logic.ipynb 259 ko
Newer Older
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">WalkSAT</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">p</span><span class=\"o\">=</span><span class=\"mf\">0.5</span><span class=\"p\">,</span> <span class=\"n\">max_flips</span><span class=\"o\">=</span><span class=\"mi\">10000</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Checks for satisfiability of all clauses by randomly flipping values of variables</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"c1\"># Set of all symbols in all clauses</span>\n",
       "    <span class=\"n\">symbols</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">sym</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span> <span class=\"k\">for</span> <span class=\"n\">sym</span> <span class=\"ow\">in</span> <span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)}</span>\n",
       "    <span class=\"c1\"># model is a random assignment of true/false to the symbols in clauses</span>\n",
       "    <span class=\"n\">model</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">s</span><span class=\"p\">:</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">([</span><span class=\"bp\">True</span><span class=\"p\">,</span> <span class=\"bp\">False</span><span class=\"p\">])</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">symbols</span><span class=\"p\">}</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">max_flips</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">satisfied</span><span class=\"p\">,</span> <span class=\"n\">unsatisfied</span> <span class=\"o\">=</span> <span class=\"p\">[],</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span><span class=\"p\">:</span>\n",
       "            <span class=\"p\">(</span><span class=\"n\">satisfied</span> <span class=\"k\">if</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)</span> <span class=\"k\">else</span> <span class=\"n\">unsatisfied</span><span class=\"p\">)</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">unsatisfied</span><span class=\"p\">:</span>  <span class=\"c1\"># if model satisfies all the clauses</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">model</span>\n",
       "        <span class=\"n\">clause</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"n\">unsatisfied</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">probability</span><span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">):</span>\n",
       "            <span class=\"n\">sym</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)))</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"c1\"># Flip the symbol in clause that maximizes number of sat. clauses</span>\n",
       "            <span class=\"k\">def</span> <span class=\"nf\">sat_count</span><span class=\"p\">(</span><span class=\"n\">sym</span><span class=\"p\">):</span>\n",
       "                <span class=\"c1\"># Return the the number of clauses satisfied after flipping the symbol.</span>\n",
       "                <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "                <span class=\"n\">count</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">([</span><span class=\"n\">clause</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span> <span class=\"k\">if</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)])</span>\n",
       "                <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "                <span class=\"k\">return</span> <span class=\"n\">count</span>\n",
       "            <span class=\"n\">sym</span> <span class=\"o\">=</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">),</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">sat_count</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "    <span class=\"c1\"># If no solution is found within the flip limit, we return failure</span>\n",
       "    <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(WalkSAT)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The function takes three arguments:\n",
    "<br>\n",
    "1. The `clauses` we want to satisfy.\n",
    "<br>\n",
    "2. The probability `p` of randomly changing a symbol.\n",
    "<br>\n",
    "3. The maximum number of flips (`max_flips`) the algorithm will run for. If the clauses are still unsatisfied, the algorithm returns `None` to denote failure.\n",
    "<br>\n",
    "The algorithm is identical in concept to Hill climbing and the code isn't difficult to understand.\n",
    "<br>\n",
    "<br>\n",
    "Let's see a few examples of usage."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [],
   "source": [
    "A, B, C, D = expr('A, B, C, D')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{A: True, B: True, C: False, D: True}"
     "execution_count": 57,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A, B, ~C, D], 0.5, 100)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is a simple case to show that the algorithm converges."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{A: True, B: True, C: True}"
     "execution_count": 58,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A & B, A & C], 0.5, 100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{A: True, B: True, C: True, D: True}"
     "execution_count": 59,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A & B, C & D, C & B], 0.5, 100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [],
