Newer
Older
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Planning: planning.py; chapters 10-11"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook describes the [planning.py](https://github.com/aimacode/aima-python/blob/master/planning.py) module, which covers Chapters 10 (Classical Planning) and 11 (Planning and Acting in the Real World) of *[Artificial Intelligence: A Modern Approach](http://aima.cs.berkeley.edu)*. See the [intro notebook](https://github.com/aimacode/aima-python/blob/master/intro.ipynb) for instructions.\n",
"\n",
"We'll start by looking at `PDDL` and `Action` data types for defining problems and actions. Then, we will see how to use them by trying to plan a trip from *Sibiu* to *Bucharest* across the familiar map of Romania, from [search.ipynb](https://github.com/aimacode/aima-python/blob/master/search.ipynb). Finally, we will look at the implementation of the GraphPlan algorithm.\n",
"\n",
"The first step is to load the code:"
]
},
"execution_count": 1,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from planning import *"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"To be able to model a planning problem properly, it is essential to be able to represent an Action. Each action we model requires at least three things:\n",
"* preconditions that the action must meet\n",
"* the effects of executing the action\n",
"* some expression that represents the action"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Planning actions have been modelled using the `Action` class. Let's look at the source to see how the internal details of an action are implemented in Python."
]
},
{
"cell_type": "code",
"execution_count": 2,
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
{
"cell_type": "markdown",
"metadata": {},
"source": [
"It is interesting to see the way preconditions and effects are represented here. Instead of just being a list of expressions each, they consist of two lists - `precond_pos` and `precond_neg`. This is to work around the fact that PDDL doesn't allow for negations. Thus, for each precondition, we maintain a seperate list of those preconditions that must hold true, and those whose negations must hold true. Similarly, instead of having a single list of expressions that are the result of executing an action, we have two. The first (`effect_add`) contains all the expressions that will evaluate to true if the action is executed, and the the second (`effect_neg`) contains all those expressions that would be false if the action is executed (ie. their negations would be true).\n",
"\n",
"The constructor parameters, however combine the two precondition lists into a single `precond` parameter, and the effect lists into a single `effect` parameter."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `PDDL` class is used to represent planning problems in this module. The following attributes are essential to be able to define a problem:\n",
"* a goal test\n",
"* an initial state\n",
"* a set of viable actions that can be executed in the search space of the problem\n",
"\n",
"View the source to see how the Python code tries to realise these."
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"%psource PDDL"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The `initial_state` attribute is a list of `Expr` expressions that forms the initial knowledge base for the problem. Next, `actions` contains a list of `Action` objects that may be executed in the search space of the problem. Lastly, we pass a `goal_test` function as a parameter - this typically takes a knowledge base as a parameter, and returns whether or not the goal has been reached."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now lets try to define a planning problem using these tools. Since we already know about the map of Romania, lets see if we can plan a trip across a simplified map of Romania.\n",
"\n",
"Here is our simplified map definition:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from utils import *\n",
"# this imports the required expr so we can create our knowledge base\n",
"\n",
"knowledge_base = [\n",
" expr(\"Connected(Bucharest,Pitesti)\"),\n",
" expr(\"Connected(Pitesti,Rimnicu)\"),\n",
" expr(\"Connected(Rimnicu,Sibiu)\"),\n",
" expr(\"Connected(Sibiu,Fagaras)\"),\n",
" expr(\"Connected(Fagaras,Bucharest)\"),\n",
" expr(\"Connected(Pitesti,Craiova)\"),\n",
" expr(\"Connected(Craiova,Rimnicu)\")\n",
