search.ipynb 662 ko
Newer Older
Chipe1's avatar
Chipe1 a validé
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
Chipe1's avatar
Chipe1 a validé
   },
   "source": [
    "# Solving problems by Searching\n",
    "\n",
    "This notebook serves as supporting material for topics covered in **Chapter 3 - Solving Problems by Searching** and **Chapter 4 - Beyond Classical Search** from the book *Artificial Intelligence: A Modern Approach.* This notebook uses implementations from [search.py](https://github.com/aimacode/aima-python/blob/master/search.py) module. Let's start by importing everything from search module."
   "cell_type": "code",
   "execution_count": 1,
Anthony Marakis's avatar
Anthony Marakis a validé
   "outputs": [],
Chipe1's avatar
Chipe1 a validé
   "source": [
    "from search import *\n",
    "from notebook import psource, heatmap, gaussian_kernel, show_map, final_path_colors, display_visual, plot_NQueens\n",
    "\n",
    "# Needed to hide warnings in the matplotlib sections\n",
    "import warnings\n",
    "warnings.filterwarnings(\"ignore\")"
Chipe1's avatar
Chipe1 a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
Chipe1's avatar
Chipe1 a validé
   "source": [
    "## CONTENTS\n",
    "\n",
    "* Overview\n",
    "* Problem\n",
    "* Node\n",
    "* Simple Problem Solving Agent\n",
    "* Search Algorithms Visualization\n",
    "* Breadth-First Tree Search\n",
    "* Breadth-First Search\n",
Vinay Varma's avatar
Vinay Varma a validé
    "* Best First Search\n",
    "* Uniform Cost Search\n",
Vinay Varma's avatar
Vinay Varma a validé
    "* Greedy Best First Search\n",
    "* A\\* Search\n",
    "* Hill Climbing\n",
    "* Simulated Annealing\n",
    "* Genetic Algorithm\n",
    "* AND-OR Graph Search\n",
    "* Online DFS Agent\n",
    "* LRTA* Agent"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## OVERVIEW\n",
    "Here, we learn about a specific kind of problem solving - building goal-based agents that can plan ahead to solve problems. In particular, we examine navigation problem/route finding problem. We must begin by precisely defining **problems** and their **solutions**. We will look at several general-purpose search algorithms.\n",
    "\n",
    "Search algorithms can be classified into two types:\n",
    "* **Uninformed search algorithms**: Search algorithms which explore the search space without having any information about the problem other than its definition.\n",
    "    * Examples:\n",
    "        1. Breadth First Search\n",
    "        2. Depth First Search\n",
    "        3. Depth Limited Search\n",
    "        4. Iterative Deepening Search\n",
    "* **Informed search algorithms**: These type of algorithms leverage any information (heuristics, path cost) on the problem to search through the search space to find the solution efficiently.\n",
    "    * Examples:\n",
    "        1. Best First Search\n",
    "        2. Uniform Cost Search\n",
    "        3. A\\* Search\n",
    "        4. Recursive Best First Search\n",
    "*Don't miss the visualisations of these algorithms solving the route-finding problem defined on Romania map at the end of this notebook.*"
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For visualisations, we use networkx and matplotlib to show the map in the notebook and we use ipywidgets to interact with the map to see how the searching algorithm works. These are imported as required in `notebook.py`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [],
   "source": [
    "%matplotlib inline\n",
    "import networkx as nx\n",
    "import matplotlib.pyplot as plt\n",
    "from matplotlib import lines\n",
    "\n",
    "from ipywidgets import interact\n",
    "import ipywidgets as widgets\n",
    "from IPython.display import display\n",
    "import time"
   ]
  },
Chipe1's avatar
Chipe1 a validé
  {
   "cell_type": "markdown",
Chipe1's avatar
Chipe1 a validé
   "source": [
    "## PROBLEM\n",
Chipe1's avatar
Chipe1 a validé
    "\n",
    "Let's see how we define a Problem. Run the next cell to see how abstract class `Problem` is defined in the search module."
jeff3456's avatar
jeff3456 a validé
  {
   "cell_type": "code",
   "execution_count": 3,
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">Problem</span><span class=\"p\">(</span><span class=\"nb\">object</span><span class=\"p\">):</span>\n",
       "\n",
       "    <span class=\"sd\">&quot;&quot;&quot;The abstract class for a formal problem. You should subclass</span>\n",
       "<span class=\"sd\">    this and implement the methods actions and result, and possibly</span>\n",
       "<span class=\"sd\">    __init__, goal_test, and path_cost. Then you will create instances</span>\n",
       "<span class=\"sd\">    of your subclass and solve them with the various search functions.&quot;&quot;&quot;</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">initial</span><span class=\"p\">,</span> <span class=\"n\">goal</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;The constructor specifies the initial state, and possibly a goal</span>\n",
       "<span class=\"sd\">        state, if there is a unique goal. Your subclass&#39;s constructor can add</span>\n",
       "<span class=\"sd\">        other arguments.&quot;&quot;&quot;</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">initial</span> <span class=\"o\">=</span> <span class=\"n\">initial</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">goal</span> <span class=\"o\">=</span> <span class=\"n\">goal</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">actions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return the actions that can be executed in the given</span>\n",
       "<span class=\"sd\">        state. The result would typically be a list, but if there are</span>\n",
       "<span class=\"sd\">        many actions, consider yielding them one at a time in an</span>\n",
       "<span class=\"sd\">        iterator, rather than building them all at once.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">raise</span> <span class=\"ne\">NotImplementedError</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">result</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return the state that results from executing the given</span>\n",
       "<span class=\"sd\">        action in the given state. The action must be one of</span>\n",
       "<span class=\"sd\">        self.actions(state).&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">raise</span> <span class=\"ne\">NotImplementedError</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">goal_test</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return True if the state is a goal. The default method compares the</span>\n",
       "<span class=\"sd\">        state to self.goal or checks for state in self.goal if it is a</span>\n",
       "<span class=\"sd\">        list, as specified in the constructor. Override this method if</span>\n",
       "<span class=\"sd\">        checking against a single self.goal is not enough.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">if</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">goal</span><span class=\"p\">,</span> <span class=\"nb\">list</span><span class=\"p\">):</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">is_in</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">goal</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">state</span> <span class=\"o\">==</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">goal</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">path_cost</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">c</span><span class=\"p\">,</span> <span class=\"n\">state1</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">state2</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return the cost of a solution path that arrives at state2 from</span>\n",
       "<span class=\"sd\">        state1 via action, assuming cost c to get up to state1. If the problem</span>\n",
       "<span class=\"sd\">        is such that the path doesn&#39;t matter, this function will only look at</span>\n",
       "<span class=\"sd\">        state2.  If the path does matter, it will consider c and maybe state1</span>\n",
       "<span class=\"sd\">        and action. The default method costs 1 for every step in the path.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">c</span> <span class=\"o\">+</span> <span class=\"mi\">1</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">value</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;For optimization problems, each state has a value.  Hill-climbing</span>\n",
       "<span class=\"sd\">        and related algorithms try to maximize this value.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">raise</span> <span class=\"ne\">NotImplementedError</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
jeff3456's avatar
jeff3456 a validé
   "source": [
    "psource(Problem)"
Chipe1's avatar
Chipe1 a validé
   ]
  },
  {
   "cell_type": "markdown",
Chipe1's avatar
Chipe1 a validé
   "source": [
    "The `Problem` class has six methods.\n",
    "* `__init__(self, initial, goal)` : This is what is called a `constructor`. It is the first method called when you create an instance of the class as `Problem(initial, goal)`. The variable `initial` specifies the initial state $s_0$ of the search problem. It represents the beginning state. From here, our agent begins its task of exploration to find the goal state(s) which is given in the `goal` parameter.\n",
    "\n",
    "\n",
    "* `actions(self, state)` : This method returns all the possible actions agent can execute in the given state `state`.\n",
    "\n",
    "\n",
Chipe1's avatar
Chipe1 a validé
    "* `result(self, state, action)` : This returns the resulting state if action `action` is taken in the state `state`. This `Problem` class only deals with deterministic outcomes. So we know for sure what every action in a state would result to.\n",
    "* `goal_test(self, state)` : Return a boolean for a given state - `True` if it is a goal state, else `False`.\n",
Chipe1's avatar
Chipe1 a validé
    "* `path_cost(self, c, state1, action, state2)` : Return the cost of the path that arrives at `state2` as a result of taking `action` from `state1`, assuming total cost of `c` to get up to `state1`.\n",
    "* `value(self, state)` : This acts as a bit of extra information in problems where we try to optimise a value when we cannot do a goal test."
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## NODE\n",
    "\n",
    "Let's see how we define a Node. Run the next cell to see how abstract class `Node` is defined in the search module."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">Node</span><span class=\"p\">:</span>\n",
       "\n",
       "    <span class=\"sd\">&quot;&quot;&quot;A node in a search tree. Contains a pointer to the parent (the node</span>\n",
       "<span class=\"sd\">    that this is a successor of) and to the actual state for this node. Note</span>\n",
       "<span class=\"sd\">    that if a state is arrived at by two paths, then there are two nodes with</span>\n",
       "<span class=\"sd\">    the same state.  Also includes the action that got us to this state, and</span>\n",
       "<span class=\"sd\">    the total path_cost (also known as g) to reach the node.  Other functions</span>\n",
       "<span class=\"sd\">    may add an f and h value; see best_first_graph_search and astar_search for</span>\n",
       "<span class=\"sd\">    an explanation of how the f and h values are handled. You will not need to</span>\n",
       "<span class=\"sd\">    subclass this class.&quot;&quot;&quot;</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">parent</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">path_cost</span><span class=\"o\">=</span><span class=\"mi\">0</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Create a search tree Node, derived from a parent by an action.&quot;&quot;&quot;</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span> <span class=\"o\">=</span> <span class=\"n\">state</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">parent</span> <span class=\"o\">=</span> <span class=\"n\">parent</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">action</span> <span class=\"o\">=</span> <span class=\"n\">action</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">path_cost</span> <span class=\"o\">=</span> <span class=\"n\">path_cost</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">depth</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">parent</span><span class=\"p\">:</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">depth</span> <span class=\"o\">=</span> <span class=\"n\">parent</span><span class=\"o\">.</span><span class=\"n\">depth</span> <span class=\"o\">+</span> <span class=\"mi\">1</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__repr__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"s2\">&quot;&lt;Node {}&gt;&quot;</span><span class=\"o\">.</span><span class=\"n\">format</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__lt__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">node</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span> <span class=\"o\">&lt;</span> <span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">expand</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;List the nodes reachable in one step from this node.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"p\">[</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">child_node</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">)</span>\n",
       "                <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)]</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">child_node</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;[Figure 3.10]&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">next_state</span> <span class=\"o\">=</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">result</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">next_node</span> <span class=\"o\">=</span> <span class=\"n\">Node</span><span class=\"p\">(</span><span class=\"n\">next_state</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span>\n",
       "                    <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">path_cost</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">path_cost</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">,</span>\n",
       "                                      <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">next_state</span><span class=\"p\">))</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">next_node</span>\n",
       "    \n",
       "    <span class=\"k\">def</span> <span class=\"nf\">solution</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return the sequence of actions to go from the root to this node.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"p\">[</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">action</span> <span class=\"k\">for</span> <span class=\"n\">node</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">path</span><span class=\"p\">()[</span><span class=\"mi\">1</span><span class=\"p\">:]]</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">path</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return a list of nodes forming the path from the root to this node.&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">node</span><span class=\"p\">,</span> <span class=\"n\">path_back</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"k\">while</span> <span class=\"n\">node</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">path_back</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">node</span> <span class=\"o\">=</span> <span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">parent</span>\n",
       "        <span class=\"k\">return</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"nb\">reversed</span><span class=\"p\">(</span><span class=\"n\">path_back</span><span class=\"p\">))</span>\n",
       "\n",
       "    <span class=\"c1\"># We want for a queue of nodes in breadth_first_graph_search or</span>\n",
       "    <span class=\"c1\"># astar_search to have no duplicated states, so we treat nodes</span>\n",
       "    <span class=\"c1\"># with the same state as equal. [Problem: this may not be what you</span>\n",
       "    <span class=\"c1\"># want in other contexts.]</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__eq__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">other</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">other</span><span class=\"p\">,</span> <span class=\"n\">Node</span><span class=\"p\">)</span> <span class=\"ow\">and</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span> <span class=\"o\">==</span> <span class=\"n\">other</span><span class=\"o\">.</span><span class=\"n\">state</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__hash__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"nb\">hash</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(Node)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The `Node` class has nine methods. The first is the `__init__` method.\n",
Alan Oliveira's avatar
Alan Oliveira a validé
    "* `__init__(self, state, parent, action, path_cost)` : This method creates a node. `parent` represents the node that this is a successor of and `action` is the action required to get from the parent node to this node. `path_cost` is the cost to reach current node from parent node.\n",
    "The next 4 methods are specific `Node`-related functions.\n",
Alan Oliveira's avatar
Alan Oliveira a validé
    "* `expand(self, problem)` : This method lists all the neighbouring(reachable in one step) nodes of current node. \n",
Alan Oliveira's avatar
Alan Oliveira a validé
    "* `child_node(self, problem, action)` : Given an `action`, this method returns the immediate neighbour that can be reached with that `action`.\n",
    "\n",
    "* `solution(self)` : This returns the sequence of actions required to reach this node from the root node. \n",
    "\n",
    "* `path(self)` : This returns a list of all the nodes that lies in the path from the root to this node.\n",
    "\n",
    "The remaining 4 methods override standards Python functionality for representing an object as a string, the less-than ($<$) operator, the equal-to ($=$) operator, and the `hash` function.\n",
    "\n",
    "* `__repr__(self)` : This returns the state of this node.\n",
    "\n",
    "* `__lt__(self, node)` : Given a `node`, this method returns `True` if the state of current node is less than the state of the `node`. Otherwise it returns `False`.\n",
    "\n",
    "* `__eq__(self, other)` : This method returns `True` if the state of current node is equal to the other node. Else it returns `False`.\n",
    "\n",
    "* `__hash__(self)` : This returns the hash of the state of current node."
   ]
  },
Chipe1's avatar
Chipe1 a validé
  {
   "cell_type": "markdown",
Chipe1's avatar
Chipe1 a validé
   "source": [
    "We will use the abstract class `Problem` to define our real **problem** named `GraphProblem`. You can see how we define `GraphProblem` by running the next cell."
jeff3456's avatar
jeff3456 a validé
   ]
  },
   "execution_count": 5,
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">GraphProblem</span><span class=\"p\">(</span><span class=\"n\">Problem</span><span class=\"p\">):</span>\n",
       "\n",
       "    <span class=\"sd\">&quot;&quot;&quot;The problem of searching a graph from one node to another.&quot;&quot;&quot;</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">initial</span><span class=\"p\">,</span> <span class=\"n\">goal</span><span class=\"p\">,</span> <span class=\"n\">graph</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">Problem</span><span class=\"o\">.</span><span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">initial</span><span class=\"p\">,</span> <span class=\"n\">goal</span><span class=\"p\">)</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">graph</span> <span class=\"o\">=</span> <span class=\"n\">graph</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">actions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">A</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;The actions at a graph node are just its neighbors.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">get</span><span class=\"p\">(</span><span class=\"n\">A</span><span class=\"p\">)</span><span class=\"o\">.</span><span class=\"n\">keys</span><span class=\"p\">())</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">result</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;The result of going to a neighbor is just that neighbor.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">action</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">path_cost</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">cost_so_far</span><span class=\"p\">,</span> <span class=\"n\">A</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">B</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">cost_so_far</span> <span class=\"o\">+</span> <span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">get</span><span class=\"p\">(</span><span class=\"n\">A</span><span class=\"p\">,</span> <span class=\"n\">B</span><span class=\"p\">)</span> <span class=\"ow\">or</span> <span class=\"n\">infinity</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">find_min_edge</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Find minimum value of edges.&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">m</span> <span class=\"o\">=</span> <span class=\"n\">infinity</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">d</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">graph</span><span class=\"o\">.</span><span class=\"n\">graph_dict</span><span class=\"o\">.</span><span class=\"n\">values</span><span class=\"p\">():</span>\n",
       "            <span class=\"n\">local_min</span> <span class=\"o\">=</span> <span class=\"nb\">min</span><span class=\"p\">(</span><span class=\"n\">d</span><span class=\"o\">.</span><span class=\"n\">values</span><span class=\"p\">())</span>\n",
       "            <span class=\"n\">m</span> <span class=\"o\">=</span> <span class=\"nb\">min</span><span class=\"p\">(</span><span class=\"n\">m</span><span class=\"p\">,</span> <span class=\"n\">local_min</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"n\">m</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">h</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">node</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;h function is straight-line distance from a node&#39;s state to goal.&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">locs</span> <span class=\"o\">=</span> <span class=\"nb\">getattr</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">graph</span><span class=\"p\">,</span> <span class=\"s1\">&#39;locations&#39;</span><span class=\"p\">,</span> <span class=\"bp\">None</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">locs</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"nb\">type</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"p\">)</span> <span class=\"ow\">is</span> <span class=\"nb\">str</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"nb\">int</span><span class=\"p\">(</span><span class=\"n\">distance</span><span class=\"p\">(</span><span class=\"n\">locs</span><span class=\"p\">[</span><span class=\"n\">node</span><span class=\"p\">],</span> <span class=\"n\">locs</span><span class=\"p\">[</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">goal</span><span class=\"p\">]))</span>\n",
       "\n",
       "            <span class=\"k\">return</span> <span class=\"nb\">int</span><span class=\"p\">(</span><span class=\"n\">distance</span><span class=\"p\">(</span><span class=\"n\">locs</span><span class=\"p\">[</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">],</span> <span class=\"n\">locs</span><span class=\"p\">[</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">goal</span><span class=\"p\">]))</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">infinity</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
Chipe1's avatar
Chipe1 a validé
   "source": [
    "psource(GraphProblem)"
Chipe1's avatar
Chipe1 a validé
   ]
  },
  {
   "cell_type": "markdown",
Chipe1's avatar
Chipe1 a validé
   "source": [
    "Have a look at our romania_map, which is an Undirected Graph containing a dict of nodes as keys and neighbours as values."
Chipe1's avatar
Chipe1 a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
Chipe1's avatar
Chipe1 a validé
   "outputs": [],
   "source": [
    "romania_map = UndirectedGraph(dict(\n",
    "    Arad=dict(Zerind=75, Sibiu=140, Timisoara=118),\n",
    "    Bucharest=dict(Urziceni=85, Pitesti=101, Giurgiu=90, Fagaras=211),\n",
    "    Craiova=dict(Drobeta=120, Rimnicu=146, Pitesti=138),\n",
    "    Drobeta=dict(Mehadia=75),\n",
    "    Eforie=dict(Hirsova=86),\n",
    "    Fagaras=dict(Sibiu=99),\n",
    "    Hirsova=dict(Urziceni=98),\n",
    "    Iasi=dict(Vaslui=92, Neamt=87),\n",
    "    Lugoj=dict(Timisoara=111, Mehadia=70),\n",
    "    Oradea=dict(Zerind=71, Sibiu=151),\n",
    "    Pitesti=dict(Rimnicu=97),\n",
    "    Rimnicu=dict(Sibiu=80),\n",
    "    Urziceni=dict(Vaslui=142)))\n",
    "\n",
    "romania_map.locations = dict(\n",
    "    Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288),\n",
    "    Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449),\n",
    "    Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506),\n",
    "    Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537),\n",
    "    Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410),\n",
    "    Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350),\n",
