Newer
Older
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let us now define a Simple Problem Solving Agent Program. We will create a simple `vacuumAgent` class which will inherit from the abstract class `SimpleProblemSolvingAgentProgram` and overrides its methods. We will create a simple intelligent vacuum agent which can be in any one of the following states. It will move to any other state depending upon the current state as shown in the picture by arrows:\n",
"\n",
""
]
},
{
"cell_type": "code",
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
"outputs": [],
"source": [
"class vacuumAgent(SimpleProblemSolvingAgentProgram):\n",
" def update_state(self, state, percept):\n",
" return percept\n",
"\n",
" def formulate_goal(self, state):\n",
" goal = [state7, state8]\n",
" return goal \n",
"\n",
" def formulate_problem(self, state, goal):\n",
" problem = state\n",
" return problem \n",
" \n",
" def search(self, problem):\n",
" if problem == state1:\n",
" seq = [\"Suck\", \"Right\", \"Suck\"]\n",
" elif problem == state2:\n",
" seq = [\"Suck\", \"Left\", \"Suck\"]\n",
" elif problem == state3:\n",
" seq = [\"Right\", \"Suck\"]\n",
" elif problem == state4:\n",
" seq = [\"Suck\"]\n",
" elif problem == state5:\n",
" seq = [\"Suck\"]\n",
" elif problem == state6:\n",
" seq = [\"Left\", \"Suck\"]\n",
" return seq"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now, we will define all the 8 states and create an object of the above class. Then, we will pass it different states and check the output:"
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Left\n",
"Suck\n",
"Right\n"
]
}
],
"state1 = [(0, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Dirty\"]]]\n",
"state2 = [(1, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Dirty\"]]]\n",
"state3 = [(0, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Dirty\"]]]\n",
"state4 = [(1, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Dirty\"]]]\n",
"state5 = [(0, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Clean\"]]]\n",
"state6 = [(1, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Clean\"]]]\n",
"state7 = [(0, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Clean\"]]]\n",
"state8 = [(1, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Clean\"]]]\n",
"a = vacuumAgent(state1)\n",
"print(a(state6)) \n",
"print(a(state1))\n",
"print(a(state3))"
{
"cell_type": "markdown",
"## SEARCHING ALGORITHMS VISUALIZATION\n",
"In this section, we have visualizations of the following searching algorithms:\n",
"1. Breadth First Tree Search\n",
"2. Depth First Tree Search\n",
"3. Breadth First Search\n",
"4. Depth First Graph Search\n",
"5. Best First Graph Search\n",
"6. Uniform Cost Search\n",
"7. Depth Limited Search\n",
"8. Iterative Deepening Search\n",
"10. Recursive Best First Search\n",
"\n",
"We add the colors to the nodes to have a nice visualisation when displaying. So, these are the different colors we are using in these visuals:\n",
"* Un-explored nodes - <font color='black'>white</font>\n",
"* Frontier nodes - <font color='orange'>orange</font>\n",
"* Currently exploring node - <font color='red'>red</font>\n",
"* Already explored nodes - <font color='gray'>gray</font>"
]
},
{
"cell_type": "markdown",
"## 1. BREADTH-FIRST TREE SEARCH\n",
"We have a working implementation in search module. But as we want to interact with the graph while it is searching, we need to modify the implementation. Here's the modified breadth first tree search."
]
},
{
"cell_type": "code",
"source": [
"def tree_breadth_search_for_vis(problem):\n",
" \"\"\"Search through the successors of a problem to find a goal.\n",
" The argument frontier should be an empty queue.\n",
" Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
" \n",
" frontier = deque([Node(problem.initial)])\n",
" node_colors[Node(problem.initial).state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" while frontier:\n",
" node = frontier.popleft()\n",
" \n",
" # modify the currently searching node to red\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" # modify goal node to green after reaching the goal\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" frontier.extend(node.expand(problem))\n",
" \n",
" for n in node.expand(problem):\n",
" node_colors[n.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" # modify the color of explored nodes to gray\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None\n",
"\n",
"def breadth_first_tree_search(problem):\n",
" \"Search the shallowest nodes in the search tree first.\"\n",
" iterations, all_node_colors, node = tree_breadth_search_for_vis(problem)\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "markdown",
"Now, we use `ipywidgets` to display a slider, a button and our romania map. By sliding the slider we can have a look at all the intermediate steps of a particular search algorithm. By pressing the button **Visualize**, you can see all the steps without interacting with the slider. These two helper functions are the callback functions which are called when we interact with the slider and the button."
