Newer
Older
Donato Meoli
a validé
"""Probability models (Chapter 13-15)"""
Donato Meoli
a validé
from utils import *
def DTAgentProgram(belief_state):
"""
[Figure 13.1]
A decision-theoretic agent.
"""
def program(percept):
belief_state.observe(program.action, percept)
program.action = max(belief_state.actions(), key=belief_state.expected_outcome_utility)
return program.action
program.action = None
return program
# ______________________________________________________________________________
class ProbDist:
"""A discrete probability distribution. You name the random variable
in the constructor, then assign and query probability of values.
>>> P = ProbDist('Flip'); P['H'], P['T'] = 0.25, 0.75; P['H']
0.25
>>> P = ProbDist('X', {'lo': 125, 'med': 375, 'hi': 500})
>>> P['lo'], P['med'], P['hi']
(0.125, 0.375, 0.5)
def __init__(self, var_name='?', freq=None):
"""If freq is given, it is a dictionary of values - frequency pairs,
self.prob = {}
self.var_name = var_name
self.values = []
if freq:
for (v, p) in freq.items():
self[v] = p
self.normalize()
def __getitem__(self, val):
try:
return self.prob[val]
except KeyError:
return 0
def __setitem__(self, val, p):
if val not in self.values:
self.values.append(val)
self.prob[val] = p
def normalize(self):
"""Make sure the probabilities of all values sum to 1.
Returns the normalized distribution.
Raises a ZeroDivisionError if the sum of the values is 0."""
total = sum(self.prob.values())
Donato Meoli
a validé
if not np.isclose(total, 1.0):
for val in self.prob:
self.prob[val] /= total
return self
def show_approx(self, numfmt='{:.3g}'):
"""Show the probabilities rounded and sorted by key, for the
sake of portable doctests."""
return ', '.join([('{}: ' + numfmt).format(v, p) for (v, p) in sorted(self.prob.items())])
return "P({})".format(self.var_name)
class JointProbDist(ProbDist):
"""A discrete probability distribute over a set of variables.
>>> P = JointProbDist(['X', 'Y']); P[1, 1] = 0.25
>>> P[1, 1]
0.25
>>> P[dict(X=0, Y=1)] = 0.5
>>> P[dict(X=0, Y=1)]
def __init__(self, variables):
self.prob = {}
self.variables = variables
self.vals = defaultdict(list)
def __getitem__(self, values):
"""Given a tuple or dict of values, return P(values)."""
values = event_values(values, self.variables)
return ProbDist.__getitem__(self, values)
def __setitem__(self, values, p):
"""Set P(values) = p. Values can be a tuple or a dict; it must
have a value for each of the variables in the joint. Also keep track
of the values we have seen so far for each variable."""
values = event_values(values, self.variables)
self.prob[values] = p
if val not in self.vals[var]:
self.vals[var].append(val)
def values(self, var):
"""Return the set of possible values for a variable."""
return self.vals[var]
def __repr__(self):
return "P({})".format(self.variables)
SnShine
a validé
def event_values(event, variables):
"""Return a tuple of the values of variables in event.
>>> event_values ({'A': 10, 'B': 9, 'C': 8}, ['C', 'A'])
(8, 10)
>>> event_values ((1, 2), ['C', 'A'])
(1, 2)
"""
SnShine
a validé
if isinstance(event, tuple) and len(event) == len(variables):
SnShine
a validé
return tuple([event[var] for var in variables])
# ______________________________________________________________________________
def enumerate_joint_ask(X, e, P):
"""
[Section 13.3]
Return a probability distribution over the values of the variable X,
given the {var:val} observations e, in the JointProbDist P.
