Newer
Older
Donato Meoli
a validé
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
self.__twl[clause][1] = new_watching
def get_first_watched(self, clause):
if len(clause.args) == 2:
return clause.args[0]
if len(clause.args) > 2:
return self.__twl[clause][0]
return clause
def get_second_watched(self, clause):
if len(clause.args) == 2:
return clause.args[-1]
if len(clause.args) > 2:
return self.__twl[clause][1]
return clause
def get_pos_watched(self, l):
return self.__watch_list[l][0]
def get_neg_watched(self, l):
return self.__watch_list[l][1]
def add(self, clause, model):
self.__twl[clause] = self.__assign_watching_literals(clause, model)
w1, p1 = inspect_literal(self.get_first_watched(clause))
w2, p2 = inspect_literal(self.get_second_watched(clause))
self.__watch_list[w1][0].add(clause) if p1 else self.__watch_list[w1][1].add(clause)
if w1 != w2:
self.__watch_list[w2][0].add(clause) if p2 else self.__watch_list[w2][1].add(clause)
def remove(self, clause):
w1, p1 = inspect_literal(self.get_first_watched(clause))
w2, p2 = inspect_literal(self.get_second_watched(clause))
del self.__twl[clause]
self.__watch_list[w1][0].discard(clause) if p1 else self.__watch_list[w1][1].discard(clause)
if w1 != w2:
self.__watch_list[w2][0].discard(clause) if p2 else self.__watch_list[w2][1].discard(clause)
def update_first_watched(self, clause, model):
# if a non-zero literal different from the other watched literal is found
found, new_watching = self.__find_new_watching_literal(clause, self.get_first_watched(clause), model)
if found: # then it will replace the watched literal
w, p = inspect_literal(self.get_second_watched(clause))
self.__watch_list[w][0].remove(clause) if p else self.__watch_list[w][1].remove(clause)
self.set_second_watched(clause, new_watching)
w, p = inspect_literal(new_watching)
self.__watch_list[w][0].add(clause) if p else self.__watch_list[w][1].add(clause)
return True
def update_second_watched(self, clause, model):
# if a non-zero literal different from the other watched literal is found
found, new_watching = self.__find_new_watching_literal(clause, self.get_second_watched(clause), model)
if found: # then it will replace the watched literal
w, p = inspect_literal(self.get_first_watched(clause))
self.__watch_list[w][0].remove(clause) if p else self.__watch_list[w][1].remove(clause)
self.set_first_watched(clause, new_watching)
w, p = inspect_literal(new_watching)
self.__watch_list[w][0].add(clause) if p else self.__watch_list[w][1].add(clause)
return True
def __find_new_watching_literal(self, clause, other_watched, model):
# if a non-zero literal different from the other watched literal is found
if len(clause.args) > 2:
for l in disjuncts(clause):
if l != other_watched and pl_true(l, model) is not False:
# then it is returned
return True, l
return False, None
def __assign_watching_literals(self, clause, model=None):
if len(clause.args) > 2:
if model is None or not model:
return [clause.args[0], clause.args[-1]]
else:
return [next(l for l in disjuncts(clause) if pl_true(l, model) is None),
next(l for l in disjuncts(clause) if pl_true(l, model) is False)]
# ______________________________________________________________________________
# Walk-SAT [Figure 7.18]
def WalkSAT(clauses, p=0.5, max_flips=10000):
"""Checks for satisfiability of all clauses by randomly flipping values of variables
>>> WalkSAT([A & ~A], 0.5, 100) is None
True
symbols = {sym for clause in clauses for sym in prop_symbols(clause)}
# model is a random assignment of true/false to the symbols in clauses
model = {s: random.choice([True, False]) for s in symbols}
for i in range(max_flips):
satisfied, unsatisfied = [], []
for clause in clauses:
(satisfied if pl_true(clause, model) else unsatisfied).append(clause)
if not unsatisfied: # if model satisfies all the clauses
return model
clause = random.choice(unsatisfied)
if probability(p):
# Flip the symbol in clause that maximizes number of sat. clauses
# Return the the number of clauses satisfied after flipping the symbol.
model[sym] = not model[sym]
count = len([clause for clause in clauses if pl_true(clause, model)])
model[sym] = not model[sym]
return count
model[sym] = not model[sym]
# If no solution is found within the flip limit, we return failure
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
# ______________________________________________________________________________
# Map Coloring Problems
def MapColoringSAT(colors, neighbors):
"""Make a SAT for the problem of coloring a map with different colors
for any two adjacent regions. Arguments are a list of colors, and a
dict of {region: [neighbor,...]} entries. This dict may also be
specified as a string of the form defined by parse_neighbors."""