{
"cell_type": "code",
"metadata": {},
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"a, b, c = breadth_first_tree_search(romania_problem)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=breadth_first_tree_search, \n",
" problem=romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Now let's discuss another searching algorithm, Depth-First Tree Search."
]
},
{
"cell_type": "code",
"def tree_depth_search_for_vis(problem):\n",
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
" \"\"\"Search through the successors of a problem to find a goal.\n",
" The argument frontier should be an empty queue.\n",
" Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
" \n",
" #Adding first node to the stack\n",
" frontier = [Node(problem.initial)]\n",
" \n",
" node_colors[Node(problem.initial).state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" while frontier:\n",
" #Popping first node of stack\n",
" node = frontier.pop()\n",
" \n",
" # modify the currently searching node to red\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" # modify goal node to green after reaching the goal\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier.extend(node.expand(problem))\n",
" \n",
" for n in node.expand(problem):\n",
" node_colors[n.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" # modify the color of explored nodes to gray\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" return None\n",
"\n",
"def depth_first_tree_search(problem):\n",
" \"Search the deepest nodes in the search tree first.\"\n",
" iterations, all_node_colors, node = tree_depth_search_for_vis(problem)\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"metadata": {},
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=depth_first_tree_search, \n",
" problem=romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {
"## 3. BREADTH-FIRST GRAPH SEARCH\n",
"Let's change all the `node_colors` to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"outputs": [],
"source": [
"def breadth_first_search_graph(problem):\n",
" \"[Figure 3.11]\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
" \n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" frontier = deque([node])\n",
" \n",
" # modify the color of frontier nodes to blue\n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.popleft()\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored.add(node.state) \n",
" \n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" if problem.goal_test(child.state):\n",
" node_colors[child.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, child)\n",
" frontier.append(child)\n",
"\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
},
{
"cell_type": "code",
"metadata": {},
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=breadth_first_search_graph, \n",
" problem=romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Although we have a working implementation in search module, we have to make a few changes in the algorithm to make it suitable for visualization."
]
},
{
"cell_type": "code",
"source": [
"def graph_search_for_vis(problem):\n",
" \"\"\"Search through the successors of a problem to find a goal.\n",
" The argument frontier should be an empty queue.\n",
" If two paths reach a state, only use the first one. [Figure 3.7]\"\"\"\n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
" frontier = [(Node(problem.initial))]\n",
" explored = set()\n",
" \n",
" # modify the color of frontier nodes to orange\n",
" node_colors[Node(problem.initial).state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" while frontier:\n",
" # Popping first node of stack\n",
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
" node = frontier.pop()\n",
" \n",
" # modify the currently searching node to red\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" # modify goal node to green after reaching the goal\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" frontier.extend(child for child in node.expand(problem)\n",
" if child.state not in explored and\n",
" child not in frontier)\n",
" \n",
" for n in frontier:\n",
" # modify the color of frontier nodes to orange\n",
" node_colors[n.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" # modify the color of explored nodes to gray\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" return None\n",
"\n",
"\n",
"def depth_first_graph_search(problem):\n",
" \"\"\"Search the deepest nodes in the search tree first.\"\"\"\n",
" iterations, all_node_colors, node = graph_search_for_vis(problem)\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"metadata": {},
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=depth_first_graph_search, \n",
" problem=romania_problem)"
"cell_type": "markdown",
"## 5. BEST FIRST SEARCH\n",
"\n",
"Let's change all the `node_colors` to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"outputs": [],
"source": [
"def best_first_graph_search_for_vis(problem, f):\n",
" \"\"\"Search the nodes with the lowest f scores first.\n",
" You specify the function f(node) that you want to minimize; for example,\n",
" if f is a heuristic estimate to the goal, then we have greedy best\n",
" first search; if f is node.depth then we have breadth-first search.\n",
" There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n",
" values will be cached on the nodes as they are computed. So after doing\n",
" a best first search you can examine the f values of the path returned.\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
" \n",
" f = memoize(f, 'f')\n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" frontier = PriorityQueue('min', f)\n",
" frontier.append(node)\n",
" \n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" elif child in frontier:\n",
" incumbent = frontier[child]\n",
" if f(child) < f(incumbent):\n",
" del frontier[incumbent]\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 6. UNIFORM COST SEARCH\n",
"Let's change all the `node_colors` to starting position and define a different problem statement."
