Newer
Older
"""Implement Agents and Environments (Chapters 1-2).
The class hierarchies are as follows:
Thing ## A physical object that can exist in an environment
Agent
Wumpus
Dirt
Wall
...
Environment ## An environment holds objects, runs simulations
XYEnvironment
VacuumEnvironment
WumpusEnvironment
An agent program is a callable instance, taking percepts and choosing actions
SimpleReflexAgentProgram
...
EnvGUI ## A window with a graphical representation of the Environment
EnvToolbar ## contains buttons for controlling EnvGUI
EnvCanvas ## Canvas to display the environment of an EnvGUI
"""
# TO DO:
# Implement grabbing correctly.
# When an object is grabbed, does it still have a location?
# What if it is released?
# What if the grabbed or the grabber is deleted?
# What if the grabber moves?
#
# Speed control in GUI does not have any effect -- fix it.
from utils import mean
from grid import distance2
# ______________________________________________________________________________
class Thing(object):
"""This represents any physical object that can appear in an Environment.
You subclass Thing to get the things you want. Each thing can have a
.__name__ slot (used for output only)."""
def __repr__(self):
return '<{}>'.format(getattr(self, '__name__', self.__class__.__name__))
def is_alive(self):
"Things that are 'alive' should return true."
return hasattr(self, 'alive') and self.alive
"Display the agent's internal state. Subclasses should override."
print("I don't know how to show_state.")
def display(self, canvas, x, y, width, height):
# Do we need this?
"Display an image of this Thing on the canvas."
class Agent(Thing):
"""An Agent is a subclass of Thing with one required slot,
.program, which should hold a function that takes one argument, the
percept, and returns an action. (What counts as a percept or action
will depend on the specific environment in which the agent exists.)
Note that 'program' is a slot, not a method. If it were a method,
then the program could 'cheat' and look at aspects of the agent.
It's not supposed to do that: the program can only look at the
percepts. An agent program that needs a model of the world (and of
the agent itself) will have to build and maintain its own model.
There is an optional slot, .performance, which is a number giving
the performance measure of the agent in its environment."""
def __init__(self, program=None):
self.alive = True
tolusalako
a validé
self.holding = []
self.performance = 0
if program is None:
def program(percept):
return eval(input('Percept={}; action? ' .format(percept)))
assert isinstance(program, collections.Callable)
self.program = program
def can_grab(self, thing):
"""Returns True if this agent can grab this thing.
Override for appropriate subclasses of Agent and Thing."""
return False
def TraceAgent(agent):
"""Wrap the agent's program to print its input and output. This will let
you see what the agent is doing in the environment."""
old_program = agent.program
def new_program(percept):
action = old_program(percept)
print('{} perceives {} and does {}'.format(agent, percept, action))
return action
agent.program = new_program
return agent
# ______________________________________________________________________________
def TableDrivenAgentProgram(table):
"""This agent selects an action based on the percept sequence.
It is practical only for tiny domains.
To customize it, provide as table a dictionary of all
{percept_sequence:action} pairs. [Fig. 2.7]"""
percepts = []
def program(percept):
percepts.append(percept)
action = table.get(tuple(percepts))
return action
return program
def RandomAgentProgram(actions):
"An agent that chooses an action at random, ignoring all percepts."
return lambda percept: random.choice(actions)
# ______________________________________________________________________________
def SimpleReflexAgentProgram(rules, interpret_input):
"This agent takes action based solely on the percept. [Fig. 2.10]"
def program(percept):
state = interpret_input(percept)
rule = rule_match(state, rules)
action = rule.action
return action
return program
def ModelBasedReflexAgentProgram(rules, update_state):
"This agent takes action based on the percept and state. [Fig. 2.12]"
def program(percept):
program.state = update_state(program.state, program.action, percept)
rule = rule_match(program.state, rules)
action = rule.action
return action
program.state = program.action = None
return program
def rule_match(state, rules):
"Find the first rule that matches state."
for rule in rules:
if rule.matches(state):
return rule
# ______________________________________________________________________________
loc_A, loc_B = (0, 0), (1, 0) # The two locations for the Vacuum world
def RandomVacuumAgent():
"Randomly choose one of the actions from the vacuum environment."