    "    Vaslui=(509, 444), Zerind=(108, 531))"
Chipe1's avatar
Chipe1 a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
Chipe1's avatar
Chipe1 a validé
   },
   "source": [
    "It is pretty straightforward to understand this `romania_map`. The first node **Arad** has three neighbours named **Zerind**, **Sibiu**, **Timisoara**. Each of these nodes are 75, 140, 118 units apart from **Arad** respectively. And the same goes with other nodes.\n",
    "\n",
    "And `romania_map.locations` contains the positions of each of the nodes. We will use the straight line distance (which is different from the one provided in `romania_map`) between two cities in algorithms like A\\*-search and Recursive Best First Search.\n",
    "\n",
    "**Define a problem:**\n",
    "Now it's time to define our problem. We will define it by passing `initial`, `goal`, `graph` to `GraphProblem`. So, our problem is to find the goal state starting from the given initial state on the provided graph. \n",
    "\n",
    "Say we want to start exploring from **Arad** and try to find **Bucharest** in our romania_map. So, this is how we do it."
Chipe1's avatar
Chipe1 a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
Chipe1's avatar
Chipe1 a validé
   "source": [
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)"
Chipe1's avatar
Chipe1 a validé
   ]
  },
  {
   "cell_type": "markdown",
   "source": [
    "### Romania Map Visualisation\n",
    "Let's have a visualisation of Romania map [Figure 3.2] from the book and see how different searching algorithms perform / how frontier expands in each search algorithm for a simple problem named `romania_problem`."
  {
   "cell_type": "markdown",
   "source": [
    "Have a look at `romania_locations`. It is a dictionary defined in search module. We will use these location values to draw the romania graph using **networkx**."
  {
   "cell_type": "code",
   "execution_count": 8,
Anthony Marakis's avatar
Anthony Marakis a validé
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "{'Arad': (91, 492), 'Bucharest': (400, 327), 'Craiova': (253, 288), 'Drobeta': (165, 299), 'Eforie': (562, 293), 'Fagaras': (305, 449), 'Giurgiu': (375, 270), 'Hirsova': (534, 350), 'Iasi': (473, 506), 'Lugoj': (165, 379), 'Mehadia': (168, 339), 'Neamt': (406, 537), 'Oradea': (131, 571), 'Pitesti': (320, 368), 'Rimnicu': (233, 410), 'Sibiu': (207, 457), 'Timisoara': (94, 410), 'Urziceni': (456, 350), 'Vaslui': (509, 444), 'Zerind': (108, 531)}\n"
     ]
    }
   ],
   "source": [
    "romania_locations = romania_map.locations\n",
    "print(romania_locations)"
   ]
  },
  {
   "cell_type": "markdown",
   "source": [
    "Let's get started by initializing an empty graph. We will add nodes, place the nodes in their location as shown in the book, add edges to the graph."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [],
    "# node colors, node positions and node label positions\n",
    "node_colors = {node: 'white' for node in romania_map.locations.keys()}\n",
    "node_positions = romania_map.locations\n",
    "node_label_pos = { k:[v[0],v[1]-10]  for k,v in romania_map.locations.items() }\n",
    "edge_weights = {(k, k2) : v2 for k, v in romania_map.graph_dict.items() for k2, v2 in v.items()}\n",
    "romania_graph_data = {  'graph_dict' : romania_map.graph_dict,\n",
    "                        'node_colors': node_colors,\n",
    "                        'node_positions': node_positions,\n",
    "                        'node_label_positions': node_label_pos,\n",
    "                         'edge_weights': edge_weights\n",
    "                     }"
  {
   "cell_type": "markdown",
    "We have completed building our graph based on romania_map and its locations. It's time to display it here in the notebook. This function `show_map(node_colors)` helps us do that. We will be calling this function later on to display the map at each and every interval step while searching, using variety of algorithms from the book."
   ]
  },
  {
   "cell_type": "markdown",
   "source": [
    "We can simply call the function with node_colors dictionary object to display it."
   ]
  },
   "execution_count": 10,
   "metadata": {
    "scrolled": false
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAABTsAAAPKCAYAAABbVI7QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzs3Xdc1eX///HnQYaCg8SFmCPcouLG1BQX5Uj9OHKVfBLtY0qOzJELREXNcFbmKC0zS1Nz5RZHoqklOTBH7r1yJvP8/uALv06gggJvODzut9u5+Tnv93Vd7+f7KPThxXVdb5PZbDYLAAAAAAAAALI4G6MDAAAAAAAAAEBaoNgJAAAAAAAAwCpQ7AQAAAAAAABgFSh2AgAAAAAAALAKFDsBAAAAAAAAWAWKnQAAAAAAAACsAsVOAAAAAAAAAFaBYicAAAAAAAAAq0CxEwAAAAAAAIBVoNgJAAAAAAAAwCpQ7AQAAAAAAABgFSh2AgAAAAAAALAKFDsBAAAAAAAAWAWKnQAAAAAAAACsAsVOAAAAAAAAAFaBYicAAAAAAAAAq0CxEwAAAAAAAIBVoNgJAAAAAAAAwCpQ7AQAAAAAAABgFSh2AgAAAAAAALAKFDsBAAAAAAAAWAWKnQAAAAAAAACsAsVOAAAAAAAAAFaBYicAAAAAAAAAq0CxEwAAAAAAAIBVoNgJAAAAAAAAwCpQ7AQAAAAAAABgFSh2AgAAAAAAALAKFDsBAAAAAAAAWAWKnQAAAAAAAACsAsVOAAAAAAAAAFaBYicAAAAAAAAAq0CxEwAAAAAAAIBVoNgJAAAAAAAAwCpQ7AQAAAAAAABgFSh2AgAAAAAAALAKFDsBAAAAAAAAWAWKnQAAAAAAAACsAsVOAAAAAAAAAFaBYicAAAAAAAAAq0CxEwAAAAAAAIBVoNgJAAAAAAAAwCrYGh0AyGiRkZHavn27Hj16lHisRo0acnNzMzAVAAAAAAAAnpfJbDabjQ4BZISzZ89q3759cnBwUOPGjeXk5CRJMpvN2rNnjy5duqTChQurXr16MplMBqcFAAAAAABAalHsRLawefNm5cqVSy+//PITC5lXrlzR+vXr1aVLFzk4OGRgQgAAAAAAADwvip2wehs3btRLL72k0qVLp6h9dHS0vv76a7311luytWWnBwAAAAAAgKyCYiesWnh4uMxmszw9PVPV7++//9aaNWvUsWPHdEoGAAAAAACAtMbT2GHVTpw4kepCpyTlypVLefPm1b1799IhFQAAAAAAANIDxU5YrevXr6tgwYLP3L9x48baunVrGiYCAAAAAABAeqLYCav1888/q0GDBs/c387OTrGxsWmYCAAAAAAAAOmJYiesVo4cOWRj83z/xO3s7NIoDQAAAAAAANIbxU5YrbR49hbP7wIAAAAAAMg6KHbCaplMpkwxBgAAAAAAADIGxU5YLVtbWz18+PC5xoiKikqjNAAAAAAAAEhvFDthtRo3bqwtW7Y8c//bt2/L2dk5DRMBAAAAAAAgPVHshNVycHBQZGTkM++7uX37djVq1ChtQwEAAAAAACDdUOyEVatXr55++umnVPc7e/ascufOrRw5cqRDKgAAAAAAAKQHip2waq6uripevLi2bt2a4j4XLlzQgQMH1LRp03RMBgAAAAAAgLRmMj/rGl8gCzl+/Lj27NmjJk2ayM3NLdk20dHRWrhwoV544QW1b98+gxMCAAAAAADgedkaHQDICGXLltWCBQu0fv16tW/fXs7OzipSpIjs7e1169YtXbhwQba2ttqxY4dcXFwodgIAAAAAAGRBzOxEtnDjxg2VK1dOv/76q0qUKKG7d+/q+vXrioqK0gsvvKDChQvLZDLp2rVrqlSpkkJDQ1WpUiWjYwMAAAAAACAVKHYiWxg6dKju3bunTz/99KltZ8yYoR9//FGbN2+WyWTKgHQAAAAAAABICxQ7YfWuXr2qihUrKjw8XMWKFXtq+5iYGFWrVk1jxoxRhw4dMiAhAAAAAAAA0gLFTli9QYMGKTY2VtOnT09xn9DQUPXo0UMRERFydHRMx3QAAAAAAABIKxQ7YdUuXbokDw8PHTlyRK6urqnq+8Ybb6hcuXIaO3ZsOqUDAAAAAABAWqLYCavm7+8ve3t7ffzxx6nue/78eXl6emrfvn166aWX0iEdAAAAAAAA0hLFTlit8+fPq2rVqjp27JgKFSr0TGOMHz9e+/bt08qVK9M4HQAAAAAAANIaxU5YrT59+ihfvnyaOHHiM4/x6NEjeXh46JNPPpGPj08apgMAAAAAAEBao9gJq3TmzBnVqFFDf/zxhwoUKPBcY61evVqDBw/WoUOHZG9vn0YJAQAAAAAAkNYodgIAAAAAAACwCjZGBwAAAAAAAACAtECxEwAAAAAAAIBVoNgJAAAAAAAAwCpQ7AQAAAAAAABgFSh2Av+ybNkymUwmo2MAAAAAAAAglSh2ItO7ePGievfurWLFisne3l5ubm7q1auXLly4YHQ0AAAAAAAAZCIUO5GpnT59WjVr1tThw4e1cOFCnTx5UosWLdKRI0dUq1YtnTlzJtl+UVFRGRsUAAAAAAAAhqPYiUytb9++srGx0ebNm9WkSRMVL15c3t7e2rx5s2xsbNS3b19JUqNGjdSnTx8NHjxYBQsWVL169SRJISEhqlKlipycnOTm5iY/Pz/99ddfFtf46quvVKJECTk6OqpVq1a6evVqkhyrV69WjRo1lDNnTpUqVUojRoywKKguWrRItWrVUp48eVSoUCF17NhRFy9eTMdPBgAAAAAAAP9GsROZ1q1bt7R+/Xr17dtXjo6OFuccHR317rvv6qefftLt27clxRcczWazdu7cqa+++kqSZGNjo2nTpunIkSNavHixfvnlF/n7+yeOs3fvXvn6+qp37946ePCgWrdurdGjR1tca8OGDerWrZv69eunI0eO6IsvvtCyZcv04YcfJraJiopSYGCgwsPDtWbNGt24cUNdunRJr48GAAAAAAAAyTCZzWaz0SGA5Ozdu1deXl5avny52rVrl+T8ihUr9J///Ed79+7VkCFDdOvWLf3+++9PHHP9+vVq06aN/v77b9nY2Khr1666fv26Nm3alNjGz89P8+fPV8KXxiuvvKJmzZpp1KhRiW1Wrlyp7t276969e8k+zOjYsWOqUKGCzp8/r2LFij3rRwAAAAAAAIBUYGYnMr3HPRk9oRiZcL5GjRpJ2mzdulXNmjVTsWLFlCdPHv3nP/9RVFSUrly5IkmKiIhQ3bp1Lfr8+/2BAwc0fvx45c6dO/HVtWtXPXjwIHGcX3/9VW3atFGJEiWUJ08e1axZU5J07ty557hzAAAAAAAApAbFTmRaZcqUkclk0pEjR5I9HxERIZPJJHd3d0mSk5OTxfmzZ8+qZcuWqlChgpYuXaoDBw7oiy++kPT/H2CUkonNcXFxGjNmjA4ePJj4+v3333XixAkVLFhQDx48kI+PjxwdHfX1119r3759Wr9+vcV1AAAAAAAAkP5sjQ4APE7+/Pnl4+OjTz/9VAMHDrTYt/Phw4f65JNP9Nprryl//vzJ9t+/f7+ioqI0depU5ciRQ5K0Zs0aizYVK1bUnj17LI79+3316tV17NgxlS5dOtnrhIeH68aNG5owYYJKlSolSVq+fHnqbhYAAAAAAADPjZmdyNRmzZqlmJgYNW3aVFu3btX58+cVGhqqZs2ayWw2a9asWY/tW6ZMGcXFxWnatGk6ffq0vv32W02bNs2izXvvvafNmzcrODhYJ06c0Ny5c7VixQqLNqNHj9bixYs1evRoHT58WMeOHdOyZcs0ZMgQSVLx4sXl4OCgWbNm6c8//9TatWst9vcEAAAAAABAxqDYiUzN3d1d+/fvV6VKlfTmm2/qpZdeUteuXVWhQgXt27cvcSZlcqpUqaLp06crJCREFStW1Lx58zRlyhSLNl5eXpo/f74+++wzValSRcuXL1dAQIBFGx8fH61du1bbtm1T7dq1Vbt2bU2cOFHFixeXJBUsWFALFy7UypUrVbFiRQUGBiokJCTNPwsAAAAAAAA8GU9jBwAAAAAAAGAVmNkJAAAAAAAAwCpQ7AQAAAAAAABgFSh2AgAAAAAAALAKFDsBAAAAAAAAWAWKnQAAAAAAAACsAsVOZAlms1k1atTQ8uXLjY6SImazWc2aNdO0adOMjgIAAAAAAJBtUOxElrBq1SrFxcWpbdu2RkdJEZPJpBkzZmjcuHG6evWq0XEAAAAAAACyBZPZbDYbHQJ4kri4OFWrVk1BQUF6/fXXjY6TKu+//75u376tL774wugoAAAAAAAAVo+Zncj0li9fLnt7e7Vu3droKKk2ZswYrV+/Xnv37jU6CgAAAAAAgNWj2IlMzWw26/r16xo7dqxMJpPRcVItb968Cg4Olr+/v+Li4oyOAwAAAAAAYNVYxo5ML+GfaFYsdkrxy/Dr1asnPz8/9ezZ0+g4AAAAAAAAVotiJ5ABDhw4oJYtW+rYsWNydnY2Og4AAAAAAIBVotgJZJDevXsrV65cmj59utFRAAAAAAAArBLFTiCDXL9+XRUrVtS2bdvk4eFhdBwAAAAAAACrwwOKgAxSsGBBjRkzRv7+/uJ3DAAAAAAAAGmPYieQgf73v//p5s2bWrp0qdFRAAAAAAAArA7L2IEMtn37dr355puKiIiQk5OT0XEAAAAAAACsBjM7Yahbt24ZHSHDNWzYUPXq1VNwcLDRUQAAAAAAAKwKMzthmHnz5mnXrl3y9fWVp6ennJ2dE8+ZzWaZTKbHvs/qLly4oKpVq+qXX36Ru7u70XEAAAAAAACsAsVOGCI2Nlb58+dXVFSUnJ2d1a5dO3Xu3FlVq1ZVvnz5Ets9ePBAdnZ2sre3NzBt+ggODlZYWJhWrVpldBQAAAAAAACrwDJ2GGLZsmWqVKmSfvvtNwUGBmrdunXq2LGjRo0apZ07d+revXuSpGnTplntcu9BgwYpIiJCP/30k9FRAAAAAAAArAIzO2GItWvXasuWLRoyZIiKFCkiSZo1a5YmTZqkmJgYdenSRbVr11bXrl21adMmNWnSxODE6WPt2rUaOHCgDh06JAcHB6PjAAAAAAAAZGkUO5Hh7t+/r9y5c+vPP//USy+9pJiYGNna2iaenz59uqZOnapz586pQYMG2r59u4Fp01+rVq3UoEEDDR061OgoAAAAAAAAWRrFTmSoR48eqVWrVpo4caJq1qxp8eChfxY9jx07pooVK2rPnj2qXbu2kZHT3cmTJ+Xl5aXw8HC5ubkZHQcAAAAAACDLYs9OZKiRI0dq69atGj58uO7evWvxhPWEQmdsbKwmTJigMmXKWH2hU5JKly6t3r17a8iQIUZHAQAAAAAAyNIodiLD3LlzR9OnT9e8efN0+fJlde3aVZcvX5YUX+BMYDab1aBBAy1dutSoqBnuww8/1I4dO7Rz506jowAAAAAAAGRZLGNHhvHz89Off/6prVu3atGiRRowYIC6dOmimTNnJmkbGxurHDlyGJDSOEuWLNHEiRN14MCBbHfvAAAAAAAAaYFiJzLEzZs3VaRIEe3evVu1atWSFF/c8/f315tvvqnx48crV65ciouLk41N9pxwbDab5e3trU6dOundd981Og4AAAAAAECWQ7ETGaJPnz76448/tHXrVsXGxsrGxkYxMTGaMGGCpk2bpo8++kh+fn5GxzTc77//rqZNm+ro0aMqUKCA0XEAAAAAAACyFIqdyBBRUVG6d++eXFxckpwbMWKEZs6cqSlTpqh3794GpMtc/P39FR0drdmzZxsdBQAAAAAAIEuh2AnDJCxZv3nzpvz9/bVhwwZt2bJFnp6eRkcz1O3bt1WhQgWtW7dO1atXNzoOAAAAAABAlpE9N0dEppCwN6eLi4vmz58vT09POTo6GpzKeC+88IKCgoLk7+8vfhcBAAAAAACQcszshOESZnjevXtXefPmNTpOphAbGysvLy+99957evPNN42OAwAAAAAAkCVQ7ESGSng4kSSZTCaD02Rue/fu1X/+8x9FRERQBAYAAAAAAEgBlrEjQw0ePFiLFi2i0JkCderUUfPmzRUUFGR0FAAAAAAAgCyBmZ3IMJcuXZKHh4eOHj2qIkWKGB0nS7h69ao8PDy0c+dOlS9f3ug4AAAAAAAAmRrFTmQYf39/OTg4aMqUKUZHyVKmTp2q9evXa/369cyIBQAAAAAAeAKKncgQ58+fl6enpyIiIlSoUCGj42Qp0dHR8vT01Pjx49W2bVuj4wAAAABAhrt7966uXbum6Ohoo6MAWZqdnZ0KFSpk1c8GodiJDPG///1Pzs7OmjhxotFRsqQtW7aoV69eOnLkiHLlymV0HAAAAADIMHfv3tXVq1fl5uamXLlyseINeEZms1l///23Ll68qMKFC1ttwZNiJ9LdmTNnVKNGDR0/flwuLi5Gx8myOnTooCpVqmj06NFGRwEAAACADHPy5EkVLVpUjo6ORkcBrMLDhw916dIllS5d2ugo6YKnsSPdjRs3Tu+++y6Fzuf08ccfa8aMGTp79qzRUQAAAAAgw0RHR7PCDUhDuXLlsuotISh2Il2dOnVKK1eu1KBBg4yOkuWVKFFC7733nt5//32jowAAAABAhmLpOpB2rP3riWIn0tXYsWPl7++vF154wegoVuGDDz7Qr7/+qi1bthgdBQAAAAAAINOxNToArNcff/yhdevW6eTJk0ZHsRq5cuVSSEiI/P39FR4eLjs7O6MjAQAAAAAAZBrM7ES6GTt2rAYOHKh8+fIZHcWqtGnTRi+++KJmzZpldBQAAAAAwDPw9fVVsWLFkj0XGhoqk8mkzZs3Z3CqtJNwD6GhoUZHSeTr66uSJUsaHQMZgGIn0sXRo0e1efNm+fv7Gx3F6phMJk2fPl0TJkzQ1atXjY4DAAAAAACQaVDsRLoICAjQ+++/rzx58hgdxSqVL19evr6+GjZsmNFRAAAAAABIN7GxsYqJiTE6BrIQip1Ic7///rt27typvn37Gh3Fqo0aNUobN27Unj17jI4CAAAAAEgnJUuWVPfu3bVkyRJVqFBBTk5Oqlmzpnbt2pXiMebOnauqVasqZ86cKlCggHr27Klbt24lnp83b55MJpNWrlyZeCw2NlavvPKK3N3dde/ePUnxE5tMJpMOHTokb29vOTo6ytXVVaNHj1ZcXNwTM5jNZk2dOlXlypWTvb29XF1d1a9fP929e9einclk0ogRIzRx4kSVKlVK9vb2OnTokCTpxo0b6tOnj9zc3OTg4KDy5ctrzpw5Sa61ZcsWVa9eXTlz5pS7u7s+//zzFH9WyPp4QBHSXEBAgIYMGSInJyejo1i1vHnzauLEifL399fevXtlY8PvLgAAAADAGu3cuVN//PGHgoKClDNnTo0aNUqtWrXSmTNn5Ozs/MS+w4YN08cff6z33ntPH330kS5evKiRI0fq8OHD2r17t3LkyCE/Pz9t3LhRfn5+qlWrltzc3BQUFKSwsDDt2rUryarNtm3b6u2339bw4cO1YcMGBQUFycbGRgEBAY/NMWLECAUHB6tv375q3bq1jh49qlGjRik8PFzbt2+3+Jl2wYIFeumllzRlyhQ5OTmpaNGiunv3rurVq6e///5bAQEBKlWqlDZs2KA+ffooMjIycRu9iIgItWjRQjVr1tSSJUsUGRmpgIAA3b9/Xzly5Hj2vwRkGRQ7kaZ+/fVX7d27V998843RUbKF7t27a/bs2friiy/k5+dndBwAAAAAQDq4e/euDh48qBdeeEGSVKRIEdWqVUvr1q1T165dH9vvzJkz+uijjzRmzBiNHj068XjZsmVVv359rV69Wm3btpUkzZkzR1WrVlX37t0VEBCgcePGKSgoSHXq1Ekybq9evRK3VWvevLnu3r2rjz/+WAMGDEi2+Hrr1i2FhISoR48eiQ/b9fHxUcGCBfXmm29qzZo1ev311xPbm81mbdy4Ubly5Uo8FhQUpLNnz+rQoUMqU6aMJKlp06b666+/FBgYqD59+sjW1lbjxo1Tnjx5tHHjxsRJWC+//LLc3d1VtGjRlH3gyNKYCoY0NWbMGA0bNsziGxLSj8lk0syZMzVy5Ejdvn3b6DgAAAAAgHRQt27dxEKnJFWuXFmSdO7cOUnxxcGYmJjEV2xsrCRp06ZNiouLU7du3SzO16lTR3nz5tWOHTsSx3R2dtbixYu1c+dO+fj4qEGDBho6dGiyeTp16mTxvnPnzrp//74OHz6cbPs9e/YoMjJS3bt3T9LP1tZW27dvtzj+6quvJqkrrF+/XnXq1FGpUqUs7sXHx0c3b97U0aNHJUlhYWFq0aKFxWrTF198UfXq1Us2G6wPxU6kmV9++UUHDx5Ur169jI6SrVSvXl1t27bVmDFjjI4CAAAAAEgBW1vbxILkvyUct7X9/4tx8+fPb9HGwcFBkvTo0SNJ0sKFC2VnZ5f4cnd3lyRdu3ZNklS6dGmL83Z2drp7965u3rxpMa6Xl5fKlSunyMhI9e/f/7HbpRUuXDjZ9xcvXky2fcL+oK6urhbHbW1t5eLiYrF/aHLtEu5lx44dSe6jY8eOkpR4L5cvX06SL7nMsF4sY0eaGTNmjEaMGKGcOXMaHSXbGT9+vCpUqCA/Pz9VqVLF6DgAAABIQ7GxsTpw4ICuX78us9msF154QbVq1ZK9vb3R0QA8o0KFCunGjRuKiopK8rV86dIlSakrzrVu3Vr79u1LfJ9QDHVxcZEkbdy40WJmaIKE8wkCAwN14sQJValSRQMHDpS3t7fy5cuXpN/Vq1f10ksvWbyXJDc3t2TzJRRrr1y5okqVKiUej4mJ0c2bN5PkMJlMyWYtVKiQpk+fnuw1ypUrJym+UJqQ59+ZkT1Q7ESa2L17tyIiIvTjjz8aHSVbcnFxUUBAgPz9/RUaGprsfxgAAACQtVy/fl07d+6UyWRSnTp1VL16dZlMJt2+fVvr169XVFSU6tSpoxdffNHoqABSydvbW8HBwVq1apU6dOhgce6HH36Qq6trYvEuJVxcXJIUDCWpWbNmsrGx0blz59SsWbMnjrFz505NmDBBwcHBeuONN1S1alX16dNHixcvTtL2+++/T9yzU5KWLFmi3Llzy8PDI9mxvby85ODgoCVLlqhJkyaJx7/77jvFxMSoYcOGT73HV199VTNnzlTx4sVVqFChx7arW7eu1q1bpwcPHiQuZT9//rx+/vln9uzMJih2Ik2MHj1aI0eO5LfLBnrnnXc0Z84cfffdd+rcubPRcQAAAPActmzZIrPZrLZt2yZZRlqgQAG9/vrrMpvN2rNnjw4cOJD4gBEAWUPTpk3VrFkz+fr66tixY6pTp47u3bunJUuW6Mcff9SXX3752CXkqeHu7q6hQ4eqX79++uOPP9SwYUPlzJlT58+f16ZNm+Tn5ydvb2/dvn1b3bp1k7e3twYPHiyTyaQ5c+aoU6dO8vHxUY8ePSzGnTt3ruLi4lSrVi1t2LBB8+bNU0BAwGOfDJ8/f34NGjRIwcHBcnJyUosWLRQREaGRI0eqfv36atmy5VPvZeDAgfruu+/UoEEDDRw4UOXKldODBw907Ngx7dy5M3Hy1ciRI7V06VI1b95cH3zwgaKiojRmzBiWsWcjFDvx3LZv367Tp08n+eaHjJUjRw7NnDlTXbt2VatWrZQ7d26jIwEAAOAZrF+/XqVLl1bp0qWf2M5kMqlu3bq6cuWKli5dmrhvHYDMz2QyadWqVRo3bpy++uorBQUFyd7eXp6enlq5cqXatGmTZteaMGGCKlSooE8++USffPKJTCaTXnzxRTVp0iTxqea9e/fW33//ra+++ipxpWDHjh3Vs2dP9evXT/Xq1bP4nvTjjz/K399fQUFBypcvn0aOHKlRo0Y9Mcf48eNVsGBBzZ49W59++qlcXFz01ltvKTg4OEWF3Xz58mn37t0aO3asJk2apIsXL8rZ2VnlypVT+/btE9tVqFBB69at0wcffKA33nhDbm5uGjp0qMLCwhQaGvoMnyCyGpPZbDYbHQJZl9lsVqNGjfT2229T7MwkunXrphIlSmjChAlGRwEAAEAq7d+/Xzlz5nzsUtDHOXfunE6ePKnGjRunUzLAOBEREapQoYLRMSApICBAgYGBio6OtniAErIea/664mnseC7btm3T5cuX1a1bN6Oj4P9MnjxZc+bM0cmTJ42OAgAAgFQ6c+ZMqgudklS8eHHdvn1bzGUBAGR3FDvxzMxms0aNGqUxY8bwG51MxM3NTR988IEGDBhgdBQAAACkwqlTp+Tu7v7M/b28vLRnz540TAQAQNZDsRPPbOPGjbp9+zYPw8mEBgwYoOPHj2vt2rVGRwEAAEAKhYeHq1q1as/c383NTZcuXUrDRABgKSAgQGazmQlPyNQoduKZmM1mjR49WgEBAcqRI4fRcfAvDg4Omj59ugYMGKDIyEij4wAAACAF7OzsnnsMe3v7NEgCAEDWRbETz2TdunV6+PChOnToYHQUPMZrr72mChUqKCQkxOgoAAAASIG02G+TPTsBANkdxU6kWsKszsDAQNnY8E8oM5s6daqmTJmiCxcuGB0FAAAAT2EymTLFGAAAZGVUqpBqP/74o8xms9q1a2d0FDyFu7u7+vTpow8++MDoKAAAAHiK6Ojo556ZGRUVlUZpAADImih2IlXi4uI0ZswYBQYG8lvjLGL48OH6+eeftX37dqOjAAAA4Alq1Kih/fv3P3P/M2fOqFixYmmYCACArIdiJ1Jl+fLlsre3V6tWrYyOghRycnLSlClT5O/vr5iYGKPjAAAA4DFKlCihs2fPPnP/Tz/9VJMnT1ZEREQapgKsjNksXd8tHZsmHQqK//P67vjjAKwCxU6kWGxsrMaMGaOxY8cyqzOL6dixowoUKKDZs2cbHQUAAABP4O7uroMHD6a6359//qmmTZuqTp06atiwoXx9fXX69Ol0SAhkUXHR0onZ0ip3aVtz6eBQ6dCY+D+3NY8/fmJ2fDsAWRrFTqTY999/r3z58unVV181OgpSyWQyacaMGQoMDNT169eNjgMAAIDHqFatmq5fv65jx46luM+FCxcUHh6u5s2ba8iQITpx4oRKlCihmjV6rEGuAAAgAElEQVRrql+/frp8+XI6JgaygOj70pbG0q/vSw9OSzEPpLgoSeb4P2MexB//9X1pS5P49ulswYIFMplMyb42b96c7tf/p+XLl2vatGlJjm/evFkmk0m7du3K0DzA86LYiRSJiYlRQEAAszqzMA8PD3Xt2lUjRowwOgoAAACeoFmzZrp69arWrVv3xG2I4uLiFBoaqvDwcIuHh+bLl0+BgYE6duyYHBwcVKlSJQ0dOlQ3b97MiPhA5hIXLYW+Jt3cJ8U+fHLb2IfSzV+k0BYZNsNz6dKlCgsLs3jVrl07Q66d4HHFztq1ayssLExVq1bN0DzA87I1OgAyl0uXLum3335TbGysTCaTihcvrqpVq+rbb79V4cKF1aRJE6Mj4jkEBgaqfPny6t27t2rWrGl0HAAAADxGw4YNdefOHa1evVqxsbHy9PRU4cKFZWNjoxs3bujAgQMym81q0KCBChUqlOwYBQsW1Mcff6yBAwcqKChI5cqVU//+/TVgwADlyZMng+8IMMip+dKtX6W4yJS1j4uUbh2QTn0hlXknfbNJ8vT0VOnSpVPUNjIyUg4ODumc6P/LmzevvLy80mQss9ms6Oho2dvbp8l4wJMwsxMym83atWuXfvjhB509e1Y+Pj56/fXX1apVK+XOnVtLly7V7Nmz9eGHHzKrM4tzdnbW+PHj5e/vr7i4OKPjAAAA4Any5cundu3aqX379nr06JH279+vsLAw3bp1S23atFH79u0fW+j8p2LFiunzzz/Xnj179Mcff6h06dKaOnWqHj16lAF3ARjIbJaOTn76jM5/i30Y38/AhxYlLCFfuXKl3n77bRUoUEBubm6J59etW6c6deooV65ccnZ2Vrt27XTixAmLMerXr69GjRpp48aNqlatmhwdHeXh4aFVq1Yltunevbu++eYbnT17NnEZfULx9XHL2JctW6Y6derI0dFRzs7O6tSpky5cuGDRplixYvL19dXcuXNVrlw52dvba8OGDWn9MQHJotiZzd27d08LFixQ6dKl1b59e9WtW1e2tvETfk0mk9zd3dWxY0dt2bJF9+/f19GjRw1OjOf13//+V7Gxsfr666+NjgIAAIAUMJlM8vDwkLe3t5o2bapq1aopR44cqR6ndOnSWrRokTZv3qzt27erTJkymjt3rqKjeSALrNSNMCny2rP1jbwa3z+dxcbGKiYmJvEVGxtrcb5v376ytbXVN998o/nz50uS1qxZo1atWumFF17Q999/r08++UTh4eGqX7++rly5YtH/+PHjGjRokAYPHqzly5ercOHCat++feIDzAIDA+Xj46MiRYokLqNftmzZY/POmjVLnTp1UuXKlfXDDz9o9uzZCg8PV6NGjXT/vuVep5s2bUp8dsT69etVqVKltPjIgKdiGXs29uDBAy1fvlw9evSQjc2T6945c+ZUhw4dFBoaqri4OHl4eGRQSqQ1GxsbzZw5U+3atVPbtm2VL18+oyMBAAAgA1WuXFkrV67U3r17NWLECE2aNEljx45V586dn/pzAZBpHBgg3T745DYPL0gxqZzVmSDmoRT2luRY7PFtXvCUaiTd6zI1ypcvb/G+Xr16FjMpX375Zc2ZM8eizciRI1W2bFmtXbs28RcfderUUfny5RUSEqLJkycntr1x44Z27dqll156SZJUtWpVFS1aVEuXLtWQIUPk7u6uAgUKyMHB4alL1u/evavhw4fLz8/PIlOtWrVUvnx5LViwQP369Us8fufOHf32228pmoEOpCX+S5aNrVixQt27d0/V/6Fp1KiRTp06pb/++isdkyG91alTR6+++qrGjh1rdBQAAAAYpE6dOtq8ebPmzJmjGTNmyNPTU6tWrZLZwKW7QJoyx0p61n/P5v/rn75WrFihffv2Jb4SZm8m+OfDx6T4gmN4eLg6d+5sMcO7dOnS8vLy0vbt2y3aly9fPrHQKUmurq4qUKCAzp07l+qsP//8s+7fv69u3bpZzEYtUaKEypQpox07dli0f/nllyl0whDM7MymTpw4ocqVKz/T8pdWrVppzZo1atOmTTokQ0YJDg6Wh4eH/Pz8VKFCBaPjAAAAwCCNGzdWWFiY1qxZoxEjRmjChAmaMGGCGjdubHQ04PFSMqPy2DTp4FApLir149s4SOUGSOX7p75vKnh4eDzxAUWurq4W72/dupXscUkqUqSIwsPDLY7lz58/STsHB4dn2rP32rX4LQEaNWqUoqzJZQQyAsXObOr3339X+/btn6lvjhw5FBsbK7PZzAOLsrDChQtrxIgReu+997Rx40b+LgEAALIxk8mk1q1bq2XLlvruu+/0zjvvqESJEho/frzq1KljdDzg2bjUlmzsnrHYaSu51Er7TKn075/TEoqX/96bM+GYi4tLumVJGPvrr79OsvxekvLkyWPxnp8xYRSWsWdD0dHRsre3f64x6tWrp927d6dRIhilb9++unTpklasWGF0FAAAAGQCNjY26tKli44ePao33nhDHTp0UJs2bXTo0CGjowGpV6Cu5PCMy6hzFo7vn8nkzZtXnp6e+v777xUXF5d4/M8//9SePXvUsGHDVI/p4OCgv//++6nt6tevLycnJ506dUo1a9ZM8ipXrlyqrw2kB4qd2dD169efezp54cKFE6fPI+uys7PTzJkzNWjQID18+IwbdwMAAMDq2NnZqVevXjpx4oS8vb3VrFkzdevWTSdPnjQ6GpByJpNUcYiUwzF1/XI4ShWGxPfPhIKCghQREaHWrVtrzZo1Wrx4sZo3by4XFxcNHDgw1eNVrFhR165d05w5c7Rv3z4dPnw42XbOzs6aNGmSxo0bpz59+mjVqlUKDQ3VN998Iz8/P3333XfPe2tAmqDYmQ3dv39fTk5Ozz0OG5dbh8aNG6tWrVoWT+wDAAAAJClnzpwaMGCATpw4oQoVKsjLy0vvvPOOLly4YHQ0IGXce0r5q8fvwZkSNg5S/hqS+9vpm+s5tGrVSqtXr9aNGzfUoUMH9enTR5UrV9auXbtUpEiRVI/Xu3dvderUSUOHDlXt2rXVtm3bx7bt27evVqxYoYiICHXr1k0tWrRQQECAzGazqlat+jy3BaQZk5mKVbZz5coVnTt3TrVr136ucVavXq3WrVunUSoY6dy5c6pWrZoOHDigkiVLGh0HAAAAmdStW7c0efJkzZ07Vz169NDw4cNVsGBBo2PBykVERDzfQ1Wj70uhLaRbB6TYJ6xoy+EYX+hstE6yy/3s1wOygOf+usrEmNmZDRUoUECXL19+rjHOnDmjokWLplEiGK148eIaOHCgBg0aZHQUAAAAZGL58+fXxIkTdfjwYUVFRal8+fIaPXq07ty5Y3Q04PHscktNtkjVQySnlyRbp/+b6WmK/9PWScr9Uvz5JlsodAJZHMXObMjW1lbR0dHPtQz9wIEDql69ehqmgtEGDx6s8PBwbdq0yegoAAAAyORcXV01a9YsHThwQOfPn1eZMmU0efJk9oFH5mVjJ5V5R3r9pOS9UfKcJFUZG/+n9yap9cn48zZ2RicF8JwodmZTXl5e2rNnzzP1jYyMlL29vUyZdLNmPJucOXNq6tSpeu+99xQVFWV0HAAAAGQBJUuW1Jdffqnt27dr3759Kl26tD755BP+/yQyL5NJKviyVL6/5DEy/s+CdTPtw4gApB7FzmyqWLFiOn36tB49epTqvitXrlSTJk3SIRWM1rp1a5UsWVIzZ840OgoAAACykAoVKmjp0qVavXq11qxZo3LlymnhwoWKjY01OhoAIJuh2JmNdezYUYsXL1ZkZGSK+6xevVpeXl5ydHRMx2Qwislk0vTp0xUcHPzc+7oCAAAg+6lRo4Z++uknLVy4UPPmzVPlypX1ww8/PNcWWgAApAbFzmzMzs5Ob775ppYtW6bff//9iW2vXr2qRYsWydPTUyVKlMighDBC2bJl1bNnTw0bNszoKAAAAFmWr6+vTCaTxo0bZ3E8NDRUJpNJN27cMChZvAULFih37vR7CMsrr7yiHTt2KCQkROPHj1etWrW0YcMGip4AgHRHsTObs7OzU7du3RQbG6sWLVpo1apVOn36tG7duqULFy5o586d+uGHH3T8+HF169ZNL774otGRkQFGjhypLVu2aPfu3UZHAQAAyLJy5sypyZMn6/r160ZHMYTJZNKrr76q/fv3a9iwYRowYIAaNWqkXbt2GR0NAGDFKHZCkvTbb7/Jzs5OTZs21f3793XkyBFdu3ZN5cuXV/v27dWgQQMeSJSN5MmTR5MmTZK/vz/7LAEAADwjb29vlSxZUkFBQY9tc/ToUbVs2VJ58uRRoUKF1KVLF125ciXx/L59+9S8eXMVKFBAefPmVf369RUWFmYxhslk0meffaY2bdrI0dFRZcuW1bZt23ThwgX5+PjIyclJnp6e+vXXXyXFzy7973//qwcPHshkMslkMikgICBdPgNJsrGxUYcOHXTo0CH997//Vffu3dWiRYvEPAAApCWKnZAkzZ8/Xz179pSjo6MqV66sBg0aqHr16ipYsKDR0WCQrl27ytHRUfPnzzc6CgAAQJZkY2OjiRMnavbs2Tp16lSS85cvX9Yrr7wiDw8P/fLLL9q8ebPu37+v119/XXFxcZKke/fu6c0339TOnTv1yy+/yNPTUy1atEiyDH7cuHHq3LmzwsPDVbNmTXXp0kU9e/bUu+++q99++01FixaVr6+vJOnll1/WtGnT5OjoqMuXL+vy5csaPHhwun8etra28vX11R9//KGWLVuqVatW6tSpk44dO5bu1wYSmc3S7t3StGlSUFD8n7t3xx8HYBVMZjZNyfYiIiLUuHFjnTt3TnZ2dkbHQSZy8OBB+fj4KCIiQvnz5zc6DgAAQJbh6+urGzduaM2aNfL29lbhwoW1ZMkShYaGytvbW9evX9eMGTP0888/a8uWLYn9bt++rfz582vv3r2qXbt2knHNZrOKFi2qjz76SN27d5cUP7Nz2LBhCg4OliQdPnxYlStX1scff6xBgwZJksV1CxQooAULFqhfv366f/9+BnwayXvw4IFmzZqlKVOmqHXr1hozZgzPB0CyIiIiVKFChecbJDpamj9fmjxZunYt/n10tGRnF/8qVEgaMkTq2TP+PWDl0uTrKpNiZif05Zdf6q233qLQiSQ8PT3Vvn17jR492ugoAAAAWdbkyZO1dOlS7d+/3+L4gQMHtGPHDuXOnTvxlbBHfsJM0GvXrumdd95R2bJllS9fPuXJk0fXrl3TuXPnLMaqUqVK4v8uXLiwJKly5cpJjl27di3tb/AZOTk5aejQoTpx4oTc3NxUvXp1+fv7WyzjB9LE/ftS48bS++9Lp09LDx5IUVHxszmjouLfnz4df75Jk/j2GSAsLEydOnVS0aJFZW9vLxcXFzVr1kwLFy7MstuJrVy5UiEhIUmOJzycLTQ0NE2uk7AFR3KvlStXpsk1/i2t7yG9xgTFzmwvOjpaX331ld5++22joyCTCgoK0tKlSxUeHm50FAAAgCypVq1aat++vYYOHWpxPC4uTi1bttTBgwctXidOnFCrVq0kST169NC+ffs0depU7d69WwcPHlSxYsUUFRVlMdY/Jy4k7LWf3LGE5fGZibOzs4KCghQRESE7OztVqlRJw4cP161bt4yOBmsQHS299pq0b5/08OGT2z58KP3yi9SiRXy/dDRt2jTVq1dPt27d0qRJk7R582Z98cUXKlu2rPr06aM1a9ak6/XTy+OKnenB19dXYWFhSV4NGzbMkOunherVqyssLEzVq1c3OopVsTU6AIy1du1alSlTRuXKlTM6CjIpFxcXBQYGyt/fX9u3b+dBVQAAAM9gwoQJqlixotavX594rHr16vr+++9VokSJx66y2rVrl2bMmKGWLVtKkq5evarLly8/dx57e/tMN3OsUKFCCgkJ0cCBAxUUFKSyZctq4MCB6t+/v3Lnzm10PGRV8+dLv/4qRUamrH1kpHTggPTFF9I776RLpB07dmjQoEHq16+fZsyYYXGuTZs2GjRokB48ePDc14mOjpatrW2yP8NFRkbKwcHhua9hJDc3N3l5eRkd45nExsbKbDYrb968WfYeMjNmdmZz8+fPZ1YnnqpXr166f/++lixZYnQUAACALKl06dLq3bu3pk+fnnisb9++unPnjt544w3t3btXf/75pzZv3qzevXvr3r17kqSyZctq0aJFOnr0qPbt26fOnTvL3t7+ufOULFlSjx490qZNm3Tjxg09fNqMtwz04osvas6cOQoLC9ORI0dUunRpTZ8+XY8ePTI6GrIaszl+j87U/vt++DC+Xzo94mTixInKnz+/Jk+enOx5d3f3xK0pAgICki1W+vr6qmTJkonvz5w5I5PJpE8//VRDhgxR0aJF5eDgoL/++ksLFiyQyWTSjh071LFjRzk7O6tOnTqJfbdv364mTZooT548cnJyko+Pjw4fPmxxvUaNGql+/fravHmzqlevLkdHR3l4eFgsGff19dXChQt18eLFxCXl/8z4T/369VPhwoUV/a8ZtPfv31eePHk0fPjwJ36GKTFv3rwky9pjY2P1yiuvyN3dPfH7bMJnfOjQIXl7e8vR0VGurq4aPXr0U2fDm81mTZ06VeXKlZO9vb1cXV3Vr18/3b1716KdyWTSiBEjNHHiRJUqVUr29vY6dOhQssvYU/JZJ/j2229Vvnx55cyZU5UrV9aqVavUqFEjNWrU6Nk/OCtAsTMbu3Tpknbt2qWOHTsaHQWZXI4cOTRz5kx98MEHhm5iDwAAkJWNHj1atrb/f3Fd0aJF9fPPP8vGxkavvvqqKlWqpL59+8rBwSFxxtUXX3yh+/fvq0aNGurcubPefvvtxxYPUuPll1/W//73P3Xp0kUFCxZ8bNHFSGXKlNHixYu1YcMGbdmyRWXLltW8efMUExNjdDRkFWFh8Q8jehZXr8b3T2OxsbEKDQ1V8+bNlTNnzjQff/z48Tp+/LjmzJmjFStWWFyjW7duKlWqlJYtW6aJEydKil/t2aRJE+XOnVuLFi3S4sWLde/ePTVo0EDnz5+3GPvUqVPq37+/Bg0apOXLl8vV1VUdOnTQyZMnJUmjRo1SixYtVLBgwcQl5StWrEg257vvvqtr164lOf/NN9/owYMH6tWr11Pv1Ww2KyYmJskrgZ+fnzp27Cg/Pz9dvHhRUvw2bWFhYVq8eLHy5MljMV7btm3VtGlTrVy5Ul27dlVQUJDGjh37xAwjRozQoEGD1KxZM61evVpDhgzRggUL1LJlyySF0gULFmjt2rWaMmWK1q5dq6JFiz523Kd91pK0adMmdevWTeXLl9cPP/ygwYMHa8CAATp+/PhTPzurZ0a2FRwcbPbz8zM6BrKQ7t27m4cNG2Z0DAAAAGRDYWFhZm9vb3OZMmXM3377rTk2NtboSMggR48eTXqwf3+zuWHDJ7/c3c1mk8lsjp+jmbqXyRTf/0nj9++f6nu5cuWKWVKKf64aM2aMObnSTY8ePcwlSpRIfH/69GmzJHO1atXMcXFxFm2//PJLsyTzgAEDkozj7u5ubty4scWxO3fumF1cXMz9/3F/DRs2NNva2pqPHz+eeOzq1atmGxsb8/jx4y1yubm5JbnOtm3bzJLM27Ztsxjz39euVq2a2cfHJ0n/f5P02Nf169cT292+fdtcvHhxc6NGjcyhoaHmHDlymCdMmGAxVsJnHBwcbHHcz8/PnDt3bvPt27eTvYebN2+aHRwczD169LDo9/XXX5slmX/88UeLvK6uruaHDx+m6HNJyWddt25dc6VKlSz+vg8cOGCWZG7YsOFTP8Nkv66sBDM7s7Fhw4Zp7ty5RsdAFjJ58mTNnTtXJ06cMDoKAAAAshkvLy9t3bpVn332maZOnapq1appzZo1MqfTUmNYgdjYZ1+KbjbH989i2rZt+9jnLLRr187i/YkTJ3Tq1Cl169bNYmako6Oj6tatqx07dli0L1OmjMqUKZP4vlChQipUqJDOnTv3TFnfffddbdu2LfHny3379um3337TOyncK/Xtt9/Wvn37krycnZ0T2zg7O2vx4sXauXOnfHx81KBBgyQPi0vQqVMni/edO3fW/fv3kyzpT7Bnzx5FRkaqe/fuSfrZ2tpq+/btFsdfffVV5cqVK0X39rTPOjY2Vvv371f79u0t/r6rV6+uUqVKpega1owHFAFIMVdXVw0dOlQDBgzQ2rVrjY4DAACAbKhJkybas2ePVq1apeHDh2v8+PGaMGGCvL29U9Q/Li5ONjbM+8nypk1LWZuhQ6WoqNSP7+AgDRgg9e+f+r5P4OLioly5cuns2bNpOm4CV1fXFJ+79n9L/Hv27KmePXsmaV+8eHGL9/nz50/SxsHB4Zn3023Xrp2KFCmizz//XFOmTNHs2bNVtGhRtW7dOkX9XV1dVbNmzae28/LyUrly5XT06FH179//sV//hQsXTvZ9whL4f7t161Zijn+ytbWVi4tL4vl/5k2pp33WN27cUHR0tAoVKpSk3b/vIzviOzyAVOnfv79OnTqlNWvWGB0FAAAA2ZTJZFKbNm108OBB9evXT35+furSpcsTZ3leuXJFU6dOla+vr0aPHp3kwSiwQrVrS3Z2z9bX1laqVStt8yi+ENaoUSNt2rRJkSl4QnzCnptR/yrY3rx5M9n2j5vVmdw5FxcXSVJwcHCyMyRXr1791HzPw87OTn5+flqwYIGuXbumJUuWqGfPnhZ7G6eFwMBAnThxQlWqVNHAgQN1586dZNtdvXo12fdubm7Jtk8oSF65csXieExMjG7evJn4+SZ40t9NahUoUEB2dnaJBet/+vd9ZEcUOwGkir29vaZPn64BAwbwREwAAAAYKkeOHOrWrZuOHTumkJCQx7aLi4vTu+++q2nTpqlIkSLaunWr3NzctHTpUkliKby1qltXSmbmW4oULhzfPx0MGzZMN2/e1AcffJDs+dOnT+v333+XJJUoUUKSLJZS//XXX9q9e/dz5yhXrpxKliypI0eOqGbNmkleCU+ETw0HBwf9/fffKW7/zjvv6M6dO+rYsaMiIyNT9GCi1Ni5c6cmTJig8ePHa/Xq1frrr7/Up0+fZNt+//33Fu+XLFmi3Llzy8PDI9n2Xl5ecnBw0JIlSyyOf/fdd4qJiVHDhg3T5iaSkSNHDtWsWVM//PCDxfevAwcO6PTp0+l23ayCZewAUs3Hx0ceHh4KCQnRhx9+aHQcAAAAZHN2dnZPXCJ66dIlHT16VCNHjkwspkyaNEmzZs1Sy5Yt5ejomFFRkZFMJmnIEOn996WHD1Pez9Exvl8azsT7p1deeUUhISEaNGiQIiIi5Ovrq+LFi+v27dvasmWL5s2bp8WLF6tKlSp67bXXlC9fPvXq1UuBgYGKjIzU5MmTlTt37ufOYTKZ9Mknn6hNmzaKiopSp06dVKBAAV29elW7d+9W8eLFNWjQoFSNWbFiRd26dUufffaZatasqZw5c6py5cqPbe/m5qbWrVtrxYoVat26tV588cUUX+vixYvas2dPkuMlSpSQq6urbt++rW7dusnb21uDBw+WyWTSnDlz1KlTJ/n4+KhHjx4W/ebOnau4uDjVqlVLGzZs0Lx58xQQEGCxB+g/5c+fX4MGDVJwcLCcnJzUokULRUREaOTIkapfv75atmyZ4nt5FoGBgWrevLnatWun3r1768aNGwoICFCRIkWy/VYd2fvu8VS+vr5q1arVc4/j4eGhgICA5w+ETCMkJEQhISE6f/680VEAAACAJ0rY2++fRYvixYvr1KlTCg8PlxS/9HT+/PlGRUR66dlTql49fg/OlHBwkGrUkN5+O11jDRgwQLt27ZKzs7MGDx6sxo0by9fXVxEREfr8888T9610dnbWmjVrZGNjo06dOmn48OHy9/dP8R61T9OiRQvt2LFDDx48kJ+fn3x8fDRkyBBduXJFdZ9hZqufn586d+6sDz/8ULVr107R/psdO3aUpBQ/mCjBggULVLdu3SSvb775RpLUu3dv/f333/rqq68Sl5B37NhRPXv2VL9+/XTy5EmL8X788Udt2rRJr7/+uhYtWqSRI0dq1KhRT8wwfvx4hYSE6KefflKrVq00ceJEvfXWW1q7dm26FxybNWumb775RhEREWrXrp0mTZqkjz/+WEWKFFG+fPnS9dqZncnMfP0sLTQ09Inf5Bo1aqRt27Y98/h37tyR2Wx+7G8yUsrD4/+xd99RUV3v18D30JsNsSAIRpAiiNhFbGAhNqyUBAtqopGIGlRUYhQLqFHsmq9KswPW2INgB4wNOwYlNkZEiQ0QYRjm/cOf84bYEbgMsz9rzVLunHvvHpYIPPOcc2wxaNAgFjwrmRkzZiA1NfWttn0iIiIioorizz//xNKlS5Gamork5GSMHTsW7u7umDp1KlRUVLBu3TpYWloiOTkZrVu3Rr169RAUFPTWDssknJSUFFhbW5f8Ajk5QM+ewPnzH+7w1NF5Xeg8cAAohc5J+jReXl5ISEjA33//LUhHYmBgIGbNmgWJRFLq64WWt/T0dJibm+Pnn3/+aKH2i7+uKjB2diq4du3aISMj463HmjVrIBKJ4OPjU6LrFhYWQiaToVq1al9c6KTKa+rUqUhKSsKxY8eEjkJERERE9Ja8vDw4OzujXr16WLp0