"def uniform_cost_search_graph(problem):\n",
" \"[Figure 3.14]\"\n",
" #Uniform Cost Search uses Best First Search algorithm with f(n) = g(n)\n",
" iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, lambda node: node.path_cost)\n",
" return(iterations, all_node_colors, node)\n"
"cell_type": "code",
"execution_count": null,
"metadata": {
"scrolled": false
},
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=uniform_cost_search_graph, \n",
" problem=romania_problem)"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Let's change all the 'node_colors' to starting position and define a different problem statement. \n",
"Although we have a working implementation, but we need to make changes."
]
},
{
"cell_type": "code",
"metadata": {},
"outputs": [],
"source": [
"def depth_limited_search_graph(problem, limit = -1):\n",
" '''\n",
" Perform depth first search of graph g.\n",
" if limit >= 0, that is the maximum depth of the search.\n",
" '''\n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
" \n",
" frontier = [Node(problem.initial)]\n",
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
" explored = set()\n",
" \n",
" cutoff_occurred = False\n",
" node_colors[Node(problem.initial).state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" while frontier:\n",
" # Popping first node of queue\n",
" node = frontier.pop()\n",
" \n",
" # modify the currently searching node to red\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" # modify goal node to green after reaching the goal\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
"\n",
" elif limit >= 0:\n",
" cutoff_occurred = True\n",
" limit += 1\n",
" all_node_color.pop()\n",
" iterations -= 1\n",
" node_colors[node.state] = \"gray\"\n",
"\n",
" \n",
" explored.add(node.state)\n",
" frontier.extend(child for child in node.expand(problem)\n",
" if child.state not in explored and\n",
" child not in frontier)\n",
" \n",
" for n in frontier:\n",
" limit -= 1\n",
" # modify the color of frontier nodes to orange\n",
" node_colors[n.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" # modify the color of explored nodes to gray\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" return 'cutoff' if cutoff_occurred else None\n",
"\n",
"\n",
"def depth_limited_search_for_vis(problem):\n",
" \"\"\"Search the deepest nodes in the search tree first.\"\"\"\n",
" iterations, all_node_colors, node = depth_limited_search_graph(problem)\n",
" return(iterations, all_node_colors, node) "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=depth_limited_search_for_vis, \n",
" problem=romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"Let's change all the 'node_colors' to starting position and define a different problem statement. "
]
},
{
"cell_type": "code",
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
"metadata": {},
"outputs": [],
"source": [
"def iterative_deepening_search_for_vis(problem):\n",
" for depth in range(sys.maxsize):\n",
" iterations, all_node_colors, node=depth_limited_search_for_vis(problem)\n",
" if iterations:\n",
" return (iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=iterative_deepening_search_for_vis, \n",
" problem=romania_problem)"
]
},
"cell_type": "markdown",
"metadata": {},
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [],
"source": [
"def greedy_best_first_search(problem, h=None):\n",
" \"\"\"Greedy Best-first graph search is an informative searching algorithm with f(n) = h(n).\n",
" You need to specify the h function when you call best_first_search, or\n",
" else in your Problem subclass.\"\"\"\n",
" h = memoize(h or problem.h, 'h')\n",
" iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, lambda n: h(n))\n",
" return(iterations, all_node_colors, node)\n"
]
},
{
"cell_type": "code",
"metadata": {},
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=greedy_best_first_search, \n",
" problem=romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's change all the `node_colors` to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"def astar_search_graph(problem, h=None):\n",
" \"\"\"A* search is best-first graph search with f(n) = g(n)+h(n).\n",
" You need to specify the h function when you call astar_search, or\n",
" else in your Problem subclass.\"\"\"\n",
" h = memoize(h or problem.h, 'h')\n",
" iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, \n",
