': {\n",
    "                    'study': {'class2':0.6, 'leisure':0.4},\n",
    "                    'facebook': {'class2':0.4, 'leisure':0.6},\n",
    "                    'quit': {},\n",
    "                    'sleep': {},\n",
    "                    'pub': {}\n",
    "              },\n",
    "    'class2': {\n",
    "                    'study': {'class3':0.5, 'end':0.5},\n",
    "                    'sleep': {'end':0.5, 'class3':0.5},\n",
    "                    'facebook': {},\n",
    "                    'quit': {},\n",
    "                    'pub': {},\n",
    "              },\n",
    "    'class3': {\n",
    "                    'study': {'end':0.6, 'class1':0.08, 'class2':0.16, 'class3':0.16},\n",
    "                    'pub': {'end':0.4, 'class1':0.12, 'class2':0.24, 'class3':0.24},\n",
    "                    'facebook': {},\n",
    "                    'quit': {},\n",
    "                    'sleep': {}\n",
    "              },\n",
    "    'end': {}\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The reward model will be a dictionary very similar to the transition dictionary with a reward for every action for every state."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "r = {\n",
    "    'leisure': {\n",
    "        'facebook':-1,\n",
    "        'quit':0,\n",
    "        'study':0,\n",
    "        'sleep':0,\n",
    "        'pub':0\n",
    "    },\n",
    "    'class1': {\n",
    "        'study':-2,\n",
    "        'facebook':-1,\n",
    "        'quit':0,\n",
    "        'sleep':0,\n",
    "        'pub':0\n",
    "    },\n",
    "    'class2': {\n",
    "        'study':-2,\n",
    "        'sleep':0,\n",
    "        'facebook':0,\n",
    "        'quit':0,\n",
    "        'pub':0\n",
    "    },\n",
    "    'class3': {\n",
    "        'study':10,\n",
    "        'pub':1,\n",
    "        'facebook':0,\n",
    "        'quit':0,\n",
    "        'sleep':0\n",
    "    },\n",
    "    'end': {\n",
    "        'study':0,\n",
    "        'pub':0,\n",
    "        'facebook':0,\n",
    "        'quit':0,\n",
    "        'sleep':0\n",
    "    }\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The MDP has only one terminal state"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "terminals = ['end']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's now set the initial state to Class 1."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "init = 'class1'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will write a CustomDMDP class to extend the DMDP class for the problem at hand.\n",
    "This class will implement everything that the previous CustomMDP class implements along with a new reward model."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class CustomDMDP(DMDP):\n",
    "    \n",
    "    def __init__(self, transition_matrix, rewards, terminals, init, gamma=.9):\n",
    "        actlist = []\n",
    "        for state in transition_matrix.keys():\n",
    "            actlist.extend(transition_matrix[state])\n",
    "        actlist = list(set(actlist))\n",
    "        print(actlist)\n",
    "        \n",
    "        DMDP.__init__(self, init, actlist, terminals=terminals, gamma=gamma)\n",
    "        self.t = transition_matrix\n",
    "        self.rewards = rewards\n",
    "        for state in self.t:\n",
    "            self.states.add(state)\n",
    "            \n",
    "            \n",
    "    def T(self, state, action):\n",
    "        if action is None:\n",
    "            return [(0.0, state)]\n",
    "        else:\n",
    "            return [(prob, new_state) for new_state, prob in self.t[state][action].items()]\n",
    "        \n",
    "    def R(self, state, action):\n",
    "        if action is None:\n",
    "            return 0\n",
    "        else:\n",
    "            return self.rewards[state][action]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One thing we haven't thought about yet is that the `value_iteration` algorithm won't work now that the reward model is changed.\n",
    "It will be quite similar to the one we currently have nonetheless."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The Bellman update equation now is defined as follows\n",
    "\n",
    "$$U(s)=\\max_{a\\epsilon A(s)}\\bigg[R(s, a) + \\gamma\\sum_{s'}P(s'\\ |\\ s,a)U(s')\\bigg]$$\n",
    "\n",
    "It is not difficult to see that the update equation we have been using till now is just a special case of this more generalized equation. \n",
    "We also need to max over the reward function now as the reward function is action dependent as well.\n",
    "<br>\n",
    "We will use this to write a function to carry out value iteration, very similar to the one we are familiar with."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def value_iteration_dmdp(dmdp, epsilon=0.001):\n",