Kfbs2YM//vgDkyZNQteuXTFv3jxYWloCAJo1awaJRILJkyfDz88PZmZmOHDggMCvgEqFnh4QHw8sXgw0bAjo6r7u4BSJXv+pq/v6+OLFr8ex0FkuTp8+jf/973+Ijo6Gn5+f0k+9/lx5eXkYM2YMduzYgePHjyMiIgLdunWDjo4OvvvuO6HjCYr/khSchoYG6tatW+zx9OlTTJ48GQEBAfJ2cLFYDE9PT9SoUQM1atRAr169cPPmTfl1AgMDYWtri8jISJiZmUFTUxO5ublvTWPv3C9L3UQAACAASURBVLkzfHx8EBAQAAMDA9SuXRuTJk1CUVGRfMyjR4/Qt29faGtrw9TUFOHh4eX3CaFypaOjg5CQEPj6+qKwsFDoOERERERExWzduhW2trYICAhAhw4d0Lt3b6xatQoPHjzA6NGj4ejoCOD1BkVvHmPHjkV6ejr69OmD3r1746effsLLz1nvkSomdXVg9Gjg1i0gNhZYsACYPfv1n4cPvz4+enTJd2+nz+bg4IDJkydj2LBhJW7UUmaqqqp4+PAhxo4di27dusHPzw+NGjXCiRMnPriGsTJgsbOSefbsGfr164dOnTphzpw5AICXL1/CyckJWlpaOH78OJKSkmBoaIiuXbsW+6Z9+/ZtbNmyBdu2bcOlS5egpaX1znts3rwZampqSExMxMqVK7F06VJER0fLn/f29satW7cQFxeH3bt3Y8OGDbhz506Zvm4SzsCBA1G7dm2sXr1a6ChERERERMVIJBJkZGTgxYsX8mNGRkaoXr06zp8/Lz8mEokgEonkuxrHx8fj1q1bsLS0hJOTEzcwqkxEIqBdO2D8eGD69Nd/OjiU2WZE9H4ymQzZ2dkICwsTdPp4YGAgZDKZwk1h19DQwK5du5CRkYGCggI8ffoUe/bsee/u8cqExc5KpKioCN9++y1UVVWxadMm+QK8UVFRkMlkiIiIgJ2dHaysrLBmzRrk5ORg37598vMLCgqwceNGNG/eHLa2tu/9Qm/cuDFmz54NCwsLuLu7w8nJCfHx8QCA1NRUHDx4EGvXroWjoyOaNWuG9evXIy8vr+w/ASQIkUiE5cuXY86cOXj06JHQcYiIiIiI5Dp16oS6deti4cKFEIvFuHr1KrZu3Yr09HQ0atQIwOuCy5uZalKpFCdPnsTQoUPx/Plz7NixA66urkK+BCIi+kyKVbamDwoICEBSUhLOnDmDqlWryo+fP38et2/fRpUqVYqNf/nyJdLS0uQfGxsbo06dOh+9j52dXbGP69WrJy9ypaSkQEVFBa1bt5Y/b2pqinr16pXoNZFisLGxweDBgxEQEIDQ0FCh4xARERERAQCsrKwQERGBMWPGoGXLlqhZsyZevXoFf39/WFpaoqioCCoqKvJGkSVLlmDFihXo2LEjlixZAhMTE8hkMvnzRERU8bHYWUlER0dj0aJF2L9/v/wdyjeKiopgb2//zh2z9fX15X/X1dX9pHup/2cNE5FIJH8n9M20D1I+gYGBsLKywtmzZ9GqVSuh4xARERERAXj9xvyJEydw8eJF3Lt3Dy1atEDt2rUBvN6YVUNDA0+ePEFERARmz54Nb29vLFy4ENra2gDAQicRkYJhsbMSuHjxIkaMGIH58+fDxcXlreebN2+OrVu3wsDAoMx3Vre2tkZRURHOnj2Ldu3aAQDu3buHBw8elOl9SXjVqlVDcHAwxo4di6SkJO6kR0REREQVir29Pezt7QFA3qyhoaEBAJgwYQL279+P6dOnY9y4cdDW1pZ3fRIRkWLh/9wKLisrC/369UPnzp0xePBgPHz48K2Hl5cX6tSpg759++L48eO4ffs2Tpw4gYkTJxbbkb00WFpa4uuvv8bo0aORlJSEixcvwtvbW/6uKFVuw4YNg0gkwoULF4SOQkRERET0Xm+KmHfv3kXHjh2xa9cuzJ49G1OnTpVvRvTfQidnsRERKQZ2diq4/fv34+7du7h79y4MDQ3fOUYmk+HEiROYOnUq3Nzc8Pz5c9SrVw9OTk6oUaNGqWeKjIzE999/D2dnZxgYGGDmzJncuEZJqKio4OTJkwq3ix0RERERKSdTU1OMGTMGJiYmcHR0BIAPdnT6+vpi7NixsLS0LM+YVIpkMhnS09MhFouRn58PTU1NGBkZwdjYmEsWEFUSIhnfniIiIiIiIiL6oMLCQixcuBCLFy+Gq6srZsyYAVNTU6FjKYWUlBRYW1t/0TWkUimSk5ORkJCA3NxcFBUVQSqVQlVVFSoqKtDV1YWjoyOaNWsGVVXVUkpOVHGVxtdVRcVp7EQkmPz8fKEjEBERERF9EjU1NUybNg03b96EoaEhmjdvjvHjxyMzM1PoaPQRBQUF2LBhA2JjY/Hs2TNIJBJIpVIAr4ugEokEz549Q2xsLDZs2ICCgoIyzxQZGQmRSPTOR1ntteHt7Y0GDRqUybVLSiQSITAwUOgYVMmw2ElE5a6oqAjx8fFYvnw5Hj58KHQcIiIiIqJPVr16dcydOxfXr1+HSCRC48aN8fPPP+Pp06dCR6N3kEql2Lx5M8RiMSQSyQfHSiQSiMVibN68WV4MLWvbtm1DUlJSsUdcXFy53JuosmKxk4jKnYqKCl6+fIljx45hwoQJQschIiIiIvpsderUwdKlS5GcnIzMzExYWFhg3rx5yM3NFToa/UtycjIyMjI+uXgplUqRkZGB5OTkMk72mr29Pdq2bVvs0bJly3K595fgLD2qyFjsJKJy9WZKSJ8+fTBw4EDExMTg8OHDAqciIiIiIioZExMThIaG4tSpU7h06RLMzc2xfPlyFoMqAJlMhoSEhI92dP6XRCJBQkIChNzipKioCJ07d0aDBg3w/Plz+fErV65AW1sbkydPlh9r0KABBg8ejHXr1sHc3BxaWlpo3rw5jh49+tH7ZGRkYOjQoTAwMICmpibs7OywadOmYmPeTLk/ceIE3NzcUL16dbRp00b+/PHjx9GlSxdUqVIFurq6cHFxwdWrV4tdQyqVYvr06TA0NISOjg46d+6Ma9eulfTTQ/RBLHYSUbkoLCwEAGhoaKCwsBATJ06En58fHB0dP/uHDyIiIiKiisbS0hJRUVE4ePAgDh8+DAsLC4SHh8t/Dqbyl56eXuJO29zcXKSnp5dyordJpVIUFhYWexQVFUFFRQWbNm1CdnY2Ro8eDQDIy8uDp6cnbGxsEBQUVOw6x48fx+LFixEUFISoqChoamqiR48e+Ouvv95779zcXHTq1AkHDx5EcHAwdu/ejSZNmmDIkCFYu3btW+O9vLzw1VdfYfv27Zg/fz4AYP/+/ejSpQv09PSwadMmbNmyBdnZ2ejQoQPu378vPzcwMBDBwcHw8vLC7t270b17d7i6upbGp5DoLWpCB6CyER0djXXr1nGtDxJUWloaioqK0KhRI6ipvf7vZv369QgICICWlhZ++eUXuLq6wszMTOCkRERERESlw97eHnv37kViYiICAgKwYMECzJkzB4MGDYKKCvuNSsuhQ4c+uv7/ixcvStxYIZFIsGvXLlStWvW9Y+rWrYuvv/66RNd/w8rK6q1jvXr1wr59+2BsbIzQ0FAMGDAALi4uSEpKwt27d3HhwgVoaGgUOyczMxMJCQkwMTEBAHTp0gWmpqaYO3cuNm7c+M57R0RE4ObNmzh69Cg6d+4MAOjRowcyMzMxffp0jBw5stjO9IMGDcKvv/5a7Brjx49Hp06d8Pvvv8uPOTk5oWHDhggJCcHSpUvx9OlTLFmyBKNGjcKiRYsAAN27d4eqqiqmTp36+Z80oo9gsbOSCgsLw8iRI4WOQUpu8+bN2Lp1K1JSUpCcnAxfX19cvXoV3377LYYNG4amTZtCS0tL6JhERERERKWuXbt2OHr0KOLi4hAQEIDg4GAEBQWhZ8+eEIlEQsdTCkVFRYKe/yl27doFY2PjYsf+vRt7//79MXr0aIwZMwb5+fkIDw+HhYXFW9dp27atvNAJAFWqVEGvXr2QlJT03nufOHECRkZG8kLnG4MHD8bw4cNx/fp1NGnSpFiWf7t58ybS0tIQEBBQrINZR0cHDg4OOHHiBIDXU+9zc3Ph7u5e7HxPT08WO6lMsNhZCb18+RIFBQXo16+f0FFIyU2bNg0hISFo0aIFbt68iXbt2mHDhg1o37499PX1i4199uwZLl26hE6dOgmUloiIiIiodIlEInTr1g1du3bF7t27MWXKFAQHByM4OJg/936hT+moPH36NOLi4kq0s7qqqqp8w6CyZGtrC3Nz8w+OGTZsGNasWYPatWvj22+/feeYOnXqvPOYWCx+73WfPHkCQ0PDt47XrVtX/vy//Xfso0ePAAAjR458Z7PVm+JrRkbGOzO+KzNRaWAPfSWkra2No0ePQltbW+gopOTU1dWxevVqJCcnY8qUKVizZg1cXV3fKnQeOnQIP/30EwYMGID4+HiB0hIRERERlQ2RSIT+/fvj0qVLGDNmDIYPHw4XFxecO3dO6GiVmpGRUYmXDlBRUYGRkVEpJ/p8L1++xIgRI2Bra4vnz5+/txMyMzPzncc+9Br09fXfuRTAm2M1a9Ysdvy/Hclvnp83bx7Onj371mPv3r0A/n+R9L8Z35WZqDSw2FkJiUQiTougCsPLywuNGzdGamoqTE1NAUC+q+HDhw8xe/Zs/Pzzz/jnn39ga2uLoUOHChmXiIiIiKjMqKqqYvDgwbhx4wb69++Pvn37YuDAgbh+/brQ0SolY2Nj6OrqluhcPT29t6aXC2H8+PEQi8X4/fff8euvv2LZsmU4dOjQW+NOnz5dbEOg7Oxs7N+/Hw4ODu+9dqdOnZCeno6EhIRix7ds2YLatWvD2tr6g9ksLS3RoEEDXLt2DS1btnzrYWdnBwCws7ODrq4uYmJiip0fFRX10ddPVBKcxk5EZS48PByjR4+GWCyGkZGRvBhfVFQEqVSK1NRUREZGokmTJrC0tERgYCACAwOFDU1EREREVEY0NDTwww8/YNiwYVi1ahWcnJzg4uKCwMBANGzYUOh4lYZIJIKjoyNiY2M/a6MidXV1tGvXrlyaiC5evIisrKy3jrds2RK///47QkNDsXHjRjRs2BDjxo1DbGwsvL29cfnyZdSuXVs+vk6dOujevTsCAwOhqamJBQsWIDc3F7/88st77+3t7Y1ly5ZhwIABCAoKgrGxMTZv3ozDhw9jzZo1xTYneheRSIRVq1ahb9++KCgogLu7OwwMDJCZmYnExESYmJjAz88P1atXx08//YSgoCBUqVIF3bt3x9mzZxEWFlbyTxzRB7Czk4jKXOvWrbF9+3ZUrVpVvkg1ANSrVw9jx45Fq1atEB0dDQBYtGgRgoKC8PTpU6HiEhERERGVC21tbUyaNAk3b96EmZkZWrVqBR8fHzx48EDoaJVGs2bNYGho+NHC3RuqqqowNDREs2bNyjjZa25ubnBwcHjrkZGRge+//x5eXl4YPHiwfHxERAREIhG8vb3lM+aA112aEydOREBAADw8PPDq1SscPHjwnZsZvaGrq4vjx4+je/fumDp1Kvr27YtLly5h48aNGDVq1Cfl79mzJ06cOIHc3Fx89913cHFxgb+/Px4+fFisqzQwMBABAQHYuHEjXF1dERsbK5/mTlTaRLJ/f3UQEZURmUyG7777DlKpFKGhoVBVVZW/UxoVFYWQkBAcOHAAtWrVgp+fH3r27ImuXbsKnJqIiIiIqPxkZWVhwYIFCA8Px8iRIzFlypS31k1URikpKR+dUv0hBQUF2Lx5MzIyMj7Y4amurg5DQ0N4eXlBQ0OjxPcrbw0aNED79u2xadMmoaOQAvnSr6uKjJ2dCkomk4F1alIkIpEILVu2xJkzZ1BYWAiRSCTfFfHRo0eQyWTQ09MDAISEhLDQSURERERKx8DAAAsXLsTly5eRnZ0NS0tLzJo1Cy9evBA6mkLT0NDA0KFD0b17d1SvXh3q6uryTk9VVVWoq6ujRo0a6N69O4YOHapQhU4iehs7OysJmUwGkUgk/5OoojI3N8eQIUPg6+sLfX19iMVi9OnTB/r6+jh06BDU1LiUMBERERERAKSlpSEwMBCxsbHw9/eHj48PtLW1hY5V7kqzA00mkyE9PR1isRgFBQXQ0NCAkZERjI2NFfZ3aXZ2UklU5s5OFjsV0Lx58/Ds2TMsWLBA6ChEny0hIQFjxoyBrq4u6tevj9OnT8PIyAiRkZGwtLSUj5NKpUhMTESdOnU+uM4MEREREVFld/XqVcyYMQNnzpzBL7/8ghEjRkBdXV3oWOWmMhdliIRSmb+uOI1dAa1cuRLm5ubyj/fv34/ffvsNS5YswdGjR1FYWChgOqIPc3R0RGhoKBwcHPD48WOMGDECixcvhoWFRbGlGW7fvo3Nmzdj6tSpKCgoEDAxEREREZGwbG1tsXPnTuzatQs7duyAtbU1Nm3aJF8WioiI/j92diqYpKQkdOnSBU+ePIGamhomTZqEDRs2QFtbGwYGBlBTU8PMmTPh6uoqdFSiT1JUVAQVlXe/73Ls2DH4+fmhZcuWWLt2bTknIyIiIiKqmI4ePYqff/4ZL168wNy5c9G3b1+FnYL9KSpzBxqRUCrz1xU7OxXMwoUL4enpCS0tLcTExODo0aNYtWoVxGIxNm/ejEaNGsHLywsPHz4UOirRBxUVFQGAvND53/ddpFIpHj58iNu3b2Pv3r1clJ2IiIiI6P84OTkhISEBCxYsQGBgINq2bYu4uDhuYktEBBY7FU5iYiIuXbqEPXv2YMWKFRg6dCi++eYbAK+nNsyfPx9fffUVLly4IHBSog97U+TMzMwEgGLvRJ8/fx59+vSBl5cXPDw8cO7cOVStWlWQnEREREREFZFIJEKvXr1w4cIF+Pn5wcfHB126dEFSUpLQ0YiIBMVipwLJycmBn58fLC0t4e/vj1u3bsHe3l7+vFQqRd26daGiosJ1O0kh3LlzBz4+Prh58yYAQCwWY+LEiXB0dMTz589x6tQp/O9//4ORkZHASYmIiIiIKiYVFRV4eHjg+vXr8mYBV1dXXL58WehoRESC4JqdCuT69eto3LgxxGIxzpw5gzt37qBbt26wtbWVjzlx4gR69uyJnJwcAZMSfbrWrVvDwMAAgwYNQmBgICQSCebOnYuRI0cKHY2IiIiISOG8evUKa9euRXBwMJycnDBr1ixYWFgIHeuLlObagjKZDEnpSTgjPoPs/GxU0ayC1kat4WDsUKnXPSX6r8q8ZieLnQri/v37aNWqFVasWAE3NzcAgEQiAQCoq6sDAC5evIjAwEBUr14dkZGRQkUl+ixpaWnyndj9/Pwwffp0VK9eXehYREREREQKLScnB8uXL8eSJUvQr18/zJgxA/Xr1xc6VomURlFGIpUgLDkMvyb8ike5jyApkkAilUBdVR3qKuqorVsb/o7+GNlsJNRV1UspOVHFVZmLnZzGriAWLlyIR48ewdvbG3PmzEF2djbU1dWL7WJ948YNiEQiTJs2TcCkRJ/HzMwM06ZNg4mJCYKDg1noJCIiIiIqBXp6eggICEBqaipq1aoFe3t7/PTTT3j06JHQ0cpdTkEOnDc4Y2LsRNx+dhu5klwUSAsggwwF0gLkSnJx+9ltTIydiC4buiCnoGxnSkZGRkIkEr3zERcXBwCIi4uDSCTCqVOnyizH4MGDYW5u/tFxDx8+hK+vLywsLKCtrQ0DAwO0aNEC48ePlzdhfapbt25BJBJh06ZNn533yJEjCAwMLNVrUuXEYqeCiIiIQHx8PAIDA7Fu3Tps2LABAKCqqiof4+npiR07dsDS0lKomEQlMnfuXKSnp8v/XRMRERERUemoUaMGgoODce3aNUilUlhbW+OXX37Bs2fPhI5WLiRSCXps7oGz4rN4KXn5wbEvJS9xRnwGPTf3hET6eUW8kti2bRuSkpKKPVq3bg3g9XJfSUlJaNq0aZnn+JBnz56hdevWOHjwIPz8/HDgwAGsWbMGPXr0wJ49e5Cfn19uWY4cOYJZs2a9dbx+/fpISkrC119/XW5ZqGJTEzoAfdzOnTuhq6sLJycnNG3aFJmZmRg3bhwuX76MOXPmoHbt2igsLIRIJCpW/CRSJMeOHUN+fj5kMhnXyiEiIiIiKmV169bF8uXLMXHiRMyePRsWFhbw8/ODr68vdHV1hY5XZsKSw3Ah4wLypZ9WlMuX5uN8xnmEJ4djdMvRZZrN3t7+vZ2VVatWRdu2bcv0/p8iJiYG9+/fx9WrV2FjYyM/PnDgQMyZM6dC/O6mqalZIT5XVHGws1MBLF68GN7e3gAAfX19LFq0CKtXr8Yff/yBhQsXAgDU1NRY6CSF1r59e3Tp0qVCfLMkIiIiIqqsTE1NERYWhhMnTiA5ORmNGjXCypUry7VDr7zIZDL8mvDrRzs6/+ul5CV+TfgVQm5x8q5p7O3bt0fnzp0RGxuLZs2aQUdHB7a2ttizZ0+xc1NTUzF48GA0aNAA2traMDMzw48//liibt4nT54AeF0s/6///u5WUFCAgIAAmJqaQkNDAw0aNMCMGTM+OtW9ffv26Nq161vHjY2N8d133wEApk+fjqCgIPl9RSIR1NRe9++9bxr7+vXrYWdnB01NTdSqVQvDhg1DZmbmW/fw9vbG5s2bYWVlBV1dXbRq1QqJiYkfzEwVG4udFdyLFy+QlJSEUaNGAQCkUikAYOTIkfD398eqVavQp08f3LlzR8CUREREREREpEisrKwQHR2N/fv34+DBg7C0tERkZCQKCws/+RovXrzA7t27sWfPHvlj586dSEtLK8Pkny4pPQmPcku2RmlmbiaS0pNKOVFxUqkUhYWF8seb3/c/JDU1FX5+fpg0aRJ27tyJOnXqYODAgbh9+7Z8jFgshqmpKZYtW4Y//vgDP//8M/744w/07t37szO+mVbv7u6O2NhY5Obmvnfs4MGDsXDhQgwfPhz79u3D0KFDERwcjJEjR372ff/rhx9+kDeBvZnyn5CQ8N7xq1evhre3N5o0aYLdu3cjKCgI+/fvR+fOnfHyZfHi99GjR7F8+XIEBQUhKioKBQUF6N27N168ePHFuUkYnMZewVWtWhWPHz+Gvr4+gP+/Rqeamhp8fHxQq1Yt+Pv7Y9y4cYiKioKOjo6QcYlKzZt3UdnpSURERERUdpo1a4b9+/cjISEBAQEBWLBgAWbPno2BAwcW2xD33+7cuYNz586hSpUq6NWrF9TVi+9efuHCBWzfvh1GRkZwcHAok9wTDk3AxYcXPzgm/UX6Z3d1vvFS8hJDdw2FcVXj946xr2uPpV8vLdH1gdcF539zdHT86IZEWVlZOHXqFBo2bAgAaNq0KerVq4dt27bB398fAODk5AQnJyf5Oe3atUPDhg3h5OSEK1euoEmTJp+c0dnZGTNmzEBwcDCOHDkCVVVVNGvWDH369MGECRNQtWpVAMClS5ewbds2zJkzB9OnTwcAdO/eHSoqKpg1axamTp2Kxo0bf/J9/8vY2BhGRkYA8NEp64WFhZg5cya6dOmCzZs3y49bWFjAyckJkZGR8PHxkR/PyclBbGwsqlWrBgCoVasWHBwccOjQIbi7u5c4MwmHnZ0K4E2h813c3NywePFiZGVlsdBJlUpRURFatWqFI0eOCB2FiIiIiKjSc3R0xLFjx7Bs2TIsWLAALVu2xMGDB9+ayn3hwgWkpaVh0KBBcHFxeavQCQDNmzfHoEGDYGBggF27dpXXS3iLtEgKGUo2FV0GGaRFH++0/BK7du3C2bNn5Y+wsLCPnmNlZSUvdAKAoaEhDAwMcO/ePfmx/Px8zJ07F1ZWVtDW1oa6urq8+PnXX399ds5Zs2bh7t27WLduHQYPHozHjx9j5syZsLW1xePHjwEAx48fB/C6u/Pf3nz85vnycP36dWRlZb2VpXPnzjAyMnori6Ojo7zQCUBeDP7355QUCzs7K4H+/fujc+fOQscgKlWqqqoICAjAuHHjkJyc/M4fooiIiIiIqPSIRCJ0794d3bp1w65duzBx4kQEBwcjODgYHTp0wLVr15Cbm4suXbp80vUaNWoEXV1d7N27F3369CnVrJ/SUbn09FJMiZuCAmnBZ19fU1UTE9pOwPi240sS75PY2tq+d4Oi93lXM5SmpiZevXol/9jf3x+//fYbAgMD0bZtW1SpUgV3796Fm5tbsXGfo169evjuu+/ka2guW7YMEyZMQEhICObPny9f29PQ0LDYeW/W+nzzfHl4X5Y3ef6b5b+fU01NTQAo8eeKhMfOzkqiRo0aQkcgKnX9+/eHoaEhVq9eLXQUIiIiIiKlIRKJMGDAAFy5cgXff/89hg4diq+//hqnT59Ghw4dPuta9erVg7GxMVJSUsoo7fu1NmoNdZWSNU2oqaihlVGrUk5UPqKiojBixAgEBATA2dkZrVq1Kta5WBrGjx+PqlWr4vr16wD+f8Hw4cOHxca9+bhmzZrvvZaWlhYKCooXpGUyGZ4+fVqibO/L8ubYh7JQ5cBip4IRcjc4ovImEomwfPlyzJ07F48elWxhcSIiIiIiKhlVVVUMHToUf/31F5o3b46ePXuW6DrNmjWTF8XKk4OxA2rr1i7RuXX06sDBuGzWGy1reXl5b82Mi4iIKNG1MjIy3rlxUnp6OrKzs+Xdk506dQLwutD6b2/WzOzYseN772Fqaoq//vqr2OZYR48efWsjoTcdl3l5eR/M3LhxYxgYGLyV5fjx4xCLxfKsVHmx2KlAbt68iZCQEBY8SalYW1tj6NChmDZtmtBRiIiIiIiUkoaGBlq0aPHOacGfSldXFzk5OaWY6uNEIhH8Hf2ho/55+1voqOvAv52/wm6W6uLigvDwcPz222+IjY3F999/jzNnzpToWuvXr0fDhg0xa9YsHDx4EMeOHcPatWvh7OwMLS0t+UY/TZs2hZubG3755RfMmTMHhw8fRmBgIObOnYshQ4Z8cHMiT09PPHr0CCNGjEBcXBzWrFmDH3/8EVWqVCk27s01Fi1ahD///BPnz59/5/XU1NQwa9YsHDp0CMOGDcOhQ4cQGhoKNzc3WFlZYdiwYSX6XJDiYLFTgYSHhyMjI0Nh/8MlKqmZM2fi4MGDJf4GTUREREREJZebmyvfdbuknJ2dceLEiVJK9OlGNhuJ5obNoamq+UnjNVU10cKwBUY0G1HGycrO6tWr0atXL0ybNg0eHh549epVsV3JP0efPn3Qv39/7Nq1C15eXujWrRsCAwNhb2+PxMRENG3aVD522Ua2lgAAIABJREFU06ZNmDRpEkJDQ9GzZ09ERkZi2rRpH914qVu3bli1ahUSExPRp08fbNy4EVu2bHnr31zfvn0xevRoLF++HA4ODmjTps17r+nj44PIyEgkJyejb9++mDp1Knr06IFjx45xc2clIJKxTVAhFBYWwsTEBHFxcR98R4Soslq/fj1WrVqF06dPQ0WF79MQEREREZWXu3fv4vnz57Czs/ui65R0o6KUlBRYW1uX+L45BTnoubknzmecx0vJy/eO01HXQQvDFjjgdQB6Gnolvh+RIvjSr6uKjBUDBXHo0CGYmpqy0ElKa8iQIVBVVUVkZKTQUYiIiIiIlEphYSFUVVW/+DpC9Vrpaeghfmg8FndfjIbVG0JXXReaqpoQQQRNVU3oquuiYY2GWNx9MeKHxrPQSaTg1IQOQJ8mLCwMI0eOFDoGkWBUVFSwcuVK9O7dGwMGDED16tWFjkREREREpBT09fVx5cqVL7qG0JNK1VXVMbrlaIxqMQpJ6Uk4Kz6L7IJsVNGogtZGrdHWuC2XjCOqJDiNXQFkZmbC0tIS9+7d++J1UogU3ahRo6Cjo4OlS5cKHYWIiIiISGns2LEDAwcOLPH5iYmJaNCgAerVq/fZ51bm6bZEQqnMX1ecxq4ANm7ciP79+7PQSQQgKCgIW7ZswdWrV4WOQkRERESkNLS0tJCXl1fi8x88eFCiQicR0edisbOCk8lknMJO9C+1atXCjBkzMG7cOMGnwhARERERKYsuXbogLi6uROeKxWIYGhqWciIiondjsbOCS0pKQlFRERwdHYWOQlRh/PDDD8jKysL27duFjkJEREREpBS0tLSgp6eH1NTUzzrv1atXiIuLQ7t27b7o/mx0ICo9lf3ricXOCi4sLAwjRozgQslE/6KmpoYVK1Zg4sSJyM3NFToOEREREZFScHJyQlpaGlJSUj5pfHZ2NrZu3Ypvv/32i36nVVdX/6Ip9ERUXF5eHtTV1YWOUWa4QVEFlpOTg/r16yMlJQV169YVOg5RhfPNN9/AzMwMc+fOFToKEREREZHSSExMhFgsRps2bWBiYvLW87m5uVi9ejWMjIzg6ekJFZUv67N68eIFMjMzYWRkBG1tbTYDEZWQTCZDXl4exGIx6tSpU2n3hlETOgC9X0xMDDp27MhCJ9F7LFy4EE2bNsXw4cNhZmYmdBwiIiIiIqXQrl07yGQynD17FmfOnIGGhob8ucLCQmhra+PGjRt4+vTpFxc6AcgLMg8ePIBEIvni6xEpM3V19Upd6ATY2VmhOTo6YsqUKXB1dRU6ClGFNW/ePCQlJWHPnj1CRyEiIiIiov9z7949NGvWDCkpKahdu7bQcYhIibDYWUGlpKTA2dkZ9+7dq9TrKBB9qfz8fNja2mL58uXo0aOH0HGIiIiIiOj/+Pr6QkNDAyEhIUJHISIlwmJnBeXv7w+RSIQFCxYIHYWowtu/fz9++uknXLlyBZqamkLHISIiIiIiABkZGbCxscHVq1dRr149oeMQkZJgsbMCkkgkqF+/Po4fPw5LS0uh4xAphN69e6NDhw6YMmWK0FGIiIiIiOj/TJo0Ca9evcLKlSuFjkJESoLFzgpo9+7dCAkJwcmTJ4WOQqQwbt26hbZt2+LSpUswMjISOg4REREREQF4/PgxrKyscOHCBZiamgodh4iUwJdvi0alLiwsDCNGjBA6BpFCMTc3x6hRo+Dv7y90FCIiIiIi+j+1atXCDz/8gLlz5wodhYiUBDs7K5gHDx7AxsYG9+/fh56entBxiBRKTk4OrK2tsWXLFnTo0EHoOEREREREBODJkyewsLDA6dOnYW5uLnQcIqrk2NlZwWzYsAGDBg1ioZOoBPT09LBw4UL4+vpCKpUKHYeIiIiIiADo6+tj3LhxmD17ttBRiEgJsLOzApHJZLC0tMSGDRvQtm1boeMQKSSZTAYnJye4u7vDx8dH6DhEREREREREVI7Y2VmBnDx5EmpqamjTpo3QUYgUlkgkwvLlyxEYGIisrCyh4xARERERERFROWKxswIJDw/HyJEjIRKJhI5CpNDs7Ozg4eGB6dOnCx2FiIiIiIiIiMoRp7FXEC9evICJiQlSU1NRu3ZtoeMQKbynT5/C2toaBw4cQPPmzYWOQ0RERERERETlgJ2dFURUVBS6dOnCQidRKalRowbmzJkDX19f8D0dIiIiIiIiIuXAYmcFER4ejhEjRggdg6hSGTFiBPLz87Fp0yahoxARERERKb3AwEDY2toKHYOIKjlOY68Arl27hu7du+Pu3btQU1MTOg5RpXL69GkMHDgQKSkpqFq1qtBxiIiIiIgUire3N7KysrBv374vvlZOTg7y8/NRs2bNUkhGRPRu7OysAMLCwuDt7c1CJ1EZaNu2Lbp164Y5c+YIHYWIiIiISKnp6emx0ElEZY7FToEVFBRg06ZNGD58uNBRiCqt+fPnIyIiAjdu3BA6ChERERGRwjp79iy6d+8OAwMDVK1aFe3bt0dSUlKxMWvWrIGFhQW0tLRQq1YtuLi4oLCwEACnsRNR+WCxU2B79+5F48aNYW5uLnQUokqrbt26CAgIwPjx47lZERERERFRCWVnZ2PIkCE4efIkzpw5A3t7e/Ts2RNZWVkAgHPnzuHHH3/EzJkz8ddffyEuLg5ff/21wKmJSNmw2CmwsLAwjBw5UugYRJWer68v7t+/j99//13oKERERERECsnZ2RlDhgyBtbU1rKyssGLFCmhpaeHQoUMAgHv37kFXVxeurq4wNTVF06ZN8dNPP3HJNiIqVyx2Cig9PV2+eQoRlS11dXUsX74cfn5+yMvLEzoOEREREZHCefToEUaPHg0LCwtUq1YNVapUwaNHj3Dv3j0AQLdu3WBqaoqvvvoKXl5eWL9+PbKzswVOTUTKhsVOAUVGRsLd3R06OjpCRyFSCl27dkXz5s2xcOFCoaMQERERESmcYcOG4ezZs1iyZAkSExNx8eJFGBsbo6CgAABQpUoVXLhwATExMTAxMcG8efNgZWWFBw8eCJyciJQJi53lRCKR4NGjR3jw4AHy8vJQVFSEiIgITmEnKmchISFYvnw57t69K3QUIiIiIiKFcurUKfj6+qJXr16wsbFBlSpVkJGRUWyMmpoanJ2dMW/ePFy+fBm5ubnYt2/fJ12/qKioLGITkZLhwhllSCaT4fTp0xCLxdDW1kbNmjWhpqaGq1ev4vbt26hbty7s7OyEjkmkVExNTTFu3DhMnDgR27dvFzoOEREREZHCsLCwwKZNm9CmTRvk5ubC398fGhoa8uf37duHtLQ0dOzYEfr6+jh69Ciys7NhbW39Sdfftm0bPDw8yio+ESkJFjvLyM2bN3Hu3Dm0b98eDg4O7xzz7bff4uDBg9DX10fHjh3LOSGR8po8eTJsbGwQHx+PLl26CB2HiIiIiEghhIeHY9SoUWjRogXq1auHwMBAPH78WP589erVsXv3bsyePRsvX76EmZkZQkND0aFDh0+6/syZMzFw4EBuaEREX0Qkk8lkQoeobK5evYrMzMxPLqLcuHED9+7dQ/fu3cs4GRG9sXv3bgQEBODSpUtQV1cXOg4RERERkdLr2LEjvvvuOwwdOlToKESkwLhmZykTi8W4f//+Z3WLWVlZwcjICElJSWWYjIj+rW/fvqhfvz5WrlwpdBQiIiIiIgIwd+5cBAYGQiKRCB2FiBQYi52l7PTp0+jRo8dnn2djY4MHDx6AjbZE5UMkEmHZsmUIDg5GZmam0HGIiIiIiJRex44dYWZmhoiICKGjEJECY7GzFOXm5kJbW7vE57ds2RJnz54txURE9CFWVlbw9vbG1KlThY5CREREREQA5syZg7lz5+LVq1dCRyEiBcViZyk6cuTIF212Ympqirt375ZiIiL6mF9++QWxsbE4ffq00FGIiIiIiJRe27ZtYWdnh3Xr1gkdhYgUFIudpUgmk0FTU/OLrqGlpVVKaYjoU1StWhXz58+Hr68vioqKhI5DRERERKT0Zs+ejXnz5uHly5dCRyEiBcRiZwXDNTuJyt/gwYOhoaGB8PBwoaMQERERESm95s2bw8HBAatXrxY6ChEpIBY7S5FIJKoQ1yCizyMSibBixQpMnz4dT58+FToOEREREZHSmzVrFhYuXIjs7GyhoxCRgmGxsxQVFhZ+8TW4CDORMJo3b45+/fph5syZQkchIiIiIlJ6tra26NKlC5YvXy50FCJSMCIZ502XmrS0NLx48QLNmjUr0fmvXr1CmzZtYGNjA09PT7i4uHzxGqBE9On++ecfWFtbIz4+Hk2aNBE6DhERERGRUktNTYWjoyNu3ryJ6tWrCx2HiBQEOztLkZmZGdLS0kp8fnx8PPbs2YMOHTogJCQEhoaG8Pb2xqFDhyCRSEoxKRG9S82aNREYGAhfX1+un0tEREREJDALCwv07t0bixcvFjoKESkQFjtLmaGhYYkKnnl5ecjLy4OpqSnGjBmD48eP48qVK2jWrBlmzZqFevXqYdSoUYiPj4dUKi2D5EQEAKNHj8azZ88QExMjdBQiIiIiIqU3Y8YMrFq1CllZWUJHISIFwWnsZWDHjh1o37496tSp80njJRIJNm3ahCFDhkBNTe2dY+7evYuYmBhER0cjPT0dgwYNgoeHBxwdHaGiwpo1UWk6efIkvLy8kJKSAl1dXaHjEBEREREptTFjxqBq1apYsGCB0FGISAGw2FkGZDIZfv/9dzRq1Ag2NjYfHJuVlYW9e/fim2++gZaW1idd/9atW4iOjkZ0dDSePHkCd3d3eHh4oHXr1tzNnaiUeHl5oUGDBggKChI6ChERERGRUktPT0fTpk1x7do11K1bV+g4RFTBsdhZhi5fvozU1FRUr14dnTt3Lta1ef78edy5cwf6+vro1KlTibszr1+/Li985ufnw8PDAx4eHrC3t2fhk+gLiMViNG3aFKdPn4a5ubnQcYiIiIiIlNqECRMAAEuXLhU4CRFVdCx2loNnz57h5MmTyM7ORmhoKCZMmIAmTZrgq6++KrV7yGQyXL58GVFRUYiOjoaamho8PT3h4eHx0e5SInq3BQsW4NSpU9i7d6/QUYiIiIiIlNrDhw9hY2ODS5cuwdjYWOg4RFSBsdhZjp4/fw4TExM8f/68TO8jk8lw7tw5REVFISYmBtWqVZN3fFpYWJTpvYkqk/z8fDRp0gRLly5Fz549hY5DRERERKTUpkyZghcvXuC3334TOgoRVWAsdpaj/Px8VK1aFfn5+eV2z6KiIiQlJSE6Ohrbtm2DoaGhvPDZoEGDcstBpKgOHjyIcePG4erVq9DU1BQ6DhERERGR0srKyoKlpSXOnTtXqjMliahyYbGzHMlkMqiqqkIikUBVVbXc7y+VSnHixAlER0djx44dMDMzg4eHB9zc3DgNgOgDXF1d0a5dO0ydOlXoKERERERESm3GjBlIT09HeHi40FGIqIJisbOcaWtr459//oGOjo6gOSQSCY4cOYLo6Gjs3r0btra28PDwwKBBg1CnTh1BsxFVNGlpaWjTpg0uXboEIyMjoeMQERERESmtZ8+eoVGjRkhISOAybUT0Tix2ljN9fX3cunUL+vr6QkeRy8/PR2xsLKKjo7Fv3z60bNkSHh4eGDBgAGrWrCl0PKIKYfr06fj777+xZcsWoaMQERERESm1oKAgXL9+HZs3bxY6ChFVQCx2lrN69erh7NmzFbY7LC8vDwcOHEB0dDT++OMPtGvXDp6enujXrx+qVasmdDwiweTm5sLa2hqbNm1Cx44dhY5DRERERKS0srOzYW5ujvj4eNja2godh4gqGBWhAygbLS0tvHr1SugY76WtrY2BAwciJiYGYrEYw4YNw65du2BiYoK+ffti69atyMnJETomUbnT1dXFokWL4Ovri8LCQqHjEBEREREprSpVqmDy5MkIDAwUOgoRVUAsdpYzbW3tCl3s/Dc9PT14enpi9+7duHfvHgYOHIiNGzfCyMgIbm5u2L59O/Ly8oSOSVRu3NzcULNmTaxZs0boKERERERESs3HxweJiYlITk4WOgoRVTCcxk6f7Z9//sGuXbsQFRWFc+fOoVevXvDw8ICLiws0NTWFjkdUpq5evQpnZ2dcv34dBgYGQschIiIiIlJaK1asQGxsLPbu3St0FCKqQFjspC+SmZmJHTt2IDo6GleuXEHfvn3h4eGBLl26QF1dXeh4RGVi/PjxePXqFTs8iYiIiIgElJ+fj0aNGiEmJgZt27YVOg4RVRAsdlKpEYvF2LZtG6Kjo3Hr1i0MGDAAHh4e6NSpE1RVVYWOR1Rqnj17BisrK+zbtw8tW7YUOg4RERERkdJau3Yttm/fjtjYWKGjEFEFwWInlYk7d+4gJiYG0dHREIvFcHNzg4eHB9q1awcVFS4VS4ovLCwMoaGhSEhI4L9pIiIiIiKBSCQSWFlZISIiAh07dhQ6DhFVACx2Upm7efMmoqOjER0djWfPnsHNzQ2enp5o1aoVRCKR0PGISqSoqAht27bFjz/+iGHDhgkdh4iIiIhIaa1fvx5hYWE4fvw4f8ckIhY7FUHv3r1hYGCAyMhIoaN8sWvXrskLnxKJBO7u7vDw8IC9vT2/KZHC+fPPP9G/f3+kpKSgWrVqQschIiIiIlJKhYWFsLW1xYoVK9CtWzeh4xCRwDj38gskJydDVVUVjo6OQkdRGDY2Npg9ezZu3LiBnTt3AgAGDBgAKysrzJgxA9evXxc4IdGna9OmDb7++mvMnj1b6ChEREREREpLTU0NgYGB+OWXX8B+LiJisfMLrFu3Dj4+Prh69SpSUlI+OFYikZRTKsUgEolgb2+P+fPn4++//8bGjRuRm5uL7t27o0mTJpg7dy5u3rwpdEyij5o3bx42bNjw0f8DiIiIiIio7Li7uyM3Nxf79+8XOgoRCYzFzhLKy8vDli1b8P3332PQoEEICwuTP3fnzh2IRCJs3boVzs7O0NbWxpo1a/DPP//gm2++gbGxMbS1tWFjY4OIiIhi13358iW8vb2hp6eHOnXqIDg4uLxfWrkTiURo3bo1QkJCcO/ePfz222/IzMxEhw4d0KJFC/z666+4c+eO0DGJ3qlOnTr4+eefMW7cOL6LTEREREQkEBUVFcyePRszZsxAUVGR0HGISEAsdpbQ9u3bYWpqCjs7OwwZMgQbNmx4q3tz2rRp8PHxwfXr19GvXz+8evUKzZs3x759+3Dt2jWMHz8eo0ePRnx8vPycSZMm4fDhw9ixYwfi4+ORnJyMEydOlPfLE4yKigrat2+PFStWQCwWY+HChUhLS0OrVq3Qtm1bLF26FGKxWOiYRMX8+OOPePDgAXbt2iV0FCIiIiIipdWvXz+IRCL+XE6k5LhBUQl16tQJffr0waRJkyCTyfDVV18hJCQEAwcOxJ07d/DVV19h0aJFmDhx4gev4+npCT09PYSGhiInJwc1a9ZEeHg4vLy8AAA5OTkwNjZGv379KsUGRSUlkUhw5MgRREVF4ffff4etrS08PDwwaNAg1KlTR+h4RDhy5AhGjBiB69evQ0dHR+g4RERERERK6cCBA5g8eTIuX74MVVVVoeMQkQDY2VkCt27dQkJCAr799lsAr6dhe3l5ITQ0tNi4li1bFvtYKpUiKCgIdnZ2qFmzJvT09LBz507cu3cPAJCWloaCggI4ODjIz9HT00OTJk3K+BVVfOrq6nBxcUFERAQyMjIwadIkJCYmwtLSEl27dkVoaCiePHkidExSYs7OzmjVqhV+/fVXoaMQERERESmtHj16oFq1aoiOjhY6ChEJRE3oAIooNDQUUqkUJiYm8mNvGmTv378vP6arq1vsvEWLFiEkJATLli1DkyZNoKenh4CAADx69KjYNejDNDU14erqCldXV+Tl5eHAgQOIiorCxIkT4ejoCA8PD/Tr1w/VqlUTOiopmZCQEDRr1gze3t5o0KCB0HGIiIiIiJSOSCTCnDlzMGbMGLi7u0NNjWUPImXDzs7PVFhYiPXr12PevHm4ePGi/HHp0iXY2dm9teHQv506dQp9+vTBkCFDYG9vDzMzM6SmpsqfNzc3h7q6Ok6fPi0/lpubi6tXr5bpa1Jk2traGDhwILZt2waxWIwhQ4Zg165dMDExQb9+/bB161bk5OQIHZOUhImJCSZMmAA/Pz+hoxARERERKS1nZ2cYGRlh48aNQkchIgGw2PmZ9u/fj6ysLHz//fewtbUt9vD09ER4ePh7d36zsLBAfHw8Tp06hRs3bmDs2LG4ffu2/Hk9PT2MHDkSU6ZMweHDh3Ht2jWMGDECUqm0vF6eQtPT08M333yD3bt34+7du+jfvz82btwIIyMjuLu7Y8eOHcjLyxM6JlVykydPxsWLF3H48GGhoxARERERKaU33Z2zZ89GQUGB0HGIqJyx2PmZwsLC4OTkhJo1a771nJubG+7evYu4uLh3njt9+nS0bt0aPXr0QMeOHaGrqyvfiOiNRYsWwcnJCf3794eTkxNsbW3RsWPHMnktlVn16tUxbNgwHDhwAH///Te6deuG3377DYaGhhg8eDD27t2L/Px8oWNSJaSlpYUlS5Zg3Lhx/MGKiIiIiEgg7du3h6WlJcLDw4WOQkTljLuxk1LJzMzE9u3bER0djatXr6Jv377w9PSEs7Mz1NXVhY5HlYRMJkOPHj3QrVs3TJw4Ueg4RERERERK6ezZs+jfvz9u3boFLS0toeMQUTlhsZOUVnp6OrZt24bo6GikpaVhwIAB8PT0RMeOHaGqqip0PFJwf/31FxwdHXHlyhUYGhoKHYeIiIiISCn17dsXzs7OGD9+vNBRiKicsNhJBODOnTuIiYlBVFQUMjIyMGjQIHh6esLBwQEqKlztgUrG398fmZmZWL9+vdBRiIiIiIiU0qVLl3D+/HkMHz4cIpFI6DhEVA5Y7CT6j9TUVHnh8/nz53B3d4eHhwdatWrFb470WbKzs2FtbY2YmBi0a9dO6DhEREREREpJJpPxdzkiJcJiJ9EHXLt2DdHR0YiKikJhYSE8PDzg4eGBpk2b8pslfZLNmzdj8eLFOHPmDJdHICIiIiIiIipjLHYSfQKZTIaLFy8iOjoa0dHR0NDQgKenJzw8PNC4cWOh41EFJpPJ0LFjRwwZMgSjRo0SOg4RERERERFRpcZiZznLzMxEkyZN8OjRI6GjUAnJZDKcOXMG0dHRiImJQY0aNeSFT3Nzc6HjUQV08eJFuLi4ICUlBfr6+kLHISIiIiIiIqq0WOwsZ8+fP0f9+vXx4sULoaNQKSgqKkJCQgKio6Oxfft2GBkZwdPTE+7u7jA1NS3R9SQSCTQ1NcsgLQnJx8cHKioqWLlypdBRiIiIiIjoX86fPw8tLS3Y2NgIHYWISgGLneWsoKAAenp6KCgoEDoKlTKpVIrjx48jKioKO3fuRKNGjeDh4QE3NzcYGRl90jVSU1OxbNkyPHz4EM7Ozhg+fDh0dHTKODmVh3/++QeNGzdGbGwsmjZtKnQcIiIiIiKll5iYiJEjR+LevXuoW7cunJ2dMX/+fNSsWVPoaET0BVSEDqBs1NXVUVhYCKlUKnQUKmWqqqpwdnbG2rVrkZGRgZkzZ+LixYto0qQJOnXqhNWrVyM/P/+D13j69Cn09fVhZGQEX19fLF26FBKJpJxeAZWlmjVrYtasWfD19QXfYyIiIiIiEtbz58/xww8/wMLCAn/++SfmzJmDzMxMjBs3TuhoRPSF2NkpAB0dHTx+/Bi6urpCR6FykJ+fjz/++ANRUVHYsGED1NTUPnrO/v37MWLECGzduhXOzs7lkJLKg1QqRatWrTB58mR88803QschIiIiIlIqL1++hIaGBtTU1HDkyBH571wODg4AgGvXrsHBwQHXrl1D/fr1BU5LRCXFzk4BaGtr49WrV0LHoHKiqakJV1dXbNmyBaqqqh8c+2Z5g61bt6Jx48awtLR857hnz55h8eLF2LlzJ7sEFYiqqipWrFiByZMnIycnR+g4RERERERK4+HDh9i4cSNSU1MBAKampkhPT4e9vb18jK6uLuzs7PD06VOhYhJRKWCxUwBaWlosdiopkUj0wec1NDQAAIcOHYKLiwtq164N4PXGRUVFRQCAuLg4zJw5E5MmTYKPjw8SEhLKNjSVKkdHRzg5OSEoKEjoKERERERESkNdXR2LFi3CgwcPAABmZmZo06YNfH19kZ+fj5ycHAQFBeHevXvs6iRScCx2/j/27jsqqrN7G/A9BRiqgnTBjr1GFBsqYgkajEoUG/beTTCvHQsSe2yJvhqFiAUUeRU0BjWKgp3YOxAbiqiggiB15vsjP/kklqACzwxzX2u5hMM5Z+5jlgb27Gc/AigUCrx69Up0DFIzr+e47tu3D0qlEi1atICOjg4AQCqVQiqVYuXKlRg+fDjc3NzQpEkTdOvWDVWqVClwn8ePH+PPP/8s8fxUeIsXL8aGDRsQGxsrOgoRERERkVYoV64cGjdujLVr1+Y3H+3Zswfx8fFwdnZG48aNERMTg40bN8LU1FRwWiL6HCx2CsDOTvoQf39/ODo6olq1avnHzp07h+HDh2Pr1q3Yt28fmjZtivv376NevXqwtbXNP+/nn39Gly5d0LNnTxgaGmLKlClIT08X8Rj0ATY2NvjPf/6DSZMmiY5CRERERKQ1fvzxR1y6dAk9e/bE//73P+zZswc1a9ZEfHw8VCoVRo4cidatW2Pfvn1YtGgRkpKSREcmok/AYqcAnNlJ/6RSqfLneR4+fBhffvklzM3NAQBRUVHw8vJCo0aNcPz4cdSuXRubNm1C2bJlUb9+/fx7HDhwAFOmTEHjxo1x5MgR7Ny5E2FhYTh8+LCQZ6IPmzhxIuLj47F3717RUYiIiIiItIKNjQ02bdoEOzs7jBw5EsuWLcO1a9cwZMgQREVFYdSoUdDT08O9e/cQERGB77//XnRkIvoo+0jcAAAgAElEQVQE/74tNBU5LmOnN+Xk5GDRokUwMjKCXC6Hnp4eWrZsCV1dXeTm5uLSpUu4desWNm/eDJlMhpEjR+LAgQNwdnZGnTp1AACJiYmYO3cuunTpgnXr1gH4e+D21q1bsWTJEri7u4t8RHoHXV1drFy5EmPHjkX79u2hUChERyIiIiIiKvWcnZ3h7OyMZcuW4fnz59DV1c1vNMnNzYVcLseoUaPQsmVLODs74/Tp03BychKcmog+Bjs7BeAydnqTVCqFsbExFixYgAkTJiApKQn79+9HYmIiZDIZhg8fjlOnTsHZ2RnLly+Hjo4Ojh07hszMTJQpUwbA38vcT58+jalTpwL4u4AK/L2boK6ubv48UFIvnTp1Qt26dbF8+XLRUYiIiIiItIqBgQEUCsVbhc68vDxIJBLUr18fXl5eWLNmjeCkRPSxWOwUgMvY6U0ymQwTJ07EkydPcPfuXcyaNQv//e9/MXjwYCQnJ0NXVxeNGzfGkiVLcPPmTYwcORJlypRBWFgYxo8fDwA4duwYbG1t8cUXX0ClUuVvbHTnzh1UqVKFncRqbPny5Vi+fDnu378vOgoRERERkVbIy8uDq6srGjZsiClTpuCPP/7I/5np9XgxAEhLS4OBgQGbR4g0DIudArCzk97H3t4ec+fORWJiIjZv3pz/LuObLl26hG7duuHy5ctYtGgRACA6OhqdOnUCAGRnZwMALl68iJSUFFSoUAFGRkYl9xD0UapUqYIxY8ZgypQpoqMQEREREWkFmUwGR0dHJCQkIDk5GX369EGTJk0wYsQIhISE4OzZswgPD0doaCiqVq1aoABKROqPxU4BOLOTCsPS0vKtY7dv30ZMTAzq1KkDOzs7GBsbAwCSkpJQo0YNAIBc/vco3j179kAul6N58+YA/t4EidTT1KlTcfLkSURGRoqOQkRERESkFebOnQu5XI6xY8ciISEBU6dORU5ODqZOnYru3bvDw8MDAwYM4CZFRBpIomIFpMQNHz48/10josJSqVSQSCSIjY2FQqGAvb09VCoVcnJyMGbMGFy9ehXR0dGQyWRIT0+Hg4MD+vbtCx8fn/yi6Ov7xMTEwNTUFNWqVRP4RPSmkJAQzJs3D+fOncsvWBMRERERUfGZPHkyoqOjcfbs2QLHY2Ji4ODgkL9HwuufxYhIM7CzUwDO7KRP8fp/rg4ODrC3t88/pquri+HDh+P58+cYPnw4/Pz84OTkBBMTE3z77bcFCp2v7dq1Cy1btoSjoyOWLFmCu3fvluiz0Ns8PDxgYWGBtWvXio5CRERERKQVli5divPnzyM8PBzA35sUAYCjo2N+oRMAC51EGobFTgG4jJ2KkkqlgpOTE/z9/ZGamorw8HAMHDgQe/bsga2tLZRKZYHzJRIJFi5ciAcPHmDRokW4desWGjdujBYtWmDlypV4+PChoCfRbhKJBKtWrcK8efPw5MkT0XGIiIiIiEo9mUyG6dOnY//+/QDAFVZEpQSXsQswe/ZsyGQy+Pj4iI5CBADIycnBoUOHEBwcjD179qBBgwbw9PSEh4fHO2eHUvGZPHkyXr58iQ0bNoiOQkRERESkFW7cuIEaNWqwg5OolGBnpwBcxk7qRkdHB25ubggICEBiYiImT56MqKgoVK9eHR06dMDGjRuRkpIiOqZWmDNnDvbu3YuYmBjRUYiIiIiItELNmjXfKnSyL4xIc7HYKYBCoWCxk9SWQqHA119/jW3btuHhw4cYMWIE9u/fj8qVK6NLly4IDAxEamqq6JilVpkyZeDn54dx48a9NYKAiIiIiIiKl0qlgkqlwrNnz0RHIaJPxGKnAJzZSZrCwMAAPXv2REhICBISEtC3b1/s3LkT9vb26N69O4KDg5Geni46ZqkzcOBAAMDmzZsFJyEiIiIi0i4SiQS//fYbOnXqxO5OIg3FYqcAXMZOmsjY2Bj9+vVDWFgY7ty5g65du8Lf3x+2trbw9PREaGgoi/hFRCqVYvXq1Zg+fTpevHghOg4RERERkVZxc3NDTk4OwsLCREchok/AYqcAXMZOms7U1BSDBw/G77//jvj4eLi6umLNmjWwtbWFl5cX9u7di+zsbNExNVqTJk3QuXNnzJ07V3QUIiIiIiKtIpVKMW/ePMyePZujpYg0EIudAnAZO5Um5ubmGDFiBA4fPozr16/DyckJCxcuhI2NDYYOHYoDBw4gNzdXdEyN5Ofnh8DAQFy7dk10FCIiIiIireLu7g49PT2EhISIjkJEH4nFTgHY2UmllbW1NcaNG4fo6GhcuHABderUwcyZM2Fra4vRo0cjMjISeXl5omNqDEtLS8yaNQsTJkzgvCAiIiIiohIkkUgwf/58+Pj48GcYIg3DYqcAnNlJ2sDe3h7ffvstzpw5g1OnTqFixYqYPHky7O3tMXHiRJw4cYJLQgphzJgxSEpKQmhoqOgoRERERERapWPHjjA3N8e2bdtERyGijyBRsV2oxJ0+fRoTJkzA6dOnRUchKnE3b95EcHAwgoKC8PLlS/Tq1Qu9e/dG48aNIZFIRMdTS5GRkRg0aBCuXbsGAwMD0XGIiIiIiLRGZGQkhg0bhuvXr0NHR0d0HCIqBHZ2CsCZnaTNatSogdmzZ+Pq1avYt28fFAoF+vTpg2rVqmH69Om4ePEil2z/Q9u2beHk5IRFixaJjkJEREREpFXatm2LSpUq4ddffxUdhYgKiZ2dAty6dQtfffUVbt26JToKkVpQqVQ4f/48goKCsGPHDujr68PT0xOenp6oVauW6Hhq4f79+2jUqBHOnj2LypUri45DRERERKQ1Tp48id69e+PWrVvQ09MTHYeI/gU7OwXgBkVEBUkkEnzxxRdYvHgxbt++DX9/fzx//hzt27dHgwYN4Ofnh/j4eNExhbK3t8fkyZPx7bffio5CRERERKRVmjdvjrp16+KXX34RHYWICoGdnQI8fvwYderUwZMnT0RHIVJrSqUS0dHRCAoKwq5du1ChQgV4enqiV69eqFChguh4JS4zMxN169bFTz/9hE6dOomOQ0RERESkNf7880907doVcXFx0NfXFx2HiD6AxU4BUlNTUb58eaSlpYmOQqQxcnNzERkZieDgYISGhqJGjRro3bs3evbsCRsbG9HxSkx4eDi8vb1x+fJl6Orqio5DRERERKQ1evTogVatWnG1FZGaY7FTgJycHBgYGCAnJ0d0FCKNlJ2djUOHDiE4OBhhYWFo0KABevfuDQ8PD1hYWIiOV6xUKhW6dOkCFxcXTJkyRXQcIiIiIiKtcfnyZXTo0AFxcXEwMjISHYeI3oPFTgFUKhXkcjmysrIgl8tFxyHSaJmZmfj9998RHByM/fv3o2nTpvD09ET37t1hZmYmOl6xuHXrFlq0aIFLly7B1tZWdBwiIiIiIq3Rp08f1K9fH9OmTRMdhYjeg8VOQQwNDZGUlMR3g4iKUEZGBvbt24egoCAcOnQIzs7O8PT0xNdffw0TExPR8YrU1KlT8eDBAwQGBoqOQkRERESkNW7evIlWrVohLi4OZcqUER2HiN6BxU5BzM3NcePGDZibm4uOQlQqpaamIiwsDMHBwTh27BhcXV3h6emJr776CoaGhqLjfbaXL1+iZs2aCA4ORsuWLUXHISIiIiLSGoMGDUKlSpUwZ84c0VGI6B1Y7BTEzs4Op06dgp2dnegoRKXes2fPsHv3bgQFBeHUqVNwc3ODp6cn3NzcoFAoRMf7ZNu2bcOSJUsQExMDmUwmOg4RERERkVb466+/0LRpU9y8eRPlypUTHYeI/kEqOoC2UigUePXqlegYRFrB1NQUgwcPRkREBOLi4uDi4oLVq1fDxsYGAwYMwL59+5CdnS065kfr06cPjI2NsWHDBtFRiIiIiIi0RpUqVeDh4YGlS5eKjkJE78DOTkHq1q2L7du3o169eqKjEGmtxMREhISEIDg4GNevX0e3bt3Qu3dvuLi4aMzmYRcvXkSHDh1w/fp1vqtMRERERFRC7t+/j4YNG+LatWuwsrISHYeI3sDOTkH09fWRmZkpOgaRVrOxscH48eMRHR2N8+fPo3bt2pgxYwZsbW0xevRoREZGIi8vT3TMD2rQoAF69uyJWbNmiY5CRERERKQ17O3t0a9fPyxatEh0FCL6B3Z2CuLs7IwFCxagdevWoqMQ0T/Ex8djx44dCA4OxuPHj9GzZ0/07t0bzZo1g0QiER3vLSkpKahVqxYiIiLQsGFD0XGIiIiIiLRCYmIi6tSpg8uXL6N8+fKi4xDR/2FnpyAKhYKdnURqqmrVqpg2bRouXLiAw4cPw8zMDEOHDkWlSpUwZcoUxMTEQJ3eJzIzM8O8efMwfvx4tcpFRERERFSa2djYYOjQofDz8xMdhYjewGKnIFzGTqQZatasCR8fH1y9ehV79+6Fnp4eevfuDQcHB8yYMQOXLl1SiwLjsGHDkJGRgW3btomOQkRERESkNb7//nsEBQXh7t27oqMQ0f9hsVMQdnYSaRaJRIJ69erB19cXsbGxCA4ORk5ODtzd3VG7dm3MnTsXN27cEJZPJpNh9erV+P7775GWliYsBxERERGRNrGwsMDo0aMxf/580VGI6P+w2CmIQqHAq1evRMcgok8gkUjQuHFjLF68GLdv38amTZvw7NkztGvXDg0aNICfnx/i4+NLPFeLFi3g6uoKX1/fEn9tIiIiIiJt9d1332H37t2Ii4sTHYWIwGKnMOzsJCodpFIpmjdvjhUrVuD+/ftYtWoVEhIS0Lx5czRp0gTLli3D/fv3SyzPokWLsHHjRty8ebPEXpOIiIiISJuZmppi0qRJmDt3rugoRAQWO4XhzE6i0kcmk6FNmzb4+eef8fDhQ/j5+eH69eto2LAhWrZsiVWrViExMbFYM9jY2GDatGmYNGmSWswSJSIiIiLSBhMnTsSBAwdw7do10VGItB6LnYJwGTtR6SaXy9GhQwf88ssvSExMxPTp0xETE4PatWvDxcUF69atw5MnT4rltcePH487d+4gPDy8WO5PREREREQFGRsbw9vbG3PmzBEdhUjrsdgpCJexE2kPXV1ddOnSBZs3b0ZiYiImTpyIyMhIVKtWDZ06dcqf+VmUr7dq1SpMnjyZ/84QEREREZWQsWPHIjo6GhcuXBAdhUirsdgpCJexE2knhUKBbt26ISgoCA8fPsTQoUOxd+9eVKxYEe7u7tiyZQtSU1M/+3U6dOiABg0aYOnSpfnH0tLSEBcXhytXruD+/fvIy8v77NchIiIiIqK/GRgYYOrUqZg9e7boKERaTaLiUDchVqxYgTt37mDFihWioxCRGkhNTUVYWBiCgoIQFRUFV1dX9O7dG126dIGhoeEn3fPOnTto3Lgx/P39kZ2dDRMTE9jZ2UGhUOD58+e4c+cOVCoVWrduDQsLiyJ+IiIiIiIi7ZOZmQkHBwfs2rULTZs2FR2HSCux2CnIunXrcP78efz3v/8VHYWI1MyzZ8/wv//9D8HBwTh16hTc3NzQu3dvfPnll1AoFIW+T0JCAvz9/dGvXz9UqVLlnecolUpERUXhyZMn8PDwgEQiKarHICIiIiLSSv/9738RGhqKiIgI0VGItBKXsQvCmZ1E9D6mpqYYMmQIIiIiEBcXh7Zt22LlypWwsbHBgAED8NtvvyE7O/uD97h9+zbOnz+PWbNmvbfQCQBSqRRt2rSBq6srtm7dyh3ciYiIiIg+0+DBg3Hr1i1ERUWJjkKklVjsFIQzO4moMCwsLDBq1CgcOXIEV69ehaOjIxYsWAAbGxsMGzYMBw8eRG5uboFrUlNTERMTA3d390K/jqmpKTp37ow9e/YU9SMQEREREWkVXV1d+Pj4YNasWWwmIBKAxU5BFAoFXr16JToGEWkQW1tbTJgwAcePH8f58+dRs2ZNTJ8+HeXLl8eYMWNw9OhR5OXl4fDhw+jevftH39/MzAz6+vpIS0srhvRERERERNqjf//+SExMxOHDh0VHIdI6LHYKwmXsRPQ5KlSoAG9vb5w9exYnTpyAnZ0dJkyYADs7O8THx0Mul3/Sfdu1a8dvyIiIiIiIPpNcLsecOXMwc+ZMdncSlTAWOwXhMnYiKipVq1bF9OnTcfHiRaxYsQJ9+vT55Hvp6Oi8tSyeiIiIiIg+nqenJ9LS0rB//37RUYi0CoudgtSuXRs+Pj6iYxBRKWNgYABbW9vPuoehoSFycnKKKBERERERkXaSSqWYN28eZ3cSlTAWOwUpV64c2rVrJzoGEZUyRfFNlJGRER49elQEaYiIiIiItFv37t2hUqmwe/du0VGItManDXWjzyaRSERHIKJSqCj+bUlISEC7du2gr68Pa2trWFtbw8rK6q2PX/9uaWkJXV3dIkhPRERERFS6SCQSzJ8/H1OnTsXXX38NqZQ9Z0TFjcVOIqJSREdHBxkZGTAwMPjke+jp6SErKwvPnz/Ho0ePkJSUhEePHuV/HBsbW+DYkydPYGJi8t6i6JsfW1hYQCaTFeETExERERGpt86dO8PX1xc7duxA7969RcchKvUkKg6OICIqNbKysnDgwAG4u7t/0vUqlQqhoaHw8PAo9DVKpRLJyclvFUX/+XFSUhJSUlJgZmb2zg7Rf35sZmbGd76JiIiIqFQ4dOgQxo4di6tXr0IuZ98ZUXHi3zAiolLkdVemSqX6pCXtZ86cgZOT00ddI5VKYWFhAQsLC9StW/eD5+bm5uLJkycFCqCPHj1CQkIC/vzzzwIF0tTUVFhaWn5wCf3rj8uWLcvxIERERESktlxdXWFjY4OtW7di4MCBouMQlWrs7FRTOTk5kEqlXO5JRB/t3r17+Ouvv9C2bduPui4vLw9BQUHo169f8QT7SNnZ2Xj8+PE7O0T/eSwrKwtWVlb/2i1qZWUFIyMjFkaJiIiIqMRFRUVh4MCBuHHjBmfeExUjFjsFiYiIQLNmzVCmTJn8Y6//U0gkEvzyyy9QKpUYMWKEqIhEpMFOnDgBfX19NGrUqFDnK5VKBAYGomfPnp8171OUV69efbAY+uYxAIXqFrW2toa+vr7gJyu8DRs24OjRo9DX14eLiwv69OnDoi4RERGRmunUqRN69OiBkSNHio5CVGqx2CmIVCrF8ePH0bx583d+ff369diwYQOio6Ohp6dXwumIqDQ4efIkUlNT0aFDhw/OvkxOTkZYWBg8PDxgYmJSggnFePnyZaG6RZOSkqCnp/fBYuibv4t6dz49PR0TJ07EiRMn0LVrVzx69AixsbHo3bs3xo8fDwC4fv065s2bh1OnTkEmk2HAgAGYPXu2kLxERERE2uzMmTPw8PBAbGwsFAqF6DhEpRKLnYIYGhpi+/btaN68OTIyMpCZmYnMzEy8evUKmZmZOH36NKZNm4aUlBSULVtWdFwi0lCPHz9GVFQUJBIJXFxcYGpqmv+1P//8E4cPH8aRI0cQHh7OsRn/oFKp8OLFi0J1iz558gRGRkaF6ha1sLAo0qH0J0+eRMeOHeHv749vvvkGALBu3TrMmjUL8fHxSEpKQrt27eDo6Ahvb2/ExsZiw4YNaNu2LRYsWFBkOYiIiIiocLp27Yr27dtjwoQJoqMQlUosdgpiY2ODpKSk/CWSEokkf0anTCaDoaEhVCoVLl68WKA4QUT0KfLy8nDs2DGkpaXlH6tbty5sbW1RtWpV7N27t9BL3ultSqUSKSkphdqRPjk5Gaampv/aLWptbY1y5cr96470gYGB+M9//oP4+Hjo6upCJpPh7t27cHd3x7hx46Cjo4NZs2bhxo0bMDIyAgBs2rQJc+fOxfnz52FmZlYSf0RERERE9H8uXLiAzp07Iy4uTiNHSBGpO+7GLkheXh6+++47tGvXDnK5HHK5HDo6Ovm/y2QyKJVKGBsbi45KRKWATCaDi4vLO7/m7e0NX19f7Nq1q4RTlR5SqRTm5uYwNzdHnTp1Pnhubm4unj59+laH6MOHD3H+/PkCBdIXL17AwsICly9fRrly5d55P2NjY2RlZSEsLAyenp4AgP379+P69etITU2Fjo4OTE1NYWRkhKysLOjp6aFmzZrIyspCVFQUvv766yL/8yAiIiKi92vYsCFatmyJn376CVOmTBEdh6jUYbFTELlcjsaNG8PNzU10FCLSciNHjsSiRYtw+fJl1KtXT3ScUk8ul+d3bjZo0OCD52ZnZ+PJkycfHGfy5ZdfYsiQIZgwYQI2bdoES0tLJCQkIC8vDxYWFihfvjwSEhKwbds29O3bFy9fvsTq1avx5MkTpKenF/XjEREREVEhzJkzB+3atcOoUaPY5ERUxGRz5syZIzqENkpJSYGTkxPs7Oze+ppKpeIOukRUYnR0dKBUKrFjx478mY+kHmQyGUxMTD64lF0ul6Np06Zo1KgRsrOzYWNjgypVquDFixdo2rQpevTogfT0dEydOhW+vr4IDw/P7/Ds1KkTateunX8vlUqFhw8f4urVq8jJyYGenh50dHRK4lGJiIiItIqlpSUuXryI+Ph4tG7dWnQcolKFMzvV1LNnz5CTkwNzc/N/nddGRPS50tLSULVqVRw7dgw1a9YUHYc+0/z58xEWFob169fnz2J98eIFrl27Bmtra2zatAl//PEHFi9ejFatWuVfp1KpEB4eDj8/v/yl9Do6OoXekV5PT0/UIxMRERFpnNjYWLRo0QK3bt3iXh1ERYjFTkF27tyJqlWr4osvvihwXKlUQiqVIiQkBDExMRg3btw7uz+JiIraggULcPPmTWzevFl0FPoI58+fR15eHho1agSVSoX//e9/GD16NLy9vTFlypT8lQJvvnHWpk0b2NnZYfXq1R/coEilUiE1NbVQO9I/fvwYhoaGhd6Rnh2jnycjIwNHjhyBUqnMXxGiUCjg4uICuZxTioiIiDTF0KFDYWtri/nz54uOQlRqsNgpSOPGjeHu7o73TRE4efIkxo8fj2XLlqFNmzYlG46ItNKLFy9QtWpVnDp1CtWqVRMdhwrp999/x6xZs5CWlgZLS0ukpKTA1dUVfn5+MDQ0xK5duyCTydC0aVNkZGRg2rRpiIqKwu7du9GsWbMiy6FUKvHs2bNC7Uj/9OlTlC1bttA70stksiLLqen++usvnD9/HgYGBmjXrl2BbtoXL17gyJEjyM3NRevWrWFpaSkwKRERERXGnTt34OjoiBs3bsDc3Fx0HKJSgcVOQdq1a4eqVavC29sbL1++xKtXr5CZmYmMjAxkZWXh4cOH+O677xAYGIg+ffqIjktEWsLHxwcJCQnYuHGj6ChUSFlZWbh58yZu3bqFp0+folq1amjfvn3+14ODg+Hj44Pbt2/DwsICjRo1wpQpU4TOhsrLy3vnjvTv+vj58+cwNzd/Z1H0nwVSMzOzUj3z+vjx41AqlXB2dv7geSqVCvv27UPlypVRp06dEkpHREREn2rMmDEwMjLC4sWLRUchKhVY7BTEy8sLW7duha6uLpRKJWQyGeRyOeRyOXR0dGBkZIScnBwEBATA1dVVdFwi0hIpKSlwcHDAn3/+iUqVKomOQ5/oXRvdZWRkIDk5GQYGBihXrpygZB8vJycHT548+eAS+tcfp6enw8rK6oNL6F9/bGJiolGF0VOnTkGhUKBhw4aFvuaPP/6Avb09qlevXozJiIiI6HM9ePAA9evXx9WrV2FtbS06DpHGY7FTkF69eiEjIwNLliyBTCYrUOyUy+WQSqXIy8uDqakpN3wgIiIqhMzMTDx+/LhQM0Zzc3ML1S1qbW0NQ0NDoc+VnJyMM2fOwM3N7aOv3bZtGzw9PTkKgIiISM1NnjwZSqUSK1euFB2FSOOx2CnIgAEDIJVKERAQIDoKERGR1klPT3+rCPq+5fRyubzQO9IrFIoizxoaGoqvv/76kwqWycnJuHTpElxcXIo8FxERERWdpKQk1K5dGxcuXIC9vb3oOEQajdt1CtK3b19kZ2fnf/56yaFKpcr/JZVKNWqJHRERkaYwNDRElSpVUKVKlQ+ep1KpkJaW9s5i6JkzZ97akV5fX79QO9JbWloWakf617utf2pnZrly5ZCSkvJJ1xIREVHJsbKywvDhw7FgwQKsW7dOdBwijcbOTiIiIqIioFKpCr0j/ZMnT1CmTJl/7Ra9e/cumjVr9lk7qx8/fhwODg7cnZ2IiEjNJScno0aNGjh79iwqV64sOg6RxmKxU6C8vDxcv34dcXFxqFSpEho2bIjMzEycO3cOr169Qt26dWFlZSU6JhERERWxvLw8JCcn/+sSeolEgkuXLn3Wa929exfPnz9HgwYNiig9ERERFRcfHx/cu3cP/v7+oqMQaSwuYxdo0aJFmDlzJnR1dWFhYYH58+dDIpFg4sSJkEgk6NatGxYuXMiCJxF9tLZt26Ju3bpYs2YNAKBSpUoYN24cvL2933tNYc4hoqIhk8lgaWkJS0tL1KtX773nhYWFffZr6enpISsr67PvQ0RERMVv8uTJcHBwwM2bN1GjRg3RcYg0klR0AG119OhRbN26FQsXLkRmZiZ+/PFHLF26FBs2bMDPP/+MgIAAXL16FevXrxcdlYjU0JMnTzBmzBhUqlQJenp6sLKygqurKw4ePAjg7w1Nfvjhh4+659mzZzFmzJjiiEtEn0gikUCpVH7WPZ4/f46yZcsWUSIiIiIqTmXLlsXkyZMxd+5c0VGINBY7OwW5f/8+ypQpg++++w4A8M033+D48eO4dOkS+vbtCwC4evUqTpw4ITImEakpDw8PZGRkYOPGjahWrRoeP36Mo0ePIjk5GQBgZmb20fe0sLAo6phE9JmaNm2K6OhotG7d+pPvcePGDXz11VdFmIqIiIiK04QJE1CtWjVcuXIFdevWFR2HSOOws1MQHR0dZGRkFNhdVUdHB+np6fmfZ2VlITc3V0Q8IlJjz58/R1RUFBYuXAhXV1dUrFgRTZo0gbe3N3r37g3g72Xs48aNK3Ddy5cv0b9/f6fUT6oAACAASURBVBgZGcHa2hpLly4t8PVKlSoVOCaRSBASEvLBc4ioeFlZWeHx48effL1KpUJeXh7kcr6/TUREpCmMjIzw/fffw8fHR3QUIo3EYqcg9vb2UKlU2Lp1KwDg1KlTOH36NCQSCX755ReEhIQgIiICbdq0EZyUiNSNkZERjIyMEBYWhszMzEJft3z5ctSqVQvnzp3D3LlzMX36dISGhhZjUiIqCnZ2dkhISPika48fP46WLVsWcSIiIiIqbqNHj8apU6dw7tw50VGINA7f5hekYcOG6Ny5MwYPHoxff/0Vt2/fRqNGjTBs2DD06dMHCoUCTZs2xfDhw0VHJSI1I5fLERAQgOHDh2P9+vVo1KgRWrZsiZ49e8LJyem91zk5OWHGjBkAgOrVq+Ps2bNYvnw5evToUVLRiegTODk54ddff0W/fv2go6NT6OtSUlKQmJiIVq1aFWM6IiIiKg76+vqYPn06Zs+ejb179yIuLg7Xrl2DRCIBABgbG8PZ2bnAalEi+hs7OwUxMDDAvHnzsGPHDtSoUQOTJk3Ctm3b0LFjR1y4cAFbtmzB9u3bYW5uLjoqEakhDw8PPHz4EOHh4XBzc8OJEyfQrFkz+Pn5vfea5s2bv/X5tWvXijsqEX0miUSC3r17Y8uWLYXu5n78+DF+++03fPPNN8WcjoiIiIrLoEGDcP/+ffzyyy9IT09H165d4e7uDnd3dzRo0ABhYWHYtWvXZ428ISqN2NkpkI6ODrp164Zu3boVOG5vbw97e3tBqYhIUygUCnTo0AEdOnTA7NmzMWzYMMyZMwfe3t5Fcn+JRAKVSlXgWE5OTpHcm4g+jkKhQP/+/REaGgpzc3O0bdv2nZ0cmZmZ2LdvH5YvX47g4OD87g8iIiLSLM+fP8fu3bsRGRkJU1PTt75uamqK7t27Q6lU4uDBgyhTpgyaNWsmICmR+mGxUw28Lia8+QOJSqXiDyhE9FFq166N3Nzc93Z+nTp16q3Pa9Wq9d77WVhYIDExMf/zpKSkAp8TUcnS0dGBp6cnUlJSEBYWBpVKBR0dHejp6SEzMxM5OTnQ09ND586dceXKFQwbNgz79+/n9xNEREQa5uXLlwgLC8PAgQP/9f/jUqkUnTp1wrlz53Dy5Mm3VnMRaSMWO9XAu/7x4g8mRPQ+ycnJ6NmzJ4YMGYL69evD2NgYMTExWLx4MVxdXWFiYvLO606dOoUffvgB33zzDSIjI7F58+b8TdLepV27dvjpp5/QokULyGQyTJ8+HQqForgei4gKyczMDN27dwfw95ujWVlZ0NPTK/C9w/Tp09GiRQusW7cOo0ePFhWViIiIPsHu3bvRv3//j6oLfPHFFzh8+DDu37/PlaKk9VjsJCLSMEZGRmjWrBlWrlyJuLg4ZGVloXz58ujbty9mzpz53uu+/fZbXLp0CQsWLIChoSHmzZv3wXl+y5Ytw9ChQ9G2bVtYWVlh8eLFuH79enE8EhF9IolE8s43IXR0dBAYGIhWrVqhffv2cHBwEJCOiIiIPtbt27dRs2ZNSKUfv8WKi4sLdu3axWInaT2J6p8D2YiIiIioVFi1ahW2b9+OqKgoyOV8j5uIiEjdhYSEwMPD45NXe+7Zswdubm7Q1dUt4mREmoO7sQukVCoRGxsrOgYRERGVUuPGjYOhoSEWL14sOgoRERH9C5VKBZlM9llj7VxdXXHkyJEiTEWkeVjsFEipVKJmzZpv7XZMREREVBSkUin8/f2xYsUKnD9/XnQcIiIi+oC0tLR37rz+MYyMjJCdnV1EiYg0E4udAsnlckilUuTm5oqOQkRERKWUvb09li1bBi8vL2RmZoqOQ0RERO+RkZEBAwODz74PG6pI27HYKZhCocCrV69ExyAiIqJSrH///qhZsyZmzZolOgoRERG9h4mJCVJTU0XHINJ4LHYKplAo2GVBRERExUoikWDdunXYunUrjh49KjoOERERvYO+vj5evHjxWfdISEiApaVlESUi0kwsdgqmr6/PYicRaaw2bdogMDBQdAwiKgRzc3M8fPgQbdq0ER2FiIiI3kEikUAmk33WqLvTp0/DycmpCFMRaR4WOwVjZycRabJZs2ZhwYIFyMvLEx2FiIiIiEjjubi4fPJu6jk5OZDL5Z+1mztRacBip2Cc2UlEmszV1RWmpqYICQkRHYWIiIiISOOVKVMGaWlpSElJ+ehrd+3aBVdX12JIRaRZWOwUjMvYiUiTSSQSzJ49G/Pnz4dSqRQdh4iIiIhI43Xv3h179+7Fs2fPCn3N7t270aJFCxgZGRVjMiLNwGKnYFzGTkSa7ssvv4S+vj52794tOgoRERERkcaTSCTw8vLCH3/8gX379n2wqeDOnTsIDAxE06ZNUaFChRJMSaS+5KIDaDsuYyciTSeRSDBz5kzMnTsX3bt354wgIiIiIqLPJJFI4O7ujipVqmDatGkoX7487O3tUbZsWbx69QqJiYlIS0tDxYoV0b9/f34PTvQGdnYKxs5OIioNunbtCqVSiX379omOQqQ2Bg0aBIlE8tavCxcuiI5GREREGmDjxo1o1KgRxo0bh6+//hq2trbIzs6GkZERWrZsCQ8PDzg6OrLQSfQP7OwUjDM7iag0eN3dOW/ePHTp0oXfcBH9n/bt2yMwMLDAMXNzc0FpgOzsbOjq6gp7fSIiIiqcrKws/PDDDwgNDQUASKVS2NrawtbWVnAyIvXHzk7B2NlJRKVFjx49kJ6ejgMHDoiOQqQ29PT0YG1tXeCXXC7Hb7/9hlatWqFs2bIwMzODm5sbbt68WeDaEydOoGHDhlAoFPjiiy+wd+9eSCQSREdHAwBycnIwZMgQVK5cGfr6+qhevTqWLl0KlUqVf4/+/fujW7du8PPzQ/ny5VGxYkUAwK+//gpHR0cYGxvDysoKnp6eSExMzL8uOzsb48aNg42NDfT09GBvb48ZM2aUwJ8YERERAX93ddavXx9NmjQRHYVI47CzUzDO7CSi0kIqleZ3d3bs2JHdnUQfkJ6ejm+//Rb16tVDRkYG5s2bB3d3d1y9ehU6OjpITU2Fu7s7OnfujG3btuH+/fuYNGlSgXvk5eWhQoUK2LFjBywsLHDq1CmMGDECFhYWGDhwYP55f/zxB0xMTHDgwIH8QmhOTg7mz5+PGjVq4MmTJ/j+++/Rt29fHDlyBADw448/Ijw8HDt27ECFChWQkJCA2NjYkvsDIiIi0mJZWVlYuHAhQkJCREch0kgS1Ztv/1OJmzx5MipUqIDJkyeLjkJE9Nny8vJQu3ZtrF27Fu3atRMdh0ioQYMGYcuWLVAoFPnHnJ2dsX///rfOTU1NRdmyZXHixAk0a9YMP/30E3x8fJCQkJB//ebNmzFw4EBERUWhVatW73xNb29vXLlyBb///juAvzs7Dx06hHv37n1w+fqVK1dQr149JCYmwtraGmPGjEFcXBwiIiL4xgUREVEJW7t2Lfbu3ct5+ESfiMvYBeMydiIqTWQyGaZPn4758+eLjkKkFlq3bo0LFy7k//rll18AALGxsejTpw+qVKkCExMT2NraQqVS4d69ewCAGzduoH79+gUKpU5OTm/d/6effoKjoyMsLCxgZGSE1atX59/jtXr16r1V6IyJiUHXrl1RsWJFGBsb59/79bWDBw9GTEwMatSogfHjx2P//v1QKpVF9wdDRERE7/R6VqePj4/oKEQai8VOwbiMnYhKm759++LevXuIiooSHYVIOAMDA1SrVi3/V/ny5QEAXbp0QUpKCjZs2IDTp0/jzz//hFQqRXZ2NgBApVL9a0fl1q1b4e3tjSFDhiAiIgIXLlzAyJEj8+/xmqGhYYHP09LS0KlTJxgbG2PLli04e/YsfvvtNwDIv7ZJkya4c+cOfH19kZOTg/79+8PNzQ1cEERERFS8/P39UbduXTRt2lR0FCKNxZmdgikUCiQnJ4uOQURUZHR0dDBt2jTMnz+fmxURvUNSUhJiY2OxceNGODs7AwDOnDlToHOyVq1aCA4ORlZWFvT09PLPeVN0dDRatGiBMWPG5B+Li4v719e/du0aUlJSsHDhQtjb2wMALl269NZ5JiYm6NWrF3r16gUvLy+0atUKt2/fRpUqVT7+oYmIiOhfZWVlwc/PDzt37hQdhUijsbNTMH19fS5jJ6JSZ8CAAXjw4AGePn0qOgqR2jE3N4eZmRnWr1+PuLg4REZGYuzYsZBK//+3ZV5eXlAqlRgxYgSuX7+OgwcPYuHChQCQ3/FZvXp1xMTEICIiArGxsZgzZw6OHz/+r69fqVIl6OrqYvXq1bh9+zb27t371lK5pUuXIigoCDdu3EBsbCy2b9+OMmXKwNbWtgj/JIiIiOhNr7s63zW6hogKj8VOwbiMnYhKI11dXVy5cgXlypUTHYVI7chkMgQHB+PcuXOoW7cuxo8fjx9++AE6Ojr555iYmCA8PBwXLlxAw4YN8Z///Adz584FgPw5nmPGjEGPHj3g6emJpk2b4sGDB2/t2P4uVlZWCAgIQEhICGrVqgVfX18sX768wDlGRkZYtGgRHB0d4ejomL/p0ZszRImIiKhojRo1Kn+0DBF9Ou7GLtjmzZtx8OBBBAYGio5CREREamzXrl3o1asXnj59ClNTU9FxiIiIiIjUEmd2CsZl7ERERPQu/v7+cHBwgJ2dHS5fvoxvv/0W3bp1Y6GTiIiIiOgDWOwUTKFQsNhJRFpJqVQWmFFIRAU9evQIc+bMwaNHj2BjYwN3d/f8uZ1ERERERPRuXMYu2MGDB7Fo0SIcOnRIdBQiohKhVCoRFhaG7du3o1q1aujatSuHsBMREREREVGRYEuNYOzsJCJtkZOTAwC4cOECvvvuOyiVSkRFRWHo0KFITU0VnI6IiIiISDPl5uZCIpFg9+7dxXoNkaZgsVMwzuwkotIuIyMDU6ZMQf369dG1a1eEhISgRYsW2L59OyIjI2FtbY3p06eLjklEREREVOTc3d3Rvn37d37t+vXrkEgkOHjwYAmnAuRyORITE+Hm5lbir01U3FjsFEyhUODVq1eiYxARFQuVSoU+ffrgxIkT8PX1Rb169RAeHo6cnBzI5XJIpVJMnDgRR48eRXZ2tui4RERERERFatiwYTh8+DDu3Lnz1tc2btyIihUrwtXVteSDAbC2toaenp6Q1yYqTix2CsZl7ERUmt28eRO3bt2Cl5cXPDw8sGDBAixfvhwhISF48OABMjMz8dtvv8Hc3Bzp6emi4xLRv1i+fDmcnZ2Rl5cnOgoREZFG6NKlC6ysrODv71/geE5ODgIDAzFkyBBIpVJ4e3ujevXq0NfXR+XKlTF16lRkZWXln3/37l107doVZmZmMDAwQK1atbBz5853vmZcXBwkEgkuXLiQf+yfy9a5jJ1KMxY7BeMydiIqzYyMjPDq1Su0bt06/5iTkxOqVKmCQYMGoWnTpjh+/Djc3NxgamoqMCkRFcakSZMgk8mwfPly0VGIiIg0glwux8CBAxEQEAClUpl/PDw8HE+fPsXgwYMBACYmJggICMD169exZs0abNmyBQsXLsw/f9SoUcjOzkZkZCSuXr2K5cuXo0yZMiX+PESagMVOwdjZSUSlmZ2dHWrWrIkVK1bkf3MXHh6O9PR0+Pr6YsSIERg4cCAGDRoEAAW+ASQi9SOVShEQEIDFixfj0qVLouMQERFphKFDh+LevXs4dOhQ/rGNGzeiY8eOsLe3BwDMnj0bLVq0QKVKldClSxdMnToV27dvzz//7t27cHZ2Rv369VG5cmW4ubmhY8eOJf4sRJpALjqAtuPMTiIq7ZYsWYJevXrB1dUVjRo1QlRUFLp27QonJyc4OTnln5ednQ1dXV2BSYmoMCpVqoTFixfDy8sLZ86c4awvIiKif+Hg4IDWrVtj06ZN6NixIx4+fIiIiAgEBwfnnxMcHIxVq1YhPj4eL1++RG5uLqTS/9+fNnHiRIwbNw779u2Dq6srevTogUaNGol4HCK1x85OwV53dqpUKtFRiIiKRb169bB69WrUqFED586dQ7169TBnzhwAQHJyMn7//Xf0798fI0eOxM8//4zY2FixgYnoXw0aNAiVKlXK/7tMREREHzZs2DDs3r0bKSkpCAgIgJmZGbp27QoAiI6ORr9+/dC5c2eEh4fj/PnzmDdvXoENPEeOHIm//voLAwcOxI0bN9CsWTP4+vq+87VeF0nfrDPk5OQU49MRqRcWOwWTyWSQy+X8h4eISrX27dtj3bp12Lt3LzZt2gQrKysEBASgTZs2+Oqrr/DgwQOkpKRgzZo16Nu3r+i4RPQvJBIJNmzYgICAABw/flx0HCIiIrX3zTffQKFQYMuWLdi0aRMGDBgAHR0dAMDx48dRsWJFzJgxA02aNIGDg8M7d2+3t7fHyJEjsXPnTsyePRvr169/52tZWloCABITE/OPvblZEVFpx2KnGuBSdiLSBnl5eTAyMsKDBw/QoUMHDB8+HM2bN8f169dx4MABhIaG4vTp08jOzsaiRYtExyWif2FpaYm1a9di4MCBePnypeg4REREak1fXx99+/bFnDlzEB8fj6FDh+Z/rXr16rh37x62b9+O+Ph4rFmzBjt27Chw/fjx4xEREYG//voL58+fR0REBGrXrv3O1zIyMoKjoyMWLlyIa9euITo6Gt9//32xPh+ROmGxUw1wkyIi0gYymQwAsHz5cjx9+hR//PEHNmzYAAcHB0ilUshkMhgbG6NJkya4fPmy4LREVBjdunWDs7MzvL29RUchIiJSe8OGDcOzZ8/QokUL1KpVK/949+7dMXnyZEyYMAENGzZEZGQk5s6dW+DavLw8jB07FrVr10anTp1Qvnx5+Pv7v/e1AgICkJubC0dHR4wZM+a9S96JSiOJisMihatYsSKOHTuGihUrio5CRFSsEhIS0K5dOwwcOBAzZszI33399Vyhly9fombNmpg5cyZGjRolMioRFdKLFy/QoEEDrF27Fm5ubqLjEBEREZGWY2enGmBnJxFpi4yMDGRmZqJfv34A/i5ySqVSZGZmYteuXXBxcYG5uTm6d+8uOCkRFVaZMmXg7++PYcOGITk5WXQcIiIiItJyLHaqAc7sJCJtUb16dZiZmcHPzw93795FdnY2tm3bhgkTJmDJkiUoX7481qxZAysrK9FRiegjuLi4wNPTE6NHjwYXDRERERGRSCx2qgF2dhKRNlm7di2uX7+ORo0aoVy5cli6dClu3bqFTp06YcWKFWjVqpXoiET0CRYsWIArV64gKChIdBQiIiIi0mJy0QHo713ZWOwkIm3RvHlz7N+/HxEREdDT0wMANGzYEHZ2doKTEdHn0NfXR2BgINzc3ODs7My/00REREQkBIudaoDL2IlI2xgZGcHDw0N0DCIqYo0bN8b48eMxZMgQREREQCKRiI5ERERERFqGy9jVAJexExERUWkxbdo0vHjxAj///LPoKERERELl5OSgSpUqiIqKEh2FSKuw2KkGuIydiAhQqVTc2ISoFJDL5di8eTN8fHxw69Yt0XGIiIiE2bJlCypXrgxnZ2fRUYi0CoudaoCdnUREQGhoKJYtWyY6BhEVgRo1amDOnDkYMGAAcnNzRcchIiIqcTk5OfD19YWPj4/oKERah8VONcCZnUREgIODA5YtW8Z/D4lKiTFjxsDExAQLFy4UHYWIiKjEbdmyBZUqVULr1q1FRyHSOix2qgF2dhIRAfXr10ezZs2wYcMG0VGIqAhIpVJs2rQJq1atwrlz50THISIiKjHs6iQSi8VONcCZnUREf5s5cyYWL17MfxOJSgk7Ozv8+OOP8PLy4t9rIiLSGlu3bkXFihXZ1UkkCIudaoDL2ImI/ta4cWM0aNAA/v7+oqMQURHp27cv6tSpgxkzZoiOQkREVOxyc3PZ1UkkGIudaoDL2ImI/r9Zs2Zh4cKFyM7OFh2FiIqARCLB2rVrERQUhMjISNFxiIiIitWWLVtQoUIFtGnTRnQUIq3FYqca4DJ2IqL/r1mzZqhRowY2b94sOgoRFZFy5cphw4YNGDRoEFJTU0XHISIiKhbs6iRSDyx2qgF2dhIRFTRr1iz88MMPyM3NFR2FiIpI586d0alTJ0yaNEl0FCIiomKxdetW2Nvbs6uTSDAWO9UAZ3YSERXk7OyMChUqYNu2baKjEFERWrZsGY4ePYo9e/aIjkJERFSkcnNzMX/+fHZ1EqkBFjvVADs7iYjeNmvWLCxYsAB5eXmioxBRETEyMsLmzZsxatQoPH78WHQcIiKiIrN161bY2dmhbdu2oqMQaT0WO9UAZ3YSEb3NxcUF5ubm2LFjh+goRFSEWrZsiYEDB2LEiBFQqVSi4xAREX2217M658yZIzoKEYHFTrXAZexERG+TSCSYPXs2fH19oVQqRcchoiI0d+5c3L59G7/++qvoKERERJ9t27ZtKF++PLs6idQEi51qgMvYiYjerWPHjjA0NERoaKjoKERUhPT09BAYGIgpU6bg7t27ouMQERF9stezOtnVSaQ+WOxUA1zGTkT0bhKJBLNmzYKvry+XuxKVMvXr14e3tzcGDRrE7m0iItJY27Ztg62tLbs6idQIi51qgJ2dRETv99VXX0EikSA8PFx0FCIqYt7e3sjJycHKlStFRyEiIvponNVJpJ5Y7FQDnNlJRPR+r7s758+fz+5OolJGJpPh119/hZ+fH65duyY6DhER0UfZvn07bGxs2NVJpGZY7FQD7OwkIvqwbt26ITMzE7///rvoKERUxKpWrQo/Pz94eXkhOztbdBwiIqJCeXNWp0QiER2HiN7AYqca4MxOIqIPk0qlmDFjBrs7iUqpYcOGwdraGr6+vqKjEBERFUpQUBCsra3Z1UmkhiQq/tQoXEZGBsqVK8el7EREH5CXl4c6dergp59+gqurq+g4RFTEEhMT0ahRI+zZswdOTk6i4xAREb1Xbm4u6tSpg7Vr16Jdu3ai4xDRP7CzUw0oFApkZWWxW4mI6ANkMhlmzJiBefPmiY5CRMXAxsYGa9asgZeXFzIyMkTHISIieq+goCBYWVnBxcVFdBQiegd2dqoJPT09pKamQk9PT3QUIiK1lZubi5o1a2LTpk1o3bq16DhEVAz69+8PU1NTrF69WnQUIiKit+Tl5aF27dr4+eefudqISE2xs1NNcJMiIqJ/J5fLMX36dMyfP190FCIqJmvWrMGePXtw8OBB0VGIiIjeEhQUBEtLSy5fJ1JjLHaqCYVCwZmdRESF4OXlhdjYWJw8eVJ0FCIqBmXLlsXGjRsxZMgQPHv2THQcIiKifHl5eZg3bx53YCdScyx2qgl2dhIRFY6Ojg6mTp3K7k6iUqxDhw7o1q0bxo0bJzoKERFRPnZ1EmkGFjvVhL6+PoudRESFNHjwYFy+fBkxMTGioxBRMVm0aBFiYmKwY8cO0VGIiIiQl5eH+fPnw8fHh12dRGqOxU41wWXsRESFp6enh++//57dnUSlmIGBAQIDAzF+/HgkJiaKjkNERFouODgY5ubm3JSISAOw2KkmuIydiOjjDBs2DGfPnsXFixdFRyGiYtK0aVOMGjUKQ4cOhUqlEh2HiIi0FGd1EmkWFjvVBJexExF9HH19fXh7e8PX11d0FCIqRjNnzkRSUhI2bNggOgoREWkpdnUSaRYWO9UEOzuJiD7eyJEjcezYMVy9elV0FCIqJjo6OggMDMSMGTMQHx8vOg4REWkZzuok0jwsdqoJzuwkIvp4hoaGmDx5MhYsWCA6ChEVo9q1a2PGjBkYMGAA8vLyRMchIiItsmPHDpiZmaF9+/aioxBRIbHYqSbY2UlE9GnGjh2LQ4cO4ebNm6KjEFExmjBhAvT09LB06VLRUYiISEtwVieRZmKxU01wZicR0acxNjbG+PHj4efnJzoKERUjqVSKgIAALF26lBuTERFRidixYwdMTU3Z1UmkYVjsVBNcxk5E9OnGjx+Pffv24a+//hIdhYiKUYUKFbB06VJ4eXkhKytLdBwiIirFXs/qZFcnkeZhsVNNcBk7EdGnK1u2LMaMGYMffvhBdBQiKmYDBgxA1apVMXv2bNFRiIioFNu5cyfKli2LDh06iI5CRB+JxU41wWXsRESfZ9KkSQgNDcXdu3dFRyGiYiSRSLB+/Xps3rwZ0dHRouMQEVEpxFmdRJqNxU41wc5OIqLPY2ZmhuHDh2PR/2PvzsNjPN+3gZ+TPbKpkqpYs5GV2GltCUVKrW2CihBLKVIUEWQj9lJKayux1f5NbSVtI7GTEImQVVARam+EkG2e94++yU9qS5jMPTM5P8fhODozz/PMOWk7Mtdc933Nny86ChFVsBo1amDVqlUYMmQIcnJyRMchIiINs3PnTpiZmbGrk0hNsdipIrhnJxHRu5s4cSK2bduGrKws0VGIqIJ99tln6NixIyZNmiQ6ChERaRDu1Umk/ljsVBHs7CQienfm5uYYOnQoFi5cKDoKESnBkiVL8Mcff+DAgQOioxARkYbYtWsXTE1N8cknn4iOQkRvicVOFcE9O4mIFOPbb7/Fxo0b8ffff4uOQkQVzNTUFGFhYRg5ciTu3bsnOg4REak5uVzOvTqJNACLnSqCy9iJiBTjww8/xKBBg/Ddd9+JjkJEStChQwcMGDAAX331FSRJEh2HiIjU2K5du2BiYsKuTiI1x2KniuAydiIixZk6dSp+/vln3L17V3QUIlKC2bNnIzk5Gb/88ovoKEREpKbkcjmCg4PZ1UmkAVjsVBFcxk5EpDi1a9fGF198gSVLloiOQkRKYGBggM2bN2PChAnIzMwUHYeIiNRQcVdn165dRUchonfEYqeKYGcnEZFi+fn5YdWqVXjw4IHoKESkBC4uLvD19cXQoUMhl8tFxyEiIjVSvFdnYGAguzqJNACLnSqCe3YSESlW/fr10bt3byxbtkx0FCJSkqlTp+LJkydYsWKF6ChERKRGdu/eDSMjPSuiUAAAIABJREFUI3Tr1k10FCJSAJnEndxVQlxcHIYPH464uDjRUYiINMbly5fRunVrZGRkwMzMTHQcIlKC9PR0tGnTBsePH0ejRo1ExyEiIhUnl8vh7OyMhQsXonv37qLjEJECsLNTBdy9exeJiYnQ1tbG77//jsuXL4uORESkEaytrdG9e3csX74cAJCamoqIiAjs27cPUVFRXOJOpIFsbGwQEhICLy8vFBYWio5DREQqjl2dRJqHnZ2CSJKEmJgYZGVloXr16mjatCmMjIyQl5eH9PR0pKenw8jICK6urtDV1RUdl4hIbV24cAGDBw+Gv78/nJycYGVlBT09PTx+/Bhnz57FgwcPUL9+fTRr1kx0VCJSEEmS0K1bN3z00UcICAgQHYeIiFRUcVfnggUL4O7uLjoOESkIi50CPHnyBLt27YKrqyvq1KnzyuMeP36M/fv3o0WLFrCyslJiQiIizZCSkoLExER8+umnqFKlyiuPu3r1Ko4ePQoPDw8YGBgoMSERVZSsrCy4uLjgt99+Q/PmzUXHISIiFbRr1y4sWLAAZ86c4WAiIg3CYqeS5ebmYseOHRg8eDC0tbXLdE5ERAQsLS1hY2NTwemIiDTHpUuXcOfOHXTq1KlMxxcUFGDz5s0YOHAg9PX1KzgdESnD1q1bERISgri4OBgaGoqOQ0REKkQul6Nx48aYP38+uzqJNAz37FSy//3vf+UqdAJA165dkZCQgCdPnlRgMiIizfHgwQNkZGSUudAJALq6uhg0aBB2795dgcmISJkGDBiAxo0bw9/fX3QUIiJSMf/73/9gaGjIoUREGojFTiVKS0uDs7NzuQqdxT777DNERkZWQCoiIs1z5MgRfPrpp+U+T09PDw0aNMCNGzcqIBURibBixQrs3LkTUVFRoqMQEZGKkMvlCAkJQWBgIJevE2kgFjuVKDExEc7Ozm91rp6eHvLy8sBdB4iIXk8ul0OSpLf6YgkAWrdujdOnTys4FRGJ8v7772PNmjXw9vZGdna26DhERKQCwsPDoa+vz+XrRBqKxU4lycvLe+c94Fq1aoXY2FgFJSIi0kzHjx9H+/bt3/p8mUwGbW1tyOVyBaYiIpG6d+8Od3d3+Pr6io5CRESCyeVyBAcHIygoiF2dRBqKxU4luX379msnr5dF3bp1cfv2bQUlIiLSTNnZ2ahevfo7XaN69ersACPSMAsXLsTx48cRHh4uOgoREQnErk4izcdip5Lk5OTA2Nj4na/DZexERK+niPdJExMT5OTkKCANEakKY2NjbNy4EaNHj+aXx0RElRT36iSqHFjsVBJFfXDmGzIR0esp4n0yJycHpqamCkhDRKqkbdu2GDZsGEaMGMEvkImIKqFff/0Vurq6bzXIkojUB4udSlKzZk1kZma+0zWuXr2KWrVqKSgREZFmeu+99965a+vu3bssdhJpqKCgIFy/fh3r168XHYWIiJSIe3USVR4sdiqJnp4e8vPz3+ka0dHRaNq0qYISERFppo8++ggnTpx46/MlSYIkSdDS4l+RRJpIT08PmzZtwtSpU3H16lXRcYiISEnY1UlUefCTnBI1adIEcXFxb3Xus2fP8NNPP6Fnz56IiYlRcDIiIs0hk8kgk8lQWFj4Vufv2bMHO3bswPXr1xWcjIhUhZOTE6ZMmQJvb28UFRWJjkNERBWMe3USVS4sdiqRlZUVkpKSUFBQUO5z9+zZg0OHDsHd3R39+/dH9+7dcerUqQpISUSk/lxdXbF3795yn/fs2TNkZ2fDxsYGLi4umDJlCh4+fFgBCYlItIkTJ0KSJHz//feioxARUQXbs2cPtLW10aNHD9FRiEgJWOxUsv79+2Pz5s3l6jg6cOAAWrZsiWrVqmHMmDFIT09H7969MWDAAHTp0gXHjx+vwMREROrHzMwMDg4O+P3338t8Tl5eHrZu3YqBAwdi9uzZuHDhAh4+fIiGDRti8eLFyMvLq8DERKRs2traCAsLw7x583Dx4kXRcYiIqIJwr06iyofFTiUzMDCAp6cnfvnlF6Snp7/22AcPHmDLli1wdHREgwYNSu7X19fHqFGjkJaWBk9PT3h5ecHV1RXR0dEVnJ6ISH00bNgQlpaW2Lp1K7Kzs197bHJyMnbs2IFBgwZBV1cXAGBhYYE1a9YgOjoa0dHRaNSoEbZs2QK5XK6M+ESkBJaWlpg7dy4GDx78znurExGRatq7dy+7OokqGZkkSZLoEJVVQkICMjIyYGpqCmdnZ5iZmeHJkye4fPkyMjMzUa1aNbRv3x7a2tqvvU5BQQG2bNmC0NBQ1KpVCwEBAXB1deW3VkREAAoLCxEdHY3s7GzUr18flpaWMDQ0RHZ2Ns6fP48nT57Azs4O9vb2r73OkSNHMHnyZBQWFmLBggXo3Lmzkl4BEVUkSZLw2WefoXHjxpg9e7boOEREpECSJKFp06YIDg7GZ599JjoOESkJi50qIDs7GykpKcjOzoaRkRHq1auH2rVrl/s6hYWF2LZtG2bPno33338fgYGB6NKlC4ueRET/3/Xr13H9+nXk5ubiq6++wq+//gpnZ+cyny9JEnbt2oVp06bB2toa8+fPR+PGjSswMREpw99//40mTZogPDwcbdq0ER2HiIgU5Ndff0VISAjOnTvHz8VElQiLnRqoqKgIO3bswKxZs2BqaoqAgAB0796db+5ERM/p3Lkzvv32W3Tr1q3c5+bn52PVqlUIDQ1F165dMWvWLNStW7cCUhKRsuzevRt+fn6Ij4+HkZGR6DhERPSOirs6g4KC0KtXL9FxiEiJuGenBtLW1saAAQOQmJiIiRMnYurUqWjZsiX27dsH1raJiP5la2v7xr2TX0VPTw/jxo1DWloa6tSpAxcXF0ydOhX//POPglMSkbL069cPbdq0wZQpU0RHISIiBdi7dy8AcPk6USXEYqcG09bWxhdffIGEhAT4+flhxowZaNasGcLDwzlgg4gqPRsbm7cudhYzNTUtmdz+4MED2NracnI7kRpbtmwZ9u3bh4iICNFRiIjoHUiShKCgIE5gJ6qkWOysBLS0tNCvXz+cP38egYGBmD17NlxcXLBr1y4WPYmo0lJEsbNY8eT2qKgoREVFcXI7kZqqWrUq1q9fDx8fHzx48EB0HCIiekvs6iSq3LhnZyUkSRIOHDiAkJAQ5ObmYubMmejfv/8bp74TEWmS1NRUfPrpp7h8+bLCr/385PaFCxfCzc1N4c9BRBXH19cXd+7cwdatW0VHISKicpIkCc2aNUNAQAB69+4tOg4RCcBiZyUmSRIiIiIQHByM7OxszJgxAx4eHix6ElGlkJ+fD1NTU+Tk5EBXV1fh139+cruNjQ3mz59frsnvRCTO06dP0bRpUwQGBsLT01N0HCIiKoe9e/ciMDAQcXFxXMJOVElxGXslJpPJ0K1bN5w8eRJLly7Fjz/+CHt7e2zcuBGFhYWi4xERVSg9PT1YWFjg6tWrFXJ9mUyGzz//HElJSXB3d0eXLl3g7e2N69evV8jzEZHiGBoaYuPGjfD19cXNmzdFxyEiojIq3qszMDCQhU6iSozFToJMJkOXLl1w7Ngx/PTTT1i3bh0aNWqE9evXo6CgQHQ8IqIKY2Njg7S0tAp9juLJ7enp6ahduzYntxOpiRYtWmD06NEYNmwYuBCKiEg97Nu3D5IkoVevXqKjEJFAXMZOZZKfnw89PT3RMYiINIa5uTn8/Pzw9ddfQ19fX3QcInqJgoICtG3bFj4+Pvjqq69ExyEioteQJAnNmzfHjBkz0KdPH9FxiEggdnZSmdjY2GDlypXIy8sTHYWISCM8P7n9l19+4eR2IhWkq6uLTZs2YebMmUhPTxcdh4iIXmP//v0oKipiVycRsdhJZbN9+3bs3bsX1tbWWL58OZ49eyY6EhGRWnNwcMC+ffsQFhaG77//Hi1atEBkZKToWET0H40aNcLMmTMxZMgQ7mlORKSiJEnCnDlzEBgYCC0tljmIKjsuY6dyiY2NxaxZs3Du3DlMmTIFI0eOhKGhoehYRERqTZIk7Ny5E9OmTYOtrS0ntxOpGLlcji5duqBz586YNm2a6DhERPQfkiRBLpdDJpOx2ElE7Oyk8mnRogX27t2Lffv2ITo6GlZWVli8eDGePHkiOhoRkdqSyWT44osvkJycXGpye2ZmpuhoRARAS0sL69evx5IlSxAfHy86DhER/YdMJoO2tjYLnUQEgMXOcpHJZNi1a9c7XSMsLAzGxsYKSiRO06ZNER4ejt9++w0nT56ElZUVFixYgMePH4uORkQarH79+li0aFGFP4+o9+r/Tm5v0qQJJ7cTqYi6deviu+++w+DBg7mdDxEREZEKY7ET/xYxX/fH29sbAHDr1i307NnznZ7Lw8MDV65cUUBq1dCkSRPs2rULf/75J+Li4mBlZYW5c+fi0aNHoqMRkZrx9vYued/V0dFB3bp1MXr0aDx8+LDkmNjYWIwZM6bCs4h+rzY1NcXs2bNx4cIF3L9/H7a2tliyZAmHxBEJ9uWXX8LW1hYzZ84UHYWIiIiIXoF7dgL4+++/S/55//79GDFiBG7dulVyn6GhIczMzEREqxD5+fnQ09OrkGsnJSUhNDQUv//+O3x9fTFu3DiN+tkRUcXx9vZGVlYWNm3ahMLCQiQlJWHYsGFo164dtm7dKjqeUJcuXYKfnx8uXryI0NBQeHp6cpkWkSB3795F48aNsW3bNrRv3150HCIiIiL6D35SAlCzZs2SP1WrVn3hvuJi3fPL2K9duwaZTIZt27ahQ4cOMDQ0hIuLCy5cuICLFy+ibdu2MDIywscff4yrV6+WPNd/l0ZmZmaiV69eqFatGqpUqYJGjRph27ZtJY8nJiaic+fOMDQ0RLVq1eDt7Y3s7OySx2NjY/HJJ5+gevXqMDU1xccff4xTp06Ven0ymQwrVqxA3759YWRkBH9/fxQVFcHHxwcNGjSAoaEhbGxssGDBAsjl8nf6Wdrb22PLli04fvw40tPTYW1tjeDg4FKdWUREr6Kvr4+aNWuidu3a+OSTT+Dh4YHff/+95PH/LmOXyWT46aef0KtXL1SpUgW2traIiorCjRs30LVrVxgZGaFJkyaIi4srOaf4fTgyMhKOjo4wMjJCp06dXvteDQAHDhxAq1atYGhoiPfffx89e/YsWcr6suX1HTt2xNixYxXyc+HkdiLVUaNGDaxatQre3t7IyckRHYeIqNJhvxYRvQmLne8oMDAQU6dOxfnz51G1alUMHDgQ48aNQ2hoKGJiYvDs2TOMHz/+leePGTMGubm5iIqKwqVLl/D999+XFFxzc3PRrVs3GBsbIyYmBuHh4Th58iSGDRtWcn5OTg4GDx6MY8eOISYmBk2aNIG7uzvu3btX6nmCg4Ph7u6OxMREfP3115DL5bCwsMCOHTuQnJyM0NBQzJkzB+vXr1fIz6Vhw4bYsGEDTp06hb/++gs2NjaYOXMm7t+/r5DrE5Hmu3LlCg4dOgRdXd3XHjd79mx4enoiISEBzZs3x4ABA+Dj44MxY8bg/PnzqFWrVsl2JMXy8vIwd+5crFu3DqdOncI///yDr7766pXPcejQIfTq1QtdunTBuXPnEBUVhQ4dOrzzF0Tl1aFDB5w5cwZTp07FyJEj0b17d1y4cEGpGYgI6NmzJ1xdXTFhwgTRUYiIKoXnC5wymQwAlP57GBGpEYlK2blzp/SqHwsAaefOnZIkSdLVq1clANLKlStLHt+3b58EQNq9e3fJfevXr5eMjIxeedvJyUkKCgp66fOtXr1aMjU1lR49elRyX1RUlARASk9Pf+k5crlcqlmzprRp06ZSuceOHfu6ly1JkiRNnTpVcnNze+NxbyMjI0MaPny4VK1aNWnatGnS3bt3K+R5iEh9DRkyRNLW1paMjIwkAwMDCYAEQFq8eHHJMfXq1ZMWLlxYchuA5OfnV3I7MTFRAiB99913JfcVv28Wv++sX79eAiClpKSUHLN582ZJV1dXKioqKjnm+ffqtm3bSh4eHq/M/t9ckiRJHTp0kL7++uvy/hjKLC8vT1q2bJlkbm4ueXt7S9evX6+w5yKiFz169Ehq0KCBtHfvXtFRiIg03rNnz6Tjx49LI0aMkGbOnCnl5uaKjkREKoydne/I2dm55J8/+OADAICTk1Op+548eYLc3NyXnu/r64vZs2ejTZs2mDFjBs6dO1fyWHJyMpydnWFiYlJyX9u2baGlpYWkpCQAwJ07dzBq1CjY2trCzMwMJiYmuHPnDq5fv17qeZo3b/7Cc69cuRLNmzdHjRo1YGxsjCVLlrxwnqJYWlpizZo1iIuLw4MHD2Bra4spU6bgzp07FfJ8RKSe2rdvj/j4eMTExGDcuHFwd3d/bXc8ULb3YQCl3m/09fXRsGHDktu1atVCQUHBK6eenz9/Hm5ubuV/QRWoeHJ7WloaatWqhSZNmsDPz4+T24mUxMTEBBs2bMCoUaNw9+5d0XGIiDRaaGgoRo8ejQsXLmDLli1o2LBhqc/ORETPY7HzHT2/vLK4nf5l972qxd7HxwdXr17F0KFDkZaWhrZt2yIoKAjAv636xef/V/H9Q4YMQWxsLJYsWYKTJ08iPj4etWvXRn5+fqnjjYyMSt3evn07vvnmG3h7eyMiIgLx8fEYM2bMC+cpWr169bBy5UokJCQgNzcXjRo1wqRJk0oNiSKiyqtKlSqwtraGk5MTli1bhtzcXMyaNeu157zN+7COjk6pa7zrcigtLa0X9o8qKCh4q2uVl5mZGUJDQ3HhwgXcu3ePk9uJlKhdu3b48ssvMWrUKO4hR0RUQW7duoXFixdjyZIliIiIwMmTJ1GnTp2SAZaFhYUAuJcnEf0fFjtVQO3atTFy5Ejs2LEDISEhWL16NYB/h/0kJCSU2vz+5MmTkMvlsLOzAwAcP34c48aNw6effgoHBweYmJiUmiT/KsePH0erVq0wduxYNG3aFNbW1sjIyKiYF/gSderUwfLly5GYmIjCwkLY29vjm2++wc2bN5WWgYhUX2BgIObPny/8vcHFxeW1A4Fq1KhR6r332bNnSElJUUa0EhYWFli7di2ioqJw+PBhNGrUCL/88gv3syKqYCEhIUhPT8fmzZtFRyEi0khLliyBm5sb3NzcYGZmhg8++ACTJ0/Grl27kJOTU/Il9qpVq7iXOREBYLFTOF9fXxw6dAhXrlxBfHw8Dh06BHt7ewDAoEGDYGRkBC8vLyQmJuLo0aMYNWoU+vbtC2trawCAra0tNm/ejKSkJMTGxsLT0xN6enpvfF5bW1vExcXh4MGDSE9Px6xZs3DkyJEKfa0vY2FhgaVLl+LSpUvQ1taGo6Mjxo4dixs3big9CxGpno4dO8LBwQGzZ88WmmP69OnYuXMnZsyYgaSkJFy6dAlLliwp2aLE1dUVW7ZsQXR0NC5duoRhw4YprbPzv4ont69fv75kcvvhw4eFZCGqDAwMDLBp0yZMmjSpwrYDIiKqrPLz85GVlQUbGxsUFRUBAIqKiuDq6gp9fX2Eh4cDANLT0zFmzJhSW8ARUeXFYqdgcrkc48aNg729Pbp06YIPPvgAGzZsAPDvcs6IiAg8evQILVu2RK9evdCmTRusW7eu5Px169bh8ePHaNasGTw9PTFs2DDUr1//jc87atQofPHFFxg4cCBatGiBa9euYdKkSRX1Mt/oww8/xHfffYeUlBRUqVIFzs7OGD16NP766y9hmYhINUycOBE///yz0PcDd3d3hIeH4+DBg3BxcUGHDh0QFRUFLa1//xqdNm0aXF1d0atXL3zyySf4+OOP0bRpU2F5gX8LxcWT20eMGMHJ7UQVqEmTJpgwYQKGDh3KbmoiIgXS09ODp6cnrK2toa2tDQDQ1taGqakpPvroI+zbtw8A4O/vj88++wwNGjQQGZeIVIRM4sYWpILu3r2LxYsXY/Xq1ejbty/8/f3L9BdXUVERkpKSULduXZiZmSkhKRGR6svPz8eqVaswe/ZsuLu7IyQkBHXq1BEdi0ijFBYWon379vDw8ICvr6/oOEREGqN4tYyurm6puRZRUVEYNWoUdu7ciWbNmiE1NRVWVlYioxKRimBnJ6mkGjVqYO7cuUhLS0PNmjXRvHlzDBs2DA8fPnzteUlJSVi4cCHatWuHESNGvPF4IqLKgJPbiSqejo4ONm7ciFmzZiE5OVl0HCIitVf8e4quru4Lhc78/Hy0adMG1apVQ8uWLdG3b18WOomoBIudpNLef/99zJo1C5cvX0bdunVhbGz82uNr164NT09PfP311/j555+xZMkSPHv2TElpiYhUGye3E1Usa2trzJ49G15eXsL27SUi0gQPHjzA6NGjsXHjRly7dg0ASgqdwL9f5BoYGMDBwQEFBQVYuHChoKREpIpY7CS18N577yEoKKhk0t7rjnN3d8eDBw9gZWWFbt26wcDAoORxfvAgIvq/ye2HDx9GZGQk7OzsOLmdSEFGjRqF6tWrIzQ0VHQUIiK1tX79emzfvh3ff/89Jk+ejC1btiAzMxPAv1PXi4cVzZ07F3v37kW9evVExiUiFcM9O0ljPL+s4cMPP8TgwYMREBBQ0g16/fp17Ny5E7m5uRg8eHCZBjkREVUG0dHRmDJlCoqKirBw4UK4urqKjkSk1m7evAkXFxfs378fLVq0EB2HiEjtnDx5Er6+vvDy8sKePXuQkpICNzc3aGtrY/fu3bhx4wYnrxPRK7GzkzRG8bd7CxcuhLa2Nvr06VNq2fuDBw9w584dnDp1CpaWlli8eDG7mIiI8OLkdnd3dyQmJoqORaS2atWqhWXLlmHw4MHIzc0VHYeISO20bdsWrVu3xtOnT/Hnn39i6dKluH79OjZv3gxLS0scPHgQGRkZomMSkYpisZM0RvES9++//x4eHh5wdHQs9XiTJk0QGhqKoKAgAICpqamyIxKRClu3bh28vLxExxBGJpPhiy++QHJyMrp164bOnTtj6NChJUvGiKh8PDw80LRpU0ybNk10FCIitTRx4kQcOnQImZmZ6NevH7y9vWFiYoIqVapgwoQJmDRpEr9QIqKXYrGTNEJxh+aSJUsgSRL69u37wrKGoqIi6OjoYM2aNXB2dkavXr2gpVX6f4GnT58qLTMRqRZbW1ukp6eLjiGcnp4exo8fz8ntRAqwfPly7N69G5GRkaKjEBGplaKiIjRo0AAffvghAgMDAQDTpk3DnDlzcOLECSxevBitW7dGlSpVBCclIlXEPTtJrUmShMjISBgZGaFNmzaoV68e+vTpg1mzZsHExKTUPp7Av/t2WltbY+XKlRg2bFjJNWQyGa5evYqff/4Z+fn58PLyeqEzlIg02+3bt+Hg4IB79+6JjqJSsrKyEBgYiL1792LatGkYM2YM9PX1RcciUhsREREYMWIELly4gKpVq4qOQ0Sk8p7/DJeamoqJEyeiVq1a2L9/PxISEmBubi44IRGpOnZ2klorLnZ+9NFHsLKywqNHj9CvX7+Srs7ivySLOz9DQ0Nha2uLHj16lFyj+JgHDx5AJpMhOTkZzs7OnKJKVMmYm5sjPz8fDx8+FB1FpbxscvvWrVu55zFRGXXt2hU9e/bE+PHjRUchIlJpxavsnv8M17BhQ7Ru3RphYWHw9/cvKXTy9xAieh0WO0mtaWlpYe7cuUhLS0PHjh2RnZ2NadOm4fz586X+AtTS0kJWVhbCwsLg6+v70m8DmzVrhoCAAPj6+gIAHBwclPY6iEg8mUwGGxsbLmV/BUdHR+zfvx/r1q3D4sWL0bJlSxw+fFh0LCK1sGDBApw+fRq7d+8WHYWISCVlZ2cjODgY0dHRyM7OBoCSLcd8fHywdu3akr3VJUl6YTsyIqLncRk7aZRr165hypQpMDIywpo1a/DkyRNUqVIFurq6GDNmDKKiohAVFYWaNWuWOu/5pRJffvklUlNTERsbK+IlEJFAnp6e6NmzJwYNGiQ6ikqTy+XYuXMn/P390bBhQ8yfPx9OTk6iYxGptNOnT6N3796Ij49/4fcQIqLKbvTo0Vi1ahXq1q2Lnj174osvvoCzszPMzMxKHZeXl8ftdIjojfh1CGmU+vXrY8eOHfjpp5+gra2N0NBQdOrUCdu3b8emTZswceLEl37AKC50njt3Djt27IC/v7+yoxORCrCxsUFaWproGCpPS0sLHh4enNxOVA6tW7fG8OHDMWLECLDXgIjo/+Tk5OD06dNYuXIlJk2ahD179uDzzz/HjBkzcOTIkZIthi5evIiRI0fiyZMnghMTkapjsZM0koGBAWQyGb799lvUqFEDX375JZ48eQJDQ0MUFRW99By5XI6lS5fCwcEBffr0UXJiIlIFXMZePi+b3D5t2jRObid6hYCAANy7dw+3b98WHYWISGVkZmaiadOmqFmzJsaNG4fr169j5syZ2Lt3L7744gsEBATg6NGj8PX1xcOHD2FkZCQ6MhGpOC5jp0rh/v37mD59OlavXo2xY8ciJCTkhYmo8fHxaNWqFbZs2YL+/fsLSkpEIp0+fRrjxo3jNhZv6caNGwgMDMS+ffvg7++P0aNHc6kZ0X/I5XLIZLKSVSVERJWdXC5Heno6Pvjggxc+o61YsQKLFi3CP//8g+zsbKSmpsLGxkZQUiJSFyx2UqVy7949xMTEoGvXrtDW1sbNmzdhbm4OHR0dDB06FOfOnUNCQgI/gBBVUvfv34eVlRUePnzI94F3cPHiRfj5+SEpKQmhoaHw8PDgIAEiIiIqs8LCQujo6JTcLp7KvmHDBoGpiEhdsNhJlVZ2djYmT56Ms2fPYtCgQQgKCsL69evZ1UlUyVWrVg2pqamoUaOG6ChqLzo6GpMnT4YkSViwYAFcXV1FRyJSefn5+Vi6dCksLS3Rr18/0XGIiISSy+WIjY1FmzZtkJycjIYNG4qORERqgG0WVGmZmZlh8eLFaNq0KQICAvDkyRMUFBSBTD5bAAAgAElEQVTg6dOnrzxHkiTI5XIlpiQiZeO+nYrTsWNHnDlzBpMnT8aIESPg7u6OxMTEMp3L72KpssrMzER6ejpmzpyJAwcOiI5DRCSUlpYWHj9+jKlTp7LQSURlxmInVWrGxsZYu3Yt7t27h8mTJ2PQoEGYNm0aHj9+/MKxkiThzJkzcHJywtatW1856IiI1BuLnYr1ssntw4YNe+Mk1YKCAjx8+BAxMTFKSkokniRJsLKywtKlS+Ht7Y0RI0YgLy9PdCwiogonSdIrv+h0dXVFaGiokhMRkTpjsZMIgKGhIebPn4/c3FwMGjQIhoaGLxwjk8nQqlUrLF68GD/88AMcHBywefNmFBYWCkhMRBXFxsYGaWlpomNonOcnt1taWr70ffZ5Y8aMQbt27TBq1CjUr18f69evV1JSIuWTJKnU7xMGBgaYPHkyLC0t8dNPPwlMRkSkHFFRUfjtt99eWvCUyWTc+5uIyoXvGETPMTAwQIsWLaCtrf3Sx2UyGbp27YoTJ05gxYoVWL16Nezt7bFhwwYWPYk0BDs7K5aZmRlmzJjx2gFQP/74I7Zu3YoxY8Zgx44dCAgIQGhoKA4ePAiAS9xJM8jlcty8eRNFRUWQyWTQ0dEp+f+ieFp7bm4uTExMBCclIqpYkiQhICAA//zzDwdEEpFC6Lz5ECL6L5lMBjc3N7i5uSE6OhohISEICQmBv78/vLy8oKurKzoiEb0lW1tbFjuV4HUfZlauXInhw4djzJgxAP4tQJ89exZr1qxBt27dIJPJkJqayr27SG0VFBSgXr16uH37Ntq1awcjIyM0b94cLi4usLCwQLVq1bBp0ybEx8fDwsJCdFwiogp1+PBh3L17F56enqKjEJGGYGcn0Tvq2LEjDh8+jLCwMGzbtg22trZYvXo18vPzRUcjordgY2ODy5cvs3tQkPz8fFhZWZXs6Vn870GSpJLOt8TERNjZ2aFHjx7IzMwUGZforejq6mLixImQJAnjxo2Do6Mjjh49ilmzZqFHjx5o2bIl1q5dix9++AHdunUTHZeIqMJIkoSgoCAEBAS8cnUdEVF5sdhJpCDt2rXDH3/8gS1btiA8PBzW1tb48ccfOViASM2YmZnB0NAQf//9t+golZKenh46dOiAXbt2Yffu3ZDJZDhw4ABOnDgBMzMzFBUVwcnJCRkZGTA1NUW9evXg4+ODp0+fio5OVC7ffvstHB0dERkZifnz5+Pw4cM4d+4cUlNT8eeffyIjIwOjRo0qOT4rKwtZWVkCExMRKd7hw4dx584ddnUSkUKx2EmkYG3btsXBgwexc+dO/Pbbb7CyssIPP/yAZ8+eiY5GRGXEfTvFKO7i/OabbzBv3jyMGjUKrVq1gq+vLy5evAhXV1doa2ujsLAQDRo0wC+//IKzZ88iPT0dVatWxaZNmwS/AqLy2bt3L37++Wfs2bMHMpkMRUVFqFq1KlxcXKCvrw8dnX93nLp37x42bNgAPz8/FjyJSGMUd3XOnDmTXZ1EpFAsdhJVkFatWmH//v3Ys2cP/vzzT1hZWeH7779Hbm6u6GhE9AYsdipfYWEhIiMjcevWLQDAV199hXv37mH06NFwdHREmzZtMGDAAAAoKXgCwIcffgg3NzcUFBQgMTGR3fSkVurXr485c+bA29sbjx8/fuWH/erVq6NFixbIzc2Fh4eHklMSEVWMqKgodnUSUYVgsZOogjVr1gx79uzB/v37cezYMVhZWWHRokUl+9ERkephsVP57t+/j61btyIkJASPHj1CdnY2ioqKEB4ejszMTEydOhXAv3t6Fk+ufvDgAfr27Yt169Zh3bp1WLBgAfT19QW/EqLymTRpEiZMmICUlJSXPl5UVAQA6Ny5M4yNjXHy5ElERkYqMyIRkcI939VZ3MVORKQoLHYSKYmLiwt2796NiIgIxMTEwNLSEvPnz0dOTo7oaET0HzY2NkhLSxMdo1L54IMPMHr0aJw4cQL29vbo3bs3atWqhStXriAgIACfffYZAJR8INqzZw+6d++O+/fvY9WqVfD29haYnujdzJgxA82bNy91X/G2Dtra2oiPj0fTpk0RERGBlStXwsXFRURMIiKFiYqKwu3bt9nVSUQVQiZx3CyREJcuXUJoaCj+/PNPfPPNNxg7dixMTU1FxyIiAOfPn4eXlxcSExNFR6mUDhw4gIyMDNjZ2aFZs2aoVq1ayWP5+fmIiIiAj48PnJycsGrVKlhbWwP4tzgkk8lExSZ6Z+np6TAzM4O5uXnJffPnz8fMmTPh5uaGuXPnwtnZGVpa7FcgIvUlSRI6duyI4cOHY/DgwaLjEJEGYrGTSLCUlBSEhobi0KFDGD9+PMaNG4eqVauKjkVUqT1+/Bjm5uZ4/PgxiwqCyeXyUv8OZsyYgVWrVqFHjx4ICgpCvXr1XjiGSF0tW7YMO3bswPHjx3Ht2jV4eXkhLi4OgYGB8PHxKVX453/3RKSuoqKiMGrUKCQlJXEJOxFVCBY7iVREeno6QkNDsX//fnz99dfw9fUt9aGGiJSrVq1aOHPmDOrUqSM6CgHIzMzEhAkTEBERgZEjR+K7774THYlI4QoLC1G1alW0adMGsbGxcHR0xIIFC9CqVatXDi96+vQpDA0NlZyUiOjtsKuTiJSBXwcTqQgbGxuEhYXhzJkzyMrKgq2tLWbMmIH79++LjkZUKXFIkWoxNzdHzZo1sXbtWsybNw/A/w1u+S9Jkl75GJEq09HRwb59+xAZGYmePXvi119/Rdu2bV9a6Hz8+DF++uknLF26VEBSIqK3Ex0djZs3b2LAgAGioxCRBmOxk0jFWFlZYe3atYiNjcXdu3dha2sLPz8/3L17V3Q0okqFxU7Voq+vj+XLl8PDwwO6uroA8MpONwDo2LEjli5diry8PGVFJFKITp06YeTIkTh27Nhrl3caGxtDX18f+/btw/jx45WYkIjo7QUHB3MCOxFVOBY7iVRUgwYNsGrVKpw/fx6PHj1Cw4YNMXnyZNy+fVt0NKJKgcVO9SWTyfDjjz/i999/h52dHbZt2wa5XC46FlGZrVy5EhYWFoiOjn7tcQMGDEDPnj2xfPnyNx5LRCRadHQ0srKyMHDgQNFRiEjDsdhJpOLq1q2LH3/8ERcuXEBeXh7s7OwwYcIE3Lp1S3Q0Io1mY2ODtLQ00THoLTk5OeHAgQP4+eefsWjRIrRq1QpRUVGiYxGVWfES9lfJzs7G0qVLERoaii5dusDKykqJ6YiIyi8oKIhdnUSkFCx2EqmJ2rVrY9myZbh06RIAwMHBAePHj0dWVpbgZESaiZ2dmqFTp06IiYnBpEmT4OPjg08//RQXL14UHYvojWrUqAFzc3Pk5ubi2bNnpR5LSEhA7969ERISgtmzZyMiIoLD1IhIpbGrk4iUicVOIjXz4YcfYsmSJUhKSoKenh6cnJzw9ddf4/r166KjEWkUa2trXLt2jYNuNICWlhY8PT2RnJyMTz75BG5ubhg2bBhu3LghOhrRG23atAmzZ8+GJEl49uwZli9fjvbt2yMvLw8xMTHw9fUVHZGI6I2Cg4MxY8YMdnUSkVKw2EmkpmrWrIlFixYhJSUFJiYmcHFxwahRo3Dt2jXR0Yg0gqGhIWrUqMEvEjSIvr4+fH19kZaWhpo1a6Jx48bw9/dHdna26GhEr9SpUyfMmTMHixYtwqBBgzBhwgRMnDgRx44dg6Ojo+h4RERvFB0djczMTAwaNEh0FCKqJFjsJFJz5ubmmDdvHlJTU1G9enU0a9YMw4cPx5UrV0RHI1J7XMqumczMzDBnzhwkJCTg77//hq2tLZYuXYr8/HzR0YheYGtri0WLFmHq1KlISkrC8ePHERgYCG1tbdHRiIjKhBPYiUjZWOwk0hDVq1dHaGgo0tPTYWFhgZYtW2Lo0KEs1BC9AxY7NVvt2rWxbt06/PnnnyWT27dv387J7aRyJk6ciM6dO6Nu3bpo1aqV6DhERGV25MgRdnUSkdKx2EmkYapVq4bg4GBcvnwZDRo0QNu2beHl5YXU1FTR0YjUDoudlUPx5Pa1a9di4cKFnNxOKmn9+vWIjIzEgQMHREchIioz7tVJRCKw2EmkoapWrYqAgABkZGSgUaNGaNeuHQYOHIikpCTR0YjUho2NDdLS0kTHICXh5HZSZRYWFjh16hTq1asnOgoRUZkcOXIE169fx5dffik6ChFVMix2Emk4U1NT+Pv7IyMjA40bN0anTp3g4eGBxMRE0dGIVB47Oyuf5ye3d+nSBa6urvDx8eHkdlIJLVq0eOlQIkmSBKQhInq94OBgTJ8+nV2dRKR0LHYSVRImJiaYOnUqMjIy0KJFC3Tp0gX9+vVDfHy86GhEKsvS0hKZmZkoKCgQHYWUTF9fH9988w3S0tJgbm7Oye2ksiRJwpEjR/DXX3+JjkJEVOLo0aP466+/2NVJREKw2ElUyRgbG+Pbb7/FlStX8PHHH8Pd3R29e/fGuXPnREcjUjn6+vqoVasWrl27JjoKCVK1alXMnTuXk9tJZclkMpw5cwbe3t4crkVEKqN4r05dXV3RUYioEpJJXPdCVKk9ffoUa9euxfz58+Hi4oKZM2eiZcuW5bpGYmIiMjIyoK2tXbKUTltbG25ubjAwMKiI2ERK07VrV/j6+sLd3V10FFIBiYmJ8PPzQ0pKCubMmYPPP/8cWlr87pjEKioqQocOHdC/f3988803ouMQUSV39OhRDB06FCkpKSx2EpEQLHYSEQDg2bNnWLduHebNmwcHBwcEBASgTZs2rz0nMjIS//zzDxwdHdGwYcNSjz19+hSHDx/G06dP0b59e5ibm1dkfKIKM3bsWNjY2MDX11d0FFIhhw8fxpQpUyCTybBw4UJ07NhRdCSq5DIyMtC6dWscOXIE9vb2ouMQUSXm5uaGQYMGYdiwYaKjEFElxWInEZWSl5eHDRs2YM6cObC1tUVAQAA+/vjjUsfI5XJs3boVbm5uqFmz5muvJ0kS9uzZAwcHB9jY2FRkdKIKsXTpUqSnp2P58uWio5CKkcvl2L59O6ZPnw57e3vMmzfvpcNjiJRl9erVWLVqFU6fPs1uKiIS4tixYxgyZAhSU1P5PkREwnDdFRGVoq+vj5EjRyItLQ0eHh7w8vKCq6srjhw5UnLMtm3b8Nlnn72x0An8u5dY7969kZaWxmnGpJY4kZ1eRUtLCwMGDEBycjI6d+4MNzc3Tm4noUaMGIGaNWti1qxZoqMQUSXFvTqJSBWw2ElEL6WnpwcfHx+kpqbCy8sLw4cPR4cOHbBixQq0a9cOJiYm5brep59+imPHjlVQWqKKY2Njg7S0NNExSIUVT25PTU3l5HYSSiaTYe3atVi1ahXOnDkjOg4RVTLHjx/HlStXMHjwYNFRiKiSY7GTiF5LV1cX3t7eSE5OxogRI5CYmIg6deq81bUcHByQmpqq4IREFat+/fq4efMm8vLyREchFVc8uT0+Pr5kcvuyZcs4uZ2U6sMPP8Ty5cvh5eWF3Nxc0XGIqBIJDg7G9OnT2dVJRMKx2ElEZaKjo4OPP/74nTYad3Z2RmJiogJTEVU8XV1d1KtXD1euXBEdhdREnTp1sG7dOvzxxx84dOgQ7OzssH37dnCbdFKWzz//HC1atMDUqVNFRyGiSuL48eO4fPkyvLy8REchImKxk4jKLj4+Hi1atHina+jo6CgoDZHycN9OehvOzs747bffsGbNGixcuBCtWrVCdHS06FhUSfzwww/49ddf8ccff4iOQkSVAPfqJCJVwmInEZWZtrY2ZDLZO11DR0cHcrlcQYmIlIPFTnoXrq6uiImJwYQJEzBs2DD06NEDFy9eFB2LNNx7772HdevWwcfHBw8fPhQdh4g02IkTJ9jVSUQqhcVOIiozRSzB1NLSYrGT1A6LnfSu/ju53dXVFT4+PsjKyhIdjTRYly5d0KtXL4wbN050FCLSYNyrk4hUDYudRKRUBQUFXMpOaofFTlKU4sntaWlpMDc3h7OzM6ZPn87J7VRh5s+fj9jYWOzcuVN0FCLSQCdOnEB6ejq7OolIpbDYSURlVrt27Xce0lJQUKCgNETKY2Njg7S0NNExSIM8P7n91q1bnNxOFaZKlSrYtGkTxo0bh1u3bomOQ0QaprirU09PT3QUIqISLHYSUZk1bdoUcXFxb31+VlYWLCwsFJiISDnq1q2Lu3fvIjc3V3QU0jCc3E7K0LJlS4wcORLDhw/nf1tEpDAnT55EWloauzqJSOWw2ElE5WJgYPDWBZ9Tp06hdevWCk5EVPG0tbVhaWmJjIwM0VFIQz0/uX3BggWc3E4KN3PmTPz9999Ys2aN6ChEpCHY1UlEqorFTiIql65du2L79u3lHjIUGxuLBg0avPM0dyJRuG8nKYOrqytiY2MxYcIEDB06FD169MClS5dExyINoKuri02bNsHf359f3BDROzt58iRSU1MxZMgQ0VGIiF7AYicRlYuuri769euHjRs3lnn/zZiYGOTl5aFZs2YVnI6o4rDYScpSPLk9JSUFnTt3RqdOnTi5nRTC3t4e06dPx5AhQ1BUVCQ6DhGpMXZ1EpEqY7GTiMrN1NQUAwYMQHh4OA4ePPjKgRrJycnYtWsX9PT08PHHHys5JZFisdhJyvb85PYaNWpwcjsphK+vL3R1dbFo0SLRUYhITZ06dYpdnUSk0mQSdyknonfw+PFjHD58GEVFRdDW1sbVq1dhZmYGY2NjNGrUCI6OjqIjEinE4cOHERwcjCNHjoiOQpVUZmYmAgIC8Ntvv2H69On46quv2FFDb+Wvv/5C8+bNERkZCWdnZ9FxiEjNdOvWDX379sXIkSNFRyEieikWO4lIoQYMGICePXti4MCBoqMQKVRmZiZatmyJW7duiY5CldyFCxfg5+eH1NRUzJ07F59//jn3Q6ZyCwsLw+LFixEbGwt9fX3RcYhITZw6dQqenp5IT0/nF25EpLK4jJ2IFOq9997Dw4cPRccgUjgLCwtkZ2cjJydHdBSq5J6f3D5//nxObqe3MmTIEFhZWSEwMFB0FCJSI8HBwfD392ehk4hUGoudRKRQLHaSptLS0oK1tTUuX74sOgoRAE5up3cjk8mwatUqbNiwAcePHxcdh4jUwOnTp5GcnIyhQ4eKjkJE9FosdhKRQrHYSZqMQ4pI1Tw/ud3NzQ2dOnXC8OHDObmdysTc3BwrV67EkCFD2LVORG/Erk4iUhcsdhKRQrHYSZqMxU5SVfr6+pgwYQLS0tJQvXp1Tm6nMuvVqxc6dOiAb7/9VnQUIlJhp0+fRlJSErs6iUgtsNhJRArFYidpMhY7SdVVrVoV8+bNQ3x8PG7evAlbW1ssW7YM+fn5oqORCvv+++/x+++/48CBA6KjEJGKCg4OxrRp09jVSURqgcVOIlIoFjtJk7HYSeqiTp06WL9+Pf744w8cOnQIdnZ22LFjByRJEh2NVJCpqSnCwsIwcuRI3Lt3T3QcIlIxZ86cwaVLl9jVSURqg8VOIlIoFjtJk7HYSeqmeHL76tWrSya3HzlyRHQsUkEdOnSAp6cnRo8ezaI4EZVSvFenvr6+6ChERGUik/jbDBERUZlIkgRTU1NkZmaiatWqouMQlYtcLsf27dvh7+8PR0dHzJs3Dw4ODqJjkQp59uwZmjVrBn9/fwwaNEh0HCJSATExMejfvz/S09NZ7CQitcHOTiIiojKSyWTs7iS19fzkdldXV05upxcYGBhg06ZNmDBhAm7cuCE6DhGpgOK9OlnoJCJ1wmInERFRObDYSeqOk9vpdZo2bYrx48dj6NChkMvlouMQkUAxMTFITEzEsGHDREchIioXFjuJiIjKgcVO0hQvm9z+ww8/cHI7wc/PDzk5Ofjxxx9FRyEigdjVSUTqisVOIiKicmCxkzTN85PbDx48CHt7e05ur+R0dHSwceNGBAUFITU1VXQcIhIgJiYGFy5cYFcnEaklDigiIpUSFBSEXbt24eLFi6KjEL3UyZMnMWHCBJw5c0Z0FKIKERkZiSlTpkBHRwcLFixAhw4dynxuXFwcrl+/Di2tf79Pl8vlaNSoERo1alRRcakCrVixAhs3bsSJEyego6MjOg4RKVGPHj3g7u6OMWPGiI5CRFRuLHYSUQlvb2/cu3cP+/fvF5bh8ePHyMvLw/vvvy8sA9Hr3L17F7a2tnjw4AFkMpnoOEQVQi6XY9u2bZg+ffobJ7cXFhbi0KFDyMvLg4uLCywtLUs9fvHiRaSkpMDU1BRdunTh/zdqRJIkdO3aFe3atcPMmTNFxyEiJYmNjUXfvn1x+fJlLmEnIrXEZexEpFKMjY1Z6CSVVr16dUiShPv374uOQlRhtLS0MHDgwDdObn/8+DE2bdoEV1dX9OvX74VCJwA4Ojqif//+aNasGTZu3IiCggJlvQx6RzKZDOvXr8cPP/yAc+fOiY5DRErCvTqJSN2x2ElEZSKTybBr165S99WvXx+LFi0quZ2WloYOHTrAwMAADRs2xG+//QZjY2OEhYWVHJOYmIjOnTvD0NAQ1apVg7e3d6kJwEFBQXB0dKzw10P0tmQyGfftpErjZZPbZ8yYgUePHiE/Px87d+7EkCFDUKVKlTde6/3334eHhwd++eUX7geqRiwsLLB06VIMHjwYT58+FR2HiCpYbGwsEhIS4OPjIzoKEdFbY7GTiBRCLpejT58+0NHRwenTpxEWFobg4GDk5eWVHJObm4tu3brB2NgYMTExCA8Px8mTJ7nxOakdW1tbFjupUime3H7+/HncuHEDtra2CA4OxsCBA0v25ywLAwMD9OrVCwcPHqzAtKRonp6ecHJywvTp00VHIaIKFhISAj8/P3Z1EpFa407jRKQQf/zxB1JTU/H777/DwsICALBkyRJ89NFHJcds2bKlZMmjiYkJAGD16tXo1KkTLl++DGtrayHZicqLnZ1UWdWtWxdhYWE4e/YsYmNj3+rDcNWqVfH06VNIksT9O9WETCbDjz/+CGdnZ/Ts2ROdOnUSHYmIKsDZs2dx/vx57Ny5U3QUIqJ3ws5OIlKIlJQU1KpVq6TQCQAtWrQo1fGTnJwMZ2fnkkInALRt2xZaWlpISkpSal6id8FiJ1V2d+/exZAhQ976/NatW+PMmTMKTEQV7f3338fatWtf2H6GiDRH8V6dBgYGoqMQEb0TFjuJqExkMtkLe6w9P2SiLB06rzuG3T2kTljspMouLy+vTPt0voqFhQX+/vtvBSYiZejevTu6d+8OX19f0VGISMHOnTuH8+fPc69OItIILHYSUZnUqFEDt27dKrl9+/btUrft7OyQlZWFmzdvltx39uxZyOXyktv29vZISEhATk5OyX0nT56EXC6HnZ1dBb8CIsUpLnZyyApVVjo6774Tkra2tgKSkLItWrQIx48fR3h4uOgoRKRAwcHB8PPzY1cnEWkEFjuJqJRHjx4hPj6+1J9r167B1dUVK1asKNnLx9vbu9QvQ126dEHDhg0xZMgQJCQk4PTp05g4cSJ0dHRKujYHDRoEIyMjeHl5ITExEUePHsWoUaPQt29f7tdJauW9996Dnp4ebt++LToKkRCKKPTzywL1ZGxsjA0bNmDMmDG4c+eO6DhEpADnzp1DXFwchg8fLjoKEZFCsNhJRKUcO3YMLi4upf58++23+O6772BpaYmOHTuif//+GD58OMzNzUvO09LSQnh4OPLy8tCyZUsMGTIE06dPh0wmKymKVqlSBREREXj06BFatmyJXr16oU2bNli3bp2ol0v01riUnYgqq48++gje3t4YMWIEi9ZEGiA4OBhTp05lVycRaQxOYyeiEmFhYQgLC3vl4wcPHix1u1+/fqVu29ra4ujRoyW3ExISUFBQUKpr08nJCZGRka98jry8PBgbG5czOZHy2draIj09He3atRMdhUjp8vLy3mmaekFBAYtkai44OBgtW7ZEWFgYhg4dKjoOEb2luLg4nDt3Djt27BAdhYhIYVjsJCKFCQ8Ph5GREWxsbHDt2jVMnDgRjRs3RtOmTd94riRJuHLlCiIjI+Hs7KyEtETvhp2dVJk1b94c586dQ/Pmzd/q/D/++AOurq4KTkXKpKenh02bNsHV1RWdOnVC/fr1RUciorfAvTqJSBNxGTsRKUxOTg7Gjh0Le3t7DBo0CHZ2doiIiChT5092djbs7e2hp6eHmTNnKiEt0bthsZMqs/r16+PatWtvff6aNWuwceNGFBYWKi4UKZ2TkxOmTJmCIUOGlBpISETqIS4uDmfPnsWIESNERyEiUiiZxDVERERE5RYXF4ehQ4ciISFBdBQiIVJSUnDnzh20b9++XOft27cPRkZGmD17Nu7evYulS5eyy1ONFRUVoWPHjujTpw8mTpwoOg4RlUOvXr3g5uaG8ePHi45CRKRQLHYSERG9hZycHNSsWROPHz9+630LidRdbGwsHjx4gK5du5bp+EOHDqFevXqws7ODJEn49ddfMWnSJDRp0gSLFi2CpaVlBSeminDlyhW0atUK0dHRcHBwEB2HiMrg/Pnz6NGjBy5fvgxDQ0PRcYiIFIrL2ImIiN6CiYkJTExMcPPmTdFRiISpWrUqRo4ciZ9//hkZGRmvPC4xMRHbtm2DnZ0d7OzsAAAymQx9+vRBUlISmjdvjpYtW2L69Ol4/PixsuKTglhaWmLu3LkYPHgw8vPzRcchojIonsDOQicRaSJ2dhJRhfDw8ECfPn3g6ekpOgpRhWnXrh1CQkLQqVMn0VGIlO7Zs2do06YNhg8fjq+//hrnz59HRkYGdHR0oK2tDUmSIJfLUVhYCCcnJzRs2PC118vKysK0adNw+PBhzJ07F4MG/T/27jssqmt9G/AzQy82MEKiiKggorGXoEiJvYVERQREQewNlWLDaFQ02BCNorGAYsVekRg02LCggAIiKIIlGktQpEnb3x/+5DscTY5lZvYAz31dc504uz3jwZ3uekcAACAASURBVGHm3Wu9ywVSKe/LVxSCIOC7775Dy5YtsXDhQrHjENG/4KhOIqrsWOwkIrkYO3YsWrZsiXHjxokdhUhuPDw80LFjR4wePVrsKEQKN2nSJPz555/Yu3fvO60c3n68/JQWDzExMfD09ISKigqCgoLQoUMHmeQl+Xv8+DFatWqFgwcP4ptvvhE7DhH9gx9++AG2trbw9PQUOwoRkVzwdjkRyUWtWrWQlZUldgwiueKK7FRVHThwAEePHsWmTZveW9CUSCSf3MvW0tISFy9exNixY/H999/Dzc0Njx49+tzIpACGhoZYs2YNhg0bhtzcXLHjENF7xMXF4dKlS7xRS0SVGoudRCQXLHZSVcBiJ1VFGRkZGDNmDHbt2oWaNWvK5RpSqRTDhw/HrVu3YGhoiK+//hoBAQF4/fq1XK5HsjNw4EB07NgRvr6+YkchoveYP38+e3USUaXHaexEJBefM4WRqKK4fv06nJyckJSUJHYUIoUoKipCly5dMGjQIHh7eyvsurdv34a3tzcSExOxfPlyfPfdd/z9osRevHiBFi1aYMOGDejZs6fYcYjo/8THx6NPnz64c+cOi51EVKmx2ElERPSJ8vLyoK+vj9zcXC6kQlWCr68vkpKScOTIEVF+5k+ePIkpU6agbt26CAwMRLNmzRSegT5MVFQU3NzckJCQAD09PbHjEBGAAQMGwNraGlOmTBE7ChGRXPGbGRER0SfS1taGvr4+7t+/L3YUIrmLiIjAzp07sWXLFtGK+927d0d8fDz69+8POzs7TJ48GX///bcoWejfde3aFQMGDMDEiRPFjkJEeDOq8+LFixgzZozYUYiI5I7FTiIios9gamqK1NRUsWMQydXDhw/h7u6O7du3o3bt2qJmUVNTw6RJk5CcnIzi4mI0bdoUwcHBKC4uFjUXvWvx4sW4du0adu/eLXYUoipv/vz58PX15fR1IqoSWOwkIiL6DFykiCq74uJiODs7Y8KECbC2thY7TpnatWtj7dq1OHnyJMLDw9GmTRucPn1a7Fj0H7S1tREWFobJkyfjzz//FDsOUZWVkJCAmJgYjuokoiqDPTuJiIg+w7Jly/Dw4UMEBgaKHYWoyhIEAQcOHICXlxfatGmDZcuWwcTEROxY9H/mzZuHS5cu4fjx41xYikgEAwcOhJWVFaZOnSp2FCIiheDITiISRUFBAVauXCl2DKLPxpGdROKTSCQYMGAAkpOT0aZNG7Rv3x5+fn7IyckROxoBmD17Np49e4b169eLHYWoyklISMCFCxc4qpOIqhQWO4lIIf57EHlRURGmTZuGV69eiZSISDZY7CRSHlpaWpg9ezYSEhKQkZEBc3NzbNu27Z3fQaRYampq2Lp1K/z8/HD79m2x4xBVKW97dWpra4sdhYhIYTiNnYjkYv/+/WjWrBkMDAxQs2bNsudLSkoAvCl+VqtWDWlpaahXr55YMYk+W0FBAWrWrImcnByoqqqKHYeI/sOFCxfg6ekJNTU1BAUFoX379mJHqtKCgoKwe/dunD17FioqKmLHIar0rl+/jp49e+LOnTssdhJRlcKRnUQkF7Nnz0br1q0xbNgwBAcH49y5c8jKyoKKigpUVFSgqqoKDQ0NPH/+XOyoRJ9FU1MThoaGyMzMFDsKEf2XTp064dKlSxg9ejTs7e3h7u6Ox48fix2rypo0aRK0tLSwZMkSsaMQVQnz58+Hj48PC51EVOWw2ElEchEdHY3Vq1cjLy8Pc+fOhaurK4YMGQI/Pz8cP34cAKCnp4cnT56InJTo85mamiI1NVXsGERyk5GRAYlEgtjY2Ap3balUCjc3N6SkpKBOnTpo3rw5lixZgtevX8s4Kf0vUqkUISEhWLFiBeLj48WOQ1SpXb9+HefPn8fYsWPFjkJEpHAsdhKRXNSpUwceHh74/fffkZCQAF9fX9SoUQOHDh3CqFGjYGVlhYyMDOTn54sdleizsW8nVQZubm6QSCSQSCRQU1NDw4YN4e3tjdzcXBgZGeHRo0do1aoVAOCPP/6ARCLBs2fPZJrB1tYWEydOLPfcf1/7U1WvXh0BAQGIiYnB+fPn0axZMxw+fJj9PBWsfv36WL58OVxdXVFQUCB2HKJKa/78+fD29uaoTiKqkljsJCK5Ki4uxpdffolx48YhPDwc+/btg7+/P9q2bYu6deuiuLhY7IhEn83MzIzFTqoUunXrhkePHiE9PR0LFy7E2rVr4e3tDRUVFRgaGorSl1bW1zY1NcWhQ4ewZs0azJgxA7169UJycrJMzk0fxtXVFWZmZvjxxx/FjkJUKd24cQPnzp3jqE4iqrJY7CQiufrvL6dmZmZwc3NDUFAQoqKiYGtrK04wIhniyE6qLDQ0NGBoaAgjIyM4OzvDxcUFBw8eLDeVPCMjA3Z2dgCAL774AhKJBG5ubgDeLD63ZMkSNGrUCFpaWvj666+xbdu2cteYP38+jI2Ny641bNgwAG9GlkZHR2PNmjVlI0wzMjLkNoW+Z8+eSEhIQN++fWFjYwNPT09kZWXJ9Br0fhKJBOvWrcO2bdtw9uxZseMQVTpve3Xq6OiIHYWISBRcNpaI5OrZs2e4ceMGkpKScO/ePbx69QpqamqwsbHBwIEDAbz5ciyRSEROSvTpWOykykpLSwtFRUXlnjMyMsK+ffswcOBAJCUlQU9PD1paWgAAPz8/7N27F2vWrEGTJk0QExODUaNGoVatWujbty/27duHZcuWYefOnfj666/x5MkTXLx4EcCblbpTU1Nhbm6ORYsWAXhTTL1//77cXp+amhomT54MJycn/PjjjzA3N8dPP/2EUaNGcbVwOfviiy+wfv16DB8+HAkJCahWrZrYkYgqhRs3buDs2bMIDQ0VOwoRkWhY7CQiublx4wbmzp2LmJgYaGhooE6dOtDU1ERpaSmOHj2K8PBwrFy5El9++aXYUYk+i4mJCR4+fIjCwkKoq6uLHYdIJi5fvowdO3aga9eu5Z5XUVGBnp4egDf9mWvXrg0AyM3NxYoVK/Dbb7+hS5cuAN7827h8+TLWrFmDvn37IjMzE19++SV69OgBNTU11K9fH+3atQMA1KhRA+rq6tDW1oahoaECX+mbwltwcDDGjh0LT09PBAcHIygoiLMP5Kx///44dOgQpk2bhg0bNogdh6hSeNurk6M6iagq4zR2IpKLhw8fwsvLC7dv38aWLVtw8eJFREdH48SJE9i/fz/8/f1x//59rFy5UuyoRJ9NTU0N9erVw927d8WOQvRZTpw4AV1dXWhqasLS0hLW1tZYvXr1Bx2bnJyMgoIC9OrVC7q6umWP4OBg3LlzBwDg4OCAgoICmJiYwMPDA3v27FGqVdFbtmyJ06dPY86cOXBzc4ODgwMyMjLEjlWprVixAlFRUThy5IjYUYgqvMTERJw9exbjxo0TOwoRkahY7CQiubh58ybu3LmDyMhI9OjRA4aGhtDS0oK2tjbq1KkDJycnDB06FL/99pvYUYlkglPZqTKwtrZGfHw8bt26hYKCAuzfvx916tT5oGNLS0sBAEeOHEF8fHzZIykpqey93sjICLdu3cL69etRvXp1eHl5oW3btsjNzZXba/pYEokEgwYNws2bN9GyZUu0a9cOc+bMUaqMlUn16tURGhqKMWPG4OnTp2LHIarQOKqTiOgNFjuJSC50dHSQk5MDbW3tf9zn9u3b7NFFlYapqSlSU1PFjkH0WbS1tdG4cWMYGxtDTU3tH/d7266hpKSk7DkLCwtoaGggMzMTjRs3LvcwNjYu209TUxN9+/ZFYGAgrly5gqSkJJw/f77svP95TjFpaWnBz88P8fHxSE9Ph7m5OXbs2AFBEMSOVulYW1vDxcUFY8eO5d8v0SdKTEzEmTNnOKqTiAjs2UlEcmJiYgJjY2N4enpi+vTpUFFRgVQqRV5eHu7fv4+9e/fiyJEjCAsLEzsqkUyYmZkhKSlJ7BhECmFsbAyJRIJjx46hf//+0NLSQrVq1eDt7Q1vb28IggBra2vk5OTg4sWLkEqlGD16NEJDQ1FcXIyOHTtCV1cXu3fvhpqaGkxNTQEADRo0wOXLl5GRkQFdXd2y3qBiqlevHrZv347z58/D09MTa9asQVBQUFmvUZKNBQsWoH379ti2bRtcXV3FjkNU4SxYsABeXl4c1UlEBBY7iUhODA0NERgYCBcXF0RHR6NRo0YoLi5GQUEBCgsLoauri8DAQPTs2VPsqEQyYWpqioMHD4odg0gh6tati59++gmzZ8/GyJEjMWzYMISGhmLBggUwMDDAsmXLMG7cOFSvXh2tWrWCr68vAKBmzZoICAiAt7c3ioqKYGFhgf3798PExAQA4O3tjeHDh8PCwgL5+flK1Qe3c+fOuHz5MkJDQ9G/f3/07t0bixYtUvhiSpWVpqYmwsLC0L17d9ja2sLIyEjsSEQVRmJiIqKjo7F582axoxARKQWJwLkiRCRHhYWF2LNnD5KSklBcXIyaNWuiYcOGaNOmDczMzMSORyQz6enpsLOzQ2ZmpthRiEjOsrOzsXDhQmzevBnTp0/H5MmToaGhIXasSmHRokWIiorCyZMnIZWy4xbRh3B0dES7du3g4+MjdhQiIqXAYicREZEMFBcXQ1dXFy9evICmpqbYcYje69atW2jSpInYMSqNtLQ0TJs2DSkpKVixYgX69esHiUQidqwKrbi4GNbW1hgyZAgmT54sdhwipZeUlIRvv/0W6enpnMJORPR/WOwkIrl7+zbz9n8lEgm/DFKlZG5ujgMHDqBp06ZiRyF6R0FBAb755hvEx8eLHaXSOXHiBKZOnQpjY2MEBgbyPeAzpaWlwdLSEufOnYO5ubnYcYiU2pAhQ9CmTZuydiFERMTV2IlIAd4WN6VSKaRSKQudVGklJyfzizkpLS8vL7YPkZNevXrh+vXr6N27N6ytrTFlyhRkZWWJHavCMjU1xYIFC+Dq6oqioiKx4xApraSkJJw+fRrjx48XOwoRkVJhsZOIiEhGWMwnZbV3715ERERgw4YNYkeptNTU1ODp6Ynk5GQUFBSgadOmWL9+PUpKSsSOViGNHTsW+vr6WLRokdhRiJTW2xXYdXV1xY5CRKRUOI2diOTqP6euExGR4t29excdO3bEsWPH0L59e7HjVBnx8fHw9PTEy5cvERQUBBsbG7EjVTh//vknWrdujaNHj/Jnl+i/JCcnw87ODnfu3GGxk4jov3BkJxHJ1ZYtW3D8+HGxYxARVUmFhYUYMmQIZs6cyWKRgrVq1Qp//PEHZs+ejeHDh2Pw4MHIzMwUO1aF8tVXX2HVqlVwdXVFfn6+2HGIlMqCBQswbdo0FjqJiN6DxU4ikqvk5GQkJiaKHYOIqEqaNWsW6tSpgylTpogdpUqSSCRwcHDAzZs38fXXX6Nt27b48ccfkZubK3a0CsPR0RGtW7fGzJkzxY5CpDSSk5Nx6tQpTJgwQewoRERKicVOIpKrWrVqcZEGov9TUFCAvLw8sWNQFXH06FGEh4cjNDSUrUREpqWlhTlz5iAuLg63b99G06ZNsXPnTrCb1IdZs2YN9u7di6ioKLGjECkFjuokIvp37NlJRHK1bt06xMXFYf369WJHIRLd2rVr8ezZM8yePRsqKipix6FK7MGDB2jbti327dsHKysrsePQfzl37hw8PT2hpaWFoKAgtG3bVuxISi8yMhKjRo3C9evXUbNmTbHjEMmVIAiIiYnBkydPIJX+//FJqqqqqFu3Lnr06MFenVRlxMXFITMzEyoqKuVuEnbt2hU6OjoiJiNlpip2ACKq3Diyk6qSTZs2wcrKCqampigtLYVEIilX1DQyMkJwcDCcnJxgamoqYlKqzIqLi+Hs7AxPT08WOpWUlZUVLl++jNDQUPTr1w99+/aFv78/DAwMxI6mtHr27Il+/fph8uTJ2Lp1q9hxiOSitLQUx44dQ2FhISwtLdGpU6dy23Nzc7F161a4ubmhuLhYpJRE8icIAk6ePIns7Gy0bt0a33//fbntr1+/xqlTp5CTkwMrKyt8+eWXIiUlZcVp7EQkVyx2UlUyY8YMnD59GlKpFKqqqmWFzlevXiE5ORn37t1DUlISEhISRE5KldlPP/0EDQ0NzJgxQ+wo9C9UVFTg4eGBlJQU1KpVC82aNcOyZctQWFgodjSltXTpUsTExGDfvn1iRyGSuYKCAmzZsgW2trYYOHAgvvrqq3f20dHRwbhx4/Dzzz/jt99+w71790RISiRfJSUl2L59O1q1aoVBgwahUaNG7+yjoaGB3r17w8HBAVevXsXNmzdFSErKjNPYiUiurly5gnHjxiE2NlbsKERyZ29vj5ycHNjZ2eH69etIS0vDn3/+iZycHEilUtSpUwfa2tr4+eef0bdvX7HjUiX0+++/Y9iwYbh27RoMDQ3FjkMfITU1FdOmTUNqaioCAwPRp08f9lp9j5iYGPzwww+Ij4/nzzhVGqWlpdiyZQuGDh0KNTW1Dz5u7969sLOzg76+vhzTESnW9u3bYW9v/1FtGiIjI2Fubg5jY2M5JqOKhCM7iUiuOLKTqpJOnTrh9OnTOHToEPLz82FlZQVfX1+EhITgyJEjOHToEA4dOgRra2uxo1Il9Ndff2H48OHYunUri0AVkJmZGY4ePYqgoCB4eXmhT58+SElJETuW0rG0tISHhwdGjRrFBZ6o0oiIiMCgQYM+qtAJAAMHDsTJkyfllKpqevXqFaZMmQJjY2NoaWmhU6dOuHLlStn2nJwcTJo0CfXq1YOWlhaaNGmCwMBAERNXLtHR0bCzs/vofrQ9e/bEhQsX5JSKKiL27CQiuWKxk6qS+vXro1atWtixYwf09PSgoaEBLS0tLkZEcldaWoqhQ4dixIgR6Natm9hx6DP07t0b3bp1wy+//IIuXbpg6NChmDt37gctylNcXAxV1cr/8X7u3Lno2LEjNm/eDA8PD7HjEH0WQRCQn5+PatWqffSxEokEX331FZ48eYI6derIIV3VM3LkSFy/fh1btmxBvXr1sG3bNnTr1g3JycmoW7cupk2bht9//x1hYWEwMTHBmTNnMGrUKNSuXRuurq5ix6/wnj59Chsbm086tmXLlkhKSkKzZs1knIoqIo7sJCK5qlmzJrKzs1FaWip2FCK5a968OTQ1NfHVV19BX18furq6ZYVOQRDKHkSy9vPPP+P169eYO3eu2FFIBtTU1DB16lQkJSUhLy8P5ubmiIyM/Nf3D0EQcOLECYwfPx67du1SYFrFU1dXR1hYGGbMmIH09HSx4xB9ltjYWLRv3/6Tj7eyssK5c+dkmKjqys/Px759+/Dzzz/D1tYWjRs3xrx589C4cWMEBwcDAC5cuABXV1fY2dmhQYMGGDZsGL755htcunRJ5PQVX0ZGBho0aPDJx1tYWLB3J5VhsZOI5EpFRQU6OjrIzs4WOwqR3DVt2hSzZs1CSUkJcnJysHfvXiQlJQF4M/ri7YNIls6dO4dVq1Zhx44dVWJUX1VSp04drF+/HhEREf+z/UVxcTGys7OhoqKCMWPGwNbWFs+ePVNQUsVr3rw5ZsyYATc3N5SUlIgdh+iTPXz48LP6DEqlUkil/FovC8XFxSgpKYGmpma557W0tMoKylZWVjhy5Aju378P4E3xMz4+Hr169VJ43somISEBbdu2/axz8HMQvcV3RSKSO05lp6pCVVUVEyZMQPXq1ZGfn48FCxbAysoK48aNw40bN8r240hnkpXnz5/D2dkZmzZtQr169cSOQ3LSunVraGpq/uvNEjU1NTg7O2P16tVo0KAB1NXV8fLlSwWmVLwpU6ZAIpGwXx5VaLJodcN2ObJRrVo1WFpaYuHChXj48CFKSkqwbds2xMTE4NGjRwCAVatWoVWrVqhfvz7U1NRgY2ODgIAA9OvXT+T0FZ9UKv3sQQFqamq8AUYAWOwkIgVgsZOqkreFTF1dXWRlZWHJkiUwMzPDgAEDMH36dFy8eJEjMEgmBEGAm5sbHBwc0LdvX7HjkJz9ry+AhYWFAN6sYpuZmYnJkyejUaNGACrvDRYVFRWEhoYiICCg3A0loopEFu1tEhMTy80g4ePfH//2nhgWFgapVIp69epBQ0MDq1atgpOTU1lBefXq1Th//jwOHz6Mq1evIjAwEN7e3jhx4sQ75yotLYWXl5for7eiPFavXv3Z/xZUVFRY7CQALHYSkQKw2ElVydsP0RoaGjAyMsKzZ88wdepUnD9/HiUlJfjll1+waNEipKamih2VKriVK1fir7/+wuLFi8WOQiITBAHq6uoAgBkzZsDJyQmWlpZl2wsLC5GWlobt27cjMjJSrJhyYWJigoCAALi6upYVfIkqElkUOy0sLMr1Bufj3x//dtO5UaNGiI6ORk5ODu7fv4/Lly+jqKgIJiYmyM/Px8yZM7FkyRL0798fLVq0wMSJEzFkyBAsW7bsnXNJpVIsX75c9NdbUR4TJkz47H8Lr1+/Lvt9SFUbi51EJHcsdlJVIpFIyvpntW3bFomJiQCAkpISjBkzBnXq1IGfnx8WLFggclKqyK5cuYLFixdj9+7d/FBPZaNYZsyYARUVFQwbNgz6+vpl26dOnYpvv/0WixcvxvDhw9G5c+eyfnOVgbu7O+rXr4+ffvpJ7ChEH6169eqf3V+3uLhYRmnoLR0dHXz55ZfIyspCZGQk7O3tUVRUhKKionfaBqioqFTaEfSKZGJi8tmDAYqKimSUhio6dm8lIrljsZOqkuzsbOzbtw+PHj3C+fPnkZqaiqZNmyI7OxuCIMDAwAB2dnaoU6eO2FGpgnr58iUcHR2xdu1amJiYiB2HRFZaWgpVVVXcu3cPa9aswaxZs9CyZcuy7YsWLUJYWBhWrlyJfv36QU1NDd9//z3CwsIwa9YsEZPLjkQiwYYNG9CyZUv07dsXnTp1EjsS0Qd5+fIlLl68iLNnz+LHH3/8pHPExcWhVatWMk5WdUVGRqK0tBTm5ua4ffs2fHx80KRJE7i7u5f16JwxYwZ0dXVhbGyM6OhobN26FUuWLBE7eoXXokUL7Nu3D2ZmZp90/IMHD1C3bl0Zp6KKisVOIpI7FjupKsnKysKMGTNgZmYGdXV1lJaWYtSoUahevToMDAxQu3Zt1KhRA1988YXYUakCEgQBI0eORK9evTBo0CCx45DIbty4AQ0NDZiZmcHT0xPNmjXD999/D21tbQDApUuXsHDhQixevBgjR44sO+7bb7/F1q1b4ePjAzU1NbHiy5SBgQGCg4MxbNgwxMfHQ1dXV+xIRP/o0aNHWLlyJTZu3IjevXujc+fOKCkp+aSFhm7fvg0HBwc5pKyaXr58iZkzZ+LBgwfQ09PDwIED4e/vX/ZeuWvXLsycORMuLi74+++/YWxsjAULFmDixIkiJ68ctLS0kJOT80nv4TExMfxsRGUkgiB8fpMQIqJ/sWjRIrx69Yp95ajKOH/+PPT19fHo0SP06NEDubm5nGpMMrFu3ToEBwfj0qVL0NTUFDsOiai0tBQzZszAsmXL4OzsjMOHD2P9+vVwdHQs60c3aNAgZGZm4sqVKwDeFMslEglGjBiBjIwMnDp1CgCQm5uL8PBwtGjRAm3bthXtNcnC8OHDoa2tjeDgYLGjEL3j1q1bWLp0Kfbv3w9XV1dMnToVDRo0QF5eHvbv3w8XFxdIJB++GvWpU6dQv359NG7cWI6piRSnuLgYYWFhGDZs2EcV/y9fvgw1NTW0bt1ajumoImHPTiKSO47spKqmc+fOMDc3h7W1NRITE99b6GRvJ/pY169fx5w5cxAeHs5CJ0EqlWLJkiXYuXMnrly5gpycHDx58qSsUJKZmYmDBw+WTY0tKSmBRCJBSkoKMjIy0Lp167I+f9HR0Th+/DicnZ3RvXv3Ct3Pc9WqVTh+/DgiIiLEjkJU5tKlSxgwYAC6dOkCIyMjpKamIigoCA0aNAAAaGtro2fPntixY8cHfz6IioqCnp4eC51UqaiqqmLw4MHYunUrXr9+/UHHXLx4EcXFxSx0Ujmcxk5EcsdiJ1U1paWlkEqlUFFRQZMmTZCamoqMjAzk5eWhsLAQ7du3Z69F+ig5OTkYPHgwAgMD0aRJE7HjkBJxdHSEo6Mj5s+fDx8fH/z1119YtGgRIiIiYGZmhjZt2gBA2QiZvXv34sWLF7C2toaq6puvAn369EHDhg0REREBLy8vnDhxAqNGjRLtNX2OGjVqICQkBMOGDcP169ehp6cndiSqogRBQEREBJYsWYKMjAx4eXkhLCwMOjo6793/iy++gL29Pfbs2YNatWrBzs7unTYTgiAgNjYWmZmZaNWqFQudVCnp6OjAxcUFhw8fhqamJrp27QotLa139ouJiUFmZiYsLCzQokULEZKSMuM0diKSu8jISCxfvhy//fab2FGIFCY/Px9r167FunXrcP/+fRQWFgIAzMzMYGBgAAcHB/Z3og82fPhwSKVShISEiB2FlNiLFy+QkJAAGxsbHDp0CG5uboiNjUWjRo0AABEREfj555/RuHFjbNq0CcCbKYOqqqrIycmBh4cHEhMTkZSUJObLkImpU6fi0aNH2LVrl9hRqIopKirC7t27sWTJEkgkEvj6+mLw4MEf1R83Ozsbp0+fhiAIUFFRwduv7G9vmBobG8srPpFSyc/PR1RUFIqKispNay8sLMS2bdtga2uLKVOmiJiQlBVHdhKR3HFkJ1VFv/76K4KCgtCnTx+Ympri1KlTKCoqwpQpU3Dnzh3s2LED6urqGD16tNhRSclt2bIFly9fRmxsrNhRSMnVrFkTNjY2AABzc3MYGxsjIiICgwYNQnp6OiZNmoTmzZtj8uTJAP5/obO0tBSRkZHYs2dP2Y3Jt9sqqkWLFqFNmzbYtWsXhgwZInYcqgJyc3OxadMmrFixAiYmJliyZAl69uz5UT0436pevTrs7e3lkJKoYtHS0kK/fv3eu61e8kej9wAAIABJREFUvXpwdnbGpEmTPmlxL6rcOLKTiOQuLS0NvXv3xu3bt8WOQqQQaWlpcHJywsCBAzF16lRoamoiLy8PK1aswIULF3D8+HEEBQVh48aNuHHjhthxSYmlpKSgS5cuOHXqFL7++mux41AFs3v3bkyYMAE1atRAXl4e2rZti4CAADRr1gzA/1+w6N69e3BwcICenh4iIiLKnq/oYmNj0adPH8TFxaFu3bpix6FK6tmzZ1i9ejWCg4PRpUsXTJ8+HR06dBA7FlGV0LFjR8yaNYs3B+gdXKCIiOSOIzupqpFKpUhPT4enp2fZQjLa2tpo164dkpOTAQBdu3bFvXv3xIxJSi4/Px+DBw+Gv78/C530SRwdHcsKMefPn8fhw4fLCp2lpaWQSCQoLCzEvn37EBsbi19//bVsW2XQrl07TJw4ESNGjADHd5CsZWRkYNKkSTAzM8OjR49w9uxZ7Nu3j4VOIgXy9PREUFCQ2DFICbHYSURyV7NmTbx8+bLSfHki+l9MTEwglUoRExNT7vn9+/fD0tISJSUlyMnJQY0aNfDixQuRUpKymzp1KiwsLCrsQjGkPN4uQPRWXl4eXr16BQC4desWli1bBk9PTxgZGaGkpKRSTQecOXMmsrKysG7dOrGjUCWRkJAAFxcXtG3bFjo6OkhKSsKvv/7KxeOIRDBo0CDcunUL169fFzsKKZmK24iHiCoMVVVVaGtr49WrV6hRo4bYcYjkTiqVwtPTEx4eHrCyskL9+vURFxeH06dP48iRI1BRUYGBgQG2bt363tUlicLDw/H777/j2rVrlWI6MSkHqfTNOIdDhw5h2bJlGDp0KNLT01FUVIQVK1YAQKX7eVNTU0NYWBisrKzQrVs3mJqaih2JKiBBEPDHH38gICAA169fx5QpU7B27Vp+riUSmbq6OsaPH4+goKCyhfeIAPbsJCIFMTY2RnR0NBo0aCB2FCKFKC4uRnBwMKKjo/H06VMYGBhg6tSpsLS0FDsaKbk7d+7A0tISERERaNu2rdhxqJJaunQp5s2bh/z8fHh5eWHp0qWVblTnf1q9ejV27NiBs2fPVuiFl0ixSkpKcPDgQQQEBCA7Oxs+Pj4YOnQoNDQ0xI5GRP/n6dOnMDMzQ2pqKr744gux45CSYLGTiBSiVatWCAkJQevWrcWOQqRQL168QFFREWrXrl3pRkyR7BUWFqJz584YOnQoPD09xY5Dldzr168xc+ZMrFy5EkOGDMH69etRrVq1d/YTBAFFRUVQV1cXIaVslJaWokePHrCzs8Ps2bPFjkNKrqCgAGFhYVi6dCn09PQwffp02Nvbl42OJiLl4uHhgYYNG/L9ncrw3ZqIFIKLFFFVVbNmTXzxxRcsdNIHmTFjBr766itMnjxZ7ChUBWhoaGDFihW4du0azMzMUFhY+M4+giBg3759aNGiBSIiIkRIKRtSqRQhISEICgpCXFyc2HFISb148QI///wzGjZsiIMHD2Ljxo2IiYnBDz/8wEInkRLz9PTE2rVr3/t7jKomzuEgIoVgsZOI6N8dPnwY+/btQ1xcHIvjpFCtWrVCq1at3rtNIpFg0KBB0NbWxpQpU/DLL78gMDAQZmZmCk75+YyMjLBixQq4uroiNjYWmpqaYkciJfHnn39i5cqV2LRpE/r06YPIyEh8/fXXYsciog/UokULPHz4UOwYpER4e4qIFILFTiKif3bv3j2MGjUKO3fuhJ6enthxiN7Rp08f3LhxA127dkXnzp3h7e2Nly9fih3ro7m4uKBp06bw8/MTOwopgZSUFHh4eKB58+Z4/fo1rl27hrCwMBY6iYgqOBY7iUghWOwkInq/4uJiODs7Y+rUqejUqZPYcYj+kbq6OqZNm4bExES8fPkS5ubm2LhxI0pKSsSO9sEkEgmCg4OxY8cOREdHix2HRHLx4kX88MMPsLGxgbGxMdLS0hAUFARjY2OxoxERkQyw2ElECsFiJ1VVxcXFyM/PFzsGKbG5c+dCR0cHvr6+Ykch+iAGBgbYsGEDjh07hi1btqBDhw44d+6c2LE+WO3atbFhwwa4ubkhOztb7DikIIIg4NixY7CxsYGTkxO6du2Ku3fv4scff4S+vr7Y8YiISIZY7CQihWCxk6qqJUuWYN68eWLHICX122+/ITQ0FGFhYVz8giqcNm3a4MyZM/Dx8YGzszOcnJxw//59sWN9kL59+6J79+6YOnWq2FFIzoqKihAWFoYWLVpg9uzZGDNmDNLS0jBx4kRoa2uLHY+IiOSAn6qJSK6Ki4tx8uRJ5OXlQUtLC0eOHMGBAwfw4MEDsaMRKYSpqSnS0tLEjkFK6NGjRxg+fDjCwsJQp04dseMQfRKJRIIhQ4YgJSUFTZo0QevWrTF//nzk5eWJHe1/Wr58Of744w8cPnxY7CgkBzk5OQgKCkLjxo0REhKCZcuWIS4uDs7OzlBVVd51ekNDQ6Grq6vQa/7xxx+QSCR49uyZQq9LVU9GRgYkEgliY2PFjkKVnEQQBEHsEERU+WRlZeHUqVNQUVGBnZ0datSoUbZNEARcvHgRDx8+hJGRETp27ChiUiL5io+Px9ChQ5GYmCh2FFIiJSUl6NGjB6ysrPDTTz+JHYdIZjIzM+Hr64uLFy9i6dKlcHBwgEQiETvWPzp37hwGDx6MhIQEfPHFF2LHIRl4+vQpVq9ejeDgYNja2sLX1xft27eX+XVsbW3RvHlz/PLLL+WeDw0NxcSJE5GTk/NJ583Pz8erV68UehOssLAQf//9NwwMDJT63yspNzc3Nzx79gxHjx4t93xsbCzat2+Pu3fvwsjICE+fPkXt2rWV+qYDVXwc2UlEMpeeno6oqCgMGDAA33//fblCJ/BmFIilpSUGDRoEPT09HDhwQKSkRPLXuHFjpKeno7S0VOwopEQWL16MkpIS/Pjjj2JHIZIpY2Nj7N69G2FhYVi8eDFsbW0RHx8vdqx/ZGVlBVdXV4wZMwYcA6J8Pub/k7t372LixIlo0qQJ/vrrL1y4cAF79uyRS6HzUxUWFv7PfbS0tBQ+2l9dXR2GhoYsdJLcqaiowNDQ8F8LnUVFRQpMRJUVi51EJFN//vknEhMTMWjQoA/6wGRqagpLS0scOnRIAemIFE9XVxe1atVi6wYqc+bMGfzyyy/Yvn07VFRUxI5DJBfW1taIjY2Fi4sLevXqhTFjxuDp06dix3qv+fPn4/bt29i6davYUeg/vHjx4oM+S8bHx8PZ2Rnt27dHtWrVkJycjPXr18PU1FQBKf+dm5sb+vXrh4CAANSrVw/16tVDaGgoJBLJOw83NzcA75/GfuzYMXTs2BFaWlrQ19dH//79UVBQAOBNAXX69OmoV68edHR00L59e0RGRpYd+3aKelRUFDp27AhtbW20a9cO165de2cfTmMnefvvaexvf/aOHz+ODh06QF1dHZGRkbh//z7s7e2hp6cHbW1tmJubY9euXWXnuXHjBrp16wYtLS3o6enBzc0NL1++BABERkZCXV0dz58/L3ftWbNmoWXLlgCA58+fw8nJCfXq1YOWlhaaNWuGkJAQBf0tkCKw2ElEMnX69Gl89913H3WMoaEhTE1Ny33oIqpM2LeT3nr27BlcXFwQEhKCunXrih2HSK5UVFQwevRopKSkQEdHBxYWFli5cqXSjdrR0NBAWFgYvL29kZmZKXacKi8xMRF9+/ZF06ZNkZSU9I/7CYKAoKAg9O3bF61bt0Z6ejoWL14MQ0NDBab936Kjo3H9+nWcOHECUVFRcHR0xKNHj8oebwszNjY27z3+xIkTsLe3R/fu3XH16lWcPn0aNjY2ZTNG3N3dER0djR07duDGjRsYPnw4+vfvj4SEhHLnmTlzJn7++Wdcu3YN+vr6cHFx4WhmUhrTp0/HwoULkZKSgo4dO2L8+PHIy8vD6dOnkZSUhJUrV6JmzZoAgLy8PPTq1Qu6urq4fPkyDhw4gAsXLmDEiBEAgG7dukFfXx979uwpO78gCNi5cyeGDh0KACgoKECbNm1w9OhRJCUlwdPTE2PGjEFUVJTiXzzJh0BEJCNJSUlCUlLSJx+/Z88eGaYhUh4jR44UgoODxY5BIispKRH69u0r+Pj4iB2FSBQ3b94UevXqJZibmwsRERFix3nH4sWLBTs7O6GkpETsKFVSbGys0KlTJ0FDQ0NwcHAQbt269a/7l5aWCvn5+UJBQYGCEpZnY2MjTJgw4Z3nQ0JCBB0dHUEQBGH48OFC7dq1/zHjkydPBGNjY8HT0/O9xwuCIHTq1ElwdHR87/G3b98WJBKJkJmZWe55e3t7Ydy4cYIgCMLp06cFAMKJEyfKtp87d04AINy/f7/cPk+fPv2Ql070XsOHDxdUVFQEHR2dcg8tLS0BgHD37l3h7t27AgDhypUrgiD8/5+9vXv3ljvX119/LcybN++91/n111+F6tWrC9nZ2WXPvT1PWlqaIAiCMGXKFMHKyqps+9mzZwWpVCo8ePDgH/M7OjoKHh4en/z6SblwZCcRyczNmzdhYWHxycfr6em9M92AqDLgyE4CgMDAQDx//hz+/v5iRyEShbm5OY4fP45ly5Zh8uTJ6NevH1JTU8WOVcbHxwevX7/GqlWrxI5S5aSnp8Pd3R2ZmZl4/PgxwsPDYWZm9q/HSCQSaGpqQkNDQ0EpP03z5s3fm7GwsBA//PADmjZtiuXLl//j8XFxcejatet7t127dg2CIMDCwgK6urplj2PHjuHOnTvl9m3RokXZf3/11VcAgCdPnnzKSyL6R9bW1oiPjy/32LFjx/88rl27duX+7OnpiYULF8LS0hJ+fn64evVq2babN2+iRYsWqFatWtlznTp1glQqRXJyMgBg6NChOH/+fNlo/e3bt8PW1rZsVk1JSQn8/f3RokUL6OvrQ1dXF/v378e9e/c++++AlAOLnUQkE4IgfHbvORsbG5w/f15GiYiUB4uddOnSJQQEBGDnzp1QU1MTOw6RaCQSCfr27YvExETY2dmhc+fO8PHxKeu1JiYVFRVs3boVCxcuLPvCTPLz119/lf13w4YNy6auP378GL///jvc3d0xZ86ccn36lEn16tXf+3P74sWLcotz6ujovPf4sWPHIisrC7t37/7kz9ClpaWQSCS4cuVKueLSzZs3sXnz5nL7/ufvnre9ULl4IsmatrY2GjduXO5Rr169/3ncf/878fDwwN27d+Hu7o7U1FR06tQJ8+bNA/Dme+c/9fN9+3zbtm1hbm6OHTt2oKioCHv27Cmbwg4Ay5Ytw/Lly+Hj44OoqCjEx8fj+++//6BFxKhiYLGTiGQiPz//nWbqH0tFRYWrQFKlZGpqqlSjl0ixXrx4gSFDhmDdunVo0KCB2HGIlIK6ujq8vLyQmJiIrKwsmJubY9OmTaIXXxo1agR/f38MGzZM6XqLVgalpaVYuHAhmjVrBgcHB0yfPr2sL2evXr3w4sULfPPNNxg/fjy0tbURHR0NZ2dnLFiwQCkK4v+pSZMmZSMr/9O1a9fQpEmTfz122bJlOHLkCI4ePYrq1av/676tW7f+xz6CrVu3hiAIePz48TsFJvaFpoquXr16GD16NMLDwzF//nz8+uuvAAALCwskJCTg1atXZfteuHABpaWlaNq0adlzLi4u2L59O06cOIHc3FwMHDiwbNu5c+fQv39/uLq6olWrVmjUqBE/q1cyLHYSkUwUFRXJZLTSf39gJKoMGjVqhIyMDBQXF4sdhRRMEASMHDkS/fr1w4ABA8SOQ6R0DAwMsHHjRhw9ehQhISHo0KGD6LM8Ro8ejTp16mDhwoWi5qhsMjIy0K1bNxw6dAh+fn7o1asXIiIisGbNGgBvZvj06NEDEydORFRUFNasWYMzZ84gMDAQoaGhOHPmjMivoLxx48YhPT0dkyZNQkJCAm7duoXAwEDs3LkT3t7e/3jc77//jlmzZmHt2rXQ0tLC48eP8fjx438s5s6ePRt79uyBn58fkpOTkZSUhMDAQOTl5cHMzAwuLi5wc3PD3r17kZ6ejtjYWCxbtgz79++X10snkjtPT0+cOHEC6enpiI+Px4kTJ8rapbm4uEBHRwfDhg3DjRs3cObMGYwZMwYDBgxA48aNy84xdOhQJCcnY86cOfjuu+/K3VgwMzNDVFQUzp07h5SUFEycOBF3795V+Osk+WGxk4hkolq1asjOzhY7BpFS0tLSgoGBAfsAVUHBwcFIT0/H0qVLxY5CpNTatm2Ls2fPwsvLC0OGDIGzszMePHggShaJRIJNmzZh3bp1uHz5sigZKqOzZ88iMzMTx44dg5OTE2bNmoWGDRuiuLgYr1+/BgCMHDkSEydOhJGRUdlxnp6eyMvLw61bt8SK/l4NGzbEmTNnkJaWhh49eqBDhw7YtWsX9uzZgz59+vzjcefOnUNRUREGDx6ML7/8suzh6en53v379OmDAwcOICIiAq1bt4aNjQ1Onz4NqfTNV/mQkBC4u7vD19cX5ubm6NevH86cOQNjY2O5vG4iRSgtLcWkSZNgYWGB7t27w8DAAFu2bAHwZqp8ZGQksrOz0aFDB9jb28PS0vKd1g3GxsawsrJCQkJCuSnsAODn54cOHTqgd+/esLa2ho6ODlxcXBT2+kj+JAKHURGRjOzbt6/c9ICPlZaWhry8PLRs2VKGqYiUQ7du3eDj44OePXuKHYUUJD4+Ht27d8eFCxdgamoqdhyiCiM3NxdLlizBmjVr4OnpCW9vb2hpaSk8x549ezBnzhxcu3YN2traCr9+ZTN//nxERUVhy5YtaNCgAQRBgL29Pdzd3fHDDz+8s78gCBAEAa9fv4aJiQk8PDy4wBsREX0QjuwkIpn5p0btH+r69essdFKlxUWKqpZXr17B0dERQUFBLHQSfSQdHR389NNPiI2NxY0bN9C0aVPs2bNH4a1uHBwc0LZtW8yYMUOh162sBg8ejBcvXmDkyJEYOXIkqlWrhsuXL8PLywtjx45953ekRCKBVCpFSEgIvvrqK4wcOVKk5EREVNGw2ElEMmNnZ4dTp0590rF5eXmijNogUhQWO6sOQRAwbtw4dOnSBc7OzmLHIaqwGjRogPDwcGzZsgX+/v6ws7NDQkKCQjP88ssvOHDgAE6ePKnQ61ZG5ubmOHDgQNk0682bNyMlJQULFixAamoqvLy8ALz5TLh+/Xps2LABVlZWWLBgAUaOHAljY2P2diciog/CYicRyYyqqir09fWRkpLyUccJgoDw8HB069ZNTsmIxMdiZ9URGhqKuLg4rFq1SuwoRJWCjY0Nrl69CicnJ/Ts2RNjx47F06dPFXLtWrVqYfPmzRgxYgSysrIUcs3KrGHDhkhOTkbnzp0xePBg1KxZEy4uLujduzcyMzPx9OlTaGtr4/79+1i5ciW6dOmCtLQ0jB8/HlKpFBKJROyXQEREFQCLnUQkU9bW1sjIyEBycvIH7V9cXIywsDD88MMPUFdXl3M6IvGYmpoiNTVV7BgkZ8nJyfDx8UF4eDh7/BHJkIqKCsaMGYObN29CS0sLzZo1Q1BQEIqKiuR+7e7du8Pe3h6TJ0+W+7Uqk6KiondGYgqCgGvXrsHS0rLc85cvX0b9+vVRrVo1AMD06dORlJSExYsXQ1dXV2GZiYiocmCxk4hkrlevXvj777+xb98+/PXXX+/dp6SkBKdOncKePXswaNAg1KhRQ8EpiRSrYcOGuH//vkK+mJM48vLy4OjoiICAADRr1kzsOESVUq1atRAYGIjo6GgcP34cLVq0QGRkpNyvu2TJEly+fBl79+6V+7Uquri4ODg5OcHJyemdbRKJBG5ubli3bh1WrVqFO3fuwM/PDzdu3ICLiws0NTUBoKzoSURE9Cm4GjsRyY0gCDh37hz++usv5Ofno6CgAIaGhmXFHhsbG+jr64uckkhxGjVqhIiICJiZmYkdheRg9OjRyM3NxbZt2zjVkkgBBEHAsWPHMHXqVDRt2hTLly+X64Jgly5dwnfffYf4+Hh8+eWXcrtORSQIAk6dOoWAgAAkJydj6tSpGDVqFKpXr/7OvkVFRXByckJiYiIKCwuhr68Pf39/9OjRQ4TkRFSVXL9+Hb1790ZGRgbU1NTEjkNyxGInESnExo0bERMTg02bNokdhUg0vXr1wqRJk9C3b1+xo5CM7dq1C3PmzMG1a9c4IolIwV6/fo1Vq1YhICAAI0aMgJ+f33uLbLLw9t/50aNHeVMDb2bq7N+/HwEBAcjNzYWvry9cXFw+qDXRrVu3oKKigsaNGysgKRHRG3Z2dhg9evR7R59T5cFp7ESkEFlZWahVq5bYMYhExUWKKqfbt29j0qRJ2L17NwudRCLQ0NCAj48PEhMT8fz5c5ibmyMkJASlpaUyv9acOXPw+PFjbNy4Uebnrkjy8/Oxbt06NGnSBIGBgZgzZw6SkpLg7u7+wT3YmzRpwkInESnclClTsHLlSrFjkJyx2ElECsFiJxGLnZXR69ev4ejoiLlz56JNmzZixyGq0gwNDbFp0yYcPnwYGzduRIcOHXDhwgWZXkNdXR1hYWGYNWsW0tPTZXruiiArKwuLFi1Cw4YNcezYMYSGhuLChQuwt7eHVMqvlkSk/Pr164enT5/i4sWLYkchOeJvJCJSCBY7iVjsrIx8fX1hbGyMCRMmiB2FiP5Pu3btcO7cOUybNg2Ojo5wcXHBgwcPZHZ+CwsLzJo1C8OGDUNJSYnMzqvMHjx4AG9vbzRu3Bi3bt3CyZMnceTIEVhZWYkdjYjoo6ioqGDSpEkICgoSOwrJEYudRKQQLHYSsdhZ2Rw8eBCHDh3Cpk2b2LuPSMlIJBI4OzsjJSUFDRs2RKtWrbBw4ULk5+fL5Pyenp5QVVXF8uXLZXI+ZXXz5k24u7ujRYsWKCkpQVxcHLZs2YLmzZuLHY2I6JONGDECkZGRMr0RRsqFxU4iUggWO4mABg0a4NGjRygoKBA7Cn2mzMxMjBkzBrt27eJ7G5ES09HRwYIFCxAbG4uEhARYWFhg3759+Nw1WqVSKbZs2YKlS5fi+vXrMkqrPN5OTbe1tUWjRo1w+/ZtBAYGon79+mJHIyL6bDVq1MDQoUOxdu1asaOQnLDYSUQKwWInEaCqqgpjY+Mq2eetMikqKoKTkxO8vb3xzTffiB2HiD5AgwYNsGfPHoSEhGD+/Pn49ttvP7tIaWxsjKVLl8LV1RWvX7+WUVLxlJaWlk1NHzp0KHr27ImMjAz4+flBT09P7HhERDI1adIkbNy4UWYj/km5sNhJRArBYifRG5zKXvHdvXsXenp68PLyEjsKEX0kW1tbXL16FY6OjujevTvGjRuHZ8+effL5hg8fDhMTE8ybN092IRWssLAQW7ZsQYsWLTB37lxMnDgRqampGD9+PLS0tMSOR0QkF6ampujQoQO2b98udhSSAxY7iUgh0tLSYGZmJnYMItGx2FnxmZqa4vDhw1x5mKiCUlVVxdixY5GSkgINDQ1YWFhg1apVKCoq+uhzSSQS/PrrrwgNDcX58+flkFZ+cnJyEBgYiMaNGyMsLAyBgYG4evUqhgwZAlVVVbHjERHJnaenJ1auXPnZrU1I+fBTOhERkQKx2FnxSSQSFjqJKoFatWph5cqV+OOPP3D06FG0bNkSv/3220efp06dOli3bh2GDRuGnJwcOSSVrSdPnsDPzw8mJiaIiYnBgQMH8Pvvv6N79+5cbI2IqpRu3bpBEAScOnVK7CgkY/ykTkREpEAsdhIRKRcLCwtERkYiICAAEyZMgL29PW7fvv1R57C3t4e1tbVSt7e4c+cOxo8fD3Nzczx//hwxMTEIDw9H27ZtxY5GRCQKiUQCT09PBAUFiR2FZIzFTiIiIgVisZOISPlIJBL0798fiYmJ6Ny5M7755htMnz4dr169+uBzBAUFITIyEsePH5dj0o937do1ODo6omPHjqhVqxZu3ryJ4OBgNG7cWOxoRESiGzp0KGJiYj76JhcpNxY7iYiIFMjIyAjPnj1DXl6e2FHoPW7evIm9e/fizJkzePTokdhxiEjBNDQ04Ovri8TERDx9+hRNmjRBaGgoSktL/+ex1atXR2hoKEaNGoXnz58rIO0/EwShbGq6vb09OnbsiLt378Lf3x8GBgaiZiMiUiba2toYOXIkVq9eLXYUkiEWO4lIZiQSCfbu3Svz8y5btgwNGjQo+/O8efPQvHlzmV+HSBFUVFRgYmLCu8dK6ODBgxg8eDDGjx8PBwcHbNmypdx2Nq8nqjoMDQ2xefNmHDp0COvXr0fHjh0RExPzP4+ztbXFkCFDMG7cOFHeM0pKShAeHo527dph8uTJcHFxwZ07dzBt2jRUq1ZN4XmIiCqC8ePHIywsDNnZ2WJHIRlhsZOoCnNzc4NEIsHIkSPf2ebr6wuJRIJ+/fqJkOzfeXt7Izo6WuwYRJ/MzMyMU9mVzJMnT+Du7o6RI0ciLS0NPj4++PXXX5GdnQ1BEFBQUMCFO4iqoPbt2+PChQuYMmUKHBwc4OrqiocPH/7rMf7+/khKSsLOnTsVlBLIz89HcHAwzMzMEBQUhLlz5yIxMRFubm5QV1dXWA4ioorIyMgI3bt3R0hIiNhRSEZY7CSq4oyMjLB7927k5uaWPVdcXIywsDDUr19fxGT/TFdXF/r6+mLHIPpk7NupfJYsWQJbW1t4enqiRo0a8PDwQJ06dTBixAh88803GDduHK5evSp2TCISgUQigYuLC1JSUmBsbIyWLVvC398fBQUF791fU1MTYWFhmDJlCh48eCDXbFlZWfD394eJiQkiIiKwdetWnD9/Ht999x2kUn7VIyL6UJ6enli1ahVKSkrEjkIywN+ARFVcixYtYGpqivDw8LLnjh07Bk1NTdja2pbbNyQkBBYWFtDU1ISZmRkCAwPf6WH1999/w8HBATo6OmjYsCG2bdtWbvuMGTPQpEkTaGlpoUGDBvD19X3ny8KSJUtoTZfdAAAgAElEQVRgaGgIXV1dDBs2DDk5OeW2//c09itXrqBHjx6oXbs2qlevDisrqw+aakYkFhY7lY+Wlhby8/ORlZUFAPDz80NGRgasra3Rq1cv3L59Gxs3bkRhYaHISYlILLq6uli4cCGuXLmCuLg4WFhYYP/+/e+drt6mTRtMnjwZ7u7uKC0thSAIOHv2LA4dOoQjR47g8OHDOHToEKKioj7pi/X9+/fh5eWFRo0aIS0tDVFRUTh8+DA6d+4si5dKRFTlWFpaQl9fH8eOHRM7CskAi51EBA8PD2zevLnsz5s3b4a7u3u5KZsbNmzArFmzMH/+fNy8eRPLly9HQEAA1q5dW+5c8+fPh729PRISEuDo6IgRI0YgMzOzbLuOjg42b96MmzdvYu3atdi1axf8/f3LtoeHh8PPzw8//fQTrl27hiZNmmDFihX/mv/Vq1dwdXXF2bNncfnyZbRq1Qp9+vTBs2fPPvevhkgu/h979x3W1NmwAfwOGxFBtoCKksSBq7j3tra4aRU3gqN1oRarfbV1t1ZtFbW2LkRRaxW0zmrrqgP3qgNlCagoU5G9cr4//MxbXhyMwEnI/bsurjY5Izf8EXPuPOd5WHaqHxsbG4SEhGDGjBnw9vbG+vXrcejQIUydOhULFiyAu7s7duzYwUWLiAh16tRBUFAQNm3ahPnz56N79+74559/iuw3e/ZspKamYs6cOdi7dy/kcjn69++Pvn37ol+/fujfvz9cXV1x4MABBAcHIysr672vfe/ePXh6eqJp06YAgFu3biEgIAAuLi4q/z2JiLSJRCKBj48P/Pz8xI5CqiAQkdYaPXq04ObmJqSkpAhGRkZCWFiY8PTpU8HAwECIiYlRbhcEQahZs6awbdu2QsevXLlSaNCggfIxAGH27NnKx3l5eYKxsbEQGBj41gw///yz4OzsrHzctm1bYezYsYX26d69u1C7dm3l43nz5gkuLi5vPadCoRDs7Oze+bpEYnr06JFgZ2cndgz6H8uWLRMGDx4sfPfdd4Krq6sQHx8v5OfnC4IgCJcuXRJcXV2F0NBQkVMSkTrJy8sT1q1bJ9jY2AgTJ04UkpKSlNvS0tKE1atXC5mZmcU6z9atW4XExMQ3bj937pzQt29fwdbWVli8eLGQkpKist+BiIheycnJEWrUqCH8888/YkehMuLITiJC9erVMXDgQPj7+2Pr1q3o0qVLofk6ExMT8ejRI0yYMAFVq1ZV/syePRuRkZGFztWkSRPl/+vp6cHa2hoJCQnK54KCgtChQwflberTp09HbGyscntoaCjatm1b6Jz/+/h/JSQkYMKECZDL5TAzM4OpqSkSEhIKnZdIndjb2+Ply5dc8VFkeXl5SE5OVj6eOXMmdu3ahcGDByMvLw95eXnQ1dWFIAj44YcfYGVlhfr164uYmIjUjZ6eHj7//HOEhoZCV1cXDRo0wJo1a5CZmYk9e/Zg4sSJMDY2LtZ5Ro4ciaNHjyrnUVcoFMpb00eNGoWPPvoIDx8+xJw5c1C9evXy/tWIiLSOgYEBJk6cyNGdlYCe2AGISD14eXlh9OjRqFq1KhYuXFho2+t5OX/55Re0a9funefR19cv9FgikSiPv3jxIjw8PDBv3jysXLkS5ubmOHDgAHx9fcuUffTo0YiPj8fKlSvh5OQEQ0NDdO/enXPrkdrS0dGBs7MzIiIi4OrqKnYcrRQQEIDDhw/j2LFjGDp0KFatWgVjY2NIJBLUqlUL1apVQ/PmzdG3b1/ExcUhNDQU169fFzs2EakpCwsLrF69GhMmTMC0adNw6NAh7N+/H7q6usU+h0QiwdChQ7Fnzx5kZ2dj+fLlMDIywqxZs+Du7l6icxERUem8HkSzdOlSWFlZiR2HSokjO4kIANC9e3cYGBggKSkJAwYMKLTN1tYWDg4OiIyMhFQqLfJTXOfPn4eDgwO+/vprtGzZEjKZrNB8ngDQoEEDXLx4sdBz//v4f507dw5TpkyBm5sbXFxcYGpqynn1SO3J5XLO2ymS48eP44svvkD9+vWxfPlybNy4sdC8xXp6ejhy5AiGDRuG69evo1mzZti7dy/Mzc1FTE1EmsDFxQV//PEHPDw8YGRkVOLjdXV18eLFC2zbtg1+fn64evUqBg8ezKKTiKiCWFtbY+DAgdiwYYPYUagMOLKTiAC8Gk3wzz//QBAEGBoaFtk+f/58TJkyBebm5vj444+Rl5eH69ev48mTJ/jqq6+K9RpyuRxPnjzBjh070LZtWxw7dgy//vproX18fHwwatQotGzZEl26dEFQUBAuXboECwuLd553+/btaN26NTIyMvDll1/CwMCgZH8AogrGRYrEkZWVBW9vb8ydOxfTp08HAERHRyM9PR0LFy6ElZUVZDIZevbsiR9//BHZ2dmlKiyISHudPXsW/fr1K/XxY8aMgYODA3r06KHCVEREVFw+Pj5wc3PDzJkzi9y5SJqBZScRKZmamr5129ixY2FiYoLly5fjq6++grGxMVxcXDB58uRin79v376YOXMmpk2bhqysLPTq1QsLFy7ExIkTlfsMGTIEUVFRmDNnDjIzM9GvXz/MmDEDAQEBbz2vv78/xo8fj+bNm8Pe3h7z589HYmJisXMRiUEmk+Hvv/8WO4bW+eWXX+Dq6govLy/lc3/99RdevHiBmjVr4smTJ7CysoKjoyMaNGjwxi9/iIjeJTU1FZaWlqU+3tDQEAUFBSpMREREJdG0aVPIZDIEBQVh6NChYsehUpAIgiCIHYKIiEjbnD17FrNmzUJISIjYUbTKxYsXERMTA3d3d+jp6WHp0qVYtmwZzpw5g0aNGiElJQXOzs74/PPP8e2334odl4g00MGDB9G3b1/Rz0FERKX3+++/Y+nSpe+dUo3UE+fsJCIiEgFvYxdHmzZtMGjQIOjp6SEvLw/16tXDX3/9hUaNGkGhUMDCwgK9evVC1apVxY5KRBqKY0mIiDRf3759kZCQwLJTQ7HsJCIiEoGtrS2ys7Px/PlzsaNohZcvXyr/X0/v1Sw++vr66N+/P5o3bw4A0NHRQVpaGqKiolC9enVRchIRASxMiYjEpquriylTpsDPz0/sKFQKLDuJiIhEIJFIOLqzgkyfPh3ff/89YmJiALz6278uEnR0/vtRSKFQYMaMGcjPz8fnn38uSlYi0nw6OjrIzs4u9fEKhQJ5eXkqTERERKXh5eWFY8eOIT4+XuwoVEIsO4mIiEQil8tZdpazzZs3w8/PD35+fvjyyy9x6dIl5OfnQyKRFNrv1q1b8PLywp9//on9+/eLlJaIKoPu3bvjxIkTpT7+3Llz6NixowoTERFRaZiZmSE6Oho2NjZiR6ESYtlJREQkEo7sLF8pKSkICgrC0qVLsX//fly+fBne3t4IDg7GixcvCu1bp04dtGrVClu2bEGtWrVESkxElYGxsTGysrJKfSt6QkICL6yJiNSEqalpkS/JSf2x7CQiIhIJy87ypaOjg169esHFxQXdu3dHaGgoZDIZJkyYgB9//BFRUVEAgLS0NAQFBWHMmDHo1q2byKmJqDLo1q0bgoODS3zckSNH0Lp163JIREREpcGiUzNJBM5+TUTl6IcffsDjx4+xcuVKsaMQqZ0LFy7Ax8cHly9fFjtKpZWVlQVjY+NCz61cuRJff/01evTogS+++AJr165FdHQ0Ll26JFJKIqqMYmJicPXqVQwaNKhYF8t//PEHnJyc0KBBgwpIR0REVHnpiR2AiCq358+fc1Vjord4PbJTEAR+a1xO/l10FhQUQFdXF9OnT0enTp0wcuRI9OnTB5mZmbh9+7aIKYmoMqpduzZMTEywe/duVKtWDR9++GGhRdGAV6uuX7x4EY8fP0br1q05jQYRkQbJyMjAhQsXUL16ddSvXx8mJiZiR6L/x7KTiMrV8+fPUb9+fbFjEKklS0tLAEBycjKsrKxETlP56erqQhAECIKA5s2bY+vWrWjdujV27NjB9ykiKhdWVlYYMmQIOnTogBs3bqBhw4aF3ovy8/PRunVrtG3bVuyoRERUAsnJyfDw8EBiYiLi4+Ph5uaGTZs2iR2L/h9vYyeicvX6LYaj1ojerFWrVli1ahXatWsndhStkpKSgjZt2qBevXo4ePCg2HGIqBKLiIhA+/bt8ejRIxgYGIgdh4iISkGhUODIkSPYsGEDWrVqBalUioULF2LVqlUwMjLCuHHj8NVXX8HT01PsqAQuUERE5UwikbDoJHoHLlJUvt72na4gCBg2bBiLTiIqd/7+/hgxYgSLTiIiDebp6YkvvvgCzZs3x5kzZ/DNN9+gV69e6NWrFzp16oTx48djzZo1Ysek/8eyk4iISERyuZxlZzlJTExEbm7uGwtPS0tLzJs3T4RURKRN8vPzERAQAG9vb7GjEBFRKT148ACXLl3CuHHjMG/ePBw7dgwTJ07E7t27lfvUqFEDhoaGSExMFDEpvcayk4iISEQc2Vk+8vPz8cknn2DlypVvHV3OUedEVN5er7DesGFDsaMQEVEp5ebmQqFQwMPDA8Crz5AeHh5ITk6Gj48PlixZgmXLlsHFxQXW1tZvvbOIKg7LTiIiIhGx7CwfixYtgr6+PmbOnCl2FCLSYps3b+aoTiIiDde4cWMIgoBDhw4pnztz5gxkMhlsbGxw+PBh2NvbY/To0QD4hbo64AJFREREInrx4gVq1qyJly9f8oORipw8eRIjRozA9evXYWdnJ3YcItJSz549Q4MGDRAbGwtTU1Ox4xARURls3LgRa9euRffu3dGiRQvs3LkTdnZ22LRpE548eYJq1arxvV6N6IkdgIiISJuZm5vDyMgI8fHxLOZUID4+HiNHjsTWrVv59yQiUW3duhXu7u68+CUiqgTGjRuHtLQ0bN++Hfv374elpSXmz58PAHBwcADwar54a2trEVPSaxzZSUREJLJ27dph6dKl6NSpk9hRNJpCocBHH32EFi1aYMmSJWLHISItJggC6tevj4CAALRt21bsOEREpCLx8fFITU2FXC4HAKSmpmL//v346aefYGhoCGtrawwaNAj9+vXjl10i4pydRKQyBQUFhR7zuxSi4uG8naqxbNkyZGRkYMGCBWJHISItJ5FI8ODBAxadRESVjI2NDeRyOXJzc7F48WLIZDJ4enoiMTER7u7uqFOnDrZs2YKxY8eKHVWr8TZ2IlIZXV3dQo8lEgkSExORnZ0Nc3NzfrNF9BZyuZxlZxmdP38eK1euxNWrV6Gnx483RERERKR6EokECoUCCxcuxJYtW9ChQweYm5sjOTkZZ8+eRVBQEMLCwtChQwccPXoUvXv3FjuyVuLITiJSiezsbIwfPx55eXkAgNzcXKxbtw7e3t4YN24cpk2bhps3b4qckkg9cWRn2aSkpGDYsGHYtGkTatasKXYcIiIiIqrErl69ih9++AG+vr5Yv349/P39sW7dOsTExGDFihWQy+Xw8PDAjz/+KHZUrcWyk4hUIj4+Hps2bYK+vj5yc3Oxdu1aTJs2DSYmJpDJZLh48SJ69OiBmJgYsaMSqR2WnaUnCALGjBkDd3d39O3bV+w4RERERFTJXbp0Cd26dYOPj49yQSIHBwd069YN9+7dAwD07t0bDRs2RHZ2tphRtRbv8yIilUhJSYGZmRkA4OHDh9i4cSNWrVqFiRMnAng18rN///74/vvvsW7dOjGjEqkdqVSKyMhIKBQK6Ojwe8iSWL16NeLi4rBnzx6xoxARERGRFrC0tERoaCjy8/NhYGAAAAgLC8O2bdvg6+sLAGjTpg3atWsHIyMjMaNqLV5REZFKJCQkoHr16gCgfNMfNWoUFAoFCgoKYGRkhE8//RS3bt0SOSmR+jE1NUW1atUQFxcndhSNcvXqVSxevBi//fab8oMmEZHY5s+fj0aNGokdg4iIysmwYcOgq6uL2bNnw9/fH/7+/pg7dy5kMhkGDRoEALCwsIC5ubnISbUXy04iUonU1FRER0fDz88PS5YsAQDk5ORAR0dHuXBRWlpakRXbiegV3speMqmpqfDw8MBPP/2EunXrih2HiDSEp6cnJBKJ8sfKygp9+vTB/fv3xY5WIU6fPg2JRIKkpCSxoxARabSAgADExcVhwYIFWLVqFZKSkjB79mzUqVNH7GgE3sZORCpiZWWFZs2a4eDBg0hOToZcLsfTp09haWkJ4FXRGRoaCrlcLnJSIvUkk8kQFhaGrl27ih1F7QmCgPHjx6Nnz54YPHiw2HGISMP06NEDgYGBAIC4uDjMnDkTAwcORGhoqMjJ3i03N5ej2ImI1ET79u3RunVrPHv2DM+fP0fjxo3FjkT/wpGdRKQSXbp0wV9//YV169Zh/fr1mDlzJmxtbZXbw8PDkZ6ejt69e4uYkkh9yeVyjuwspo0bN+L+/ftc4ZKISsXQ0BB2dnaws7ODq6srpk+fjvv37yMrKwvR0dGQSCS4evVqoWMkEgmCgoKUj+Pi4jB8+HBYWlqiSpUqaNasGU6dOlXomF27dsHZ2RmmpqYYMGBAodGUV65cQa9evWBlZYVq1aqhQ4cOuHDhQpHX/OmnnzBo0CCYmJjgP//5DwDg3r17cHNzg6mpKWxsbDB06FA8e/ZMedzt27fRvXt3VKtWDaampmjatClOnTqF6Oho5Rdq1tbWkEgk8PT0VMnflIhIG+np6cHR0ZFFpxriyE4iUokTJ04gLS1NOUfJa4IgQCKRwNXVFTt37hQpHZH6k8lkCAkJETuG2rt9+zbmzJmDs2fPwtjYWOw4RKTh0tLS8Ntvv6Fx48bFfk/JyMhA586dYWNjg3379sHBwaHInOTR0dH47bffsG/fPmRkZMDDwwNz5szB+vXrla87cuRI+Pn5QSKRYO3atfj4448RHh4OKysr5XkWLFiAb7/9FitWrIBEIsHTp0/RqVMneHt7Y8WKFcjLy8OcOXPQr18/XLx4ETo6Ohg2bBiaNm2Ky5cvQ09PD7dv34aRkRFq1qyJ4OBguLu74+7du7CwsOD7KBERVUosO4lIJfbu3Yv169ejd+/eGDJkCPr27QsLCwtIJBIAr0pPAMrHRFQY5+x8v4yMDAwePBg//PAD6tevL3YcItJQR48eRdWqVQG8el+pWbMmjhw5Uuzjd+7ciWfPnuHChQvKYtLZ2bnQPvn5+QgICICZmRkAYPz48diyZYtye7du3Qrtv2bNGgQHB+Po0aMYMWKE8vkhQ4Zg7NixysfffPMNmjZtiu+//1753LZt22BhYYGrV6+iVatWiImJga+vr/J9UiqVKve1sLAAANjY2BQqVYmIqGxeX+8CvOZVB7yNnYhU4t69e/jwww9hYmKCuXPnYvTo0dixY4dydenXCwEQ0Zs5Ozvj4cOHXMTrHSZPnozWrVtj1KhRYkchIg3WqVMn3Lx5Ezdv3sSlS5fQrVs39OrVC48ePSrW8Tdu3ECTJk3eWRbWrl1bWXQCgL29PRISEpSPExISMGHCBMjlcpiZmcHU1BQJCQmIjY0tdJ4WLVoUenzt2jWcOXMGVatWVf7UrFkTABAZGQkAmDFjBsaOHYtu3bphyZIlWrP4EhGRmCQSCZYsWQJ/f3+xoxBYdhKRisTHx8PLywuBgYFYsmQJcnNzMWvWLHh6emL37t2FPuATUVFVqlSBlZVVsS+2tU1gYCAuXLiAtWvXih2FiDRclSpVIJVKIZVK0apVK2zevBkvX77Ehg0boKPz6vLo3yN08vLyCh3/721vo6+vX+ixRCKBQqFQPh49ejSuXLmClStXIiQkBDdv3oSjoyNyc3MLHWdiYlLosUKhgJubm7Ksff0THh6OPn36AADmz5+Pe/fuYcCAAQgJCUGTJk148U1EVAFatWoFPz+/Yv07QeWLZScRqURaWhqMjIxgZGSEUaNG4ciRI1i1ahUkEgnGjBmDfv36ISAgoMiHeCL6L97K/mYPHjzAjBkzsHv3buWtp0REqiKRSKCjo4PMzExYW1sDAJ4+farcfvPmzUL7u7q64p9//im04FBJnTt3DlOmTIGbmxtcXFxgampa6DXfxtXVFXfv3kXt2rWVhe3rH1NTU+V+MpkMU6dOxeHDh+Ht7Y1NmzYBgHI1d95FQESkej179kR+fn6RBeuo4rHsJCKVyMjIUF4g5OfnQ1dXF5988gmOHTuGP/74A/b29vDy8lLe1k5ERclkMoSFhYkdQ61kZWVh8ODBWLx4MZo0aSJ2HCKqBHJycvDs2TM8e/YMoaGhmDJlCtLT09G3b18YGxujTZs2+P7773H37l2EhITA19e30PHDhg2DjY0NBgwYgLNnz+Lhw4c4cOBAiS5u5XI5tm/fjnv37uHKlSvw8PBQFpHvMmnSJKSmpmLIkCG4dOkSoqKicPz4cYwfPx5paWnIysrCpEmTcPr0aURHR+PSpUs4d+4cGjZsCODV7fUSiQSHDx9GYmIi0tPTS/bHIyKit5JIJPDx8YGfn5/YUbQey04iUonMzEzl3FR6eq/WPlMoFBAEAZ06dcLevXtx69YtODo6ihmTSK1xZGdRX3zxBerXr4/x48eLHYWIKonjx4+jRo0aqFGjBlq3bo0rV65gz5496NKlCwAob/lu2bIlJkyYgMWLFxc63sTEBH///TccHBzQt29fuLi4YN68eSWam9zf3x/p6elo3rw5PDw84OXlBScnp/ceZ29vj/Pnz0NHRwe9e/eGi4sLJk2aBENDQxgaGkJXVxfPnz/H6NGjUa9ePQwcOBBt27bFjz/+CABwcHDAggULMGfOHNja2mLy5MnFzkxERO83cuRIhISEKOdRJnFIBE4mQEQqkJKSAnNzc+VcV/8mCAIEQXjjNiL6rwMHDmD9+vU4fPiw2FHUQlBQEGbNmoXr168XWuiDiIiIiEhdzZo1Czk5OVi1apXYUbQWy04iIiI1ERoaiv79+/NWdgBRUVFo06YNDh8+jJYtW4odh4iIiIioWGJjY9GsWTNER0ejWrVqYsfRShxmRUTl4vVoTiIqvrp16yI2Nhb5+fliRxFVbm4uPDw88J///IdFJxERERFplFq1aqFHjx4ICAgQO4rWYtlJROXiwoULOHfunNgxiDSKoaEhatSogejoaLGjiOqrr76CnZ0dfHx8xI5CRERERFRiPj4+WL16NRQKhdhRtBLLTiIqF8eOHcOJEyfEjkGkcbR9kaJDhw5hz5492LJlS4kW+yAiIiIiUhft2rVD9erVORe/SFh2ElG5eP78OapXry52DCKNI5PJtHbOzsePH2Ps2LHYuXMnLC0txY5DRERERFQqEokEPj4+8PPzEzuKVmLZSUTlgmUnUelo68jO/Px8DB06FD4+PujQoYPYcYiI3qlt27Y4dOiQ2DGIiEiNDR48GPfu3cOdO3fEjqJ1WHYSUblg2UlUOnK5XCvLzvnz58PY2BizZs0SOwoR0TvdvXsXsbGx6N27t9hRiIhIjRkYGOCzzz7j6E4RsOwkonLBspOodLRxZOfx48exZcsWBAYGQkeHH02ISL1t3rwZnp6e0NPTEzsKERGpuc8++wxBQUFISkoSO4pW4RUFEZULlp1EpePk5IS4uDjk5uaKHaVCPHv2DKNGjcK2bdtga2srdhwionfKycnB9u3b4eXlJXYUIiLSADY2NhgwYAA2btwodhStwrKTiMoFy06i0tHX10fNmjURFRUldpRyp1AoMHLkSIwdOxbdu3cXOw4R0XsdOHAAjRo1grOzs9hRiIhIQ/j4+OCnn35CXl6e2FG0BstOIioXLDuJSk9bbmVfunQpcnJy8M0334gdhYioWDZv3gxvb2+xYxARkQZp1qwZpFIpgoODxY6iNVh2EpHKZWVlAQCMjY1FTkKkmbSh7Dx79ixWr16NnTt3ct47ItIIsbGxuHLlCgYNGiR2FCIi0jA+Pj5cqKgCsewkIpXjqE6ispHJZAgLCxM7RrlJSkrC8OHDsXnzZjg6Ooodh4ioWLZs2YKhQ4fyy1wiIiqxfv364dmzZ7h8+bLYUbQCy04iUjmWnURlI5fLK+3ITkEQMGbMGAwePBhubm5ixyEiKhaFQoEtW7bwFnYiIioVXV1dTJ48maM7KwjLTiJSOZadRGVTmW9jX7VqFRISEvDtt9+KHYWIqNhOnDgBCwsLfPDBB2JHISIiDeXt7Y0//vgDT548ETtKpceyk4hUjmUnUdnUqlULiYmJyvlvK4vLly/ju+++w65du2BgYCB2HCKiYtu0aRPGjh0rdgwiItJg5ubmGDZsGH7++Wexo1R6LDuJSOVYdhKVja6uLpycnBAZGSl2FJVJTU2Fh4cHfv75Z9SpU0fsOERExZaUlIRjx45h2LBhYkchIiINN2XKFGzYsKHSDWpQNyw7iUjlWHYSlV1lupVdEASMHTsWH330Edzd3cWOQ0RUItu3b0efPn1gbm4udhQiItJw9erVQ8uWLbFz506xo1RqLDuJSOVYdhKVXWUqO9evX4/w8HD88MMPYkchIioRQRCwefNm3sJOREQq4+PjAz8/PwiCIHaUSotlJxGpHMtOorKTyWQICwsTO0aZ3bp1C19//TV2794NIyMjseMQEZXIlStXkJWVhc6dO4sdhYiIKomePXsiPz8fp0+fFjtKpcWyk4hUjmUnUdlVhpGd6enpGDx4MFauXAm5XC52HCKiEtu0aRO8vLwgkUjEjkJERJWERCLB1KlT4efnJ3aUSotlJxGpHMtOorKTy+UaX3ZOmjQJ7du3x4gRI8SOQkRUYhkZGQgKCoKnp6fYUYiIqJIZOXIkzp07V6kWJFUnLDuJSOVYdhKVnYODA168eIH09HSxo5TK1q1bceXKFaxZs0bsKEREpbJnzx60b98e9vb2YkchIqJKxsTEBN7e3li7dq3YUSollp1EpHIsO4nKTkdHB87OzoiIiBA7SomFhobC19cXu3fvhomJidhxiIhKZdOmTVyYiIiIys2kSZOwbds2vHz5UuwolTlX4AAAACAASURBVA7LTiJSOZadRKqhifN2ZmVlYciQIfj222/RqFEjseMQEZXK/fv3ERkZiY8//ljsKEREVEnVqlUL3bp1Q0BAgNhRKh2WnUSkciw7iVRDE8vO6dOnw8XFhaOhiEij+fv7Y9SoUdDX1xc7ChERVWLTpk3DmjVroFAoxI5SqbDsJCKVys7OhkKhgLGxsdhRiDSeTCZDWFiY2DGK7bfffsPx48exfv16rlxMRBorLy8P27Ztg7e3t9hRiIiokmvXrh3MzMxw5MgRsaNUKiw7iUilXo/qZNFBVHaaNLIzMjISU6ZMwe7du1GtWjWx4xARldqhQ4cgl8shl8vFjkJERJWcRCKBj48P/Pz8xI5SqbDsJCKV4i3sRKojl8s1ouzMycnBkCFDMHfuXLi6uoodh4ioTDZv3sxRnUREVGEGDx6MO3fu4M6dO2JHqTRYdhKRSrHsJFIdOzs7ZGVlITU1Vewo7zR79mw4OjpiypQpYkchIiqTJ0+eICQkBJ988onYUYiISEsYGhri888/x+rVq8WOUmmw7CQilWLZSaQ6EokEUqlUrUd3HjhwAPv27YO/vz+nryAijRcQEIDBgwfDxMRE7ChERKRFJkyYgD179iA5OVnsKJUCy04iUimWnUSqpc7zdsbGxmLcuHHYuXMnLCwsxI5DRFQmCoWCt7ATEZEobG1t0b9/f2zYsEHsKJUCy04iUimWnUSqpa5lZ15eHoYOHYoZM2agXbt2YschIiqz06dPw9TUFC1atBA7ChERaSEfHx+sW7cOeXl5YkfReCw7iUilWHYSqZa6lp3z5s2DqakpZs6cKXYUIiKVCA4Ohre3N6fkICIiUXzwwQeoW7cu9u7dK3YUjceyk4hUimUnkWrJZDKEhYWJHaOQP//8E9u2bcO2bdugo8OPEkSk+QRBwNq1azFp0iSxoxARkRbz8fGBn5+f2DE0Hq9QiEilWHYSqZZcLlerkZ1Pnz6Fp6cnAgMDYWNjI3YcIiKVkEgkkEgk0NXVFTsKERFpsf79++Pp06e4fPmy2FE0GstOIiqz5ORk7N+/HwcOHICBgQESExNx6dIlCIIgdjQijWdlZQWFQqEWKzMWFBRgxIgRGD9+PLp27Sp2HCIiIiKiSkVXVxeTJ0/m6M4ykghsI4iolG7cuIGoqChYWFigU6dOhUZDxMbG4vLly9DX10evXr1gbGwsYlIizdayZUusWbMGbdq0ETXHokWLcPLkSRw/fpyjn4iIiIiIysGLFy9Qt25d3LlzB/b29mLH0UgsO4moVA4ePIi6devCxcXlnfvl5ubit99+Q+/evWFtbV1B6Ygql2HDhuGjjz7CyJEjRcvw999/Y8iQIbh+/To/dBERERERlaNJkybBwsICixYtEjuKRuJt7ERUYgcPHsQHH3zw3qITAAwMDDBixAj89ddfSE1NrYB0RJWP2CuyJyYmYsSIEdiyZQuLTiIiIiKicjZ16lRs2LAB2dnZYkfRSCw7iahErl+/DmdnZzg6Ohb7GIlEAg8PDxw+fLgckxFVXmKWnQqFAqNHj1aOLiUi0lSJiYnYtGkTfvnlF/z88884f/682JGIiIjeqF69emjevDl27twpdhSNpCd2ACLSLA8fPoS7u3uJj9PR0UHdunXx+PHjEhWlRPSq7AwLCxPltX/88Uc8f/4cixcvFuX1iYhUYf/+/Vi+fDnu3r0LExMTODg4ID8/H7Vr18ann36Kfv36wcTEROyYRERESj4+Pvjyyy8xZswYSCQSseNoFI7sJKJiS0xMhJWVVamPb926NS5duqTCRETa4fXIzoqeZvvSpUtYtmwZdu3aBX19/Qp9bSIiVZo1axZat26NqKgoPH78GCtWrMDgwYORn5+PZcuWYfPmzWJHJCIiKqRXr17Iy8vD6dOnxY6icVh2ElGxhYSEoGPHjqU+XiKRQEeHbztEJWVhYQEDAwMkJCRU2Gs+f/4cHh4eWL9+PWrXrl1hr0tEpGpRUVF48eIFZsyYgerVqwMAOnbsiFmzZmHdunUYMGAApk2bhl9//VXkpERERP8lkUgwdepU+Pn5iR1F47B1IKJi09HRKXNZqaenV+Gj04gqg4qct1MQBIwdOxZ9+/bFwIEDK+Q1iYjKi0QigaWlJdavXw/g1XtcQUEBBEGAo6Mj5s2bB09PTxw/fhx5eXkipyUiIvqvkSNH4ty5c4iKihI7ikZh2UlExaaKklIikfBCgqgUKrLsXLduHaKjo7F8+fIKeT0iovJUp04dfPrpp9i1axd27doFANDV1S00/1ndunVx7949TtlBRERqxcTEBF5eXli7dq3YUTQKFygiogoVGRkJKysrSKVSyGQySKXSQj92dnacfJnoDSqq7Lx58ybmz5+PkJAQGBoalvvrERGVJ0EQIJFIMGnSJCQmJmLkyJFYuHAhPvvsM3z44YeQSCS4ceMGduzYgYkTJ4odl4iIqIjJkyfjgw8+wIIFC2Bqaip2HI0gEXg/KREV09mzZyGXy2Fra1vqcwQFBaF79+6IiIgo8hMeHo7MzMwiBejrH3t7e875SVpr165dCA4Oxp49e8rtNdLS0tC8eXMsWLAAQ4cOLbfXISKqSKmpqUhLS4MgCEhOTkZQUBB27tyJmJgY1KlTB6mpqfDw8MCqVaugq6srdlwiIqIiPv30U3Tq1AlTpkwRO4pGYNlJRMUmCAL27t0Ld3f3Uh3//PlzXL9+Hd27d3/rPqmpqYiMjHxjEZqamgpnZ+c3FqE1a9ZkEUqV2rVr1+Dl5YVbt26Vy/kFQcDIkSNhbGyMjRs3lstrEBFVpNTUVPj7+2PhwoWoUaMGCgoKYGtrix49emDAgAHQ19fHjRs38MEHH6BBgwZixyUiInqrc+fOYcyYMXjw4AGve4uBt7ETUbG9Xk09Pz8fenolf/s4ffo0+vXr9859zMzM4OrqCldX1yLb0tPTCxWhV69exa+//oqIiAgkJyejTp06RUpQmUyGmjVrliovkTqRyWSIiIhQ3pKpagEBAbh58yYuX76s8nMTEYlhyZIlOHfuHH755RdYWFhg7dq1OHjwILKysnDy5EmsWLECw4YNEzsmERHRe7Vv3x7VqlXDkSNH0KdPH7HjqD2O7CSiEklPT8eBAwdKfHEQFhaGuLg4dOnSpVxyZWZmIioqqtBI0Nf/Hx8fj9q1axcpQaVSKWrXrs3FCEhj2NnZ4dq1a3BwcFDpee/du4fOnTvj9OnTcHFxUem5iYjE4uDggA0bNsDNzQ0AkJiYiBEjRqBz5844fvw4Hj9+jMOHD0Mmk4mclIiI6P0CAwOxbds2/PXXX2JHUXssO4moxJ48eYKQkBB88sknxRphFhYWhvDwcOXFRkXLzs7Gw4cPi5SgERERiIuLg6OjY5ESVCqVok6dOjAwMBAlM9GbdOzYEYsWLVLplwaZmZlo1aoVZsyYAS8vL5Wdl4hITBEREfj000+xevVqdOzYUfm8jY0Nrly5gtq1a6N+/fr47LPPMG3atHIbNU9ERKQqOTk5cHJywvHjxzlA4T1YdhJRqSQnJ+Po0aNo0KDBG285B4AXL17g1KlTMDc3R9euXSs4YfHk5uYiOjq6SAkaERGBR48eoUaNGm9cOb5u3bowMjISOz5pGS8vL7Rt2xbjxo1T2TnHjRuHrKwsBAYG8kKfiCoFQRBQUFCAQYMGwczMDBs3bkRmZiYCAwPx7bffIj4+HgDg6+uL6Oho7Nq1i9PdEBGRRliwYAHi4uKwfv16saOoNf6rTkSlYmlpieHDhyMyMhJBQUHQ1dWFoaEhDA0NkZ6ejry8PJiZmaFv375qfQFhYGAAuVwOuVxeZFteXh5iY2MLFaEnT55EREQEoqOjYWNjU6QElUqlcHZ2RpUqVUT4baiyk8lkCA8PV9n5fv31V/z999+4du0ai04iqjQkEgn09PTwySef4PPPP0dISAhMTEyQmpqKZcuWFdo3NzdXrT+nEBER/dtnn32G+vXrY/r06bh//36hxYpMTU3RuXNnLmAEjuwkIhXKy8tDbm4uqlSpUumLk4KCAsTGxhYZDRoREYGoqChYWlq+cdV4qVSKqlWrVkjGrKws7NmzB7du3YKpqSk+/PBDtGzZkhd1GiwoKAg7duzAvn37ynyu8PBwtGvXDn/++Sc++OADFaQjIlI/iYmJ8Pf3R0JCAkaPHo0mTZoAAO7fv4/OnTtj48aN7108kYiISF1cv34dO3fuRNeuXfHRRx8VKjaTkpJw5swZCIKAHj16wMzMTMSk4mLZSUSkYgUFBXjy5EmREjQ8PByRkZEwMzN7axGqyn+QHj16hKVLlyI9PR2BgYHo3bs3AgICYGNjAwC4cuUKjh8/jqysLMjlcrRp0wbOzs6FimrOYaZebt26heHDh+POnTtlOk9OTg7atWsHLy8vTJo0SUXpiIg0Q1paGn777TecPHkSO3fuFDsOERFRsRw8eBDOzs5o2LDhO/dTKBTYs2cP2rRpg9q1a1dQOvXCspOIqAIpFAo8ffq0SAn6+v+rVKlSpAB9fat89erVS/RaBQUFiIuLQ82aNdG8eXN07twZixcvVt5i7+npiaSkJBgYGODx48fIzs7G4sWLlSNcFAoFdHR08OLFCzx79gx2dnYwNzdX+d+Eii8jIwNWVlbIyMgo0+0pPj4+ePToEYKDg1lmE5FWio+PhyAIsLOzEzsKERHRex06dAjNmjWDo6NjsY/Zt28f2rVrB1tb23JMpp5YdhIRqQlBEBAfH//GEjQ8PBz6+vpFStBevXrB2tr6vYWVnZ0dZs6cienTpytLsgcPHsDExASOjo5QKBTw9fXF1q1bce3aNTg5OQF4dZvfggULEBISgvj4eLRo0QIBAQGQSqXl/eegt3B0dMT58+dL/S3t77//junTp+P69eslLtCJiIiIiKhi/fPPPwCgnIqluARBwK+//ophw4aVRyy1xrKTiEgDCIKApKSkIiXoV199hUaNGr2z7MzIyICNjQ38/f0xZMiQt+6XkpICGxsbXLhwAS1btgQAtG/fHpmZmfjll1/g6OgIb