if isinstance(neighbors, str):
neighbors = parse_neighbors(neighbors)
colors = UniversalDict(colors)
clauses = []
for state in neighbors.keys():
clause = [expr(state + '_' + c) for c in colors[state]]
clauses.append(clause)
for t in itertools.combinations(clause, 2):
clauses.append([~t[0], ~t[1]])
visited = set()
adj = set(neighbors[state]) - visited
visited.add(state)
for n_state in adj:
for col in colors[n_state]:
clauses.append([expr('~' + state + '_' + col), expr('~' + n_state + '_' + col)])
return associate('&', map(lambda c: associate('|', c), clauses))
australia_sat = MapColoringSAT(list('RGB'), """SA: WA NT Q NSW V; NT: WA Q; NSW: Q V; T: """)
france_sat = MapColoringSAT(list('RGBY'),
"""AL: LO FC; AQ: MP LI PC; AU: LI CE BO RA LR MP; BO: CE IF CA FC RA
AU; BR: NB PL; CA: IF PI LO FC BO; CE: PL NB NH IF BO AU LI PC; FC: BO
CA LO AL RA; IF: NH PI CA BO CE; LI: PC CE AU MP AQ; LO: CA AL FC; LR:
MP AU RA PA; MP: AQ LI AU LR; NB: NH CE PL BR; NH: PI IF CE NB; NO:
PI; PA: LR RA; PC: PL CE LI AQ; PI: NH NO CA IF; PL: BR NB CE PC; RA:
AU BO FC PA LR""")
usa_sat = MapColoringSAT(list('RGBY'),
"""WA: OR ID; OR: ID NV CA; CA: NV AZ; NV: ID UT AZ; ID: MT WY UT;
UT: WY CO AZ; MT: ND SD WY; WY: SD NE CO; CO: NE KA OK NM; NM: OK TX AZ;
ND: MN SD; SD: MN IA NE; NE: IA MO KA; KA: MO OK; OK: MO AR TX;
TX: AR LA; MN: WI IA; IA: WI IL MO; MO: IL KY TN AR; AR: MS TN LA;
LA: MS; WI: MI IL; IL: IN KY; IN: OH KY; MS: TN AL; AL: TN GA FL;
MI: OH IN; OH: PA WV KY; KY: WV VA TN; TN: VA NC GA; GA: NC SC FL;
PA: NY NJ DE MD WV; WV: MD VA; VA: MD DC NC; NC: SC; NY: VT MA CT NJ;
NJ: DE; DE: MD; MD: DC; VT: NH MA; MA: NH RI CT; CT: RI; ME: NH;
HI: ; AK: """)
# ______________________________________________________________________________
# Expr functions for WumpusKB and HybridWumpusAgent
return Expr('FacingEast', time)
return Expr('FacingWest', time)
return Expr('FacingNorth', time)
return Expr('FacingSouth', time)
return Expr('W', x, y)
def pit(x, y):
return Expr('P', x, y)
def breeze(x, y):
return Expr('B', x, y)
def stench(x, y):
return Expr('S', x, y)
def wumpus_alive(time):
return Expr('WumpusAlive', time)
def have_arrow(time):
return Expr('HaveArrow', time)
def percept_stench(time):
return Expr('Stench', time)
def percept_breeze(time):
return Expr('Breeze', time)
def percept_glitter(time):
return Expr('Glitter', time)
def percept_bump(time):
return Expr('Bump', time)
def percept_scream(time):
return Expr('Scream', time)
def move_forward(time):
return Expr('Forward', time)
def shoot(time):
return Expr('Shoot', time)
def turn_left(time):
return Expr('TurnLeft', time)
def turn_right(time):
return Expr('TurnRight', time)
def ok_to_move(x, y, time):
return Expr('OK', x, y, time)
def location(x, y, time=None):
if time is None:
return Expr('L', x, y)
else:
return Expr('L', x, y, time)
# Symbols
def implies(lhs, rhs):
return Expr('==>', lhs, rhs)
return Expr('<=>', lhs, rhs)
# Helper Function
def new_disjunction(sentences):
t = sentences[0]
for i in range(1, len(sentences)):
t |= sentences[i]
return t
# ______________________________________________________________________________
class WumpusKB(PropKB):
"""
Create a Knowledge Base that contains the a temporal "Wumpus physics" and temporal rules with time zero.