    "    U1 = {s: 0 for s in dmdp.states}\n",
    "    R, T, gamma = dmdp.R, dmdp.T, dmdp.gamma\n",
    "    while True:\n",
    "        U = U1.copy()\n",
    "        delta = 0\n",
    "        for s in dmdp.states:\n",
    "            U1[s] = max([(R(s, a) + gamma*sum([(p*U[s1]) for (p, s1) in T(s, a)])) for a in dmdp.actions(s)])\n",
    "            delta = max(delta, abs(U1[s] - U[s]))\n",
    "        if delta < epsilon * (1 - gamma) / gamma:\n",
    "            return U"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We're all set.\n",
    "Let's instantiate our class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['study', 'pub', 'sleep', 'facebook', 'quit']\n"
     ]
    }
   ],
   "source": [
    "dmdp = CustomDMDP(t, r, terminals, init, gamma=.9)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Calculate utility values by calling `value_iteration_dmdp`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'class1': 2.0756895004431364,\n",
       " 'class2': 5.772550326127298,\n",
       " 'class3': 12.827904448229472,\n",
       " 'end': 0.0,\n",
       " 'leisure': 1.8474896554396596}"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "value_iteration_dmdp(dmdp)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "These are the expected utility values for our new MDP.\n",
    "<br>\n",
    "As you might have guessed, we cannot use the old `best_policy` function to find the best policy.\n",
    "So we will write our own.\n",
    "But, before that we need a helper function to calculate the expected utility value given a state and an action."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def expected_utility_dmdp(a, s, U, dmdp):\n",
    "    return dmdp.R(s, a) + dmdp.gamma*sum([(p*U[s1]) for (p, s1) in dmdp.T(s, a)])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we write our modified `best_policy` function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "from utils import argmax\n",
    "def best_policy_dmdp(dmdp, U):\n",
    "    pi = {}\n",
    "    for s in dmdp.states:\n",
    "        pi[s] = argmax(dmdp.actions(s), key=lambda a: expected_utility_dmdp(a, s, U, dmdp))\n",
    "    return pi"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Find the best policy."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'class3': 'study', 'leisure': 'quit', 'class2': 'sleep', 'class1': 'facebook', 'end': None}\n"
     ]
    }
   ],
   "source": [
    "pi = best_policy_dmdp(dmdp, value_iteration_dmdp(dmdp, .01))\n",
    "print(pi)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "From this, we can infer that `value_iteration_dmdp` tries to minimize the negative reward. \n",
    "Since we don't have rewards for states now, the algorithm takes the action that would try to avoid getting negative rewards and take the lesser of two evils if all rewards are negative.\n",
    "You might also want to have state rewards alongside transition rewards. \n",
    "Perhaps you can do that yourself now that the difficult part has been done.\n",
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### State, action and next-state dependent reward function\n",
    "\n",
    "For truly stochastic environments, \n",
    "we have noticed that taking an action from a particular state doesn't always do what we want it to. \n",
    "Instead, for every action taken from a particular state, \n",
    "it might be possible to reach a different state each time depending on the transition probabilities. \n",
    "What if we want different rewards for each state, action and next-state triplet? \n",
    "Mathematically, we now want a reward function of the form R(s, a, s') for our MDP. \n",
    "This section shows how we can tweak the MDP class to achieve this.\n",
    "<br>\n",
    "\n",
    "Let's now take a different problem statement. \n",
    "The one we are working with is a bit too simple.\n",
    "Consider a taxi that serves three adjacent towns A, B, and C.\n",
    "Each time the taxi discharges a passenger, the driver must choose from three possible actions:\n",
    "1. Cruise the streets looking for a passenger.\n",
    "2. Go to the nearest taxi stand.\n",
    "3. Wait for a radio call from the dispatcher with instructions.\n",
    "<br>\n",
    "Subject to the constraint that the taxi driver cannot do the third action in town B because of distance and poor reception.\n",
    "\n",
    "Let's model our MDP.\n",
    "<br>\n",
    "The MDP has three states, namely A, B and C.\n",
    "<br>\n",
    "It has three actions, namely 1, 2 and 3.\n",
    "<br>\n",
    "Action sets:\n",
    "<br>\n",
    "$K_{a}$ = {1, 2, 3}\n",
    "<br>\n",
    "$K_{b}$ = {1, 2}\n",
    "<br>\n",
    "$K_{c}$ = {1, 2, 3}\n",
    "<br>\n",
    "\n",
    "We have the following transition probability matrices:\n",
    "<br>\n",