   "source": [
    "WalkSAT([A & B, C | D, ~(D | B)], 0.5, 1000)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This one doesn't give any output because WalkSAT did not find any model where these clauses hold. We can solve these clauses to see that they together form a contradiction and hence, it isn't supposed to have a solution."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One point of difference between this algorithm and the `dpll_satisfiable` algorithms is that both these algorithms take inputs differently. \n",
    "For WalkSAT to take complete sentences as input, \n",
    "we can write a helper function that converts the input sentence into conjunctive normal form and then calls WalkSAT with the list of conjuncts of the CNF form of the sentence."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {},
   "outputs": [],
   "source": [
    "def WalkSAT_CNF(sentence, p=0.5, max_flips=10000):\n",
    "    return WalkSAT(conjuncts(to_cnf(sentence)), 0, max_flips)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can call `WalkSAT_CNF` and `DPLL_Satisfiable` with the same arguments."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{A: True, B: True, C: False, D: True}"
     "execution_count": 62,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT_CNF((A & B) | (C & ~A) | (B & ~D), 0.5, 1000)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It works!\n",
    "<br>\n",
    "Notice that the solution generated by WalkSAT doesn't omit variables that the sentence doesn't depend upon. \n",
    "If the sentence is independent of a particular variable, the solution contains a random value for that variable because of the stochastic nature of the algorithm.\n",
    "<br>\n",
    "<br>\n",
    "Let's compare the runtime of WalkSAT and DPLL for a few cases. We will use the `%%timeit` magic to do this."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {},
   "outputs": [],
   "source": [
    "sentence_1 = A |'<=>'| B\n",
    "sentence_2 = (A & B) | (C & ~A) | (B & ~D)\n",
    "sentence_3 = (A | (B & C)) |'<=>'| ((A | B) & (A | C))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.55 ms ± 64.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "dpll_satisfiable(sentence_1)\n",
    "dpll_satisfiable(sentence_2)\n",
    "dpll_satisfiable(sentence_3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.02 ms ± 6.92 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "WalkSAT_CNF(sentence_1)\n",
    "WalkSAT_CNF(sentence_2)\n",
    "WalkSAT_CNF(sentence_3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "On an average, for solvable cases, `WalkSAT` is quite faster than `dpll` because, for a small number of variables, \n",
    "`WalkSAT` can reduce the search space significantly. \n",
    "Results can be different for sentences with more symbols though.\n",
    "Feel free to play around with this to understand the trade-offs of these algorithms better."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### SATPlan"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In this section we show how to make plans by logical inference. The basic idea is very simple. It includes the following three steps:\n",
    "1. Constuct a sentence that includes:\n",
    "    1. A colection of assertions about the initial state.\n",
    "    2. The successor-state axioms for all the possible actions at each time up to some maximum time t.\n",
    "    3. The assertion that the goal is achieved at time t.\n",
    "2. Present the whole sentence to a SAT solver.\n",
    "3. Assuming a model is found, extract from the model those variables that represent actions and are assigned true. Together they represent a plan to achieve the goals.\n",
    "\n",
    "\n",
    "Lets have a look at the algorithm"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">SAT_plan</span><span class=\"p\">(</span><span class=\"n\">init</span><span class=\"p\">,</span> <span class=\"n\">transition</span><span class=\"p\">,</span> <span class=\"n\">goal</span><span class=\"p\">,</span> <span class=\"n\">t_max</span><span class=\"p\">,</span> <span class=\"n\">SAT_solver</span><span class=\"o\">=</span><span class=\"n\">dpll_satisfiable</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Converts a planning problem to Satisfaction problem by translating it to a cnf sentence.</span>\n",
       "<span class=\"sd\">    [Figure 7.22]&quot;&quot;&quot;</span>\n",
       "\n",
       "    <span class=\"c1\"># Functions used by SAT_plan</span>\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">translate_to_SAT</span><span class=\"p\">(</span><span class=\"n\">init</span><span class=\"p\">,</span> <span class=\"n\">transition</span><span class=\"p\">,</span> <span class=\"n\">goal</span><span class=\"p\">,</span> <span class=\"n\">time</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">clauses</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"n\">states</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">state</span> <span class=\"k\">for</span> <span class=\"n\">state</span> <span class=\"ow\">in</span> <span class=\"n\">transition</span><span class=\"p\">]</span>\n",
       "\n",
       "        <span class=\"c1\"># Symbol claiming state s at time t</span>\n",