return Agent(RandomAgentProgram(['Right', 'Left', 'Suck', 'NoOp']))
def TableDrivenVacuumAgent():
"[Fig. 2.3]"
table = {((loc_A, 'Clean'),): 'Right',
((loc_A, 'Dirty'),): 'Suck',
((loc_B, 'Clean'),): 'Left',
((loc_B, 'Dirty'),): 'Suck',
((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',
((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',
# ...
}
return Agent(TableDrivenAgentProgram(table))
def ReflexVacuumAgent():
"A reflex agent for the two-state vacuum environment. [Fig. 2.8]"
if status == 'Dirty':
return 'Suck'
elif location == loc_A:
return 'Right'
elif location == loc_B:
return 'Left'
return Agent(program)
def ModelBasedVacuumAgent():
"An agent that keeps track of what locations are clean or dirty."
model = {loc_A: None, loc_B: None}
"Same as ReflexVacuumAgent, except if everything is clean, do NoOp."
model[location] = status # Update the model here
if model[loc_A] == model[loc_B] == 'Clean':
return 'NoOp'
elif status == 'Dirty':
return 'Suck'
elif location == loc_A:
return 'Right'
elif location == loc_B:
return 'Left'
return Agent(program)
# ______________________________________________________________________________
"""Abstract class representing an Environment. 'Real' Environment classes
inherit from this. Your Environment will typically need to implement:
percept: Define the percept that an agent sees.
execute_action: Define the effects of executing an action.
Also update the agent.performance slot.
The environment keeps a list of .things and .agents (which is a subset
of .things). Each agent has a .performance slot, initialized to 0.
Each thing has a .location slot, even though some environments may not
need this."""
self.things = []
def thing_classes(self):
return [] # List of classes that can go into environment
def percept(self, agent):
'''
Return the percept that the agent sees at this point.
(Implement this.)
'''
def execute_action(self, agent, action):
"Change the world to reflect this action. (Implement this.)"
def default_location(self, thing):
"Default location to place a new thing with unspecified location."
return None
def exogenous_change(self):
"If there is spontaneous change in the world, override this."
pass
def is_done(self):
"By default, we're done when we can't find a live agent."
withal
a validé
return not any(agent.is_alive() for agent in self.agents)
def step(self):
"""Run the environment for one time step. If the
actions and exogenous changes are independent, this method will
do. If there are interactions between them, you'll need to
override this method."""
if not self.is_done():
tolusalako
a validé
actions = []
for agent in self.agents:
if agent.alive:
actions.append(agent.program(self.percept(agent)))
else:
actions.append("")
for (agent, action) in zip(self.agents, actions):
self.exogenous_change()
def run(self, steps=1000):
"Run the Environment for given number of time steps."
self.step()
def list_things_at(self, location, tclass=Thing):
"Return all things exactly at a given location."
return [thing for thing in self.things
if thing.location == location and isinstance(thing, tclass)]
def some_things_at(self, location, tclass=Thing):
"""Return true if at least one of the things at location
is an instance of class tclass (or a subclass)."""
return self.list_things_at(location, tclass) != []
def add_thing(self, thing, location=None):
"""Add a thing to the environment, setting its location. For
convenience, if thing is an agent program we make a new agent
for it. (Shouldn't need to override this."""
if not isinstance(thing, Thing):
thing = Agent(thing)
assert thing not in self.things, "Don't add the same thing twice"
thing.location = location if location is not None else self.default_location(thing)
self.things.append(thing)
if isinstance(thing, Agent):
thing.performance = 0
self.agents.append(thing)
def delete_thing(self, thing):
"""Remove a thing from the environment."""
self.things.remove(thing)
except(ValueError, e):
print(e)
print(" in Environment delete_thing")
print(" Thing to be removed: {} at {}" .format(thing, thing.location))
print(" from list: {}" .format([(thing, thing.location) for thing in self.things]))
if thing in self.agents:
self.agents.remove(thing)
class Direction():
'''A direction class for agents that want to move in a 2D plane
Usage:
d = Direction("Down")
To change directions:
d = d + "right" or d = d + Direction.R #Both do the same thing
Note that the argument to __add__ must be a string and not a Direction object.