    "<br>\n",
    "Action 1: Cruising streets\n",
    "<br>\n",
    "<br>\n",
    "$$\\\\\n",
    "    P^{1} = \n",
    "    \\left[ {\\begin{array}{ccc}\n",
    "    \\frac{1}{2} & \\frac{1}{4} & \\frac{1}{4} \\\\\n",
    "    \\frac{1}{2} & 0 & \\frac{1}{2} \\\\\n",
    "    \\frac{1}{4} & \\frac{1}{4} & \\frac{1}{2} \\\\\n",
    "    \\end{array}}\\right] \\\\\n",
    "    \\\\\n",
    "$$\n",
    "<br>\n",
    "<br>\n",
    "Action 2: Waiting at the taxi stand  \n",
    "<br>\n",
    "<br>\n",
    "$$\\\\\n",
    "    P^{2} = \n",
    "    \\left[ {\\begin{array}{ccc}\n",
    "    \\frac{1}{16} & \\frac{3}{4} & \\frac{3}{16} \\\\\n",
    "    \\frac{1}{16} & \\frac{7}{8} & \\frac{1}{16} \\\\\n",
    "    \\frac{1}{8} & \\frac{3}{4} & \\frac{1}{8} \\\\\n",
    "    \\end{array}}\\right] \\\\\n",
    "    \\\\\n",
    "$$\n",
    "<br>\n",
    "<br>\n",
    "Action 3: Waiting for dispatch     \n",
    "<br>\n",
    "<br>\n",
    "$$\\\\\n",
    "    P^{3} =\n",
    "    \\left[ {\\begin{array}{ccc}\n",
    "    \\frac{1}{4} & \\frac{1}{8} & \\frac{5}{8} \\\\\n",
    "    0 & 1 & 0 \\\\\n",
    "    \\frac{3}{4} & \\frac{1}{16} & \\frac{3}{16} \\\\\n",
    "    \\end{array}}\\right] \\\\\n",
    "    \\\\\n",
    "$$\n",
    "<br>\n",
    "<br>\n",
    "For the sake of readability, we will call the states A, B and C and the actions 'cruise', 'stand' and 'dispatch'.\n",
    "We will now build the transition model as a dictionary using these matrices."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "t = {\n",
    "    'A': {\n",
    "        'cruise': {'A':0.5, 'B':0.25, 'C':0.25},\n",
    "        'stand': {'A':0.0625, 'B':0.75, 'C':0.1875},\n",
    "        'dispatch': {'A':0.25, 'B':0.125, 'C':0.625}\n",
    "    },\n",
    "    'B': {\n",
    "        'cruise': {'A':0.5, 'B':0, 'C':0.5},\n",
    "        'stand': {'A':0.0625, 'B':0.875, 'C':0.0625},\n",
    "        'dispatch': {'A':0, 'B':1, 'C':0}\n",
    "    },\n",
    "    'C': {\n",
    "        'cruise': {'A':0.25, 'B':0.25, 'C':0.5},\n",
    "        'stand': {'A':0.125, 'B':0.75, 'C':0.125},\n",
    "        'dispatch': {'A':0.75, 'B':0.0625, 'C':0.1875}\n",
    "    }\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The reward matrices for the problem are as follows:\n",
    "<br>\n",
    "<br>\n",
    "Action 1: Cruising streets  \n",
    "<br>\n",
    "<br>\n",
    "$$\\\\\n",
    "    R^{1} = \n",
    "    \\left[ {\\begin{array}{ccc}\n",
    "    10 & 4 & 8 \\\\\n",
    "    14 & 0 & 18 \\\\\n",
    "    10 & 2 & 8 \\\\\n",
    "    \\end{array}}\\right] \\\\\n",
    "    \\\\\n",
    "$$\n",
    "<br>\n",
    "<br>\n",
    "Action 2: Waiting at the taxi stand  \n",
    "<br>\n",
    "<br>\n",
    "$$\\\\\n",
    "    R^{2} = \n",
    "    \\left[ {\\begin{array}{ccc}\n",
    "    8 & 2 & 4 \\\\\n",
    "    8 & 16 & 8 \\\\\n",
    "    6 & 4 & 2\\\\\n",
    "    \\end{array}}\\right] \\\\\n",
    "    \\\\\n",
    "$$\n",
    "<br>\n",
    "<br>\n",
    "Action 3: Waiting for dispatch  \n",
    "<br>\n",
    "<br>\n",
    "$$\\\\\n",
    "    R^{3} = \n",
    "    \\left[ {\\begin{array}{ccc}\n",
    "    4 & 6 & 4 \\\\\n",
    "    0 & 0 & 0 \\\\\n",
    "    4 & 0 & 8\\\\\n",
    "    \\end{array}}\\right] \\\\\n",
    "    \\\\\n",
    "$$\n",
    "<br>\n",
    "<br>\n",
    "We now build the reward model as a dictionary using these matrices."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "r = {\n",
    "    'A': {\n",
    "        'cruise': {'A':10, 'B':4, 'C':8},\n",
    "        'stand': {'A':8, 'B':2, 'C':4},\n",
    "        'dispatch': {'A':4, 'B':6, 'C':4}\n",
    "    },\n",
    "    'B': {\n",
    "        'cruise': {'A':14, 'B':0, 'C':18},\n",
    "        'stand': {'A':8, 'B':16, 'C':8},\n",
    "        'dispatch': {'A':0, 'B':0, 'C':0}\n",
    "    },\n",
    "    'C': {\n",
    "        'cruise': {'A':10, 'B':2, 'C':18},\n",
    "        'stand': {'A':6, 'B':4, 'C':2},\n",
    "        'dispatch': {'A':4, 'B':0, 'C':8}\n",
    "    }\n",
    "}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "The Bellman update equation now is defined as follows\n",
    "\n",
    "$$U(s)=\\max_{a\\epsilon A(s)}\\sum_{s'}P(s'\\ |\\ s,a)(R(s'\\ |\\ s,a) + \\gamma U(s'))$$\n",
    "\n",
    "It is not difficult to see that all the update equations we have used till now is just a special case of this more generalized equation. \n",
    "If we did not have next-state-dependent rewards, the first term inside the summation exactly sums up to R(s, a) or the state-reward for a particular action and we would get the update equation used in the previous problem.\n",
    "If we did not have action dependent rewards, the first term inside the summation sums up to R(s) or the state-reward and we would get the first update equation used in `mdp.ipynb`.\n",
    "<br>\n",