Newer
Older
"### Unification\n",
"We sometimes require finding substitutions that make different logical expressions look identical. This process, called unification, is done by the `unify` algorithm. It takes as input two sentences and returns a <em>unifier</em> for them if one exists. A unifier is a dictionary which stores the substitutions required to make the two sentences identical. It does so by recursively unifying the components of a sentence, where the unification of a variable symbol `var` with a constant symbol `Const` is the mapping `{var: Const}`. Let's look at a few examples."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{x: 3}"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unify(expr('x'), 3)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{x: B}"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unify(expr('A(x)'), expr('A(B)'))"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{x: Bella, y: Dobby}"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(y)'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In cases where there is no possible substitution that unifies the two sentences the function return `None`."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"None\n"
]
}
],
"source": [
"print(unify(expr('Cat(x)'), expr('Dog(Dobby)')))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We also need to take care we do not unintentionally use the same variable name. Unify treats them as a single variable which prevents it from taking multiple value."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"None\n"
]
}
],
"source": [
"print(unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(x)')))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Forward Chaining Algorithm\n",
"We consider the simple forward-chaining algorithm presented in <em>Figure 9.3</em>. We look at each rule in the knoweldge base and see if the premises can be satisfied. This is done by finding a substitution which unifies each of the premise with a clause in the `KB`. If we are able to unify the premises, the conclusion (with the corresponding substitution) is added to the `KB`. This inferencing process is repeated until either the query can be answered or till no new sentences can be added. We test if the newly added clause unifies with the query in which case the substitution yielded by `unify` is an answer to the query. If we run out of sentences to infer, this means the query was a failure.\n",
"The function `fol_fc_ask` is a generator which yields all substitutions which validate the query."
]
},
{
"cell_type": "code",
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
"execution_count": 61,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">fol_fc_ask</span><span class=\"p\">(</span><span class=\"n\">KB</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""A simple forward-chaining algorithm. [Figure 9.3]"""</span>\n",
" <span class=\"c1\"># TODO: Improve efficiency</span>\n",
" <span class=\"n\">kb_consts</span> <span class=\"o\">=</span> <span class=\"nb\">list</span><span class=\"p\">({</span><span class=\"n\">c</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span> <span class=\"k\">for</span> <span class=\"n\">c</span> <span class=\"ow\">in</span> <span class=\"n\">constant_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)})</span>\n",
" <span class=\"k\">def</span> <span class=\"nf\">enum_subst</span><span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">):</span>\n",
" <span class=\"n\">query_vars</span> <span class=\"o\">=</span> <span class=\"nb\">list</span><span class=\"p\">({</span><span class=\"n\">v</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">p</span> <span class=\"k\">for</span> <span class=\"n\">v</span> <span class=\"ow\">in</span> <span class=\"n\">variables</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)})</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">assignment_list</span> <span class=\"ow\">in</span> <span class=\"n\">itertools</span><span class=\"o\">.</span><span class=\"n\">product</span><span class=\"p\">(</span><span class=\"n\">kb_consts</span><span class=\"p\">,</span> <span class=\"n\">repeat</span><span class=\"o\">=</span><span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">query_vars</span><span class=\"p\">)):</span>\n",
" <span class=\"n\">theta</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">x</span><span class=\"p\">:</span> <span class=\"n\">y</span> <span class=\"k\">for</span> <span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">y</span> <span class=\"ow\">in</span> <span class=\"nb\">zip</span><span class=\"p\">(</span><span class=\"n\">query_vars</span><span class=\"p\">,</span> <span class=\"n\">assignment_list</span><span class=\"p\">)}</span>\n",
" <span class=\"k\">yield</span> <span class=\"n\">theta</span>\n",
"\n",
" <span class=\"c1\"># check if we can answer without new inferences</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">q</span> <span class=\"ow\">in</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span><span class=\"p\">:</span>\n",