       "        <span class=\"n\">state_counter</span> <span class=\"o\">=</span> <span class=\"n\">itertools</span><span class=\"o\">.</span><span class=\"n\">count</span><span class=\"p\">()</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">states</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">time</span><span class=\"o\">+</span><span class=\"mi\">1</span><span class=\"p\">):</span>\n",
       "                <span class=\"n\">state_sym</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"s2\">&quot;State_{}&quot;</span><span class=\"o\">.</span><span class=\"n\">format</span><span class=\"p\">(</span><span class=\"nb\">next</span><span class=\"p\">(</span><span class=\"n\">state_counter</span><span class=\"p\">)))</span>\n",
       "\n",
       "        <span class=\"c1\"># Add initial state axiom</span>\n",
       "        <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">state_sym</span><span class=\"p\">[</span><span class=\"n\">init</span><span class=\"p\">,</span> <span class=\"mi\">0</span><span class=\"p\">])</span>\n",
       "\n",
       "        <span class=\"c1\"># Add goal state axiom</span>\n",
       "        <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">state_sym</span><span class=\"p\">[</span><span class=\"n\">goal</span><span class=\"p\">,</span> <span class=\"n\">time</span><span class=\"p\">])</span>\n",
       "\n",
       "        <span class=\"c1\"># All possible transitions</span>\n",
       "        <span class=\"n\">transition_counter</span> <span class=\"o\">=</span> <span class=\"n\">itertools</span><span class=\"o\">.</span><span class=\"n\">count</span><span class=\"p\">()</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">states</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">transition</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]:</span>\n",
       "                <span class=\"n\">s_</span> <span class=\"o\">=</span> <span class=\"n\">transition</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">][</span><span class=\"n\">action</span><span class=\"p\">]</span>\n",
       "                <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">time</span><span class=\"p\">):</span>\n",
       "                    <span class=\"c1\"># Action &#39;action&#39; taken from state &#39;s&#39; at time &#39;t&#39; to reach &#39;s_&#39;</span>\n",
       "                    <span class=\"n\">action_sym</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">Expr</span><span class=\"p\">(</span>\n",
       "                        <span class=\"s2\">&quot;Transition_{}&quot;</span><span class=\"o\">.</span><span class=\"n\">format</span><span class=\"p\">(</span><span class=\"nb\">next</span><span class=\"p\">(</span><span class=\"n\">transition_counter</span><span class=\"p\">)))</span>\n",
       "\n",
       "                    <span class=\"c1\"># Change the state from s to s_</span>\n",
       "                    <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">action_sym</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">]</span> <span class=\"o\">|</span><span class=\"s1\">&#39;==&gt;&#39;</span><span class=\"o\">|</span> <span class=\"n\">state_sym</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">])</span>\n",
       "                    <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">action_sym</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">]</span> <span class=\"o\">|</span><span class=\"s1\">&#39;==&gt;&#39;</span><span class=\"o\">|</span> <span class=\"n\">state_sym</span><span class=\"p\">[</span><span class=\"n\">s_</span><span class=\"p\">,</span> <span class=\"n\">t</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">])</span>\n",
       "\n",
       "        <span class=\"c1\"># Allow only one state at any time</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">time</span><span class=\"o\">+</span><span class=\"mi\">1</span><span class=\"p\">):</span>\n",
       "            <span class=\"c1\"># must be a state at any time</span>\n",
       "            <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">associate</span><span class=\"p\">(</span><span class=\"s1\">&#39;|&#39;</span><span class=\"p\">,</span> <span class=\"p\">[</span><span class=\"n\">state_sym</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">states</span><span class=\"p\">]))</span>\n",
       "\n",
       "            <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">states</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">for</span> <span class=\"n\">s_</span> <span class=\"ow\">in</span> <span class=\"n\">states</span><span class=\"p\">[</span><span class=\"n\">states</span><span class=\"o\">.</span><span class=\"n\">index</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">:]:</span>\n",
       "                    <span class=\"c1\"># for each pair of states s, s_ only one is possible at time t</span>\n",
       "                    <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">((</span><span class=\"o\">~</span><span class=\"n\">state_sym</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">])</span> <span class=\"o\">|</span> <span class=\"p\">(</span><span class=\"o\">~</span><span class=\"n\">state_sym</span><span class=\"p\">[</span><span class=\"n\">s_</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">]))</span>\n",