Also, it (the argument) can only be right or left. '''
R = "right"
L = "left"
U = "up"
D = "down"
def __init__(self, direction):
self.direction = direction
def __add__(self, heading):
if self.direction == self.R:
return{
self.R: Direction(self.D),
self.L: Direction(self.U),
}.get(heading, None)
elif self.direction == self.L:
return{
tolusalako
a validé
self.R: Direction(self.U),
self.L: Direction(self.L),
}.get(heading, None)
elif self.direction == self.U:
return{
tolusalako
a validé
self.R: Direction(self.R),
self.L: Direction(self.L),
}.get(heading, None)
elif self.direction == self.D:
return{
self.R: Direction(self.L),
self.L: Direction(self.R),
}.get(heading, None)
tolusalako
a validé
def move_forward(self, from_location):
x,y = from_location
if self.direction == self.R:
return (x+1, y)
elif self.direction == self.L:
return (x-1, y)
elif self.direction == self.U:
return (x, y-1)
elif self.direction == self.D:
return (x, y+1)
"""This class is for environments on a 2D plane, with locations
labelled by (x, y) points, either discrete or continuous.
Agents perceive things within a radius. Each agent in the
environment has a .location slot which should be a location such
as (0, 1), and a .holding slot, which should be a list of things
that are held."""
def __init__(self, width=10, height=10):
super(XYEnvironment, self).__init__()
self.width = width
self.height = height
self.observers = []
tolusalako
a validé
#Sets iteration start and end (no walls).
self.x_start,self.y_start = (0,0)
self.x_end,self.y_end = (self.width, self.height)
perceptible_distance = 1
def things_near(self, location, radius=None):
"Return all things within radius of location."
if radius is None:
radius = self.perceptible_distance
radius2 = radius * radius
tolusalako
a validé
return [(thing, radius2 - distance2(location, thing.location)) for thing in self.things
if distance2(location, thing.location) <= radius2]
def percept(self, agent):
tolusalako
a validé
'''By default, agent perceives things within a default radius.'''
return self.things_near(agent.location)
def execute_action(self, agent, action):
agent.bump = False
if action == 'TurnRight':
tolusalako
a validé
agent.direction = agent.direction + Direction.R
elif action == 'TurnLeft':
tolusalako
a validé
agent.direction = agent.direction + Direction.L
elif action == 'Forward':
tolusalako
a validé
agent.bump = self.move_to(agent, agent.direction.move_forward(agent.location))
# elif action == 'Grab':
# things = [thing for thing in self.list_things_at(agent.location)
# if agent.can_grab(thing)]
# if things:
# agent.holding.append(things[0])
elif action == 'Release':
if agent.holding:
agent.holding.pop()
def default_location(self, thing):
return (random.choice(self.width), random.choice(self.height))
def move_to(self, thing, destination):
tolusalako
a validé
'''Move a thing to a new location. Returns True on success or False if there is an Obstacle
If thing is grabbing anything, they move with him '''
thing.bump = self.some_things_at(destination, Obstacle)
if not thing.bump:
thing.location = destination
for o in self.observers:
o.thing_moved(thing)
tolusalako
a validé
for t in thing.holding:
self.delete_thing(t)
self.add_thing(t, destination)
t.location = destination
return thing.bump
# def add_thing(self, thing, location=(1, 1)):
# super(XYEnvironment, self).add_thing(thing, location)
# thing.holding = []
# thing.held = None
# for obs in self.observers:
# obs.thing_added(thing)
tolusalako
a validé
def add_thing(self, thing, location=(1, 1), exclude_duplicate_class_items = False):
'''Adds things to the world.
If (exclude_duplicate_class_items) then the item won't be added if the location
tolusalako
a validé
has at least one item of the same class'''
if (self.is_inbounds(location)):
if (exclude_duplicate_class_items and
tolusalako
a validé
any(isinstance(t, thing.__class__) for t in self.list_things_at(location))):
return
super(XYEnvironment, self).add_thing(thing, location)
tolusalako
a validé
def is_inbounds(self, location):
'''Checks to make sure that the location is inbounds (within walls if we have walls)'''
x,y = location
return not (x < self.x_start or x >= self.x_end or y < self.y_start or y >= self.y_end)
tolusalako
a validé
def random_location_inbounds(self, exclude = None):
'''Returns a random location that is inbounds (within walls if we have walls)'''
location = (random.randint(self.x_start, self.x_end), random.randint(self.y_start, self.y_end))
if exclude is not None:
while(location == exclude):
location = (random.randint(self.x_start, self.x_end), random.randint(self.y_start, self.y_end))
return location
def delete_thing(self, thing):
tolusalako
a validé
'''Deletes thing, and everything it is holding (if thing is an agent)'''
if isinstance(thing, Agent):
for obj in thing.holding:
super(XYEnvironment, self).delete_thing(obj)
for obs in self.observers:
obs.thing_deleted(obj)
super(XYEnvironment, self).delete_thing(thing)
for obs in self.observers:
obs.thing_deleted(thing)
def add_walls(self):
tolusalako
a validé
'''Put walls around the entire perimeter of the grid.'''
