{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Planning: planning.py; chapters 10-11" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This notebook describes the [planning.py](https://github.com/aimacode/aima-python/blob/master/planning.py) module, which covers Chapters 10 (Classical Planning) and 11 (Planning and Acting in the Real World) of *[Artificial Intelligence: A Modern Approach](http://aima.cs.berkeley.edu)*. See the [intro notebook](https://github.com/aimacode/aima-python/blob/master/intro.ipynb) for instructions.\n", "\n", "We'll start by looking at `PDDL` and `Action` data types for defining problems and actions. Then, we will see how to use them by trying to plan a trip from *Sibiu* to *Bucharest* across the familiar map of Romania, from [search.ipynb](https://github.com/aimacode/aima-python/blob/master/search.ipynb). Finally, we will look at the implementation of the GraphPlan algorithm.\n", "\n", "The first step is to load the code:" ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from planning import *" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "To be able to model a planning problem properly, it is essential to be able to represent an Action. Each action we model requires at least three things:\n", "* preconditions that the action must meet\n", "* the effects of executing the action\n", "* some expression that represents the action" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Planning actions have been modelled using the `Action` class. Let's look at the source to see how the internal details of an action are implemented in Python." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%psource Action" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "It is interesting to see the way preconditions and effects are represented here. Instead of just being a list of expressions each, they consist of two lists - `precond_pos` and `precond_neg`. This is to work around the fact that PDDL doesn't allow for negations. Thus, for each precondition, we maintain a seperate list of those preconditions that must hold true, and those whose negations must hold true. Similarly, instead of having a single list of expressions that are the result of executing an action, we have two. The first (`effect_add`) contains all the expressions that will evaluate to true if the action is executed, and the the second (`effect_neg`) contains all those expressions that would be false if the action is executed (ie. their negations would be true).\n", "\n", "The constructor parameters, however combine the two precondition lists into a single `precond` parameter, and the effect lists into a single `effect` parameter." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `PDDL` class is used to represent planning problems in this module. The following attributes are essential to be able to define a problem:\n", "* a goal test\n", "* an initial state\n", "* a set of viable actions that can be executed in the search space of the problem\n", "\n", "View the source to see how the Python code tries to realise these." ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false }, "outputs": [], "source": [ "%psource PDDL" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `initial_state` attribute is a list of `Expr` expressions that forms the initial knowledge base for the problem. Next, `actions` contains a list of `Action` objects that may be executed in the search space of the problem. Lastly, we pass a `goal_test` function as a parameter - this typically takes a knowledge base as a parameter, and returns whether or not the goal has been reached." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now lets try to define a planning problem using these tools. Since we already know about the map of Romania, lets see if we can plan a trip across a simplified map of Romania.\n", "\n", "Here is our simplified map definition:" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": false }, "outputs": [], "source": [ "from utils import *\n", "# this imports the required expr so we can create our knowledge base\n", "\n", "knowledge_base = [\n", " expr(\"Connected(Bucharest,Pitesti)\"),\n", " expr(\"Connected(Pitesti,Rimnicu)\"),\n", " expr(\"Connected(Rimnicu,Sibiu)\"),\n", " expr(\"Connected(Sibiu,Fagaras)\"),\n", " expr(\"Connected(Fagaras,Bucharest)\"),\n", " expr(\"Connected(Pitesti,Craiova)\"),\n", " expr(\"Connected(Craiova,Rimnicu)\")\n", " ]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us add some logic propositions to complete our knowledge about travelling around the map. These are the typical symmetry and transitivity properties of connections on a map. We can now be sure that our `knowledge_base` understands what it truly means for two locations to be connected in the sense usually meant by humans when we use the term.