super().__init__()
self.dimrow = dimrow
self.tell(~wumpus(1, 1))
self.tell(~pit(1, 1))
for y in range(1, dimrow + 1):
for x in range(1, dimrow + 1):
pits_in = list()
wumpus_in = list()
pits_in.append(pit(x - 1, y))
wumpus_in.append(wumpus(x - 1, y))
if y < dimrow: # North room exists
pits_in.append(pit(x, y + 1))
wumpus_in.append(wumpus(x, y + 1))
pits_in.append(pit(x + 1, y))
wumpus_in.append(wumpus(x + 1, y))
pits_in.append(pit(x, y - 1))
wumpus_in.append(wumpus(x, y - 1))
self.tell(equiv(breeze(x, y), new_disjunction(pits_in)))
self.tell(equiv(stench(x, y), new_disjunction(wumpus_in)))
# Rule that describes existence of at least one Wumpus
wumpus_at_least = list()
for y in range(1, dimrow + 1):
wumpus_at_least.append(wumpus(x, y))
self.tell(new_disjunction(wumpus_at_least))
# Rule that describes existence of at most one Wumpus
for i in range(1, dimrow + 1):
for j in range(1, dimrow + 1):
for u in range(1, dimrow + 1):
for v in range(1, dimrow + 1):
if i != u or j != v:
self.tell(~wumpus(i, j) | ~wumpus(u, v))
self.tell(location(1, 1, 0))
self.tell(implies(location(i, j, 0), equiv(percept_breeze(0), breeze(i, j))))
self.tell(implies(location(i, j, 0), equiv(percept_stench(0), stench(i, j))))
self.tell(~location(i, j, 0))
self.tell(wumpus_alive(0))
self.tell(have_arrow(0))
self.tell(facing_east(0))
self.tell(~facing_north(0))
self.tell(~facing_south(0))
self.tell(~facing_west(0))
def make_action_sentence(self, action, time):
actions = [move_forward(time), shoot(time), turn_left(time), turn_right(time)]
for a in actions:
if action is a:
self.tell(action)
else:
self.tell(~a)
def make_percept_sentence(self, percept, time):
# Glitter, Bump, Stench, Breeze, Scream
flags = [0, 0, 0, 0, 0]
if isinstance(percept, Glitter):
flags[0] = 1
self.tell(percept_glitter(time))
elif isinstance(percept, Bump):
flags[1] = 1
self.tell(percept_bump(time))
elif isinstance(percept, Stench):
flags[2] = 1
self.tell(percept_stench(time))
elif isinstance(percept, Breeze):
flags[3] = 1
self.tell(percept_breeze(time))
elif isinstance(percept, Scream):
flags[4] = 1
self.tell(percept_scream(time))
if flags[i] == 0:
if i == 0:
self.tell(~percept_glitter(time))
elif i == 1:
self.tell(~percept_bump(time))
elif i == 2:
self.tell(~percept_stench(time))
elif i == 3:
self.tell(~percept_breeze(time))
elif i == 4:
self.tell(~percept_scream(time))
def add_temporal_sentences(self, time):
if time == 0:
return
t = time - 1
# current location rules
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
self.tell(implies(location(i, j, time), equiv(percept_breeze(time), breeze(i, j))))
self.tell(implies(location(i, j, time), equiv(percept_stench(time), stench(i, j))))
s = list()
s.append(equiv(location(i, j, time), location(i, j, time) & ~move_forward(time) | percept_bump(time)))
s.append(location(i - 1, j, t) & facing_east(t) & move_forward(t))
s.append(location(i + 1, j, t) & facing_west(t) & move_forward(t))
s.append(location(i, j - 1, t) & facing_north(t) & move_forward(t))
if j != self.dimrow:
s.append(location(i, j + 1, t) & facing_south(t) & move_forward(t))
self.tell(new_disjunction(s))
# add sentence about safety of location i,j
self.tell(equiv(ok_to_move(i, j, time), ~pit(i, j) & ~wumpus(i, j) & wumpus_alive(time)))
a = facing_north(t) & turn_right(t)
b = facing_south(t) & turn_left(t)
c = facing_east(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_east(time), a | b | c)
self.tell(s)
a = facing_north(t) & turn_left(t)
b = facing_south(t) & turn_right(t)
c = facing_west(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_west(time), a | b | c)
self.tell(s)
a = facing_east(t) & turn_left(t)
b = facing_west(t) & turn_right(t)