for x in range(self.width):
self.add_thing(Wall(), (x, 0))
self.add_thing(Wall(), (x, self.height-1))
for y in range(self.height):
self.add_thing(Wall(), (0, y))
self.add_thing(Wall(), (self.width-1, y))
tolusalako
a validé
#Updates iteration start and end (with walls).
self.x_start,self.y_start = (1,1)
self.x_end,self.y_end = (self.width-1, self.height-1)
An observer is typically an EnvGUI.
Each observer is notified of changes in move_to and add_thing,
by calling the observer's methods thing_moved(thing)
and thing_added(thing, loc)."""
self.observers.append(observer)
def turn_heading(self, heading, inc):
"Return the heading to the left (inc=+1) or right (inc=-1) of heading."
return turn_heading(heading, inc)
class Obstacle(Thing):
"""Something that can cause a bump, preventing an agent from
moving into the same square it's in."""
pass
# ______________________________________________________________________________
# Continuous environment
class ContinuousWorld(Environment):
""" Model for Continuous World. """
def __init__(self, width=10, height=10):
super(ContinuousWorld, self).__init__()
self.width = width
self.height = height
def add_obstacle(self, coordinates):
self.things.append(PolygonObstacle(coordinates))
class PolygonObstacle(Obstacle):
def __init__(self, coordinates):
""" Coordinates is a list of tuples. """
super(PolygonObstacle, self).__init__()
self.coordinates = coordinates
# ______________________________________________________________________________
class Dirt(Thing):
"""The environment of [Ex. 2.12]. Agent perceives dirty or clean,
and bump (into obstacle) or not; 2D discrete world of unknown size;
performance measure is 100 for each dirt cleaned, and -1 for
each turn taken."""
def __init__(self, width=10, height=10):
super(VacuumEnvironment, self).__init__(width, height)
def thing_classes(self):
return [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"""The percept is a tuple of ('Dirty' or 'Clean', 'Bump' or 'None').
Unlike the TrivialVacuumEnvironment, location is NOT perceived."""
status = ('Dirty' if self.some_things_at(
agent.location, Dirt) else 'Clean')
bump = ('Bump' if agent.bump else'None')
return (status, bump)
def execute_action(self, agent, action):
if action == 'Suck':
dirt_list = self.list_things_at(agent.location, Dirt)
if dirt_list != []:
dirt = dirt_list[0]
self.delete_thing(dirt)
else:
super(VacuumEnvironment, self).execute_action(agent, action)
agent.performance -= 1
"""This environment has two locations, A and B. Each can be Dirty
or Clean. The agent perceives its location and the location's
status. This serves as an example of how to implement a simple
Environment."""
def __init__(self):
super(TrivialVacuumEnvironment, self).__init__()
self.status = {loc_A: random.choice(['Clean', 'Dirty']),
loc_B: random.choice(['Clean', 'Dirty'])}
def thing_classes(self):
return [Wall, Dirt, ReflexVacuumAgent, RandomVacuumAgent,
TableDrivenVacuumAgent, ModelBasedVacuumAgent]
def percept(self, agent):
"Returns the agent's location, and the location status (Dirty/Clean)."
return (agent.location, self.status[agent.location])
def execute_action(self, agent, action):
"""Change agent's location and/or location's status; track performance.