" <span class=\"n\">phi</span> <span class=\"o\">=</span> <span class=\"n\">unify</span><span class=\"p\">(</span><span class=\"n\">q</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">,</span> <span class=\"p\">{})</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">phi</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
" <span class=\"k\">yield</span> <span class=\"n\">phi</span>\n",
"\n",
" <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
" <span class=\"n\">new</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">rule</span> <span class=\"ow\">in</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span><span class=\"p\">:</span>\n",
" <span class=\"n\">p</span><span class=\"p\">,</span> <span class=\"n\">q</span> <span class=\"o\">=</span> <span class=\"n\">parse_definite_clause</span><span class=\"p\">(</span><span class=\"n\">rule</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">theta</span> <span class=\"ow\">in</span> <span class=\"n\">enum_subst</span><span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">subst</span><span class=\"p\">(</span><span class=\"n\">theta</span><span class=\"p\">,</span> <span class=\"n\">p</span><span class=\"p\">))</span><span class=\"o\">.</span><span class=\"n\">issubset</span><span class=\"p\">(</span><span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span><span class=\"p\">)):</span>\n",
" <span class=\"n\">q_</span> <span class=\"o\">=</span> <span class=\"n\">subst</span><span class=\"p\">(</span><span class=\"n\">theta</span><span class=\"p\">,</span> <span class=\"n\">q</span><span class=\"p\">)</span>\n",
" <span class=\"k\">if</span> <span class=\"nb\">all</span><span class=\"p\">([</span><span class=\"n\">unify</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">q_</span><span class=\"p\">,</span> <span class=\"p\">{})</span> <span class=\"ow\">is</span> <span class=\"bp\">None</span> <span class=\"k\">for</span> <span class=\"n\">x</span> <span class=\"ow\">in</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span> <span class=\"o\">+</span> <span class=\"n\">new</span><span class=\"p\">]):</span>\n",
" <span class=\"n\">new</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">q_</span><span class=\"p\">)</span>\n",
" <span class=\"n\">phi</span> <span class=\"o\">=</span> <span class=\"n\">unify</span><span class=\"p\">(</span><span class=\"n\">q_</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">,</span> <span class=\"p\">{})</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">phi</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
" <span class=\"k\">yield</span> <span class=\"n\">phi</span>\n",
" <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">new</span><span class=\"p\">:</span>\n",
" <span class=\"k\">break</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">new</span><span class=\"p\">:</span>\n",
" <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">tell</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)</span>\n",
" <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's find out all the hostile nations. Note that we only told the `KB` that Nono was an enemy of America, not that it was hostile."
]
},
{
"cell_type": "code",
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{x: Nono}]\n"
]
}
],
"source": [
"answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
"print(list(answer))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The generator returned a single substitution which says that Nono is a hostile nation. See how after adding another enemy nation the generator returns two substitutions."
]
},
{
"cell_type": "code",
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[{x: Nono}, {x: JaJa}]\n"
]
}
],
"source": [
"crime_kb.tell(expr('Enemy(JaJa, America)'))\n",
"answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
"print(list(answer))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"<strong><em>Note</em>:</strong> `fol_fc_ask` makes changes to the `KB` by adding sentences to it."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Backward Chaining Algorithm\n",
"This algorithm works backward from the goal, chaining through rules to find known facts that support the proof. Suppose `goal` is the query we want to find the substitution for. We find rules of the form $\\text{lhs} \\implies \\text{goal}$ in the `KB` and try to prove `lhs`. There may be multiple clauses in the `KB` which give multiple `lhs`. It is sufficient to prove only one of these. But to prove a `lhs` all the conjuncts in the `lhs` of the clause must be proved. This makes it similar to <em>And/Or</em> search."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### OR\n",
"The <em>OR</em> part of the algorithm comes from our choice to select any clause of the form $\\text{lhs} \\implies \\text{goal}$. Looking at all rules's `lhs` whose `rhs` unify with the `goal`, we yield a substitution which proves all the conjuncts in the `lhs`. We use `parse_definite_clause` to attain `lhs` and `rhs` from a clause of the form $\\text{lhs} \\implies \\text{rhs}$. For atomic facts the `lhs` is an empty list."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource fol_bc_or"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### AND\n",