c = facing_north(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_north(time), a | b | c)
self.tell(s)
a = facing_west(t) & turn_left(t)
b = facing_east(t) & turn_right(t)
c = facing_south(t) & ~turn_left(t) & ~turn_right(t)
s = equiv(facing_south(time), a | b | c)
self.tell(s)
self.tell(equiv(move_forward(t), ~turn_right(t) & ~turn_left(t)))
self.tell(equiv(have_arrow(time), have_arrow(t) & ~shoot(t)))
# Rule about Wumpus (dead or alive)
self.tell(equiv(wumpus_alive(time), wumpus_alive(t) & ~percept_scream(time)))
def ask_if_true(self, query):
return pl_resolution(self, query)
# ______________________________________________________________________________
def __init__(self, x, y, orientation):
self.X = x
self.Y = y
self.orientation = orientation
def get_location(self):
return self.X, self.Y
def set_location(self, x, y):
self.X = x
self.Y = y
def get_orientation(self):
return self.orientation
def set_orientation(self, orientation):
self.orientation = orientation
def __eq__(self, other):
Donato Meoli
a validé
if other.get_location() == self.get_location() and other.get_orientation() == self.get_orientation():
return True
else:
return False
# ______________________________________________________________________________
"""
[Figure 7.20]
An agent for the wumpus world that does logical inference.
"""
self.kb = WumpusKB(self.dimrow)
self.t = 0
self.plan = list()
self.current_position = WumpusPosition(1, 1, 'UP')
def execute(self, percept):
self.kb.make_percept_sentence(percept, self.t)
self.kb.add_temporal_sentences(self.t)
temp = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if self.kb.ask_if_true(location(i, j, self.t)):
temp.append(i)
temp.append(j)
if self.kb.ask_if_true(facing_north(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'UP')
elif self.kb.ask_if_true(facing_south(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'DOWN')
elif self.kb.ask_if_true(facing_west(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'LEFT')
elif self.kb.ask_if_true(facing_east(self.t)):
self.current_position = WumpusPosition(temp[0], temp[1], 'RIGHT')
safe_points = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if self.kb.ask_if_true(ok_to_move(i, j, self.t)):
if self.kb.ask_if_true(percept_glitter(self.t)):
goals = list()
goals.append([1, 1])
self.plan.append('Grab')
actions = self.plan_route(self.current_position, goals, safe_points)
self.plan.extend(actions)
self.plan.append('Climb')
if len(self.plan) == 0:
unvisited = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
for k in range(self.t):
if self.kb.ask_if_true(location(i, j, k)):
unvisited.append([i, j])
unvisited_and_safe = list()
for u in unvisited:
for s in safe_points:
if u not in unvisited_and_safe and s == u:
unvisited_and_safe.append(u)
temp = self.plan_route(self.current_position, unvisited_and_safe, safe_points)
if len(self.plan) == 0 and self.kb.ask_if_true(have_arrow(self.t)):
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if not self.kb.ask_if_true(wumpus(i, j)):
possible_wumpus.append([i, j])
temp = self.plan_shot(self.current_position, possible_wumpus, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0:
not_unsafe = list()
for i in range(1, self.dimrow + 1):
for j in range(1, self.dimrow + 1):
if not self.kb.ask_if_true(ok_to_move(i, j, self.t)):
temp = self.plan_route(self.current_position, not_unsafe, safe_points)
self.plan.extend(temp)
if len(self.plan) == 0:
start = list()
start.append([1, 1])
temp = self.plan_route(self.current_position, start, safe_points)
self.plan.extend(temp)
action = self.plan[0]
self.plan = self.plan[1:]
self.kb.make_action_sentence(action, self.t)
self.t += 1
return action