Score 10 for each dirt cleaned; -1 for each move."""
if action == 'Right':
agent.location = loc_B
agent.performance -= 1
elif action == 'Left':
agent.location = loc_A
agent.performance -= 1
elif action == 'Suck':
if self.status[agent.location] == 'Dirty':
agent.performance += 10
self.status[agent.location] = 'Clean'
def default_location(self, thing):
"Agents start in either location at random."
return random.choice([loc_A, loc_B])
# ______________________________________________________________________________
tolusalako
a validé
def __eq__(self, rhs):
'''All Gold are equal'''
return rhs.__class__ == Gold
tolusalako
a validé
class Bump(Thing):
pass
class Glitter(Thing):
pass
class Breeze(Thing):
pass
tolusalako
a validé
class Scream(Thing):
pass
tolusalako
a validé
class Wumpus(Agent):
screamed = False
class Stench(Thing):
pass
tolusalako
a validé
holding = []
tolusalako
a validé
has_arrow = True
tolusalako
a validé
killed_by = ""
direction = Direction("right")
tolusalako
a validé
def can_grab(self, thing):
'''Explorer can only grab gold'''
return thing.__class__ == Gold
class WumpusEnvironment(XYEnvironment):
tolusalako
a validé
pit_probability = 0.2 #Probability to spawn a pit in a location. (From Chapter 7.2)
#Room should be 4x4 grid of rooms. The extra 2 for walls
def __init__(self, agent_program, width=6, height=6):
super(WumpusEnvironment, self).__init__(width, height)
tolusalako
a validé
self.init_world(agent_program)
tolusalako
a validé
def init_world(self, program):
'''Spawn items to the world based on probabilities from the book'''
"WALLS"
tolusalako
a validé
self.add_walls()
"PITS"
tolusalako
a validé
for x in range(self.x_start, self.x_end):
for y in range(self.y_start, self.y_end):
if random.random() < self.pit_probability:
tolusalako
a validé
self.add_thing(Pit(), (x,y), True)
self.add_thing(Breeze(), (x - 1,y), True)
self.add_thing(Breeze(), (x,y - 1), True)
self.add_thing(Breeze(), (x + 1,y), True)
self.add_thing(Breeze(), (x,y + 1), True)
"WUMPUS"
tolusalako
a validé
w_x, w_y = self.random_location_inbounds(exclude = (1,1))
tolusalako
a validé
self.add_thing(Wumpus(lambda x: ""), (w_x, w_y), True)
tolusalako
a validé
self.add_thing(Stench(), (w_x - 1, w_y), True)
self.add_thing(Stench(), (w_x + 1, w_y), True)
self.add_thing(Stench(), (w_x, w_y - 1), True)
self.add_thing(Stench(), (w_x, w_y + 1), True)
"GOLD"
tolusalako
a validé
self.add_thing(Gold(), self.random_location_inbounds(exclude = (1,1)), True)
#self.add_thing(Gold(), (2,1), True) Making debugging a whole lot easier
"AGENT"
tolusalako
a validé
self.add_thing(Explorer(program), (1,1), True)
tolusalako
a validé
def get_world(self, show_walls = True):
'''returns the items in the world'''
result = []
x_start,y_start = (0,0) if show_walls else (1,1)
x_end,y_end = (self.width, self.height) if show_walls else (self.width - 1, self.height - 1)
for x in range(x_start, x_end):
tolusalako
a validé
row = []
for y in range(y_start, y_end):
tolusalako
a validé
row.append(self.list_things_at((x,y)))
result.append(row)
tolusalako
a validé
return result
tolusalako
a validé
def percepts_from(self, agent, location, tclass = Thing):
'''Returns percepts from a given location, and replaces some items with percepts from chapter 7.'''
thing_percepts = {
Gold: Glitter(),
Wall: Bump(),
Wumpus: Stench(),
Pit: Breeze()
}
'''Agents don't need to get their percepts'''
thing_percepts[agent.__class__] = None
tolusalako
a validé
'''Gold only glitters in its cell'''
if location != agent.location:
thing_percepts[Gold] = None
tolusalako
a validé
result = [thing_percepts.get(thing.__class__, thing) for thing in self.things
if thing.location == location and isinstance(thing, tclass)]
return result if len(result) else [None]
tolusalako
a validé
def percept(self, agent):
'''Returns things in adjacent (not diagonal) cells of the agent.