" lambda n: n.path_cost + h(n))\n",
" return(iterations, all_node_colors, node)\n"
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False, \n",
" algorithm=astar_search_graph, \n",
" problem=romania_problem)"
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## 11. RECURSIVE BEST FIRST SEARCH\n",
"Let's change all the `node_colors` to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"def recursive_best_first_search_for_vis(problem, h=None):\n",
" \"\"\"[Figure 3.26] Recursive best-first search\"\"\"\n",
" # we use these two variables at the time of visualizations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
" def RBFS(problem, node, flimit):\n",
" nonlocal iterations\n",
" def color_city_and_update_map(node, color):\n",
" node_colors[node.state] = color\n",
" nonlocal iterations\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" color_city_and_update_map(node, 'green')\n",
" return (iterations, all_node_colors, node), 0 # the second value is immaterial\n",
" \n",
" successors = node.expand(problem)\n",
" if len(successors) == 0:\n",
" color_city_and_update_map(node, 'gray')\n",
" return (iterations, all_node_colors, None), infinity\n",
" \n",
" for s in successors:\n",
" color_city_and_update_map(s, 'orange')\n",
" s.f = max(s.path_cost + h(s), node.f)\n",
" \n",
" while True:\n",
" # Order by lowest f value\n",
" successors.sort(key=lambda x: x.f)\n",
" best = successors[0]\n",
" if best.f > flimit:\n",
" color_city_and_update_map(node, 'gray')\n",
" return (iterations, all_node_colors, None), best.f\n",
" \n",
" if len(successors) > 1:\n",
" alternative = successors[1].f\n",
" else:\n",
" alternative = infinity\n",
" \n",
" node_colors[node.state] = 'gray'\n",
" node_colors[best.state] = 'red'\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" result, best.f = RBFS(problem, best, min(flimit, alternative))\n",
" if result[2] is not None:\n",
" color_city_and_update_map(node, 'green')\n",
" return result, best.f\n",
" else:\n",
" color_city_and_update_map(node, 'red')\n",
" \n",
" node = Node(problem.initial)\n",
" node.f = h(node)\n",
" node_colors[node.state] = 'red'\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" result, bestf = RBFS(problem, node, infinity)\n",
" return result"
"cell_type": "code",
"execution_count": null,
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(romania_graph_data, user_input=False,\n",
" algorithm=recursive_best_first_search_for_vis,\n",
" problem=romania_problem)"
"execution_count": null,
"metadata": {
"scrolled": false
},
"outputs": [],
"all_node_colors = []\n",
"# display_visual(romania_graph_data, user_input=True, algorithm=breadth_first_tree_search)\n",
"algorithms = { \"Breadth First Tree Search\": tree_breadth_search_for_vis,\n",
" \"Depth First Tree Search\": tree_depth_search_for_vis,\n",
" \"Breadth First Search\": breadth_first_search_graph,\n",
" \"Depth First Graph Search\": graph_search_for_vis,\n",
" \"Best First Graph Search\": best_first_graph_search_for_vis,\n",
" \"Uniform Cost Search\": uniform_cost_search_graph,\n",
" \"Depth Limited Search\": depth_limited_search_for_vis,\n",
" \"Iterative Deepening Search\": iterative_deepening_search_for_vis,\n",
" \"Greedy Best First Search\": greedy_best_first_search,\n",
" \"A-star Search\": astar_search_graph,\n",
" \"Recursive Best First Search\": recursive_best_first_search_for_vis}\n",
"display_visual(romania_graph_data, algorithm=algorithms, user_input=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## RECURSIVE BEST-FIRST SEARCH\n",
"Recursive best-first search is a simple recursive algorithm that improves upon heuristic search by reducing the memory requirement.\n",
"RBFS uses only linear space and it attempts to mimic the operation of standard best-first search.\n",
"Its structure is similar to recursive depth-first search but it doesn't continue indefinitely down the current path, the `f_limit` variable is used to keep track of the f-value of the best _alternative_ path available from any ancestor of the current node.\n",
"RBFS remembers the f-value of the best leaf in the forgotten subtree and can decide whether it is worth re-expanding the tree later.\n",
"However, RBFS still suffers from excessive node regeneration.\n",
"<br>\n",
"Let's have a look at the implementation."
]
},
{
"cell_type": "code",
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",