>>> P = JointProbDist(['X', 'Y'])
>>> P[0,0] = 0.25; P[0,1] = 0.5; P[1,1] = P[2,1] = 0.125
>>> enumerate_joint_ask('X', dict(Y=1), P).show_approx()
'0: 0.667, 1: 0.167, 2: 0.167'
"""
assert X not in e, "Query variable must be distinct from evidence"
Q = ProbDist(X) # probability distribution for X, initially empty
SnShine
a validé
Y = [v for v in P.variables if v != X and v not in e] # hidden variables.
for xi in P.values(X):
Q[xi] = enumerate_joint(Y, extend(e, X, xi), P)
return Q.normalize()
SnShine
a validé
def enumerate_joint(variables, e, P):
"""Return the sum of those entries in P consistent with e,
SnShine
a validé
provided variables is P's remaining variables (the ones not in e)."""
if not variables:
SnShine
a validé
Y, rest = variables[0], variables[1:]
return sum([enumerate_joint(rest, extend(e, Y, y), P) for y in P.values(Y)])
# ______________________________________________________________________________
class BayesNet:
"""Bayesian network containing only boolean-variable nodes."""
def __init__(self, node_specs=None):
"""Nodes must be ordered with parents before children."""
self.nodes = []
SnShine
a validé
self.variables = []
withal
a validé
for node_spec in node_specs:
self.add(node_spec)
withal
a validé
def add(self, node_spec):
"""Add a node to the net. Its parents must already be in the
withal
a validé
net, and its variable must not."""
node = BayesNode(*node_spec)
SnShine
a validé
assert node.variable not in self.variables
assert all((parent in self.variables) for parent in node.parents)
self.nodes.append(node)
SnShine
a validé
self.variables.append(node.variable)
for parent in node.parents:
self.variable_node(parent).children.append(node)
"""Return the node for the variable named var.
>>> burglary.variable_node('Burglary').variable
for n in self.nodes:
if n.variable == var:
return n
raise Exception("No such variable: {}".format(var))
return 'BayesNet({0!r})'.format(self.nodes)
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
class DecisionNetwork(BayesNet):
"""An abstract class for a decision network as a wrapper for a BayesNet.
Represents an agent's current state, its possible actions, reachable states
and utilities of those states."""
def __init__(self, action, infer):
"""action: a single action node
infer: the preferred method to carry out inference on the given BayesNet"""
super(DecisionNetwork, self).__init__()
self.action = action
self.infer = infer
def best_action(self):
"""Return the best action in the network"""
return self.action
def get_utility(self, action, state):
"""Return the utility for a particular action and state in the network"""
raise NotImplementedError
def get_expected_utility(self, action, evidence):
"""Compute the expected utility given an action and evidence"""
u = 0.0
prob_dist = self.infer(action, evidence, self).prob
for item, _ in prob_dist.items():
u += prob_dist[item] * self.get_utility(action, item)
return u
class InformationGatheringAgent(Agent):
"""
[Figure 16.9]
A simple information gathering agent. The agent works by repeatedly selecting
the observation with the highest information value, until the cost of the next
observation is greater than its expected benefit."""
def __init__(self, decnet, infer, initial_evidence=None):
"""decnet: a decision network
infer: the preferred method to carry out inference on the given decision network
initial_evidence: initial evidence"""
self.decnet = decnet
self.infer = infer
self.observation = initial_evidence or []
self.variables = self.decnet.nodes
def integrate_percept(self, percept):
"""Integrate the given percept into the decision network"""
raise NotImplementedError
def execute(self, percept):
"""Execute the information gathering algorithm"""
self.observation = self.integrate_percept(percept)
vpis = self.vpi_cost_ratio(self.variables)
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
variable = self.variables[j]
if self.vpi(variable) > self.cost(variable):
return self.request(variable)
return self.decnet.best_action()
def request(self, variable):
"""Return the value of the given random variable as the next percept"""
raise NotImplementedError
def cost(self, var):
"""Return the cost of obtaining evidence through tests, consultants or questions"""
raise NotImplementedError
def vpi_cost_ratio(self, variables):
"""Return the VPI to cost ratio for the given variables"""
v_by_c = []
for var in variables:
v_by_c.append(self.vpi(var) / self.cost(var))
return v_by_c
def vpi(self, variable):
"""Return VPI for a given variable"""
vpi = 0.0
prob_dist = self.infer(variable, self.observation, self.decnet).prob
for item, _ in prob_dist.items():
post_prob = prob_dist[item]
new_observation = list(self.observation)
new_observation.append(item)
expected_utility = self.decnet.get_expected_utility(variable, new_observation)
vpi += post_prob * expected_utility
vpi -= self.decnet.get_expected_utility(variable, self.observation)
return vpi
class BayesNode:
"""A conditional probability distribution for a boolean variable,
P(X | parents). Part of a BayesNet."""
def __init__(self, X, parents, cpt):
"""X is a variable name, and parents a sequence of variable
names or a space-separated string. cpt, the conditional
probability table, takes one of these forms:
* A number, the unconditional probability P(X=true). You can
use this form when there are no parents.