\n", "\n", "Let's also add our starting location - *Sibiu* to the map." ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "collapsed": true }, "outputs": [], "source": [ "knowledge_base.extend([\n", " expr(\"Connected(x,y) ==> Connected(y,x)\"),\n", " expr(\"Connected(x,y) & Connected(y,z) ==> Connected(x,z)\"),\n", " expr(\"At(Sibiu)\")\n", " ])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now have a complete knowledge base, which can be seen like this:" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": false }, "outputs": [ { "data": { "text/plain": [ "[Connected(Bucharest, Pitesti),\n", " Connected(Pitesti, Rimnicu),\n", " Connected(Rimnicu, Sibiu),\n", " Connected(Sibiu, Fagaras),\n", " Connected(Fagaras, Bucharest),\n", " Connected(Pitesti, Craiova),\n", " Connected(Craiova, Rimnicu),\n", " (Connected(x, y) ==> Connected(y, x)),\n", " ((Connected(x, y) & Connected(y, z)) ==> Connected(x, z)),\n", " At(Sibiu)]" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "knowledge_base" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now define possible actions to our problem. We know that we can drive between any connected places. But, as is evident from [this](https://en.wikipedia.org/wiki/List_of_airports_in_Romania) list of Romanian airports, we can also fly directly between Sibiu, Bucharest, and Craiova.\n", "\n", "We can define these flight actions like this:" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": false }, "outputs": [], "source": [ "#Sibiu to Bucharest\n", "precond_pos = [expr('At(Sibiu)')]\n", "precond_neg = []\n", "effect_add = [expr('At(Bucharest)')]\n", "effect_rem = [expr('At(Sibiu)')]\n", "fly_s_b = Action(expr('Fly(Sibiu, Bucharest)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n", "\n", "#Bucharest to Sibiu\n", "precond_pos = [expr('At(Bucharest)')]\n", "precond_neg = []\n", "effect_add = [expr('At(Sibiu)')]\n", "effect_rem = [expr('At(Bucharest)')]\n", "fly_b_s = Action(expr('Fly(Bucharest, Sibiu)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n", "\n", "#Sibiu to Craiova\n", "precond_pos = [expr('At(Sibiu)')]\n", "precond_neg = []\n", "effect_add = [expr('At(Craiova)')]\n", "effect_rem = [expr('At(Sibiu)')]\n", "fly_s_c = Action(expr('Fly(Sibiu, Craiova)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n", "\n", "#Craiova to Sibiu\n", "precond_pos = [expr('At(Craiova)')]\n", "precond_neg = []\n", "effect_add = [expr('At(Sibiu)')]\n", "effect_rem = [expr('At(Craiova)')]\n", "fly_c_s = Action(expr('Fly(Craiova, Sibiu)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n", "\n", "#Bucharest to Craiova\n", "precond_pos = [expr('At(Bucharest)')]\n", "precond_neg = []\n", "effect_add = [expr('At(Craiova)')]\n", "effect_rem = [expr('At(Bucharest)')]\n", "fly_b_c = Action(expr('Fly(Bucharest, Craiova)'), [precond_pos, precond_neg], [effect_add, effect_rem])\n", "\n", "#Craiova to Bucharest\n", "precond_pos = [expr('At(Craiova)')]\n", "precond_neg = []\n", "effect_add = [expr('At(Bucharest)')]\n", "effect_rem = [expr('At(Craiova)')]\n", "fly_c_b = Action(expr('Fly(Craiova, Bucharest)'), [precond_pos, precond_neg], [effect_add, effect_rem])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "And the drive actions like this." ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "collapsed": true }, "outputs": [], "source": [ "#Drive\n", "precond_pos = [expr('At(x)')]\n", "precond_neg = []\n", "effect_add = [expr('At(y)')]\n", "effect_rem = [expr('At(x)')]\n", "drive = Action(expr('Drive(x, y)'), [precond_pos, precond_neg], [effect_add, effect_rem])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Finally, we can define a a function that will tell us when we have reached our destination, Bucharest." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def goal_test(kb):\n", " return kb.ask(expr(\"At(Bucharest)\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Thus, with all the components in place, we can define the planning problem." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "collapsed": false }, "outputs": [], "source": [ "prob = PDDL(knowledge_base, [fly_s_b, fly_b_s, fly_s_c, fly_c_s, fly_b_c, fly_c_b, drive], goal_test)" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.4.3" } }, "nbformat": 4, "nbformat_minor": 0 }