       "\n",
       "        <span class=\"c1\"># Restrict to one transition per timestep</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">time</span><span class=\"p\">):</span>\n",
       "            <span class=\"c1\"># list of possible transitions at time t</span>\n",
       "            <span class=\"n\">transitions_t</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">tr</span> <span class=\"k\">for</span> <span class=\"n\">tr</span> <span class=\"ow\">in</span> <span class=\"n\">action_sym</span> <span class=\"k\">if</span> <span class=\"n\">tr</span><span class=\"p\">[</span><span class=\"mi\">2</span><span class=\"p\">]</span> <span class=\"o\">==</span> <span class=\"n\">t</span><span class=\"p\">]</span>\n",
       "\n",
       "            <span class=\"c1\"># make sure at least one of the transitions happens</span>\n",
       "            <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">associate</span><span class=\"p\">(</span><span class=\"s1\">&#39;|&#39;</span><span class=\"p\">,</span> <span class=\"p\">[</span><span class=\"n\">action_sym</span><span class=\"p\">[</span><span class=\"n\">tr</span><span class=\"p\">]</span> <span class=\"k\">for</span> <span class=\"n\">tr</span> <span class=\"ow\">in</span> <span class=\"n\">transitions_t</span><span class=\"p\">]))</span>\n",
       "\n",
       "            <span class=\"k\">for</span> <span class=\"n\">tr</span> <span class=\"ow\">in</span> <span class=\"n\">transitions_t</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">for</span> <span class=\"n\">tr_</span> <span class=\"ow\">in</span> <span class=\"n\">transitions_t</span><span class=\"p\">[</span><span class=\"n\">transitions_t</span><span class=\"o\">.</span><span class=\"n\">index</span><span class=\"p\">(</span><span class=\"n\">tr</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"mi\">1</span><span class=\"p\">:]:</span>\n",
       "                    <span class=\"c1\"># there cannot be two transitions tr and tr_ at time t</span>\n",
       "                    <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"o\">~</span><span class=\"n\">action_sym</span><span class=\"p\">[</span><span class=\"n\">tr</span><span class=\"p\">]</span> <span class=\"o\">|</span> <span class=\"o\">~</span><span class=\"n\">action_sym</span><span class=\"p\">[</span><span class=\"n\">tr_</span><span class=\"p\">])</span>\n",
       "\n",
       "        <span class=\"c1\"># Combine the clauses to form the cnf</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">associate</span><span class=\"p\">(</span><span class=\"s1\">&#39;&amp;&#39;</span><span class=\"p\">,</span> <span class=\"n\">clauses</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">extract_solution</span><span class=\"p\">(</span><span class=\"n\">model</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">true_transitions</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">t</span> <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"n\">action_sym</span> <span class=\"k\">if</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">action_sym</span><span class=\"p\">[</span><span class=\"n\">t</span><span class=\"p\">]]]</span>\n",
       "        <span class=\"c1\"># Sort transitions based on time, which is the 3rd element of the tuple</span>\n",
       "        <span class=\"n\">true_transitions</span><span class=\"o\">.</span><span class=\"n\">sort</span><span class=\"p\">(</span><span class=\"n\">key</span><span class=\"o\">=</span><span class=\"k\">lambda</span> <span class=\"n\">x</span><span class=\"p\">:</span> <span class=\"n\">x</span><span class=\"p\">[</span><span class=\"mi\">2</span><span class=\"p\">])</span>\n",
       "        <span class=\"k\">return</span> <span class=\"p\">[</span><span class=\"n\">action</span> <span class=\"k\">for</span> <span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">time</span> <span class=\"ow\">in</span> <span class=\"n\">true_transitions</span><span class=\"p\">]</span>\n",
       "\n",
       "    <span class=\"c1\"># Body of SAT_plan algorithm</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">t_max</span><span class=\"p\">):</span>\n",
       "        <span class=\"c1\"># dictionaries to help extract the solution from model</span>\n",
       "        <span class=\"n\">state_sym</span> <span class=\"o\">=</span> <span class=\"p\">{}</span>\n",
       "        <span class=\"n\">action_sym</span> <span class=\"o\">=</span> <span class=\"p\">{}</span>\n",
       "\n",
       "        <span class=\"n\">cnf</span> <span class=\"o\">=</span> <span class=\"n\">translate_to_SAT</span><span class=\"p\">(</span><span class=\"n\">init</span><span class=\"p\">,</span> <span class=\"n\">transition</span><span class=\"p\">,</span> <span class=\"n\">goal</span><span class=\"p\">,</span> <span class=\"n\">t</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">model</span> <span class=\"o\">=</span> <span class=\"n\">SAT_solver</span><span class=\"p\">(</span><span class=\"n\">cnf</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">model</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">False</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">extract_solution</span><span class=\"p\">(</span><span class=\"n\">model</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(SAT_plan)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's see few examples of its usage. First we define a transition and then call `SAT_plan`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "None\n",