" ]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us add some logic propositions to complete our knowledge about travelling around the map. These are the typical symmetry and transitivity properties of connections on a map. We can now be sure that our `knowledge_base` understands what it truly means for two locations to be connected in the sense usually meant by humans when we use the term.\n",
"\n",
"Let's also add our starting location - *Sibiu* to the map."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"knowledge_base.extend([\n",
" expr(\"Connected(x,y) ==> Connected(y,x)\"),\n",
" expr(\"Connected(x,y) & Connected(y,z) ==> Connected(x,z)\"),\n",
" expr(\"At(Sibiu)\")\n",
" ])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now have a complete knowledge base, which can be seen like this:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
"[Connected(Bucharest, Pitesti),\n",
" Connected(Pitesti, Rimnicu),\n",
" Connected(Rimnicu, Sibiu),\n",
" Connected(Sibiu, Fagaras),\n",
" Connected(Fagaras, Bucharest),\n",
" Connected(Pitesti, Craiova),\n",
" Connected(Craiova, Rimnicu),\n",
" (Connected(x, y) ==> Connected(y, x)),\n",
" ((Connected(x, y) & Connected(y, z)) ==> Connected(x, z)),\n",
" At(Sibiu)]"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"knowledge_base"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now define possible actions to our problem. We know that we can drive between any connected places. But, as is evident from [this](https://en.wikipedia.org/wiki/List_of_airports_in_Romania) list of Romanian airports, we can also fly directly between Sibiu, Bucharest, and Craiova.\n",
"\n",
"We can define these flight actions like this:"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"#Sibiu to Bucharest\n",
"precond_pos = [expr('At(Sibiu)')]\n",
"precond_neg = []\n",
"effect_add = [expr('At(Bucharest)')]\n",
"effect_rem = [expr('At(Sibiu)')]\n",
"fly_s_b = Action(expr('Fly(Sibiu, Bucharest)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n",
"\n",
"#Bucharest to Sibiu\n",
"precond_pos = [expr('At(Bucharest)')]\n",
"precond_neg = []\n",
"effect_add = [expr('At(Sibiu)')]\n",
"effect_rem = [expr('At(Bucharest)')]\n",
"fly_b_s = Action(expr('Fly(Bucharest, Sibiu)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n",
"\n",
"#Sibiu to Craiova\n",
"precond_pos = [expr('At(Sibiu)')]\n",
"precond_neg = []\n",
"effect_add = [expr('At(Craiova)')]\n",
"effect_rem = [expr('At(Sibiu)')]\n",
"fly_s_c = Action(expr('Fly(Sibiu, Craiova)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n",
"\n",
"#Craiova to Sibiu\n",
"precond_pos = [expr('At(Craiova)')]\n",
"precond_neg = []\n",
"effect_add = [expr('At(Sibiu)')]\n",
"effect_rem = [expr('At(Craiova)')]\n",
"fly_c_s = Action(expr('Fly(Craiova, Sibiu)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n",
"\n",
"#Bucharest to Craiova\n",
"precond_pos = [expr('At(Bucharest)')]\n",
"precond_neg = []\n",
"effect_add = [expr('At(Craiova)')]\n",
"effect_rem = [expr('At(Bucharest)')]\n",
"fly_b_c = Action(expr('Fly(Bucharest, Craiova)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n",
"\n",
"#Craiova to Bucharest\n",
"precond_pos = [expr('At(Craiova)')]\n",
"precond_neg = []\n",
"effect_add = [expr('At(Bucharest)')]\n",
"effect_rem = [expr('At(Craiova)')]\n",
"fly_c_b = Action(expr('Fly(Craiova, Bucharest)'), [precond_pos, precond_neg], [effect_add, effect_rem])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"And the drive actions like this."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"#Drive\n",
"precond_pos = [expr('At(x)')]\n",
"precond_neg = []\n",
"effect_add = [expr('At(y)')]\n",
"effect_rem = [expr('At(x)')]\n",
"drive = Action(expr('Drive(x, y)'), [precond_pos, precond_neg], [effect_add, effect_rem])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, we can define a a function that will tell us when we have reached our destination, Bucharest."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def goal_test(kb):\n",
" return kb.ask(expr(\"At(Bucharest)\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Thus, with all the components in place, we can define the planning problem."
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"prob = PDDL(knowledge_base, [fly_s_b, fly_b_s, fly_s_c, fly_c_s, fly_b_c, fly_c_b, drive], goal_test)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": []
},
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",