* A dict {v: p, ...}, the conditional probability distribution
P(X=true | parent=v) = p. When there's just one parent.
* A dict {(v1, v2, ...): p, ...}, the distribution P(X=true |
parent1=v1, parent2=v2, ...) = p. Each key must have as many
values as there are parents. You can use this form always;
the first two are just conveniences.
In all cases the probability of X being false is left implicit,
since it follows from P(X=true).
>>> X = BayesNode('X', '', 0.2)
>>> Y = BayesNode('Y', 'P', {T: 0.2, F: 0.7})
... {(T, T): 0.2, (T, F): 0.3, (F, T): 0.5, (F, F): 0.7})
"""
if isinstance(parents, str):
parents = parents.split()
# We store the table always in the third form above.
if isinstance(cpt, (float, int)): # no parents, 0-tuple
cpt = {(): cpt}
elif isinstance(cpt, dict):
# one parent, 1-tuple
if cpt and isinstance(list(cpt.keys())[0], bool):
cpt = {(v,): p for v, p in cpt.items()}
assert isinstance(cpt, dict)
assert isinstance(vs, tuple) and len(vs) == len(parents)
assert all(isinstance(v, bool) for v in vs)
assert 0 <= p <= 1
self.variable = X
self.parents = parents
self.cpt = cpt
self.children = []
P(X=value | parents=parent_values), where parent_values
are the values of parents in event. (event must assign each
parent a value.)
>>> bn = BayesNode('X', 'Burglary', {T: 0.2, F: 0.625})
>>> bn.p(False, {'Burglary': False, 'Earthquake': True})
0.375"""
assert isinstance(value, bool)
ptrue = self.cpt[event_values(event, self.parents)]
return ptrue if value else 1 - ptrue
def sample(self, event):
"""Sample from the distribution for this variable conditioned
SnShine
a validé
on event's values for parent_variables. That is, return True/False
at random according with the conditional probability given the
parents."""
withal
a validé
return repr((self.variable, ' '.join(self.parents)))
# Burglary example [Figure 14.2]
T, F = True, False
burglary = BayesNet([('Burglary', '', 0.001),
('Earthquake', '', 0.002),
('Alarm', 'Burglary Earthquake',
{(T, T): 0.95, (T, F): 0.94, (F, T): 0.29, (F, F): 0.001}),
('JohnCalls', 'Alarm', {T: 0.90, F: 0.05}),
('MaryCalls', 'Alarm', {T: 0.70, F: 0.01})])
# ______________________________________________________________________________
"""
[Figure 14.9]
Return the conditional probability distribution of variable X
given evidence e, from BayesNet bn.
>>> enumeration_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
... ).show_approx()
assert X not in e, "Query variable must be distinct from evidence"
for xi in bn.variable_values(X):
SnShine
a validé
Q[xi] = enumerate_all(bn.variables, extend(e, X, xi), bn)
return Q.normalize()
SnShine
a validé
def enumerate_all(variables, e, bn):
"""Return the sum of those entries in P(variables | e{others})
consistent with e, where P is the joint distribution represented
by bn, and e{others} means e restricted to bn's other variables
SnShine
a validé
(the ones other than variables). Parents must precede children in variables."""
if not variables:
SnShine
a validé
Y, rest = variables[0], variables[1:]
return Ynode.p(e[Y], e) * enumerate_all(rest, e, bn)
return sum(Ynode.p(y, e) * enumerate_all(rest, extend(e, Y, y), bn)
# ______________________________________________________________________________
"""
[Figure 14.11]
Compute bn's P(X|e) by variable elimination.
>>> elimination_ask('Burglary', dict(JohnCalls=T, MaryCalls=T), burglary
... ).show_approx()
'False: 0.716, True: 0.284'"""
assert X not in e, "Query variable must be distinct from evidence"
factors = []
SnShine
a validé
for var in reversed(bn.variables):
factors.append(make_factor(var, e, bn))
if is_hidden(var, X, e):
factors = sum_out(var, factors, bn)
return pointwise_product(factors, bn).normalize()
"""Is var a hidden variable when querying P(X|e)?"""
return var != X and var not in e
"""Return the factor for var in bn's joint distribution given e.