      "['Right']\n",
      "['Left', 'Left']\n"
     ]
    }
   ],
   "source": [
    "transition = {'A': {'Left': 'A', 'Right': 'B'},\n",
    "            'B': {'Left': 'A', 'Right': 'C'},\n",
    "            'C': {'Left': 'B', 'Right': 'C'}}\n",
    "\n",
    "\n",
    "print(SAT_plan('A', transition, 'C', 2)) \n",
    "print(SAT_plan('A', transition, 'B', 3))\n",
    "print(SAT_plan('C', transition, 'A', 3))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us do the same for another transition."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['Right', 'Down']\n"
     ]
    }
   ],
   "source": [
    "transition = {(0, 0): {'Right': (0, 1), 'Down': (1, 0)},\n",
    "            (0, 1): {'Left': (1, 0), 'Down': (1, 1)},\n",
    "            (1, 0): {'Right': (1, 0), 'Up': (1, 0), 'Left': (1, 0), 'Down': (1, 0)},\n",
    "            (1, 1): {'Left': (1, 0), 'Up': (0, 1)}}\n",
    "\n",
    "\n",
    "print(SAT_plan((0, 0), transition, (1, 1), 4))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## First-Order Logic Knowledge Bases: `FolKB`\n",
    "\n",
    "The class `FolKB` can be used to represent a knowledge base of First-order logic sentences. You would initialize and use it the same way as you would for `PropKB` except that the clauses are first-order definite clauses. We will see how to write such clauses to create a database and query them in the following sections."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Criminal KB\n",
    "In this section we create a `FolKB` based on the following paragraph.<br/>\n",
    "<em>The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.</em><br/>\n",
    "The first step is to extract the facts and convert them into first-order definite clauses. Extracting the facts from data alone is a challenging task. Fortunately, we have a small paragraph and can do extraction and conversion manually. We'll store the clauses in list aptly named `clauses`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {},
   "outputs": [],
   "source": [
    "clauses = []"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>“... it is a crime for an American to sell weapons to hostile nations”</em><br/>\n",
    "The keywords to look for here are 'crime', 'American', 'sell', 'weapon' and 'hostile'. We use predicate symbols to make meaning of them.\n",
    "\n",
    "* `Criminal(x)`: `x` is a criminal\n",
    "* `American(x)`: `x` is an American\n",
    "* `Sells(x ,y, z)`: `x` sells `y` to `z`\n",
    "* `Weapon(x)`: `x` is a weapon\n",
    "* `Hostile(x)`: `x` is a hostile nation\n",
    "\n",
    "Let us now combine them with appropriate variable naming to depict the meaning of the sentence. The criminal `x` is also the American `x` who sells weapon `y` to `z`, which is a hostile nation.\n",
    "\n",
    "$\\text{American}(x) \\land \\text{Weapon}(y) \\land \\text{Sells}(x, y, z) \\land \\text{Hostile}(z) \\implies \\text{Criminal} (x)$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [],
   "source": [
    "clauses.append(expr(\"(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"The country Nono, an enemy of America\"</em><br/>\n",
    "We now know that Nono is an enemy of America. We represent these nations using the constant symbols `Nono` and `America`. the enemy relation is show using the predicate symbol `Enemy`.\n",
    "\n",
    "$\\text{Enemy}(\\text{Nono}, \\text{America})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {},
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Enemy(Nono, America)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"Nono ... has some missiles\"</em><br/>\n",
Robert Hönig's avatar
Robert Hönig a validé
    "This states the existence of some missile which is owned by Nono. $\\exists x \\text{Owns}(\\text{Nono}, x) \\land \\text{Missile}(x)$. We invoke existential instantiation to introduce a new constant `M1` which is the missile owned by Nono.\n",
    "\n",
    "$\\text{Owns}(\\text{Nono}, \\text{M1}), \\text{Missile}(\\text{M1})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "metadata": {},
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Owns(Nono, M1)\"))\n",
    "clauses.append(expr(\"Missile(M1)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "<em>\"All of its missiles were sold to it by Colonel West\"</em><br/>\n",
    "If Nono owns something and it classifies as a missile, then it was sold to Nono by West.\n",
    "\n",
    "$\\text{Missile}(x) \\land \\text{Owns}(\\text{Nono}, x) \\implies \\text{Sells}(\\text{West}, x, \\text{Nono})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {},
   "outputs": [],
   "source": [
    "clauses.append(expr(\"(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"West, who is American\"</em><br/>\n",
    "West is an American.\n",
    "\n",
    "$\\text{American}(\\text{West})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "metadata": {},
   "outputs": [],
   "source": [