29v5OXl4dChQzA2Nlb570nv17VrV8yZMwc9evQo8bExMTFo2bIlDhw4gDZt2pRDOiIi9fP6cocj2YmISBMFBwfD3d29VMfeuXMH+vr6qFevnopTqTeuUkFEpAEkEgmsra1hbW2Ntm3bFuuY1/NtPnz4EBKJRDlX57+3vz43AOzfvx/6+vqQyWQAgJCQEFy4cAE3b95Ufou4cuVKuLi44OHDh++dK4bKx+sV2Utadubl5cHDwwNffvkli04i0ipTp07F119/XeTfQSIiInX34sWLMk0l1qhRI+zdu1fryk6uR09EVEkpFAoAQGhoKKpVqwYLC4tC2/+9+ND27dsxb948TJ8+Hebm5sjJycGxY8fg6OiIJk2aID8/HwBgZmYGOzs73L59u2J/GVJ6XXaW1Ndff43q1atjxowZ5ZCKiEg9RUVFYdeuXVq9Ii0REWmus2fPokuXLmU6R1nm+tdUHNlJRFTJ3bt3DzY2Nsr5GQVBgEKhgK6uLjIyMjB//nwEBwdj4sSJmD17NoBXq3WHhoZCLpcD+G9xGh8fD2tra6SmpirPxdsCK5ZMJsOZM2dKdMzRo0exY8cOXL9+XSs/7BCR9tqyZQuGDx8OQ0NDsaMQERGViq6ubpmOr1q1KrKysrRqGjKWnURElZAgCHjx4gUsLS0RFhYGJycn5aiW10XnrVu34OPjgxcvXmDdunXo3bt3ofIyPj5eeav661veY2NjoaurW2SU6Ot94uPjYWVlBT09/vNSXko6sjMuLg5jxozBrl27YG1tXY7JiIjUS0FBAbZs2YI//vhD7ChERESloopldgwNDZGdnc2yk4iINNuTJ0/Qq1cvZGdnIzo6GnXq1MH69evRuXNntG7dGoGBgfjhhx/Qvn17fPfdd6hWrRqAV/N3CoKAatWqITMzE1WrVgXw328Tb926BWNjY+Vq7f87qrN37964f/8+atWqVWTleKlUCicnJ+jr61fcH6IScnZ2RnR0NPLz899bKhcUFGD48OGYOHEiOnfuXEEJiYjUw7Fjx+Dg4IDGjRuLHYWIiEg0qampWjedC8tOIqJKyMHBAbt27cKNGzcQFxeHa9eu4eeff8alS5ewevVqTJ8+HSkpKbC3t8eKFStQr149yGQyNG7cGIaGhpBIJKhXrx4uXryIuLg42NvbA3i1iJGrq6vy9vZ/k0gkuHnzJnJycvDw4UPlivEPHjzA4cOHERERgSdPnsDBwaFICSqVSlGnTh3eZlgMRkZGsLW1RUxMDJydnd+57+LFi6Gjo4P//Oc/FZSOiEh9bN68Gd7e3mLHICIiKrVatWohMjLyvZ/73yU3N1frprKSCKoYE0tERBrl/v37CA8Px99//43bt28jKioKMTEx8PPzw4QJE6Cjo4MbN25g2LBhcHNzw8cff4xffvkFx48fx6lTp9C0adNSvW5ubi5iYmIQERGB8PBwZSEaERGB2NhY2NnZvbEIrVu3rlbddvE+PXv2xBdffIHevXu/dZ9Tp05h2LBhuH79OmrUqFGB6YiIxBcfH4969eohNjZWefcCERGRJgoODoa7u3upjk1LS8OFCxfQq1cvFadSbyw7iYhISaFQFPrWb9++fVi2bBmioqLQsmVLzJ8/Hy1atCiX187Pz0dsbGyREjQiIgIPHz6EtbV1kRJUKpXC2dkZJiYm5ZJJXU2cOBENGjTAlClT3rg9ISEBrq6u8Pf317oPNkREALBixQrcvXsXW7ZsETsKERFRmRw+fBjdunUr1eCPAwcO4KOPPtK6qcRYdhJRmXl6eiIpKQmHDh0SOwqVIzFXXi8oKMCjR4+KlKARERGIioqCubl5kRL09Y+pqakomctLfn4+Zs+ejZcvX6JPnz6QSCRwcnJSzkmnUCjg5uaGZs2a4bvvvhM5LRFRxRMEAQ0bNsTGjRvRoUMHseMQERGVSW5uLn799VeMGjWqRNdj4eHhePToEbp161aO6dQTy04iLeDp6YmtW7cCAPT09FC9enW4uLjgk08+wfjx48v8LY8qys7Xi+hcuXKl3EYOUuWkUCjw5MmTIiVoeHg4IiMjYWpq+sYSVCqVwtzcXOz4xRYfH4/z589DR0cHnTt3RvXq1ZXbHjx4gDt37sDY2Bg3b97E4cOHcfr0aa37BpeICADOnz8Pb29vhIaGivYlHRERkSqlpKTg8OHDGD58eLHm3wwPD0dYWBjc3NwqIJ364QJFRFqiR48eCAwMREFBARITE3Hy5EnMmzcPgYGBOHHixBtvA87NzYWBgYEIaYmKT0dHBzVr1kTNmjXRtWvXQtsEQcDTp08LlaB79+5V3ipvZGT0xhJUJpPBwsJCpN+oqMuXL+PFixcYOHDgGy/c69Wrh3r16iEjIwOHDh3C6tWrWXQSkdZ6vTARi04iIqosLCwsMHDgQOzatQu1atVC+/bt3/jvXEpKCk6fPg0LCwutLToBjuwk0gpvG3l5584duLq64quvvsKCBQvg5OQET09PxMbGYu/evejZsyf27NmD27dvY/r06Th//jyMjY3Rr18/+Pn5wczMrND527RpgzVr1iAjIwOffvop1q1bp5xXRBAELF++HOvXr0dcXBykUilmzZqFESNGAECRN+rOnTvj9OnTuHLlCubMmYPr168jNzcXTZo0wfLly9G2bdsK+MtRZSYIAhISEoqMBn39X11d3TeWoFKpFFZWVhV2EX358mXo6OgUe8SzIAjYvXs3evToAUtLy3JOR0SkXl6+fInatWvj/v37sLW1FTsOERGRyj179gznz5+HRCKBnp4edHR0oFAokJOTA0tLS3Tu3Bm6urpixxQVy04iLfCu28z79euHqKgo3LlzB05OTkhJScHcuXMxaNAgCIIABwcHyGQytGzZEosWLUJKSgrGjRuHxo0bIzg4WHn+4OBg9O7dG/PmzcOTJ0/g5eUFd3d3rF69GgAwZ84cBAUFwc/PD/Xq1cOFCxcwbtw47N69G25ubrhy5QpatWqFo0ePomnTpjAwMICFhQVOnjyJJ0+eoEWLFpBIJFi7di127NiB8PBwWFlZVejfkbSHIAhITk4uUoK+/snPz39jCSqVSmFra6uyIjQ+Ph43b97Ehx9+WOL8O3bsUH6ZQESkLTZu3IgjR45g3759YkchIiIqd4IgQKFQaH25+b9YdhJpgXeVnbNnz8bq1auRmZmpXOTk4MGDyu0bN26Er68vHj9+rFzo5fTp0+jatSvCw8MhlUrh6emJ33//HY8fP0bVqlUBANu3b4e3tzdSUlIAAFZWVvjzzz/RsWNH5bmnTZuGsLAwHDlypNhzdgqCAHt7eyxfvpxFDokmJSUFkZGRb1w5PjMz840lqFQqRY0aNYo1x85re/fufeut6+9z//595Ofno1GjRiU+lohIU7Vp0wZff/21Vt+6R0REpO04ZyeRlvvfFbb/t2gMDQ1FkyZNCq1o3a5dO+jo6ODevXuQSqUAgCZNmiiLTgBo27YtcnNzERkZiZycHGRnZ6N3796FXisvLw9OTk7vzJeQkICvv/4ap06dQnx8PAoKCpCVlYXY2Niy/NpEZWJhYQELCwu0bNmyyLbU1NRCRei5c+cQEBCAiIgIpKamwtnZ+Y0rxzs6OhYqQgsKCiCRSEo9SrR+/foICgpi2UlEWuPOnTt49OhRiUfDExERUeXCspNIy927dw9169ZVPv7fhYr+twz9t+KWMAqFAgBw8OBB1KpVq9C29y2iMnr0aMTHx2PlypVwcnKCoaEhunfvjtzc3GK9NlFFMzMzg6urK1xdXYtsS0tLQ2RkpHIU6OXLl7Fz505EREQgOTkZdevWVZafhoaGmDlzZpmyGBkZIScnB4aGhmU6DxGRJti8eTM8PT2hp8dLHCIiIm3GTwJEWuzOnTs4evQo5s6d+9Z9GjZsCH9/f6SlpSlHd4aEhEChUKBBgwbK/W7fvo2MjAxlWXrx4kUYGBjA2dkZCoUChoaGiImJQbdu3d74Oq9XfS8oKCj0/Llz57B69Wrl7Wjx8fF4+vRp6X9pIhGZmpqiWbNmaNasWZFtGRkZiIqKUhah9+/fR/Xq1cv0enZ2dkhOToa9vX2ZzkNEpO5ycnKwfft2XLx4UewoREREJDKWnURaIicnB8+ePYNCoUBiYiJOnDiBb7/9Fs2bN4evr+9bjxs+fDjmzZuHUaNGYeHChXj+/DkmTJiAQYMGKW9hB4D8/Hx4eXnhm2++QVxcHGbPno1x48Ypy09fX1/4+vpCEAR06tQJ6enpuHjxInR0dDB+/HjY2NjA2NgYx44dg5OTE4yMjGBmZga5XI7t27ejdevWyMjIwJdffqksRokqExMTEzRu3BiNGzcGABw4cKDM56xSpQoyMjLKfB4iInW3f/9+NG7cGM7OzmJHISIiIpEVf5UEItJox48fR40aNVCrVi10794dBw4cwLx583DmzJkit67/W5UqVXDs2DG8fPkSrVq1Qv/+/dG2bVv4+/sX2q9z585wcXFB165dMXDgQHTr1g3Lli1Tbl+0aBHmz5+PFStWwMXFBT179kRwcDDq1KkDANDT08Pq1auxadMm2Nvbo3///gAAf39/pKeno3nz5vDw8ICXl9d75/kkqgxUsaJ7amoqzM3NVZCGiEi9bd68GWPHjhU7BhEREakBrsZORESkhm7fvg0DAwPUq1ev1OfYu3cvBgwYUKIV4ImINE1MTAyaN2+OR48ewdjYWOw4REREJDJe/RAREamhxo0b486dO6U+/vXCYCw6iaiy27JlCzw8PFh0EhEREQDO2UlERKS2jI2NCy38VRJnzpxBp06dyiEVEZH6KCgowJYtW7B//36xoxAREZGa4HAPIiIiNdW9e3fs3bsXJZ1xJjU1FUlJSbCysiqnZERE6uHEiROwsrJCs2bNxI5CREREaoJlJxERkZoyNDTEhx9+iF27dhW78ExNTcXvv/8Od3f3ck5HRCS+TZs2wdvbW+wYREREpEa4QBEREZGaS0lJweHDh9GiRQs0aNDgjfsoFAr8/fffSE5Ohru7u0pWcyciUmdJSUmQSqWIjo6Gubm52HGIiIhITbDsJCIi0hB37tzBgwcPYGRkBFtbW1SpUgWpqal4+vQpAKBTp068dZ2ItMaqVatw7do1BAYGih2FiIhIpZ49e4ZRo0bh/PnzyMzMLPG0Vv/m6emJpKQkHDp0SIUJ1RvLTiIiIg2Tm5uLpKQkZGZmwszMDJaWllx1nYi0iiAIaNy4MdauXYsuXbqIHYeIiKhEPD09sXXr1iLPt27dGhcvXoSvry+OHj2Kffv2wdTUFHZ2dqV+rdTUVAiCoFV3QXA1diIiIg1jYGAAe3t7sWMQEYnm8uXLyMnJQefOncWOQkREVCo9evQocneCgYEBACAiIgLNmzeHTCYr9fnz8/Ohq6sLMzOzMuXURBwGQkREREREGmXTpk3w8vLi/MRERKSxDA0NYWdnV+jHwsICTk5O2L9/P7Zt2waJRAJPT08AQGxsLAYOHAhTU1OYmppi0KBBePz4sfJ88+fPR6NGjRAQEABnZ2cYGhoiIyMDnp6e6NOnj3I/QRCwbNkyODs7w9jYGI0bN8b27dsr+tcvVxzZSUREREREGiM9PR1BQUG4e/eu2FGIiIhU7sqVKxg2bBgsLCzg5+cHY2NjCIKAAQMGwMjICCdPnoREIsHkyZMxYMAAXLlyRfnl38OHD7Fz507s2bMHBgYGMDIyKnL+uXPnIigoCD/99BPq1auHCxcuYNy4cahevTrc3Nwq+tctFyw7iYiIiIhIY+zZswcdO3bkdB5ERKTRjh49iqpVqxZ6btKkSfj+++9haGgIY2Nj5Vydf/31F27duoXIyEg4OTkBAHbu3AmpVIoTJ06gR48eAF7N7R8YGAhbW9s3vmZGRgZ+/PFH/PnnEHzM9wAAELRJREFUn+jYsSMAoE6dOrh8+TJ++uknlp1EREREREQVbdOmTfjyyy/FjkFERFQmnTp1woYNGwo997ZFhEJDQ2Fvb68sOgGgbt26sLe3x71795Rlp6Oj41uLTgC4d+8esrOz0bt370JTweTl5RU6t6Zj2UlERERERBohNDQUUVFR+Pjjj8WOQkREVCZVqlSBVCot1r6CILx1nup/P29iYvLO8ygUCgDAwYMHUatWrULb9PX1i5VFE7DsJCIiIiIijeDv74/Ro0dXqgsyIiKi92nYsCGePHmC6Oho5QjMqKgoxMXFoWHDhiU6j6GhIWJiYtCtW7dySis+lp1ERERERKT2cnNzsW3bNpw9e1bsKERERGWWk5ODZ8+eFXpOV1cX1tbWRfbt0aMHmjZtiuHDh2P16tUQBAFTpkyBq6triUpLU1NT+Pr6wtfXF4IgoFOnTkhPT8fFixeho6OD8ePHl/n3UgcsO4mIiIiISO0dOnQI9evXh1wuFzsKERFRmR0/fhw1atQo9JyDgwMeP35cZF+JRILff/8dU6dORZcuXQC8KkDXrFnz1tvb32bRokWwtbXFihUr8Pnnn6NatWpo1qxZpZoPWyIIgiB2CCIiIiIiondxc3PDkCFDMGrUKLGjEBERkRpj2UlERERERGrt8ePHaNKkCR4/fowqVaqIHYeIiIjUmI7YAYiIiIiIiN4lICAAQ4YMYdFJRERE78WRnUREREREpLYUCgWkUil2796NFi1aiB2HiIiI1BxHdhIREWmY+fPno1GjRmLHICKqEKdOnYKpqSmaN28udhQiIiLSACw7/6+9+4/Vuqz/B/68ETkczoFNzrAfgMQRISg4SSAWzjlxobDmPFGK0YaDTQJmbZoZmzSiWBlqLsBsUpow1MCs4a9Vp0z/MGQHiMLDDx2K6CjAgiO/jp3780f7su8JEPCc0+HcPB5/8b7u68frvv86e3Jd7wsA2smuXbvyta99LRdeeGHKysrSt2/fXHPNNXn66adbNe9tt92W559/vo2qBDizLV26NNOnTz/t22YBgLOTY+wA0A62b9+esWPHpmfPnvnOd76TmpqaNDc35/e//33uuuuuvPHGG8eMOXLkSLp169YB1QKcmfbu3Zvq6uq89tpr6d27d0eXAwB0AnZ2AkA7mDlzZorFYtauXZsvfelLGTJkSIYOHZrZs2dnw4YNSZJCoZDFixentrY2FRUVmTNnTv79739n2rRpGThwYMrLy3PRRRflrrvuSnNz89G5//sYe3Nzc+bPn5/+/funrKwsw4cPz69//eujn3/mM5/Jrbfe2qK+ffv2pby8PL/61a+SJMuWLcvo0aPTs2fPnH/++fniF7+YnTt3tudPBHBSy5cvzzXXXCPoBABOmbATANrY3r178+yzz2b27NmprKw85vPzzjvv6L/nzZuXCRMmZOPGjZk1a1aam5vTt2/fPP7443nllVfyve99LwsWLMjPf/7zE65333335Yc//GF+8IMfZOPGjbnuuutSW1ub9evXJ0mmTJmSRx99tEVgumrVqpSXl2fixIlJ/rOrdN68edmwYUNWr16d3bt3Z/LkyW31kwCctmKxmAcffDDTp0/v6FIAgE7EMXYAaGNr1qzJmDFj8sQTT+S66647Yb9CoZDZs2fnxz/+8fvOd8cdd2Tt2rX53e9+l+Q/OztXrlyZv/71r0mSvn375uabb87cuXOPjrniiivSr1+/LFu2LHv27MlHPvKRPPPMMxk3blyS5KqrrsqFF16YBx544LhrNjQ0ZOjQodmxY0f69et3Wt8foC38v53x27ZtS5cu9mgAAKfGXw0A0MZO5/8RR40adUzbT37yk4waNSp9+vRJZWVl7r333uO+4zP5z3H0t956K2PHjm3Rftlll2XTpk1JkqqqqowfPz7Lly9Pkrz99tv5wx/+kClTphztX19fn2uvvTYDBgxIz549j9Z1onUB2tvSpUtz0003CToBgNPiLwcAaGMXXXRRCoVCXnnllZP2raioaPH82GOP5etf/3qmTp2a5557LuvXr8/MmTNz5MiR953neLcU//9tU6ZMyapVq3Lo0KGsWLEi/fv3z2WXXZYkeffddzN+/Pj06NEjjzzySF5++eU8++yzSXLSdQHaw4EDB/LYY49l6tSpHV0KANDJCDsBoI317t0748ePz6JFi9LY2HjM5//85z9POPbFF1/MmDFjMnv27IwcOTKDBg3Kq6++esL+vXr1ykc/+tG8+OKLx8wzbNiwo8/XXnttkmT16tVZvnx5vvzlLx8NQxsaGrJ79+4sWLAgl19+eT7+8Y/n73//+2l9Z4C2tHLlylx66aXp379/R5cCAHQywk4AaAdLlixJsVjMqFGj8stf/jKbN29OQ0ND7r///owYMeKE4wYPHpz6+vo888wz2bp1a+bPn5/nn3/+fdf6xje+kYULF2bFihXZsmVL5s6dmxdeeKHFDezdu3dPbW1tvvvd76a+vr7FEfYLLrggZWVlWbRoUV577bU89dRTufPOO1v/IwB8QEuXLs20adM6ugwAoBPq2tEFAEApGjhwYOrr67NgwYJ885vfzM6dO1NVVZWampoTXgqUJDfffHPWr1+fG2+8McViMV/4whdy66235mc/+9kJx9xyyy3Zv39/br/99uzatStDhgzJqlWr8qlPfapFv6985St56KGHMnLkyAwdOvRoe58+ffLwww9nzpw5Wbx4cUaMGJF77rknV199det/CIDTtGXLljQ0NOTzn/98R5cCAHRCbmMHAADOGHfccUfee++9LFy4sKNLAQA6IWEnAABwRnjvvffSv3//1NXVtdiBDgBwqryzEwAAOCM8/fTTqa6uFnQCAB+YsBMAADgjPPjggy4mAgBaxTF2AACgw7311lv5xCc+kR07dqSysrKjywEAOik7OwEAgA738MMPZ9KkSYJOAKBV7OwEAAA6VLFYzODBg/PII4/k0ksv7ehyAIBOzM5OAACgQ/3pT39KWVlZxowZ09GlAACdXNeOLgAAADg7HD58OHV1dWlqajrads4552TZsmWZNm1aCoVCB1YHAJQCYScAANCu3nzzzbz00kspKyvLuHHj0qNHj6OfHTx4MFu3bk1VVVVef/31DBgwoAMrBQA6O+/sBAAA2k19fX327NmTq6666qQ7N+vq6tKzZ8+MHj36f1QdAFBqhJ0AAEC7+Mtf/pLGxsZ89rOfPeUxa9asSdeuXTNy5Mh2rAwAKFUuKAIAANrcoUOHsnnz5tMKOpPkkksuyeuvv5533323nSoDAEqZsBMAAGhzdXV1mThx4gcaO2HChNTV1bVxRQDA2UDYCQAAtLmDBw+2uIjodJSVleXw4cPxxi0A4HQJOwEAgDa1bdu2DB48uFVz1NTU5G9/+1sbVQQAnC2EnQAAQJt68803M2DAgFbNccEFF2Tnzp1tVBEAcLYQdgIAAG3q8OHDKSsra9Uc5557bpqamtqoIgDgbCHsBAAA2tR5552Xd955p1Vz7Nu3L7169WqjigCAs4WwEwAAaFPDhw9PfX19q+b485//nIsvvriNKgIAzhbCTgAAoE2Vl5fn4MGDrZqjsbExPXv2bKOKAICzhbATAABoczU1NVm3bt0HGrtp06YMHTq0jSsCAM4Gwk4AAKDNDRo0KA0NDWlsbDytcQcOHEh9fX2GDRvWTpUBAKVM2AkAALSL66+/PitXrsy//vWvU+q/f//+PP7447nhhhvauTIAoFQVisVisaOLAAAASlNzc3OefPLJlJeXZ9y4cenWrdsxfZqamlJXV5f9+/entrY2XbrYkwEAfDDCTgAAoN01Njamrq4uTU1NOffcc9OtW7ccOXIkTU1N6dq1a6688koXEgEArSbsBAAA/qeKxeLR0LNQKHR0OQBACRF2AgAAAAAlwctwAAAAAICSIOwEAAAAAEqCsBMAAAAAKAnCTgAAAACgJAg7AQAAAICSIOwEAAAAAEqCsBMAAAAAKAnCTgAAAACgJAg7AQAAAICSIOwEAAAAAEqCsBMAAAAAKAnCTgAAoFU+9rGPZeHChf+Ttf74xz+mUChk9+7d/5P1AIDOpVAsFosdXQQAAHBm2rVrV77//e9n9erV2bFjR3r16pVBgwZl8uTJuemmm1JZWZl//OMfqaioSI8ePdq9niNHjmTv3r350Ic+lEKh0O7rAQCdS9eOLgAAADgzbd++PWPHjk2vXr0yf/78jBgxIs3NzdmyZUt+8YtfpKqqKjfeeGP69OnT6rWOHDmSbt26nbRft27d8uEPf7jV6wEApckxdgAA4Li++tWvpkuXLlm7dm1uuOGGDBs2LJ/85CdTW1ubJ598MpMnT05y7DH2QqGQlStXtpjreH0WL16c2traVFRUZM6cOUmSp556KkOGDEn37t1z+eWX59FHH02hUMj27duTHHuM/aGHHkplZWWLtRx1B4Czl7ATAAA4xt69e/Pcc89l1qxZqaioOG6f1h4jnzdvXiZMmJCNGzdm1qxZeeONN1JbW5uJEydmw4YNueWWW3L77be3ag0A4Owi7AQAAI6xdevWFIvFDBkypEV7v379UllZmcrKysyYMaNVa1x//fWZPn16qqurM3DgwNx///2prq7O3XffnSFDhmTSpEmtXgMAOLsIOwEAgFP2wgsvZP369bnkkkty6NChVs01atSoFs8NDQ0ZPXp0ix2jY8aMadUaAMDZxQVFAADAMQYNGpRCoZCGhoYW7QMHDkyS9715vVAopFgstmhramo6pt9/H48vFounfTS+S5cup7QWAHB2sLMTAAA4RlVVVT73uc9l0aJFaWxsPK2xffr0ydtvv330edeuXS2eT2To0KF5+eWXW7StWbPmpGsdOHAg+/btO9q2fv3606oXACgdwk4AAOC4lixZkubm5nz605/OihUrsmnTpmzZsiUrVqzIhg0bcs455xx33JVXXpnFixdn7dq1WbduXaZOnZru3bufdL0ZM2bk1VdfzW233ZbNmzfniSeeyAMPPJDkxJchjRkzJhUVFfnWt76Vbdu2ZdWqVVmyZMkH/9IAQKcm7AQAAI6ruro669aty9VXX50777wzF198cUaOHJl77rknM2fOzI9+9KPjjrv77rtTXV2dK664IpMmTcr06dNz/vnnn3S9AQMGZNWqVfnNb36Tmpqa3Hvvvfn2t7+dJCcMS3v37p3ly5fnt7/9bYYPH56f/vSnmT9//gf/0gBAp1Yo/vcLbgAAAM4Q9913X+bOnZt33nknXbrYqwEAvD8XFAEAAGeMxYsXZ/To0enTp09eeumlzJ8/P1OnThV0AgCnRNgJAACcMbZt25YFCxZkz5496devX2bMmJG5c+d2dFkAQCfhGDsAAAAAUBKcBQEAAAAASoKwEwAAAAAoCcJOAAAAAKAkCDsBAAAAgJIg7AQAAAAASoKwEwAAAAAoCcJOAAAAAKAkCDsBAAAAgJIg7AQAAAAASoKwEwAAAAAoCcJOAAAAAKAkCDsBAAAAgJIg7AQAAAAASoKwEwAAAAAoCcJOAAAAAKAkCDsBAAAAgJIg7AQAAAAASoKwEwAAAAAoCcJOAAAAAKAkCDsBAAAAgJIg7AQAAAAASoKwEwAAAAAoCcJOAAAAAKAkCDsBAAAAgJIg7AQAAAAASoKwEwAAAAAoCcJOAAAAAKAkCDsBAAAAgJIg7AQAAAAASoKwEwAAAAAoCf8HebVl/k0i9zQAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x1eddc448e48>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "show_map(romania_graph_data)"
  {
   "cell_type": "markdown",
   "source": [
    "Voila! You see, the romania map as shown in the Figure[3.2] in the book. Now, see how different searching algorithms perform with our problem statements."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## SIMPLE PROBLEM SOLVING AGENT PROGRAM\n",
    "\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "Let us now define a Simple Problem Solving Agent Program. Run the next cell to see how the abstract class `SimpleProblemSolvingAgentProgram` is defined in the search module."
   "execution_count": 11,
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">SimpleProblemSolvingAgentProgram</span><span class=\"p\">:</span>\n",
       "\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Abstract framework for a problem-solving agent. [Figure 3.1]&quot;&quot;&quot;</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">initial_state</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;State is an abstract representation of the state</span>\n",
       "<span class=\"sd\">        of the world, and seq is the list of actions required</span>\n",
       "<span class=\"sd\">        to get to a particular state from the initial state(root).&quot;&quot;&quot;</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span> <span class=\"o\">=</span> <span class=\"n\">initial_state</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">seq</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__call__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">percept</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;[Figure 3.1] Formulate a goal and problem, then</span>\n",
       "<span class=\"sd\">        search for a sequence of actions to solve it.&quot;&quot;&quot;</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">update_state</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">percept</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">seq</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">goal</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">formulate_goal</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">problem</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">formulate_problem</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">goal</span><span class=\"p\">)</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">seq</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">search</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">seq</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
       "        <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">seq</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">update_state</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">percept</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">raise</span> <span class=\"ne\">NotImplementedError</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">formulate_goal</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">raise</span> <span class=\"ne\">NotImplementedError</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">formulate_problem</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">goal</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">raise</span> <span class=\"ne\">NotImplementedError</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">search</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">raise</span> <span class=\"ne\">NotImplementedError</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "psource(SimpleProblemSolvingAgentProgram)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The SimpleProblemSolvingAgentProgram class has six methods:  \n",
    "\n",
    "* `__init__(self, intial_state=None)`: This is the `contructor` of the class and is the first method to be called when the class is instantiated. It takes in a keyword argument, `initial_state` which is initially `None`. The argument `initial_state` represents the state from which the agent starts.\n",
    "\n",
    "* `__call__(self, percept)`: This method updates the `state` of the agent based on its `percept` using the `update_state` method. It then formulates a `goal` with the help of `formulate_goal` method and a `problem` using the `formulate_problem` method and returns a sequence of actions to solve it (using the `search` method).\n",
    "\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "* `update_state(self, percept)`: This method updates the `state` of the agent based on its `percept`.\n",
    "\n",
    "* `formulate_goal(self, state)`: Given a `state` of the agent, this method formulates the `goal` for it.\n",
    "\n",
    "* `formulate_problem(self, state, goal)`: It is used in problem formulation given a `state` and a `goal` for the `agent`.\n",
    "\n",
    "* `search(self, problem)`: This method is used to search a sequence of `actions` to solve a `problem`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us now define a Simple Problem Solving Agent Program. We will create a simple `vacuumAgent` class which will inherit from the abstract class `SimpleProblemSolvingAgentProgram` and overrides its methods. We will create a simple intelligent vacuum agent which can be in any one of the following states. It will move to any other state depending upon the current state as shown in the picture by arrows:\n",
    "\n",
    "![simple problem solving agent](images/simple_problem_solving_agent.jpg)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [],
   "source": [
    "class vacuumAgent(SimpleProblemSolvingAgentProgram):\n",
    "        def update_state(self, state, percept):\n",
    "            return percept\n",
    "\n",
    "        def formulate_goal(self, state):\n",
    "            goal = [state7, state8]\n",
    "            return goal  \n",
    "\n",
    "        def formulate_problem(self, state, goal):\n",
    "            problem = state\n",
    "            return problem   \n",
    "    \n",
    "        def search(self, problem):\n",
    "            if problem == state1:\n",
    "                seq = [\"Suck\", \"Right\", \"Suck\"]\n",
    "            elif problem == state2:\n",
    "                seq = [\"Suck\", \"Left\", \"Suck\"]\n",
    "            elif problem == state3:\n",
    "                seq = [\"Right\", \"Suck\"]\n",
    "            elif problem == state4:\n",
    "                seq = [\"Suck\"]\n",
    "            elif problem == state5:\n",
    "                seq = [\"Suck\"]\n",
    "            elif problem == state6:\n",
    "                seq = [\"Left\", \"Suck\"]\n",
    "            return seq"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now, we will define all the 8 states and create an object of the above class. Then, we will pass it different states and check the output:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Left\n",
      "Suck\n",
      "Right\n"
     ]
    }
   ],
    "state1 = [(0, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Dirty\"]]]\n",
    "state2 = [(1, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Dirty\"]]]\n",
    "state3 = [(0, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Dirty\"]]]\n",
    "state4 = [(1, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Dirty\"]]]\n",
    "state5 = [(0, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Clean\"]]]\n",
    "state6 = [(1, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Clean\"]]]\n",
    "state7 = [(0, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Clean\"]]]\n",
    "state8 = [(1, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Clean\"]]]\n",
    "a = vacuumAgent(state1)\n",
    "print(a(state6)) \n",
    "print(a(state1))\n",
    "print(a(state3))"
  {
   "cell_type": "markdown",
    "## SEARCHING ALGORITHMS VISUALIZATION\n",
    "In this section, we have visualizations of the following searching algorithms:\n",
    "1. Breadth First Tree Search\n",
    "2. Depth First Tree Search\n",
    "3. Breadth First Search\n",
    "4. Depth First Graph Search\n",
    "5. Best First Graph Search\n",
    "6. Uniform Cost Search\n",
    "7. Depth Limited Search\n",
    "8. Iterative Deepening Search\n",
    "9. Greedy Best First Search\n",
    "9. A\\*-Search\n",
    "10. Recursive Best First Search\n",
    "\n",
    "We add the colors to the nodes to have a nice visualisation when displaying. So, these are the different colors we are using in these visuals:\n",
    "* Un-explored nodes - <font color='black'>white</font>\n",
    "* Frontier nodes - <font color='orange'>orange</font>\n",
    "* Currently exploring node - <font color='red'>red</font>\n",
    "* Already explored nodes - <font color='gray'>gray</font>"
   ]
  },
  {
   "cell_type": "markdown",
    "## 1. BREADTH-FIRST TREE SEARCH\n",
    "We have a working implementation in search module. But as we want to interact with the graph while it is searching, we need to modify the implementation. Here's the modified breadth first tree search."
   "execution_count": 14,
   "metadata": {},
   "outputs": [],
    "def tree_breadth_search_for_vis(problem):\n",
    "    \"\"\"Search through the successors of a problem to find a goal.\n",
    "    The argument frontier should be an empty queue.\n",
    "    Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n",
    "    \n",
    "    # we use these two variables at the time of visualisations\n",
    "    iterations = 0\n",
    "    all_node_colors = []\n",
    "    node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
    "    #Adding first node to the queue\n",
    "    frontier = deque([Node(problem.initial)])\n",
    "    node_colors[Node(problem.initial).state] = \"orange\"\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "        #Popping first node of queue\n",
    "        node = frontier.popleft()\n",
    "        # modify the currently searching node to red\n",
    "        node_colors[node.state] = \"red\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "        if problem.goal_test(node.state):\n",
    "            # modify goal node to green after reaching the goal\n",
    "            node_colors[node.state] = \"green\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "            return(iterations, all_node_colors, node)\n",
    "        frontier.extend(node.expand(problem))\n",
    "           \n",
    "        for n in node.expand(problem):\n",
    "            node_colors[n.state] = \"orange\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "        # modify the color of explored nodes to gray\n",
    "        node_colors[node.state] = \"gray\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "def breadth_first_tree_search(problem):\n",
    "    \"Search the shallowest nodes in the search tree first.\"\n",
    "    iterations, all_node_colors, node = tree_breadth_search_for_vis(problem)\n",
    "    return(iterations, all_node_colors, node)"
Anthony Marakis's avatar
Anthony Marakis a validé
    "Now, we use `ipywidgets` to display a slider, a button and our romania map. By sliding the slider we can have a look at all the intermediate steps of a particular search algorithm. By pressing the button **Visualize**, you can see all the steps without interacting with the slider. These two helper functions are the callback functions which are called when we interact with the slider and the button."
   "execution_count": null,
   "source": [
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "a, b, c = breadth_first_tree_search(romania_problem)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=breadth_first_tree_search, \n",
    "               problem=romania_problem)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. DEPTH-FIRST TREE SEARCH\n",
    "Now let's discuss another searching algorithm, Depth-First Tree Search."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
    "def tree_depth_search_for_vis(problem):\n",
    "    \"\"\"Search through the successors of a problem to find a goal.\n",
    "    The argument frontier should be an empty queue.\n",
    "    Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n",
    "    \n",
    "    # we use these two variables at the time of visualisations\n",
    "    iterations = 0\n",
    "    all_node_colors = []\n",
    "    node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
    "    \n",
    "    #Adding first node to the stack\n",
    "    frontier = [Node(problem.initial)]\n",
    "    \n",
    "    node_colors[Node(problem.initial).state] = \"orange\"\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "    \n",
    "    while frontier:\n",
    "        #Popping first node of stack\n",
    "        node = frontier.pop()\n",
    "        \n",
    "        # modify the currently searching node to red\n",
    "        node_colors[node.state] = \"red\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "        if problem.goal_test(node.state):\n",
    "            # modify goal node to green after reaching the goal\n",
    "            node_colors[node.state] = \"green\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "            return(iterations, all_node_colors, node)\n",
    "        \n",
    "        frontier.extend(node.expand(problem))\n",
    "           \n",
    "        for n in node.expand(problem):\n",
    "            node_colors[n.state] = \"orange\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "\n",
    "        # modify the color of explored nodes to gray\n",
    "        node_colors[node.state] = \"gray\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "    return None\n",
    "\n",
    "def depth_first_tree_search(problem):\n",
    "    \"Search the deepest nodes in the search tree first.\"\n",
    "    iterations, all_node_colors, node = tree_depth_search_for_vis(problem)\n",
    "    return(iterations, all_node_colors, node)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=depth_first_tree_search, \n",
    "               problem=romania_problem)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
    "## 3. BREADTH-FIRST GRAPH SEARCH\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "Let's change all the `node_colors` to starting position and define a different problem statement."