That is, bn's full joint distribution, projected to accord with e,
is the pointwise product of these factors for bn's variables."""
SnShine
a validé
variables = [X for X in [var] + node.parents if X not in e]
cpt = {event_values(e1, variables): node.p(e1[var], e1)
for e1 in all_events(variables, bn, e)}
SnShine
a validé
return Factor(variables, cpt)
def pointwise_product(factors, bn):
return reduce(lambda f, g: f.pointwise_product(g, bn), factors)
"""Eliminate var from all factors by summing over its values."""
result, var_factors = [], []
for f in factors:
SnShine
a validé
(var_factors if var in f.variables else result).append(f)
result.append(pointwise_product(var_factors, bn).sum_out(var, bn))
return result
SnShine
a validé
def __init__(self, variables, cpt):
self.variables = variables
self.cpt = cpt
def pointwise_product(self, other, bn):
"""Multiply two factors, combining their variables."""
SnShine
a validé
variables = list(set(self.variables) | set(other.variables))
cpt = {event_values(e, variables): self.p(e) * other.p(e) for e in all_events(variables, bn, {})}
SnShine
a validé
return Factor(variables, cpt)
"""Make a factor eliminating var by summing over its values."""
SnShine
a validé
variables = [X for X in self.variables if X != var]
cpt = {event_values(e, variables): sum(self.p(extend(e, var, val)) for val in bn.variable_values(var))
for e in all_events(variables, bn, {})}
SnShine
a validé
return Factor(variables, cpt)
"""Return my probabilities; must be down to one variable."""
SnShine
a validé
assert len(self.variables) == 1
return ProbDist(self.variables[0], {k: v for ((k,), v) in self.cpt.items()})
SnShine
a validé
return self.cpt[event_values(e, self.variables)]
SnShine
a validé
def all_events(variables, bn, e):
"""Yield every way of extending e with values for all variables."""
SnShine
a validé
if not variables:
SnShine
a validé
X, rest = variables[0], variables[1:]
# ______________________________________________________________________________
# [Figure 14.12a]: sprinkler network
sprinkler = BayesNet([('Cloudy', '', 0.5),
('Sprinkler', 'Cloudy', {T: 0.10, F: 0.50}),
('Rain', 'Cloudy', {T: 0.80, F: 0.20}),
('WetGrass', 'Sprinkler Rain',
{(T, T): 0.99, (T, F): 0.90, (F, T): 0.90, (F, F): 0.00})])
# ______________________________________________________________________________
def prior_sample(bn):
"""
[Figure 14.13]
Randomly sample from bn's full joint distribution.
The result is a {variable: value} dict.
"""
event[node.variable] = node.sample(event)
# _________________________________________________________________________
def rejection_sampling(X, e, bn, N=10000):
"""
[Figure 14.14]
Estimate the probability distribution of variable X given
evidence e in BayesNet bn, using N samples.
Raises a ZeroDivisionError if all the N samples are rejected,
i.e., inconsistent with e.
>>> rejection_sampling('Burglary', dict(JohnCalls=T, MaryCalls=T),
... burglary, 10000).show_approx()
counts = {x: 0 for x in bn.variable_values(X)} # bold N in [Figure 14.14]
sample = prior_sample(bn) # boldface x in [Figure 14.14]
if consistent_with(sample, e):
counts[sample[X]] += 1
return ProbDist(X, counts)
"""Is event consistent with the given evidence?"""
return all(evidence.get(k, v) == v for k, v in event.items())
# _________________________________________________________________________
def likelihood_weighting(X, e, bn, N=10000):
"""
[Figure 14.15]
Estimate the probability distribution of variable X given
evidence e in BayesNet bn.
>>> likelihood_weighting('Burglary', dict(JohnCalls=T, MaryCalls=T),
... burglary, 10000).show_approx()
'False: 0.702, True: 0.298'
W = {x: 0 for x in bn.variable_values(X)}
sample, weight = weighted_sample(bn, e) # boldface x, w in [Figure 14.15]
"""
Sample an event from bn that's consistent with the evidence e;
return the event and its weight, the likelihood that the event
accords to the evidence.