Result format: [Left, Right, Up, Down, Center / Current location]'''
x,y = agent.location
result = []
result.append(self.percepts_from(agent, (x - 1,y)))
result.append(self.percepts_from(agent, (x + 1,y)))
result.append(self.percepts_from(agent, (x,y - 1)))
result.append(self.percepts_from(agent, (x,y + 1)))
result.append(self.percepts_from(agent, (x,y)))
tolusalako
a validé
'''The wumpus gives out a a loud scream once it's killed.'''
wumpus = [thing for thing in self.things if isinstance(thing, Wumpus)]
if len(wumpus) and not wumpus[0].alive and not wumpus[0].screamed:
result[-1].append(Scream())
wumpus[0].screamed = True
tolusalako
a validé
return result
tolusalako
a validé
def execute_action(self, agent, action):
'''Modify the state of the environment based on the agent's actions
Performance score taken directly out of the book'''
tolusalako
a validé
if isinstance(agent, Explorer) and self.in_danger(agent):
return
tolusalako
a validé
agent.bump = False
if action == 'TurnRight':
agent.direction = agent.direction + Direction.R
agent.performance -= 1
elif action == 'TurnLeft':
agent.direction = agent.direction + Direction.L
agent.performance -= 1
elif action == 'Forward':
agent.bump = self.move_to(agent, agent.direction.move_forward(agent.location))
agent.performance -= 1
elif action == 'Grab':
things = [thing for thing in self.list_things_at(agent.location)
if agent.can_grab(thing)]
if len(things):
tolusalako
a validé
print("Grabbing", things[0].__class__.__name__)
if len(things):
agent.holding.append(things[0])
tolusalako
a validé
agent.performance -= 1
elif action == 'Climb':
if agent.location == (1,1): #Agent can only climb out of (1,1)
agent.performance += 1000 if Gold() in agent.holding else 0
self.delete_thing(agent)
tolusalako
a validé
elif action == 'Shoot':
'''The arrow travels straight down the path the agent is facing'''
if agent.has_arrow:
arrow_travel = agent.direction.move_forward(agent.location)
while(self.is_inbounds(arrow_travel)):
wumpus = [thing for thing in self.list_things_at(arrow_travel)
if isinstance(thing, Wumpus)]
if len(wumpus):
wumpus[0].alive = False
break
arrow_travel = agent.direction.move_forward(agent.location)
agent.has_arrow = False
tolusalako
a validé
def in_danger(self, agent):
'''Checks if Explorer is in danger (Pit or Wumpus), if he is, kill him'''
tolusalako
a validé
for thing in self.list_things_at(agent.location):
tolusalako
a validé
if isinstance(thing, Pit) or (isinstance(thing, Wumpus) and thing.alive):
tolusalako
a validé
agent.alive = False
agent.performance -= 1000
agent.killed_by = thing.__class__.__name__
tolusalako
a validé
return True
return False
tolusalako
a validé
def is_done(self):
'''The game is over when the Explorer is killed
or if he climbs out of the cave only at (1,1)'''
explorer = [agent for agent in self.agents if isinstance(agent, Explorer) ]
if len(explorer):
if explorer[0].alive:
return False
else:
print("Death by {} [-1000].".format(explorer[0].killed_by))
else:
print("Explorer climbed out {}."
.format("with Gold [+1000]!" if Gold() not in self.things else "without Gold [+0]"))
return True
tolusalako
a validé
#Almost done. Arrow needs to be implemented
# ______________________________________________________________________________
def compare_agents(EnvFactory, AgentFactories, n=10, steps=1000):
"""See how well each of several agents do in n instances of an environment.
Pass in a factory (constructor) for environments, and several for agents.
Create n instances of the environment, and run each agent in copies of
each one for steps. Return a list of (agent, average-score) tuples."""
envs = [EnvFactory() for i in range(n)]
return [(A, test_agent(A, steps, copy.deepcopy(envs)))
for A in AgentFactories]
def test_agent(AgentFactory, steps, envs):
"Return the mean score of running an agent in each of the envs, for steps"
agent = AgentFactory()
env.add_thing(agent)
env.run(steps)
# _________________________________________________________________________
__doc__ += """
>>> a = ReflexVacuumAgent()
>>> a.program((loc_A, 'Clean'))
'Right'
>>> a.program((loc_B, 'Clean'))
'Left'
>>> a.program((loc_A, 'Dirty'))
'Suck'
>>> a.program((loc_A, 'Dirty'))
'Suck'
>>> e = TrivialVacuumEnvironment()
>>> e.add_thing(ModelBasedVacuumAgent())
>>> e.run(5)