def plan_route(self, current, goals, allowed):
problem = PlanRoute(current, goals, allowed, self.dimrow)
return astar_search(problem).solution()
def plan_shot(self, current, goals, allowed):
shooting_positions = set()
for loc in goals:
x = loc[0]
y = loc[1]
for i in range(1, self.dimrow + 1):
if i < x:
shooting_positions.add(WumpusPosition(i, y, 'EAST'))
if i > x:
shooting_positions.add(WumpusPosition(i, y, 'WEST'))
if i < y:
shooting_positions.add(WumpusPosition(x, i, 'NORTH'))
if i > y:
shooting_positions.add(WumpusPosition(x, i, 'SOUTH'))
# Can't have a shooting position from any of the rooms the Wumpus could reside
orientations = ['EAST', 'WEST', 'NORTH', 'SOUTH']
for orientation in orientations:
shooting_positions.remove(WumpusPosition(loc[0], loc[1], orientation))
actions = list()
actions.extend(self.plan_route(current, shooting_positions, allowed))
actions.append('Shoot')
return actions
# ______________________________________________________________________________
Donato Meoli
a validé
def SAT_plan(init, transition, goal, t_max, SAT_solver=cdcl_satisfiable):
Converts a planning problem to Satisfaction problem by translating it to a cnf sentence.
>>> transition = {'A': {'Left': 'A', 'Right': 'B'}, 'B': {'Left': 'A', 'Right': 'C'}, 'C': {'Left': 'B', 'Right': 'C'}}
Donato Meoli
a validé
>>> SAT_plan('A', transition, 'C', 1) is None
def translate_to_SAT(init, transition, goal, time):
clauses = []
states = [state for state in transition]
Surya Teja Cheedella
a validé
state_sym[s, t] = Expr('S_{}'.format(next(state_counter)))
Donato Meoli
a validé
clauses.append(state_sym[first(clause[0] for clause in state_sym
if set(conjuncts(clause[0])).issuperset(conjuncts(goal))), time]) \
if isinstance(goal, Expr) else clauses.append(state_sym[goal, time])
transition_counter = itertools.count()
for s in states:
for action in transition[s]:
s_ = transition[s][action]
for t in range(time):
# Action 'action' taken from state 's' at time 't' to reach 's_'
action_sym[s, action, t] = Expr('T_{}'.format(next(transition_counter)))
clauses.append(action_sym[s, action, t] | '==>' | state_sym[s, t])
clauses.append(action_sym[s, action, t] | '==>' | state_sym[s_, t + 1])
# must be a state at any time
clauses.append(associate('|', [state_sym[s, t] for s in states]))
for s_ in states[states.index(s) + 1:]:
# for each pair of states s, s_ only one is possible at time t
clauses.append((~state_sym[s, t]) | (~state_sym[s_, t]))
transitions_t = [tr for tr in action_sym if tr[2] == t]
# make sure at least one of the transitions happens
clauses.append(associate('|', [action_sym[tr] for tr in transitions_t]))
for tr_ in transitions_t[transitions_t.index(tr) + 1:]:
# there cannot be two transitions tr and tr_ at time t
clauses.append(~action_sym[tr] | ~action_sym[tr_])
return associate('&', clauses)
def extract_solution(model):
true_transitions = [t for t in action_sym if model[action_sym[t]]]
# Sort transitions based on time, which is the 3rd element of the tuple
true_transitions.sort(key=lambda x: x[2])
return [action for s, action, time in true_transitions]
Donato Meoli
a validé
for t in range(t_max + 1):
# dictionaries to help extract the solution from model
state_sym = {}
action_sym = {}
cnf = translate_to_SAT(init, transition, goal, t)
model = SAT_solver(cnf)
if model is not False:
return extract_solution(model)
return None
# ______________________________________________________________________________
"""
[Figure 9.1]
Unify expressions x,y with substitution s; return a substitution that
would make x,y equal, or None if x,y can not unify. x and y can be
variables (e.g. Expr('x')), constants, lists, or Exprs.