"""
event = dict(e) # boldface x in [Figure 14.15]
# _________________________________________________________________________
def gibbs_ask(X, e, bn, N=1000):
"""[Figure 14.16]"""
assert X not in e, "Query variable must be distinct from evidence"
counts = {x: 0 for x in bn.variable_values(X)} # bold N in [Figure 14.16]
SnShine
a validé
Z = [var for var in bn.variables if var not in e]
state = dict(e) # boldface x in [Figure 14.16]
state[Zi] = random.choice(bn.variable_values(Zi))
counts[state[X]] += 1
return ProbDist(X, counts)
def markov_blanket_sample(X, e, bn):
"""Return a sample from P(X | mb) where mb denotes that the
variables in the Markov blanket of X take their values from event
e (which must assign a value to each). The Markov blanket of X is
X's parents, children, and children's parents."""
Xnode = bn.variable_node(X)
Q = ProbDist(X)
for xi in bn.variable_values(X):
ei = extend(e, X, xi)
# [Equation 14.12]
Q[xi] = Xnode.p(xi, e) * product(Yj.p(ei[Yj.variable], ei) for Yj in Xnode.children)
# (assuming a Boolean variable here)
return probability(Q.normalize()[True])
# _________________________________________________________________________
class HiddenMarkovModel:
"""A Hidden markov model which takes Transition model and Sensor model as inputs"""
def __init__(self, transition_model, sensor_model, prior=None):
self.transition_model = transition_model
self.sensor_model = sensor_model
self.prior = prior or [0.5, 0.5]
def sensor_dist(self, ev):
if ev is True:
return self.sensor_model[0]
else:
return self.sensor_model[1]
def forward(HMM, fv, ev):
prediction = vector_add(scalar_vector_product(fv[0], HMM.transition_model[0]),
scalar_vector_product(fv[1], HMM.transition_model[1]))
sensor_dist = HMM.sensor_dist(ev)
return normalize(element_wise_product(sensor_dist, prediction))
def backward(HMM, b, ev):
sensor_dist = HMM.sensor_dist(ev)
prediction = element_wise_product(sensor_dist, b)
return normalize(vector_add(scalar_vector_product(prediction[0], HMM.transition_model[0]),
scalar_vector_product(prediction[1], HMM.transition_model[1])))
Donato Meoli
a validé
def forward_backward(HMM, ev):
"""
[Figure 15.4]
Forward-Backward algorithm for smoothing. Computes posterior probabilities
of a sequence of states given a sequence of observations.
"""
t = len(ev)
ev.insert(0, None) # to make the code look similar to pseudo code
fv = [[0.0, 0.0] for _ in range(len(ev))]
sv = [[0, 0] for _ in range(len(ev))]
Donato Meoli
a validé
fv[0] = HMM.prior
for i in range(1, t + 1):
fv[i] = forward(HMM, fv[i - 1], ev[i])
for i in range(t, -1, -1):
b = backward(HMM, b, ev[i])
sv = sv[::-1]
return sv
Donato Meoli
a validé
def viterbi(HMM, ev):
"""
[Equation 15.11]
Viterbi algorithm to find the most likely sequence. Computes the best path and the
corresponding probabilities, given an HMM model and a sequence of observations.
"""
ev.insert(0, None)
m = [[0.0, 0.0] for _ in range(len(ev) - 1)]
# the recursion is initialized with m1 = forward(P(X0), e1)
Donato Meoli
a validé
m[0] = forward(HMM, HMM.prior, ev[1])
# keep track of maximizing predecessors
backtracking_graph = []
for i in range(1, t):
m[i] = element_wise_product(HMM.sensor_dist(ev[i + 1]),
[max(element_wise_product(HMM.transition_model[0], m[i - 1])),
max(element_wise_product(HMM.transition_model[1], m[i - 1]))])
backtracking_graph.append([np.argmax(element_wise_product(HMM.transition_model[0], m[i - 1])),
np.argmax(element_wise_product(HMM.transition_model[1], m[i - 1]))])
# computed probabilities
ml_probabilities = [0.0] * (len(ev) - 1)
# most likely sequence
ml_path = [True] * (len(ev) - 1)
# the construction of the most likely sequence starts in the final state with the largest probability, and
# runs backwards; the algorithm needs to store for each xt its predecessor xt-1 maximizing its probability
i_max = np.argmax(m[-1])
for i in range(t - 1, -1, -1):
ml_probabilities[i] = m[i][i_max]
ml_path[i] = True if i_max == 0 else False
if i > 0:
i_max = backtracking_graph[i - 1][i_max]
# _________________________________________________________________________
def fixed_lag_smoothing(e_t, HMM, d, ev, t):
"""
[Figure 15.6]
Smoothing algorithm with a fixed time lag of 'd' steps.