    "clauses.append(expr(\"American(West)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also know, from our understanding of language, that missiles are weapons and that an enemy of America counts as “hostile”.\n",
    "\n",
    "$\\text{Missile}(x) \\implies \\text{Weapon}(x), \\text{Enemy}(x, \\text{America}) \\implies \\text{Hostile}(x)$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "metadata": {},
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Missile(x) ==> Weapon(x)\"))\n",
    "clauses.append(expr(\"Enemy(x, America) ==> Hostile(x)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have converted the information into first-order definite clauses we can create our first-order logic knowledge base."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {},
   "outputs": [],
   "source": [
    "crime_kb = FolKB(clauses)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `subst` helper function substitutes variables with given values in first-order logic statements.\n",
    "This will be useful in later algorithms.\n",
    "It's implementation is quite simple and self-explanatory."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">subst</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">x</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Substitute the substitution s into the expression x.</span>\n",
       "<span class=\"sd\">    &gt;&gt;&gt; subst({x: 42, y:0}, F(x) + y)</span>\n",
       "<span class=\"sd\">    (F(42) + 0)</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"k\">if</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"nb\">list</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"p\">[</span><span class=\"n\">subst</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">xi</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">xi</span> <span class=\"ow\">in</span> <span class=\"n\">x</span><span class=\"p\">]</span>\n",
       "    <span class=\"k\">elif</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"nb\">tuple</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"nb\">tuple</span><span class=\"p\">([</span><span class=\"n\">subst</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">xi</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">xi</span> <span class=\"ow\">in</span> <span class=\"n\">x</span><span class=\"p\">])</span>\n",
       "    <span class=\"k\">elif</span> <span class=\"ow\">not</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">Expr</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">x</span>\n",
       "    <span class=\"k\">elif</span> <span class=\"n\">is_var_symbol</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">s</span><span class=\"o\">.</span><span class=\"n\">get</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">x</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">Expr</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"o\">.</span><span class=\"n\">op</span><span class=\"p\">,</span> <span class=\"o\">*</span><span class=\"p\">[</span><span class=\"n\">subst</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">arg</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">arg</span> <span class=\"ow\">in</span> <span class=\"n\">x</span><span class=\"o\">.</span><span class=\"n\">args</span><span class=\"p\">])</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(subst)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here's an example of how `subst` can be used."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Owns(Nono, M1)"
      ]
     },
     "execution_count": 78,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "subst({x: expr('Nono'), y: expr('M1')}, expr('Owns(x, y)'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference in First-Order Logic\n",
    "In this section we look at a forward chaining and a backward chaining algorithm for `FolKB`. Both aforementioned algorithms rely on a process called <strong>unification</strong>, a key component of all first-order inference algorithms."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Unification\n",
    "We sometimes require finding substitutions that make different logical expressions look identical. This process, called unification, is done by the `unify` algorithm. It takes as input two sentences and returns a <em>unifier</em> for them if one exists. A unifier is a dictionary which stores the substitutions required to make the two sentences identical. It does so by recursively unifying the components of a sentence, where the unification of a variable symbol `var` with a constant symbol `Const` is the mapping `{var: Const}`. Let's look at a few examples."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: 3}"
      ]
     },
     "execution_count": 79,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('x'), 3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: B}"
      ]
     },
     "execution_count": 80,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('A(x)'), expr('A(B)'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: Bella, y: Dobby}"
      ]
     },
     "execution_count": 81,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(y)'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In cases where there is no possible substitution that unifies the two sentences the function return `None`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "metadata": {},
   "outputs": [