return None
elif x == y:
return s
elif is_variable(x):
return unify_var(x, y, s)
elif is_variable(y):
return unify_var(y, x, s)
elif isinstance(x, Expr) and isinstance(y, Expr):
return unify(x.args, y.args, unify(x.op, y.op, s))
elif isinstance(x, str) or isinstance(y, str):
elif issequence(x) and issequence(y) and len(x) == len(y):
return unify(x[1:], y[1:], unify(x[0], y[0], s))
else:
return None
def is_variable(x):
"""A variable is an Expr with no args and a lowercase symbol as the op."""
return isinstance(x, Expr) and not x.args and x.op[0].islower()
def unify_var(var, x, s):
if var in s:
return unify(s[var], x, s)
return None
else:
new_s = extend(s, var, x)
cascade_substitution(new_s)
return new_s
def occur_check(var, x, s):
"""Return true if variable var occurs anywhere in x
(or in subst(s, x), if s has a binding for x)."""
if var == x:
return True
elif isinstance(x, Expr):
return (occur_check(var, x.op, s) or
occur_check(var, x.args, s))
def subst(s, x):
"""Substitute the substitution s into the expression x.
>>> subst({x: 42, y:0}, F(x) + y)
(F(42) + 0)
"""
return [subst(s, xi) for xi in x]
return tuple([subst(s, xi) for xi in x])
return x
return s.get(x, x)
return Expr(x.op, *[subst(s, arg) for arg in x.args])
Donato Meoli
a validé
def cascade_substitution(s):
"""This method allows to return a correct unifier in normal form
and perform a cascade substitution to s.
For every mapping in s perform a cascade substitution on s.get(x)
and if it is replaced with a function ensure that all the function
terms are correct updates by passing over them again.
Donato Meoli
a validé
>>> s = {x: y, y: G(z)}
>>> cascade_substitution(s)
>>> s == {x: G(z), y: G(z)}
True
"""
for x in s:
s[x] = subst(s, s.get(x))
if isinstance(s.get(x), Expr) and not is_variable(s.get(x)):
Donato Meoli
a validé
# Ensure Function Terms are correct updates by passing over them again.
s[x] = subst(s, s.get(x))
Donato Meoli
a validé
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
def unify_mm(x, y, s={}):
"""Unify expressions x,y with substitution s using an efficient rule-based
unification algorithm by Martelli & Montanari; return a substitution that
would make x,y equal, or None if x,y can not unify. x and y can be
variables (e.g. Expr('x')), constants, lists, or Exprs.
>>> unify_mm(x, 3, {})
{x: 3}
"""
set_eq = extend(s, x, y)
s = set_eq.copy()
while True:
trans = 0
for x, y in set_eq.items():
if x == y:
# if x = y this mapping is deleted (rule b)
del s[x]
elif not is_variable(x) and is_variable(y):
# if x is not a variable and y is a variable, rewrite it as y = x in s (rule a)
if s.get(y, None) is None:
s[y] = x
del s[x]
else:
# if a mapping already exist for variable y then apply
# variable elimination (there is a chance to apply rule d)
s[x] = vars_elimination(y, s)
elif not is_variable(x) and not is_variable(y):
# in which case x and y are not variables, if the two root function symbols
# are different, stop with failure, else apply term reduction (rule c)
if x.op is y.op and len(x.args) == len(y.args):
term_reduction(x, y, s)
del s[x]
else:
return None
elif isinstance(y, Expr):
# in which case x is a variable and y is a function or a variable (e.g. F(z) or y),
# if y is a function, we must check if x occurs in y, then stop with failure, else
# try to apply variable elimination to y (rule d)
if occur_check(x, y, s):
return None
s[x] = vars_elimination(y, s)
if y == s.get(x):
trans += 1
else:
trans += 1
if trans == len(set_eq):
# if no transformation has been applied, stop with success
return s
set_eq = s.copy()
def term_reduction(x, y, s):
"""Apply term reduction to x and y if both are functions and the two root function
symbols are equals (e.g. F(x1, x2, ..., xn) and F(x1', x2', ..., xn')) by returning
a new mapping obtained by replacing x: y with {x1: x1', x2: x2', ..., xn: xn'}
"""
for i in range(len(x.args)):
if x.args[i] in s:
s[s.get(x.args[i])] = y.args[i]
else:
s[x.args[i]] = y.args[i]
def vars_elimination(x, s):
"""Apply variable elimination to x: if x is a variable and occurs in s, return
the term mapped by x, else if x is a function recursively applies variable
elimination to each term of the function."""