"The <em>AND</em> corresponds to proving all the conjuncts in the `lhs`. We need to find a substitution which proves each <em>and</em> every clause in the list of conjuncts."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%psource fol_bc_and"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now the main function `fl_bc_ask` calls `fol_bc_or` with substitution initialized as empty. The `ask` method of `FolKB` uses `fol_bc_ask` and fetches the first substitution returned by the generator to answer query. Let's query the knowledge base we created from `clauses` to find hostile nations."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# Rebuild KB because running fol_fc_ask would add new facts to the KB\n",
"crime_kb = FolKB(clauses)"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{v_5: x, x: Nono}"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"crime_kb.ask(expr('Hostile(x)'))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You may notice some new variables in the substitution. They are introduced to standardize the variable names to prevent naming problems as discussed in the [Unification section](#Unification)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Appendix: The Implementation of `|'==>'|`\n",
"Consider the `Expr` formed by this syntax:"
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What is the funny `|'==>'|` syntax? The trick is that \"`|`\" is just the regular Python or-operator, and so is exactly equivalent to this: "
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In other words, there are two applications of or-operators. Here's the first one:"
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"What is going on here is that the `__or__` method of `Expr` serves a dual purpose. If the right-hand-side is another `Expr` (or a number), then the result is an `Expr`, as in `(P | Q)`. But if the right-hand-side is a string, then the string is taken to be an operator, and we create a node in the abstract syntax tree corresponding to a partially-filled `Expr`, one where we know the left-hand-side is `P` and the operator is `==>`, but we don't yet know the right-hand-side.\n",
"The `PartialExpr` class has an `__or__` method that says to create an `Expr` node with the right-hand-side filled in. Here we can see the combination of the `PartialExpr` with `Q` to create a complete `Expr`:"
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"partial = PartialExpr('==>', P) \n",
"partial | ~Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This [trick](http://code.activestate.com/recipes/384122-infix-operators/) is due to [Ferdinand Jamitzky](http://code.activestate.com/recipes/users/98863/), with a modification by [C. G. Vedant](https://github.com/Chipe1),\n",
"who suggested using a string inside the or-bars.\n",
"\n",
"## Appendix: The Implementation of `expr`\n",
"\n",
"How does `expr` parse a string into an `Expr`? It turns out there are two tricks (besides the Jamitzky/Vedant trick):\n",
"\n",
"1. We do a string substitution, replacing \"`==>`\" with \"`|'==>'|`\" (and likewise for other operators).\n",
"2. We `eval` the resulting string in an environment in which every identifier\n",
"is bound to a symbol with that identifier as the `op`.\n",
"\n",
"In other words,"
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"outputs": [
{
"data": {
"text/plain": [
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"P, Q = symbols('P, Q')\n",
"~(P & Q) |'==>'| (~P | ~Q)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"One thing to beware of: this puts `==>` at the same precedence level as `\"|\"`, which is not quite right. For example, we get this:"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"(((P & Q) ==> P) | Q)"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"P & Q |'==>'| P | Q"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"which is probably not what we meant; when in doubt, put in extra parens:"
]
},
{
"cell_type": "code",
"outputs": [
{
"data": {
"text/plain": [
"((P & Q) ==> (P | Q))"
]
},
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"(P & Q) |'==>'| (P | Q)"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Examples"
]
},
{
"cell_type": "code",
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
"execution_count": 76,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"<script type=\"text/javascript\" src=\"./js/canvas.js\"></script>\n",
"<div>\n",
"<canvas id=\"canvas_bc_ask\" width=\"800\" height=\"600\" style=\"background:rgba(158, 167, 184, 0.2);\" onclick='click_callback(this, event, \"canvas_bc_ask\")'></canvas>\n",
"</div>\n",
"\n",
"<script> var canvas_bc_ask_canvas_object = new Canvas(\"canvas_bc_ask\");</script>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<script>\n",
"canvas_bc_ask_canvas_object.clear();\n",
"canvas_bc_ask_canvas_object.strokeWidth(3);\n",