Online algorithm that outputs the new smoothed estimate if observation
for new time step is given.
"""
ev.insert(0, None)
T_model = HMM.transition_model
f = HMM.prior
B = [[1, 0], [0, 1]]
O_t = np.diag(HMM.sensor_dist(e_t))
if t > d:
f = forward(HMM, f, e_t)
O_tmd = np.diag(HMM.sensor_dist(ev[t - d]))
B = matrix_multiplication(np.linalg.inv(O_tmd), np.linalg.inv(T_model), B, T_model, O_t)
else:
B = matrix_multiplication(B, T_model, O_t)
if t > d:
# always returns a 1x2 matrix
return [normalize(i) for i in matrix_multiplication([f], B)][0]
# _________________________________________________________________________
# STEP 1
# Propagate one step using transition model given prior state
dist = vector_add(scalar_vector_product(dist[0], HMM.transition_model[0]),
scalar_vector_product(dist[1], HMM.transition_model[1]))
s = ['A' if probability(dist[0]) else 'B' for _ in range(N)]
w_tot = 0
# Calculate importance weight given evidence e
for i in range(N):
if s[i] == 'A':
# P(U|A)*P(A)
w_i = HMM.sensor_dist(e)[0] * dist[0]
w_i = HMM.sensor_dist(e)[1] * dist[1]
# Limit weights to 4 digits
for i in range(N):
w[i] = float("{0:.4f}".format(w[i]))
# STEP 2
s = weighted_sample_with_replacement(N, s, w)
# _________________________________________________________________________
# TODO: Implement continuous map for MonteCarlo similar to Fig25.10 from the book
class MCLmap:
"""Map which provides probability distributions and sensor readings.
Consists of discrete cells which are either an obstacle or empty"""
def __init__(self, m):
self.m = m
self.nrows = len(m)
self.ncols = len(m[0])
# list of empty spaces in the map
self.empty = [(i, j) for i in range(self.nrows) for j in range(self.ncols) if not m[i][j]]
def sample(self):
"""Returns a random kinematic state possible in the map"""
pos = random.choice(self.empty)
# 0N 1E 2S 3W
orient = random.choice(range(4))
return kin_state
def ray_cast(self, sensor_num, kin_state):
"""Returns distance to nearest obstacle or map boundary in the direction of sensor"""
pos = kin_state[:2]
orient = kin_state[2]
# sensor layout when orientation is 0 (towards North)
# 0
# 3R1
# 2
delta = ((sensor_num % 2 == 0) * (sensor_num - 1), (sensor_num % 2 == 1) * (2 - sensor_num))
# sensor direction changes based on orientation
for _ in range(orient):
while 0 <= pos[0] < self.nrows and 0 <= pos[1] < self.nrows and not self.m[pos[0]][pos[1]]:
pos = vector_add(pos, delta)
range_count += 1
return range_count
def monte_carlo_localization(a, z, N, P_motion_sample, P_sensor, m, S=None):
"""
[Figure 25.9]
Monte Carlo localization algorithm
"""
def ray_cast(sensor_num, kin_state, m):
return m.ray_cast(sensor_num, kin_state)
M = len(z)
v = a['v']
w = a['w']
if S is None:
S = [m.sample() for _ in range(N)]
for i in range(N):
S_[i] = P_motion_sample(S[i], v, w)
W_[i] = 1
for j in range(M):
z_ = ray_cast(j, S_[i], m)
W_[i] = W_[i] * P_sensor(z[j], z_)
S = weighted_sample_with_replacement(N, S_, W_)
return S