if not isinstance(x, Expr):
return x
if is_variable(x):
return s.get(x, x)
return Expr(x.op, *[vars_elimination(arg, s) for arg in x.args])
"""Replace all the variables in sentence with new variables."""
if not isinstance(sentence, Expr):
return sentence
if sentence in dic:
return dic[sentence]
else:
v = Expr('v_{}'.format(next(standardize_variables.counter)))
dic[sentence] = v
return v
return Expr(sentence.op, *[standardize_variables(a, dic) for a in sentence.args])
standardize_variables.counter = itertools.count()
# ______________________________________________________________________________
def parse_clauses_from_dimacs(dimacs_cnf):
"""Converts a string into CNF clauses according to the DIMACS format used in SAT competitions"""
return map(lambda c: associate('|', c),
map(lambda c: [expr('~X' + str(abs(l))) if l < 0 else expr('X' + str(l)) for l in c],
map(lambda line: map(int, line.split()),
filter(None, ' '.join(
filter(lambda line: line[0] not in ('c', 'p'),
filter(None, dimacs_cnf.strip().replace('\t', ' ').split('\n')))).split(' 0')))))
# ______________________________________________________________________________
class FolKB(KB):
"""A knowledge base consisting of first-order definite clauses.
>>> kb0 = FolKB([expr('Farmer(Mac)'), expr('Rabbit(Pete)'),
... expr('(Rabbit(r) & Farmer(f)) ==> Hates(f, r)')])
>>> kb0.tell(expr('Rabbit(Flopsie)'))
>>> kb0.retract(expr('Rabbit(Pete)'))
>>> kb0.ask(expr('Hates(Mac, x)'))[x]
Flopsie
>>> kb0.ask(expr('Wife(Pete, x)'))
False
def __init__(self, initial_clauses=None):
if initial_clauses:
for clause in initial_clauses:
self.tell(clause)
def tell(self, sentence):
if is_definite_clause(sentence):
self.clauses.append(sentence)
else:
raise Exception('Not a definite clause: {}'.format(sentence))
def ask_generator(self, query):
def retract(self, sentence):
self.clauses.remove(sentence)
def fetch_rules_for_goal(self, goal):
return self.clauses
def fol_fc_ask(kb, alpha):
"""
[Figure 9.3]
A simple forward-chaining algorithm.
"""
kb_consts = list({c for clause in kb.clauses for c in constant_symbols(clause)})
def enum_subst(p):
query_vars = list({v for clause in p for v in variables(clause)})
for assignment_list in itertools.product(kb_consts, repeat=len(query_vars)):
theta = {x: y for x, y in zip(query_vars, assignment_list)}
yield theta
# check if we can answer without new inferences
for q in kb.clauses:
for rule in kb.clauses:
if set(subst(theta, p)).issubset(set(kb.clauses)):
if all([unify(x, q_) is None for x in kb.clauses + new]):
if phi is not None:
yield phi
if not new:
break
for clause in new:
kb.tell(clause)
def fol_bc_ask(kb, query):
"""
[Figure 9.6]
A simple backward-chaining algorithm for first-order logic.
KB should be an instance of FolKB, and query an atomic sentence.
"""
return fol_bc_or(kb, query, {})