"canvas_bc_ask_canvas_object.stroke(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.font(\"12px Arial\");\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(340, 85, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(340, 85, 460, 85);\n",
"canvas_bc_ask_canvas_object.line(340, 85, 340, 115);\n",
"canvas_bc_ask_canvas_object.line(460, 85, 460, 115);\n",
"canvas_bc_ask_canvas_object.line(340, 115, 460, 115);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Criminal(West)\", 348, 109);\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(55, 255, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(55, 255, 175, 255);\n",
"canvas_bc_ask_canvas_object.line(55, 255, 55, 285);\n",
"canvas_bc_ask_canvas_object.line(175, 255, 175, 285);\n",
"canvas_bc_ask_canvas_object.line(55, 285, 175, 285);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"American(West)\", 63, 279);\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(245, 255, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(245, 255, 365, 255);\n",
"canvas_bc_ask_canvas_object.line(245, 255, 245, 285);\n",
"canvas_bc_ask_canvas_object.line(365, 255, 365, 285);\n",
"canvas_bc_ask_canvas_object.line(245, 285, 365, 285);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Weapon(M1)\", 253, 279);\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(435, 255, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(435, 255, 555, 255);\n",
"canvas_bc_ask_canvas_object.line(435, 255, 435, 285);\n",
"canvas_bc_ask_canvas_object.line(555, 255, 555, 285);\n",
"canvas_bc_ask_canvas_object.line(435, 285, 555, 285);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Sells(West, M1, Nono)\", 443, 279);\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(625, 255, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(625, 255, 745, 255);\n",
"canvas_bc_ask_canvas_object.line(625, 255, 625, 285);\n",
"canvas_bc_ask_canvas_object.line(745, 255, 745, 285);\n",
"canvas_bc_ask_canvas_object.line(625, 285, 745, 285);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Hostile(Nono)\", 633, 279);\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(55, 425, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(55, 425, 175, 425);\n",
"canvas_bc_ask_canvas_object.line(55, 425, 55, 455);\n",
"canvas_bc_ask_canvas_object.line(175, 425, 175, 455);\n",
"canvas_bc_ask_canvas_object.line(55, 455, 175, 455);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Missile(M1)\", 63, 449);\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(245, 425, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(245, 425, 365, 425);\n",
"canvas_bc_ask_canvas_object.line(245, 425, 245, 455);\n",
"canvas_bc_ask_canvas_object.line(365, 425, 365, 455);\n",
"canvas_bc_ask_canvas_object.line(245, 455, 365, 455);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Missile(M1)\", 253, 449);\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(435, 425, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(435, 425, 555, 425);\n",
"canvas_bc_ask_canvas_object.line(435, 425, 435, 455);\n",
"canvas_bc_ask_canvas_object.line(555, 425, 555, 455);\n",
"canvas_bc_ask_canvas_object.line(435, 455, 555, 455);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Owns(Nono, M1)\", 443, 449);\n",
"canvas_bc_ask_canvas_object.fill(200, 200, 200);\n",
"canvas_bc_ask_canvas_object.rect(625, 425, 120, 30);\n",
"canvas_bc_ask_canvas_object.line(625, 425, 745, 425);\n",
"canvas_bc_ask_canvas_object.line(625, 425, 625, 455);\n",
"canvas_bc_ask_canvas_object.line(745, 425, 745, 455);\n",
"canvas_bc_ask_canvas_object.line(625, 455, 745, 455);\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Enemy(Nono, America)\", 633, 449);\n",
"canvas_bc_ask_canvas_object.line(400, 115, 495, 255);\n",
"canvas_bc_ask_canvas_object.line(305, 285, 115, 425);\n",
"canvas_bc_ask_canvas_object.line(495, 285, 305, 425);\n",
"canvas_bc_ask_canvas_object.line(685, 285, 685, 425);\n",
"canvas_bc_ask_canvas_object.line(400, 115, 685, 255);\n",
"canvas_bc_ask_canvas_object.line(400, 115, 305, 255);\n",
"canvas_bc_ask_canvas_object.line(400, 115, 115, 255);\n",
"canvas_bc_ask_canvas_object.line(495, 285, 495, 425);\n",
"canvas_bc_ask_canvas_object.fill(255, 255, 255);\n",
"canvas_bc_ask_canvas_object.rect(0, 540, 800, 60);\n",
"canvas_bc_ask_canvas_object.strokeWidth(5);\n",
"canvas_bc_ask_canvas_object.stroke(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.line(0, 540, 800, 540);\n",
"canvas_bc_ask_canvas_object.font(\"22px Arial\");\n",
"canvas_bc_ask_canvas_object.fill(0, 0, 0);\n",
"canvas_bc_ask_canvas_object.fill_text(\"Click for text\", 20, 585);\n",
"</script>"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"from notebook import Canvas_fol_bc_ask\n",
"canvas_bc_ask = Canvas_fol_bc_ask('canvas_bc_ask', crime_kb, expr('Criminal(x)'))"
]
},
"metadata": {
"collapsed": true
},
"This notebook by [Chirag Vartak](https://github.com/chiragvartak) and [Peter Norvig](https://github.com/norvig).\n",
}
],
"metadata": {
"kernelspec": {
"language": "python",
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
}
},
"nbformat": 4,