   "execution_count": 18,
   "metadata": {},
   "outputs": [],
   "source": [
    "def breadth_first_search_graph(problem):\n",
    "    \"[Figure 3.11]\"\n",
    "    \n",
    "    # we use these two variables at the time of visualisations\n",
    "    iterations = 0\n",
    "    all_node_colors = []\n",
    "    node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
    "    \n",
    "    node = Node(problem.initial)\n",
    "    \n",
    "    node_colors[node.state] = \"red\"\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "      \n",
    "    if problem.goal_test(node.state):\n",
    "        node_colors[node.state] = \"green\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        return(iterations, all_node_colors, node)\n",
    "    frontier = deque([node])\n",
    "    \n",
    "    # modify the color of frontier nodes to blue\n",
    "    node_colors[node.state] = \"orange\"\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "    explored = set()\n",
    "    while frontier:\n",
    "        node = frontier.popleft()\n",
    "        node_colors[node.state] = \"red\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "        explored.add(node.state)     \n",
    "        \n",
    "        for child in node.expand(problem):\n",
    "            if child.state not in explored and child not in frontier:\n",
    "                if problem.goal_test(child.state):\n",
    "                    node_colors[child.state] = \"green\"\n",
    "                    iterations += 1\n",
    "                    all_node_colors.append(dict(node_colors))\n",
    "                    return(iterations, all_node_colors, child)\n",
    "                frontier.append(child)\n",
    "\n",
    "                node_colors[child.state] = \"orange\"\n",
    "                iterations += 1\n",
    "                all_node_colors.append(dict(node_colors))\n",
    "                    \n",
    "        node_colors[node.state] = \"gray\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "    return None"
   ]
   "execution_count": null,
   "source": [
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=breadth_first_search_graph, \n",
    "               problem=romania_problem)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 4. DEPTH-FIRST GRAPH SEARCH \n",
    "Although we have a working implementation in search module, we have to make a few changes in the algorithm to make it suitable for visualization."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "source": [
    "def graph_search_for_vis(problem):\n",
    "    \"\"\"Search through the successors of a problem to find a goal.\n",
    "    The argument frontier should be an empty queue.\n",
    "    If two paths reach a state, only use the first one. [Figure 3.7]\"\"\"\n",
    "    # we use these two variables at the time of visualisations\n",
    "    iterations = 0\n",
    "    all_node_colors = []\n",
    "    node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
    "    frontier = [(Node(problem.initial))]\n",
    "    explored = set()\n",
    "    \n",
    "    # modify the color of frontier nodes to orange\n",
    "    node_colors[Node(problem.initial).state] = \"orange\"\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "      \n",
    "    while frontier:\n",
    "        # Popping first node of stack\n",
    "        node = frontier.pop()\n",
    "        \n",
    "        # modify the currently searching node to red\n",
    "        node_colors[node.state] = \"red\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "        if problem.goal_test(node.state):\n",
    "            # modify goal node to green after reaching the goal\n",
    "            node_colors[node.state] = \"green\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "            return(iterations, all_node_colors, node)\n",
    "        \n",
    "        explored.add(node.state)\n",
    "        frontier.extend(child for child in node.expand(problem)\n",
    "                        if child.state not in explored and\n",
    "                        child not in frontier)\n",
    "        \n",
    "        for n in frontier:\n",
    "            # modify the color of frontier nodes to orange\n",
    "            node_colors[n.state] = \"orange\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "\n",
    "        # modify the color of explored nodes to gray\n",
    "        node_colors[node.state] = \"gray\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "    return None\n",
    "\n",
    "\n",
    "def depth_first_graph_search(problem):\n",
    "    \"\"\"Search the deepest nodes in the search tree first.\"\"\"\n",
    "    iterations, all_node_colors, node = graph_search_for_vis(problem)\n",
    "    return(iterations, all_node_colors, node)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=depth_first_graph_search, \n",
    "               problem=romania_problem)"
   "cell_type": "markdown",
    "## 5. BEST FIRST SEARCH\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "\n",
    "Let's change all the `node_colors` to starting position and define a different problem statement."
   "execution_count": 22,
   "metadata": {},
   "outputs": [],
   "source": [
    "def best_first_graph_search_for_vis(problem, f):\n",
    "    \"\"\"Search the nodes with the lowest f scores first.\n",
    "    You specify the function f(node) that you want to minimize; for example,\n",
    "    if f is a heuristic estimate to the goal, then we have greedy best\n",
    "    first search; if f is node.depth then we have breadth-first search.\n",
    "    There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n",
    "    values will be cached on the nodes as they are computed. So after doing\n",
    "    a best first search you can examine the f values of the path returned.\"\"\"\n",
    "    \n",
    "    # we use these two variables at the time of visualisations\n",
    "    iterations = 0\n",
    "    all_node_colors = []\n",
    "    node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
    "    \n",
    "    f = memoize(f, 'f')\n",
    "    node = Node(problem.initial)\n",
    "    \n",
    "    node_colors[node.state] = \"red\"\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "    \n",
    "    if problem.goal_test(node.state):\n",
    "        node_colors[node.state] = \"green\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        return(iterations, all_node_colors, node)\n",
    "    frontier = PriorityQueue('min', f)\n",
    "    frontier.append(node)\n",
    "    \n",
    "    node_colors[node.state] = \"orange\"\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "    \n",
    "    explored = set()\n",
    "    while frontier:\n",
    "        node = frontier.pop()\n",
    "        \n",
    "        node_colors[node.state] = \"red\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "        if problem.goal_test(node.state):\n",
    "            node_colors[node.state] = \"green\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "            return(iterations, all_node_colors, node)\n",
    "        \n",
    "        explored.add(node.state)\n",
    "        for child in node.expand(problem):\n",
    "            if child.state not in explored and child not in frontier:\n",
    "                frontier.append(child)\n",
    "                node_colors[child.state] = \"orange\"\n",
    "                iterations += 1\n",
    "                all_node_colors.append(dict(node_colors))\n",
    "            elif child in frontier:\n",
    "                incumbent = frontier[child]\n",
    "                if f(child) < f(incumbent):\n",
    "                    del frontier[incumbent]\n",
    "                    frontier.append(child)\n",
    "                    node_colors[child.state] = \"orange\"\n",
    "                    iterations += 1\n",
    "                    all_node_colors.append(dict(node_colors))\n",
    "\n",
    "        node_colors[node.state] = \"gray\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
Vinay Varma's avatar
Vinay Varma a validé
    "    return None"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 6. UNIFORM COST SEARCH\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "Let's change all the `node_colors` to starting position and define a different problem statement."
Vinay Varma's avatar
Vinay Varma a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
Vinay Varma's avatar
Vinay Varma a validé
   "outputs": [],
   "source": [
    "def uniform_cost_search_graph(problem):\n",
    "    \"[Figure 3.14]\"\n",
Vinay Varma's avatar
Vinay Varma a validé
    "    #Uniform Cost Search uses Best First Search algorithm with f(n) = g(n)\n",
    "    iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, lambda node: node.path_cost)\n",
    "    return(iterations, all_node_colors, node)\n"
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=uniform_cost_search_graph, \n",
    "               problem=romania_problem)"
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 7. DEPTH LIMITED SEARCH\n",
    "\n",
    "Let's change all the 'node_colors' to starting position and define a different problem statement.  \n",
    "Although we have a working implementation, but we need to make changes."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [],
   "source": [
    "def depth_limited_search_graph(problem, limit = -1):\n",
    "    '''\n",
    "    Perform depth first search of graph g.\n",
    "    if limit >= 0, that is the maximum depth of the search.\n",
    "    '''\n",
    "    # we use these two variables at the time of visualisations\n",
    "    iterations = 0\n",
    "    all_node_colors = []\n",
    "    node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
    "    \n",
    "    frontier = [Node(problem.initial)]\n",
    "    explored = set()\n",
    "    \n",
    "    cutoff_occurred = False\n",
    "    node_colors[Node(problem.initial).state] = \"orange\"\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "      \n",
    "    while frontier:\n",
    "        # Popping first node of queue\n",
    "        node = frontier.pop()\n",
    "        \n",
    "        # modify the currently searching node to red\n",
    "        node_colors[node.state] = \"red\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "        if problem.goal_test(node.state):\n",
    "            # modify goal node to green after reaching the goal\n",
    "            node_colors[node.state] = \"green\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "            return(iterations, all_node_colors, node)\n",
    "\n",
    "        elif limit >= 0:\n",
    "            cutoff_occurred = True\n",
    "            limit += 1\n",
    "            all_node_color.pop()\n",
    "            iterations -= 1\n",
    "            node_colors[node.state] = \"gray\"\n",
    "\n",
    "        \n",
    "        explored.add(node.state)\n",
    "        frontier.extend(child for child in node.expand(problem)\n",
    "                        if child.state not in explored and\n",
    "                        child not in frontier)\n",
    "        \n",
    "        for n in frontier:\n",
    "            limit -= 1\n",
    "            # modify the color of frontier nodes to orange\n",
    "            node_colors[n.state] = \"orange\"\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "\n",
    "        # modify the color of explored nodes to gray\n",
    "        node_colors[node.state] = \"gray\"\n",
    "        iterations += 1\n",
    "        all_node_colors.append(dict(node_colors))\n",
    "        \n",
    "    return 'cutoff' if cutoff_occurred else None\n",
    "\n",
    "\n",
    "def depth_limited_search_for_vis(problem):\n",
    "    \"\"\"Search the deepest nodes in the search tree first.\"\"\"\n",
    "    iterations, all_node_colors, node = depth_limited_search_graph(problem)\n",
    "    return(iterations, all_node_colors, node)     "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=depth_limited_search_for_vis, \n",
    "               problem=romania_problem)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 8. ITERATIVE DEEPENING SEARCH\n",
    "\n",
    "Let's change all the 'node_colors' to starting position and define a different problem statement.  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {},
   "outputs": [],
   "source": [
    "def iterative_deepening_search_for_vis(problem):\n",
    "    for depth in range(sys.maxsize):\n",
    "        iterations, all_node_colors, node=depth_limited_search_for_vis(problem)\n",
    "        if iterations:\n",
    "            return (iterations, all_node_colors, node)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=iterative_deepening_search_for_vis, \n",
    "               problem=romania_problem)"
   ]
  },
   "cell_type": "markdown",
   "metadata": {},
    "## 9. GREEDY BEST FIRST SEARCH\n",
    "Let's change all the node_colors to starting position and define a different problem statement."
   "execution_count": 29,
   "metadata": {},
   "outputs": [],
   "source": [
Vinay Varma's avatar
Vinay Varma a validé
    "def greedy_best_first_search(problem, h=None):\n",
    "    \"\"\"Greedy Best-first graph search is an informative searching algorithm with f(n) = h(n).\n",
    "    You need to specify the h function when you call best_first_search, or\n",
    "    else in your Problem subclass.\"\"\"\n",
    "    h = memoize(h or problem.h, 'h')\n",
    "    iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, lambda n: h(n))\n",
    "    return(iterations, all_node_colors, node)\n"
   "execution_count": null,
    "all_node_colors = []\n",
Vinay Varma's avatar
Vinay Varma a validé
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=greedy_best_first_search, \n",
    "               problem=romania_problem)"
Vinay Varma's avatar
Vinay Varma a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 10. A\\* SEARCH\n",
Vinay Varma's avatar
Vinay Varma a validé
    "\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "Let's change all the `node_colors` to starting position and define a different problem statement."
   "execution_count": 31,
   "metadata": {},
Vinay Varma's avatar
Vinay Varma a validé
   "outputs": [],
   "source": [
    "def astar_search_graph(problem, h=None):\n",
Vinay Varma's avatar
Vinay Varma a validé
    "    \"\"\"A* search is best-first graph search with f(n) = g(n)+h(n).\n",
    "    You need to specify the h function when you call astar_search, or\n",
    "    else in your Problem subclass.\"\"\"\n",
    "    h = memoize(h or problem.h, 'h')\n",
    "    iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, \n",
    "                                                                lambda n: n.path_cost + h(n))\n",
    "    return(iterations, all_node_colors, node)\n"
Vinay Varma's avatar
Vinay Varma a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
Vinay Varma's avatar
Vinay Varma a validé
   "metadata": {},
Vinay Varma's avatar
Vinay Varma a validé
   "source": [
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False, \n",
    "               algorithm=astar_search_graph, \n",
    "               problem=romania_problem)"
surya saini's avatar
surya saini a validé
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 11. RECURSIVE BEST FIRST SEARCH\n",
    "Let's change all the `node_colors` to starting position and define a different problem statement."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
surya saini's avatar
surya saini a validé
   "outputs": [],
   "source": [
    "def recursive_best_first_search_for_vis(problem, h=None):\n",
    "    \"\"\"[Figure 3.26] Recursive best-first search\"\"\"\n",
    "    # we use these two variables at the time of visualizations\n",
    "    iterations = 0\n",
    "    all_node_colors = []\n",
    "    node_colors = {k : 'white' for k in problem.graph.nodes()}\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "    \n",
    "    h = memoize(h or problem.h, 'h')\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "    \n",
    "    def RBFS(problem, node, flimit):\n",
    "        nonlocal iterations\n",
    "        def color_city_and_update_map(node, color):\n",
    "            node_colors[node.state] = color\n",
    "            nonlocal iterations\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "            \n",
    "        if problem.goal_test(node.state):\n",
    "            color_city_and_update_map(node, 'green')\n",
    "            return (iterations, all_node_colors, node), 0  # the second value is immaterial\n",
    "        \n",
    "        successors = node.expand(problem)\n",
    "        if len(successors) == 0:\n",
    "            color_city_and_update_map(node, 'gray')\n",
    "            return (iterations, all_node_colors, None), infinity\n",
    "        \n",
    "        for s in successors:\n",
    "            color_city_and_update_map(s, 'orange')\n",
    "            s.f = max(s.path_cost + h(s), node.f)\n",
    "            \n",
    "        while True:\n",
    "            # Order by lowest f value\n",
    "            successors.sort(key=lambda x: x.f)\n",
    "            best = successors[0]\n",
    "            if best.f > flimit:\n",
    "                color_city_and_update_map(node, 'gray')\n",
    "                return (iterations, all_node_colors, None), best.f\n",
    "            \n",
    "            if len(successors) > 1:\n",
    "                alternative = successors[1].f\n",
    "            else:\n",
    "                alternative = infinity\n",
    "                \n",
    "            node_colors[node.state] = 'gray'\n",
    "            node_colors[best.state] = 'red'\n",
    "            iterations += 1\n",
    "            all_node_colors.append(dict(node_colors))\n",
    "            result, best.f = RBFS(problem, best, min(flimit, alternative))\n",
    "            if result[2] is not None:\n",
    "                color_city_and_update_map(node, 'green')\n",
    "                return result, best.f\n",
    "            else:\n",
    "                color_city_and_update_map(node, 'red')\n",
    "                \n",
    "    node = Node(problem.initial)\n",
    "    node.f = h(node)\n",
Anthony Marakis's avatar
Anthony Marakis a validé
    "    \n",
    "    node_colors[node.state] = 'red'\n",
    "    iterations += 1\n",
    "    all_node_colors.append(dict(node_colors))\n",
    "    result, bestf = RBFS(problem, node, infinity)\n",
    "    return result"
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "all_node_colors = []\n",
    "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
    "display_visual(romania_graph_data, user_input=False,\n",
    "               algorithm=recursive_best_first_search_for_vis,\n",
    "               problem=romania_problem)"
surya saini's avatar
surya saini a validé
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": false
   },
   "outputs": [],
surya saini's avatar
surya saini a validé
   "source": [
    "all_node_colors = []\n",
    "# display_visual(romania_graph_data, user_input=True, algorithm=breadth_first_tree_search)\n",
    "algorithms = {  \"Breadth First Tree Search\": tree_breadth_search_for_vis,\n",
    "                \"Depth First Tree Search\": tree_depth_search_for_vis,\n",
    "                \"Breadth First Search\": breadth_first_search_graph,\n",
    "                \"Depth First Graph Search\": graph_search_for_vis,\n",
    "                \"Best First Graph Search\": best_first_graph_search_for_vis,\n",
    "                \"Uniform Cost Search\": uniform_cost_search_graph,\n",
    "                \"Depth Limited Search\": depth_limited_search_for_vis,\n",
    "                \"Iterative Deepening Search\": iterative_deepening_search_for_vis,\n",
    "                \"Greedy Best First Search\": greedy_best_first_search,\n",
    "                \"A-star Search\": astar_search_graph,\n",
    "                \"Recursive Best First Search\": recursive_best_first_search_for_vis}\n",
    "display_visual(romania_graph_data, algorithm=algorithms, user_input=True)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## RECURSIVE BEST-FIRST SEARCH\n",
    "Recursive best-first search is a simple recursive algorithm that improves upon heuristic search by reducing the memory requirement.\n",
    "RBFS uses only linear space and it attempts to mimic the operation of standard best-first search.\n",
    "Its structure is similar to recursive depth-first search but it doesn't continue indefinitely down the current path, the `f_limit` variable is used to keep track of the f-value of the best _alternative_ path available from any ancestor of the current node.\n",
    "RBFS remembers the f-value of the best leaf in the forgotten subtree and can decide whether it is worth re-expanding the tree later.\n",
    "However, RBFS still suffers from excessive node regeneration.\n",
    "<br>\n",
    "Let's have a look at the implementation."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">recursive_best_first_search</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">h</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;[Figure 3.26] Recursive best-first search (RBFS) is an</span>\n",
       "<span class=\"sd\">    informative search algorithm. Like A*, it uses the heuristic</span>\n",
       "<span class=\"sd\">    f(n) = g(n) + h(n) to determine the next node to expand, making</span>\n",
       "<span class=\"sd\">    it both optimal and complete (iff the heuristic is consistent).</span>\n",
       "<span class=\"sd\">    To reduce memory consumption, RBFS uses a depth first search</span>\n",
       "<span class=\"sd\">    and only retains the best f values of its ancestors.&quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">h</span> <span class=\"o\">=</span> <span class=\"n\">memoize</span><span class=\"p\">(</span><span class=\"n\">h</span> <span class=\"ow\">or</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">h</span><span class=\"p\">,</span> <span class=\"s1\">&#39;h&#39;</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">RBFS</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">node</span><span class=\"p\">,</span> <span class=\"n\">flimit</span><span class=\"p\">):</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">goal_test</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">node</span><span class=\"p\">,</span> <span class=\"mi\">0</span>   <span class=\"c1\"># (The second value is immaterial)</span>\n",
       "        <span class=\"n\">successors</span> <span class=\"o\">=</span> <span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">expand</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">successors</span><span class=\"p\">)</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">infinity</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">successors</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">s</span><span class=\"o\">.</span><span class=\"n\">f</span> <span class=\"o\">=</span> <span class=\"nb\">max</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"o\">.</span><span class=\"n\">path_cost</span> <span class=\"o\">+</span> <span class=\"n\">h</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">),</span> <span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">f</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
       "            <span class=\"c1\"># Order by lowest f value</span>\n",
       "            <span class=\"n\">successors</span><span class=\"o\">.</span><span class=\"n\">sort</span><span class=\"p\">(</span><span class=\"n\">key</span><span class=\"o\">=</span><span class=\"k\">lambda</span> <span class=\"n\">x</span><span class=\"p\">:</span> <span class=\"n\">x</span><span class=\"o\">.</span><span class=\"n\">f</span><span class=\"p\">)</span>\n",
       "            <span class=\"n\">best</span> <span class=\"o\">=</span> <span class=\"n\">successors</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">]</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">best</span><span class=\"o\">.</span><span class=\"n\">f</span> <span class=\"o\">&gt;</span> <span class=\"n\">flimit</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">best</span><span class=\"o\">.</span><span class=\"n\">f</span>\n",
       "            <span class=\"k\">if</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">successors</span><span class=\"p\">)</span> <span class=\"o\">&gt;</span> <span class=\"mi\">1</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">alternative</span> <span class=\"o\">=</span> <span class=\"n\">successors</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">f</span>\n",
       "            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">alternative</span> <span class=\"o\">=</span> <span class=\"n\">infinity</span>\n",
       "            <span class=\"n\">result</span><span class=\"p\">,</span> <span class=\"n\">best</span><span class=\"o\">.</span><span class=\"n\">f</span> <span class=\"o\">=</span> <span class=\"n\">RBFS</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">best</span><span class=\"p\">,</span> <span class=\"nb\">min</span><span class=\"p\">(</span><span class=\"n\">flimit</span><span class=\"p\">,</span> <span class=\"n\">alternative</span><span class=\"p\">))</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">result</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"n\">result</span><span class=\"p\">,</span> <span class=\"n\">best</span><span class=\"o\">.</span><span class=\"n\">f</span>\n",
       "\n",
       "    <span class=\"n\">node</span> <span class=\"o\">=</span> <span class=\"n\">Node</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">initial</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">f</span> <span class=\"o\">=</span> <span class=\"n\">h</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">result</span><span class=\"p\">,</span> <span class=\"n\">bestf</span> <span class=\"o\">=</span> <span class=\"n\">RBFS</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">node</span><span class=\"p\">,</span> <span class=\"n\">infinity</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">result</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "psource(recursive_best_first_search)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is how `recursive_best_first_search` can solve the `romania_problem`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Sibiu', 'Rimnicu', 'Pitesti', 'Bucharest']"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
    "recursive_best_first_search(romania_problem).solution()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`recursive_best_first_search` can be used to solve the 8 puzzle problem too, as discussed later."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['UP', 'LEFT', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'RIGHT', 'DOWN']"
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    "puzzle = EightPuzzle((2, 4, 3, 1, 5, 6, 7, 8, 0))\n",
    "assert puzzle.check_solvability((2, 4, 3, 1, 5, 6, 7, 8, 0))\n",
    "recursive_best_first_search(puzzle).solution()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## A* HEURISTICS\n",
    "\n",
    "Different heuristics provide different efficiency in solving A* problems which are generally defined by the number of explored nodes as well as the branching factor. With the classic 8 puzzle we can show the efficiency of different heuristics through the number of explored nodes.\n",
    "\n",
    "### 8 Puzzle Problem\n",
    "\n",
    "The *8 Puzzle Problem* consists of a 3x3 tray in which the goal is to get the initial configuration to the goal state by shifting the numbered tiles into the blank space.\n",
    "\n",
    "example:- \n",
    "\n",
    "              Initial State                        Goal State\n",
    "              | 7 | 2 | 4 |                       | 1 | 2 | 3 |\n",
    "              | 5 | 0 | 6 |                       | 4 | 5 | 6 |\n",
    "              | 8 | 3 | 1 |                       | 7 | 8 | 0 |\n",
    "              \n",
    "We have a total of 9 blank tiles giving us a total of 9! initial configuration but not all of these are solvable. The solvability of a configuration can be checked by calculating the Inversion Permutation. If the total Inversion Permutation is even then the initial configuration is solvable else the initial configuration is not solvable which means that only 9!/2 initial states lead to a solution.\n",
    "<br>\n",
    "Let's define our goal state."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [],
   "source": [
    "goal = [1, 2, 3, 4, 5, 6, 7, 8, 0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Heuristics :-\n",
    "\n",
    "1) Manhattan Distance:- For the 8 puzzle problem Manhattan distance is defined as the distance of a tile from its goal state( for the tile numbered '1' in the initial configuration Manhattan distance is 4 \"2 for left and 2 for upward displacement\").\n",
    "\n",
    "2) No. of Misplaced Tiles:- The heuristic calculates the number of misplaced tiles between the current state and goal state.\n",
    "\n",
    "3) Sqrt of Manhattan Distance:- It calculates the square root of Manhattan distance.\n",
    "\n",
    "4) Max Heuristic:- It assign the score as the maximum between \"Manhattan Distance\" and \"No. of Misplaced Tiles\"."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Heuristics for 8 Puzzle Problem\n",
    "def linear(node):\n",
    "    return sum([1 if node.state[i] != goal[i] else 0 for i in range(8)])\n",
    "\n",
    "def manhattan(node):\n",
    "    state = node.state\n",
    "    index_goal = {0:[2,2], 1:[0,0], 2:[0,1], 3:[0,2], 4:[1,0], 5:[1,1], 6:[1,2], 7:[2,0], 8:[2,1]}\n",
    "    index_state = {}\n",
    "    index = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]\n",
    "    x, y = 0, 0\n",
    "    for i in range(len(state)):\n",
    "        index_state[state[i]] = index[i]\n",
    "    mhd = 0\n",
    "    \n",
    "    for i in range(8):\n",
    "        for j in range(2):\n",
    "            mhd = abs(index_goal[i][j] - index_state[i][j]) + mhd\n",
    "    \n",
    "    return mhd\n",
    "def sqrt_manhattan(node):\n",
    "    state = node.state\n",
    "    index_goal = {0:[2,2], 1:[0,0], 2:[0,1], 3:[0,2], 4:[1,0], 5:[1,1], 6:[1,2], 7:[2,0], 8:[2,1]}\n",
    "    index_state = {}\n",
    "    index = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]\n",
    "    x, y = 0, 0\n",
    "    for i in range(len(state)):\n",
    "        index_state[state[i]] = index[i]\n",
    "    \n",
    "    mhd = 0\n",
    "    \n",
    "    for i in range(8):\n",
    "        for j in range(2):\n",
    "            mhd = (index_goal[i][j] - index_state[i][j])**2 + mhd\n",
    "    \n",
    "    return math.sqrt(mhd)\n",
    "\n",
    "def max_heuristic(node):\n",
    "    score1 = manhattan(node)\n",
    "    score2 = linear(node)\n",
    "    return max(score1, score2)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can solve the puzzle using the `astar_search` method."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 41,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
    "# Solving the puzzle \n",
    "puzzle = EightPuzzle((2, 4, 3, 1, 5, 6, 7, 8, 0))\n",
    "puzzle.check_solvability((2, 4, 3, 1, 5, 6, 7, 8, 0)) # checks whether the initialized configuration is solvable or not"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This case is solvable, let's proceed.\n",
    "<br>\n",
    "The default heuristic function returns the number of misplaced tiles."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['UP', 'LEFT', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'RIGHT', 'DOWN']"
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
    "astar_search(puzzle).solution()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In the following cells, we use different heuristic functions.\n",
    "<br>"
   "cell_type": "code",
   "execution_count": 43,
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['UP', 'LEFT', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'RIGHT', 'DOWN']"
      ]
     },
     "execution_count": 43,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
    "astar_search(puzzle, linear).solution()"
   "execution_count": 44,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']"
      ]
     },
     "execution_count": 44,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "astar_search(puzzle, manhattan).solution()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']"
     "execution_count": 45,
     "output_type": "execute_result"
    "astar_search(puzzle, sqrt_manhattan).solution()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "astar_search(puzzle, max_heuristic).solution()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "And here's how `recursive_best_first_search` can be used to solve this problem too."
   "execution_count": 47,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'UP', 'DOWN', 'RIGHT']"
     "execution_count": 47,
     "output_type": "execute_result"
    "recursive_best_first_search(puzzle, manhattan).solution()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Even though all the heuristic functions give the same solution, the difference lies in the computation time.\n",
    "<br>\n",
    "This might make all the difference in a scenario where high computational efficiency is required.\n",
    "<br>\n",
    "Let's define a few puzzle states and time `astar_search` for every heuristic function.\n",
    "We will use the %%timeit magic for this."
   "execution_count": 48,
   "metadata": {},
    "puzzle_1 = EightPuzzle((2, 4, 3, 1, 5, 6, 7, 8, 0))\n",
    "puzzle_2 = EightPuzzle((1, 2, 3, 4, 5, 6, 0, 7, 8))\n",
    "puzzle_3 = EightPuzzle((1, 2, 3, 4, 5, 7, 8, 6, 0))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The default heuristic function is the same as the `linear` heuristic function, but we'll still check both."
   "execution_count": 49,
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "3.24 ms ± 190 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
     ]
    "%%timeit\n",
    "astar_search(puzzle_1)\n",
    "astar_search(puzzle_2)\n",
    "astar_search(puzzle_3)"
   "execution_count": 50,
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "3.68 ms ± 368 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
     ]
    }
   ],
    "%%timeit\n",
    "astar_search(puzzle_1, linear)\n",
    "astar_search(puzzle_2, linear)\n",
    "astar_search(puzzle_3, linear)"
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "3.12 ms ± 88.7 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
     ]
    }
   ],
    "%%timeit\n",
    "astar_search(puzzle_1, manhattan)\n",
    "astar_search(puzzle_2, manhattan)\n",
    "astar_search(puzzle_3, manhattan)"
   "execution_count": 52,
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "22.7 ms ± 1.69 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
     ]
    "%%timeit\n",
    "astar_search(puzzle_1, sqrt_manhattan)\n",
    "astar_search(puzzle_2, sqrt_manhattan)\n",
    "astar_search(puzzle_3, sqrt_manhattan)"
   "cell_type": "code",
   "execution_count": 53,
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "3.91 ms ± 434 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
     ]
    }
   ],
    "%%timeit\n",
    "astar_search(puzzle_1, max_heuristic)\n",
    "astar_search(puzzle_2, max_heuristic)\n",
    "astar_search(puzzle_3, max_heuristic)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can infer that the `manhattan` heuristic function works the fastest.\n",
    "<br>\n",
    "`sqrt_manhattan` has an extra `sqrt` operation which makes it quite a lot slower than the others.\n",
    "<br>\n",
    "`max_heuristic` should have been a bit slower as it calls two functions, but in this case, those values were already calculated which saved some time.\n",
    "Feel free to play around with these functions."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For comparison, this is how RBFS performs on this problem."
   "execution_count": 54,
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "140 ms ± 9.89 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
     ]
    "%%timeit\n",
    "recursive_best_first_search(puzzle_1, linear)\n",
    "recursive_best_first_search(puzzle_2, linear)\n",
    "recursive_best_first_search(puzzle_3, linear)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is quite a lot slower than `astar_search` as we can see."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## HILL CLIMBING\n",
    "\n",
    "Hill Climbing is a heuristic search used for optimization problems.\n",
    "Given a large set of inputs and a good heuristic function, it tries to find a sufficiently good solution to the problem. \n",
    "This solution may or may not be the global optimum.\n",
    "The algorithm is a variant of generate and test algorithm. \n",
    "As a whole, the algorithm works as follows:\n",
    "- Evaluate the initial state.\n",
    "- If it is equal to the goal state, return.\n",
    "- Find a neighboring state (one which is heuristically similar to the current state)\n",
    "- Evaluate this state. If it is closer to the goal state than before, replace the initial state with this state and repeat these steps.\n",
    "<br>"
   "execution_count": 55,
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">hill_climbing</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;From the initial node, keep choosing the neighbor with highest value,</span>\n",
       "<span class=\"sd\">    stopping when no neighbor is better. [Figure 4.2]&quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">current</span> <span class=\"o\">=</span> <span class=\"n\">Node</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">initial</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
       "        <span class=\"n\">neighbors</span> <span class=\"o\">=</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">expand</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">neighbors</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">break</span>\n",
       "        <span class=\"n\">neighbor</span> <span class=\"o\">=</span> <span class=\"n\">argmax_random_tie</span><span class=\"p\">(</span><span class=\"n\">neighbors</span><span class=\"p\">,</span>\n",
       "                                     <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"k\">lambda</span> <span class=\"n\">node</span><span class=\"p\">:</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">))</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">neighbor</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span> <span class=\"o\">&lt;=</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "            <span class=\"k\">break</span>\n",
       "        <span class=\"n\">current</span> <span class=\"o\">=</span> <span class=\"n\">neighbor</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    "psource(hill_climbing)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will find an approximate solution to the traveling salespersons problem using this algorithm.\n",
    "<br>\n",
    "We need to define a class for this problem.\n",
    "<br>\n",
    "`Problem` will be used as a base class."
   "execution_count": 56,
   "outputs": [],
    "class TSP_problem(Problem):\n",
    "\n",
    "    \"\"\" subclass of Problem to define various functions \"\"\"\n",
    "\n",
    "    def two_opt(self, state):\n",
    "        \"\"\" Neighbour generating function for Traveling Salesman Problem \"\"\"\n",
    "        neighbour_state = state[:]\n",
    "        left = random.randint(0, len(neighbour_state) - 1)\n",
    "        right = random.randint(0, len(neighbour_state) - 1)\n",
    "        if left > right:\n",
    "            left, right = right, left\n",
    "        neighbour_state[left: right + 1] = reversed(neighbour_state[left: right + 1])\n",
    "        return neighbour_state\n",
    "\n",
    "    def actions(self, state):\n",
    "        \"\"\" action that can be excuted in given state \"\"\"\n",
    "        return [self.two_opt]\n",
    "\n",
    "    def result(self, state, action):\n",
    "        \"\"\"  result after applying the given action on the given state \"\"\"\n",
    "        return action(state)\n",
    "\n",
    "    def path_cost(self, c, state1, action, state2):\n",
    "        \"\"\" total distance for the Traveling Salesman to be covered if in state2  \"\"\"\n",
    "        cost = 0\n",
    "        for i in range(len(state2) - 1):\n",
    "            cost += distances[state2[i]][state2[i + 1]]\n",
    "        cost += distances[state2[0]][state2[-1]]\n",
    "        return cost\n",
    "\n",
    "    def value(self, state):\n",
    "        \"\"\" value of path cost given negative for the given state \"\"\"\n",
    "        return -1 * self.path_cost(None, None, None, state)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will use cities from the Romania map as our cities for this problem.\n",
    "A list of all cities and a dictionary storing distances between them will be populated."
   "execution_count": 57,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['Arad', 'Bucharest', 'Craiova', 'Drobeta', 'Eforie', 'Fagaras', 'Giurgiu', 'Hirsova', 'Iasi', 'Lugoj', 'Mehadia', 'Neamt', 'Oradea', 'Pitesti', 'Rimnicu', 'Sibiu', 'Timisoara', 'Urziceni', 'Vaslui', 'Zerind']\n"
    "distances = {}\n",
    "all_cities = []\n",
    "\n",
    "for city in romania_map.locations.keys():\n",
    "    distances[city] = {}\n",
    "    all_cities.append(city)\n",
    "    \n",
    "all_cities.sort()\n",
    "print(all_cities)"
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, we need to populate the individual lists inside the dictionary with the manhattan distance between the cities."
   "cell_type": "code",
   "execution_count": 58,
   "outputs": [],
    "import numpy as np\n",
    "for name_1, coordinates_1 in romania_map.locations.items():\n",
    "        for name_2, coordinates_2 in romania_map.locations.items():\n",
    "            distances[name_1][name_2] = np.linalg.norm(\n",
    "                [coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])\n",
    "            distances[name_2][name_1] = np.linalg.norm(\n",
    "                [coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The way neighbours are chosen currently isn't suitable for the travelling salespersons problem.\n",
    "We need a neighboring state that is similar in total path distance to the current state.\n",
    "<br>\n",
    "We need to change the function that finds neighbors."
   "execution_count": 59,
   "metadata": {},
    "def hill_climbing(problem):\n",
    "    \n",
    "    \"\"\"From the initial node, keep choosing the neighbor with highest value,\n",
    "    stopping when no neighbor is better. [Figure 4.2]\"\"\"\n",
    "    \n",
    "    def find_neighbors(state, number_of_neighbors=100):\n",
    "        \"\"\" finds neighbors using two_opt method \"\"\"\n",
    "        \n",
    "        neighbors = []\n",
    "        \n",
    "        for i in range(number_of_neighbors):\n",
    "            new_state = problem.two_opt(state)\n",
    "            neighbors.append(Node(new_state))\n",
    "            state = new_state\n",
    "            \n",
    "        return neighbors\n",
    "\n",
    "    # as this is a stochastic algorithm, we will set a cap on the number of iterations\n",
    "    iterations = 10000\n",
    "    \n",
    "    current = Node(problem.initial)\n",
    "    while iterations:\n",
    "        neighbors = find_neighbors(current.state)\n",
    "        if not neighbors:\n",
    "            break\n",
    "        neighbor = argmax_random_tie(neighbors,\n",
    "                                     key=lambda node: problem.value(node.state))\n",
    "        if problem.value(neighbor.state) <= problem.value(current.state):\n",
    "            current.state = neighbor.state\n",
    "        iterations -= 1\n",
    "        \n",
    "    return current.state"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An instance of the TSP_problem class will be created."
   "execution_count": 60,
   "metadata": {},
   "outputs": [],
   "source": [
    "tsp = TSP_problem(all_cities)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can now generate an approximate solution to the problem by calling `hill_climbing`.\n",
    "The results will vary a bit each time you run it."
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Arad',\n",
       " 'Timisoara',\n",
       " 'Lugoj',\n",
       " 'Mehadia',\n",
       " 'Drobeta',\n",
       " 'Craiova',\n",
       " 'Pitesti',\n",
       " 'Giurgiu',\n",
       " 'Bucharest',\n",
       " 'Urziceni',\n",
       " 'Eforie',\n",
       " 'Hirsova',\n",
       " 'Vaslui',\n",
       " 'Iasi',\n",
       " 'Neamt',\n",
       " 'Fagaras',\n",
       " 'Rimnicu',\n",
       " 'Sibiu',\n",
       " 'Oradea',\n",
       " 'Zerind']"
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "hill_climbing(tsp)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The solution looks like this.\n",
    "It is not difficult to see why this might be a good solution.\n",
    "![title](images/hillclimb-tsp.png)"
    "## SIMULATED ANNEALING\n",
    "The intuition behind Hill Climbing was developed from the metaphor of climbing up the graph of a function to find its peak. \n",
    "There is a fundamental problem in the implementation of the algorithm however.\n",
    "To find the highest hill, we take one step at a time, always uphill, hoping to find the highest point, \n",
    "but if we are unlucky to start from the shoulder of the second-highest hill, there is no way we can find the highest one. \n",
    "The algorithm will always converge to the local optimum.\n",
    "Hill Climbing is also bad at dealing with functions that flatline in certain regions.\n",
    "If all neighboring states have the same value, we cannot find the global optimum using this algorithm.\n",
    "<br>\n",
    "<br>\n",
    "Let's now look at an algorithm that can deal with these situations.\n",
    "<br>\n",
    "Simulated Annealing is quite similar to Hill Climbing, \n",
    "but instead of picking the _best_ move every iteration, it picks a _random_ move. \n",
    "If this random move brings us closer to the global optimum, it will be accepted, \n",
    "but if it doesn't, the algorithm may accept or reject the move based on a probability dictated by the _temperature_. \n",
    "When the `temperature` is high, the algorithm is more likely to accept a random move even if it is bad.\n",
    "At low temperatures, only good moves are accepted, with the occasional exception.\n",
    "This allows exploration of the state space and prevents the algorithm from getting stuck at the local optimum.\n"
   "execution_count": 62,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">simulated_annealing</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">schedule</span><span class=\"o\">=</span><span class=\"n\">exp_schedule</span><span class=\"p\">()):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;[Figure 4.5] CAUTION: This differs from the pseudocode as it</span>\n",
       "<span class=\"sd\">    returns a state instead of a Node.&quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">current</span> <span class=\"o\">=</span> <span class=\"n\">Node</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">initial</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">sys</span><span class=\"o\">.</span><span class=\"n\">maxsize</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">T</span> <span class=\"o\">=</span> <span class=\"n\">schedule</span><span class=\"p\">(</span><span class=\"n\">t</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">T</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span>\n",
       "        <span class=\"n\">neighbors</span> <span class=\"o\">=</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">expand</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">neighbors</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span>\n",
       "        <span class=\"n\">next_choice</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"n\">neighbors</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">delta_e</span> <span class=\"o\">=</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">next_choice</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span> <span class=\"o\">-</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">delta_e</span> <span class=\"o\">&gt;</span> <span class=\"mi\">0</span> <span class=\"ow\">or</span> <span class=\"n\">probability</span><span class=\"p\">(</span><span class=\"n\">math</span><span class=\"o\">.</span><span class=\"n\">exp</span><span class=\"p\">(</span><span class=\"n\">delta_e</span> <span class=\"o\">/</span> <span class=\"n\">T</span><span class=\"p\">)):</span>\n",
       "            <span class=\"n\">current</span> <span class=\"o\">=</span> <span class=\"n\">next_choice</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "psource(simulated_annealing)"
    "The temperature is gradually decreased over the course of the iteration.\n",
    "This is done by a scheduling routine.\n",
    "The current implementation uses exponential decay of temperature, but we can use a different scheduling routine instead.\n"
   "execution_count": 63,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">exp_schedule</span><span class=\"p\">(</span><span class=\"n\">k</span><span class=\"o\">=</span><span class=\"mi\">20</span><span class=\"p\">,</span> <span class=\"n\">lam</span><span class=\"o\">=</span><span class=\"mf\">0.005</span><span class=\"p\">,</span> <span class=\"n\">limit</span><span class=\"o\">=</span><span class=\"mi\">100</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;One possible schedule function for simulated annealing&quot;&quot;&quot;</span>\n",
       "    <span class=\"k\">return</span> <span class=\"k\">lambda</span> <span class=\"n\">t</span><span class=\"p\">:</span> <span class=\"p\">(</span><span class=\"n\">k</span> <span class=\"o\">*</span> <span class=\"n\">math</span><span class=\"o\">.</span><span class=\"n\">exp</span><span class=\"p\">(</span><span class=\"o\">-</span><span class=\"n\">lam</span> <span class=\"o\">*</span> <span class=\"n\">t</span><span class=\"p\">)</span> <span class=\"k\">if</span> <span class=\"n\">t</span> <span class=\"o\">&lt;</span> <span class=\"n\">limit</span> <span class=\"k\">else</span> <span class=\"mi\">0</span><span class=\"p\">)</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581
    "psource(exp_schedule)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, we'll define a peak-finding problem and try to solve it using Simulated Annealing.\n",
    "Let's define the grid and the initial state first.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [],
   "source": [
    "initial = (0, 0)\n",
    "grid = [[3, 7, 2, 8], [5, 2, 9, 1], [5, 3, 3, 1]]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We want to allow only four directions, namely `N`, `S`, `E` and `W`.\n",
    "Let's use the predefined `directions4` dictionary."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'E': (1, 0), 'N': (0, 1), 'S': (0, -1), 'W': (-1, 0)}"
      ]
     },
     "execution_count": 65,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "directions4"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Define a problem with these parameters."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [],
   "source": [
    "problem = PeakFindingProblem(initial, grid, directions4)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll run `simulated_annealing` a few times and store the solutions in a set."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [],
   "source": [
    "solutions = {problem.value(simulated_annealing(problem)) for i in range(100)}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "9"
      ]
     },
     "execution_count": 68,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "max(solutions)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Hence, the maximum value is 9."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's find the peak of a two-dimensional gaussian distribution.\n",
    "We'll use the `gaussian_kernel` function from notebook.py to get the distribution."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {},
   "outputs": [],
   "source": [
    "grid = gaussian_kernel()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's use the `heatmap` function from notebook.py to plot this."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHwCAYAAAB+ArwOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJzsvW3ofW2b13Wse+//dd3JqFP4ImYaNUmxEHqazIhqyKIaCpUgSwos4oYsdMIeyBcW9CYIhMAI7hypIErC6IGoQAhMCPMBfWETIY4x04hmMYyS13Vfe/93L/Y+9z7Wsb7H0/mw1vr9fuuA//+31vlwnOd+Wp/1Pc6HNd1uNzrssMMOO+yww9a1b23dgcMOO+ywww77iHYA+LDDDjvssMM2sAPAhx122GGHHbaBHQA+7LDDDjvssA3sAPBhhx122GGHbWAHgA877LDDDjtsAzsAfNhhhx122GEb2AHgww5byaZp+rPTNP0DIu03T9P0hzr4vk3T9De0+jnssMPWswPAhx122GGHHbaBHQA+7LCd2DRNPzBN0++fpun/nqbpJ6dp+q0s71dP0/S/TNP0s9M0/blpmn73NE1fPPL+4KPYn5ym6S9P0/Qbp2n6kWmafnqapn9tmqa/8Kjz66dp+tFpmv6PaZr+32mafkfE/yP/Nk3Tb52m6c9M0/QXp2n6d6dpOq4fhx3WYMcP6LDDdmAPmP23RPQniegHiejXEtGPTdP0Dz2KXInoXyaiX0REf9cj/7cQEd1ut7/3UeZvvt1u33e73X7f4/yvJaJvP/z9TiL6D4nonyaiv52I/h4i+p3TNP0yzz+z30BEP0xEfxsR/Toi+ud6vPbDDvuoNh17QR922Do2TdOfpTvgLiz5CyL640T024nov7jdbr+Ylf83iOhX3G63fxb4+jEi+vtut9tveJzfiOiX3263P/04/xEi+u+J6Ptut9t1mqafT0Q/R0S/5na7/eFHmT9GRP/27Xb7r4L+/5Hb7fY/PM5/CxH947fb7dc2vCWHHfah7bx1Bw477IPZr7/dbn+gnEzT9JuJ6J8nol9CRD8wTdPPsrInIvqfH+V+BRH9Lror0J9H99/uH3Pa+n9ut9v1cfxXHn//PMv/K0T0fQn/P8WO/08i+gGn/cMOO8ywIwR92GH7sJ8iop+83W7fz/79/Nvt9qOP/P+AiP53uqvcX0BEv4OIpo7tR/z/EDv+xUT0Mx3bP+ywD2cHgA87bB/2vxLRz03T9K9P0/RXTdN0mqbpV03T9Hc88ksI+S9P0/QriehfEPX/PBH9Mqo3zz8R0b86TdNfPU3TDxHRbyOi3wfKHHbYYUE7AHzYYTuwR6j4HyOiv4WIfpKI/iIR/R4i+oWPIv8KEf0mIvpLdJ9MJeH3bxHRf/yYxfxPVHTB809E9F/TPSz9J4jovyOiH69o57DDDnvYMQnrsMMOc01O8jrssMPa7VDAhx122GGHHbaBHQA+7LDDDjvssA3sCEEfdthhhx122AZ2KODDDjvssMMO28CGbMQxTT/vRvT9I1wfNrPoMtCjXFu5FhvVRovfkVGv0RG1jP9I2ai/3uWiZbdq97A2+1m63f4/90c6aCes7yei74xxfRizT8Fy0Y854i/zlXkv/cv6rW1jTZ/fdPDRy+/FL1LVRtRvxF9PXxmfvV9rxudh9fbdUKkjBH3YB7URYBzdxqeOPnv6arW3sCNuz5vEjPW+iT1sT3YA+N3be7lwbAmLmotbz/6OhGVv37W+RgDkgNJh+7YDwG/W9qJe9mQjYL4lfNdUqZ+oX3uj+/1ebhbfws3nYSPtAPBh9D4uQHuAbw/w9ARhax96+MnY3ucX7N0+0mt9H3YA+E3anseFtlInvX29h/eu1T4ahHv62vNv9LC92PHpf3jb6kIR8dezb6OVb63tDbrSZP9qZtAWH9G6Z4rP6v2U8Lumr97+evftsD3YoYDfnH2Uu/63AN/aUO0ewsy11tLvTN0z9R+i6PVd2eJmlGi7oZjDRtkB4A9tW4R3e14Ee4M8c/HKvndvGbrIWl5P9oZojzdsW/Qrakdg863Y8Um9KdviIhOxPfoaceEbDRvPRvxcs5tgIOOvMRomHRGWjvqM+or07SP4OmyUHQB+d9Y7JNvD1x7hOxK8Pd7ftX6aWju1YM7COFO+9LUHiCO+PgI4DwhvaQeA34ytPTbl+dqjGt9yacqeNqDoYahfWSjXwrgniFvVcG9V3dNXDz+HbWnHGPCbsL0q1h5+1la9UV/R97x2HDQz5rwXa+nziJuZPX6/IvYWf4OHjbC3dgU4TLW1LiJrXhz3eGHMlKvpQ9ayfekRbqxVxxlF3FMN9wxJ9/BTfO1NnR+h6LXtAPDubU938B+1L5lymbZ7ttfTb82FmL/enjCOlusJ0LXCv2v6idgB4bXtAPCubS3IrOWjh581wTtq/XBtG2uZ1qfMjGVu0bFRr421lOzaqnoNCEfHgw8Ir2kHgHdre4HvXvrRw0dvtbvmjlkZy6rRqKH+R2f2couAzfIdKbM3EO9BmfcMjx/Www4A79L2EqLdAzR7+OipdkevG65tq6ePDLTla8wCuReMPYhabfUC8V6U+TE7+q3YAeDd2VozJN8CfNfow5ZLl2r8r2EtS5CyS496qbJeSvStKNke65db+nBYD9vTr/6wXSjfPYSsR/dhi5nTWb97sxooZ9RxRqlavlpV5Bph6V6KemT9iI/DWu2tXg3eob0FcO25/lrQXWNiVrad3lY72YooHlK22ukBYy/fa2MPID4g/N7tAPAubGv4fmTw9oTuXidlZc3qV3RdLrcIRDXfPcZwW0AYBfkoEO5F0R8QHmEHgDe30fDdqu6Wbe8hjJ7117O9GqsZ4+UWDS9bbfVSrVr9VphaMIvWHdF2qb9lSPuwGjsAvKntWTlupZhHqd29LLeq9TvavD5kx3uJYiFmzbenjnvBeBSIvfojwtIHhN+a7eGX/0Ftr/DdAtqj1O4eZllnfPVqK2s1a3m5tYSYpe8aBdkyntsC0x6h7RqYjgK4126k/mEZOwC8ibVeSLcIOe+tzb2GzjN+Wnz3tJqwMree63pbx3xrodcKxJa6veuNrBupf1jUDgCvbnsM374H8G451h3xkfUXsZqfb8smG9yi4WWtzR4TsGpVsVVvlNKuvTHYQkV7dSP1D4vYAeBV7S3Bd+0w9Qi1u0WoPeOn1m+LZduIhpeLeSDV/GbGfL36Wt0R4em9g3gUwEv9A8ItdgB4NdvbmG1NvTXbWrPvLe1F6md99WgnYiPGfqOTsTJART5qFO5IVbwmUNcMZ7eOKR9m2QHgVWxP8N0DeHuHmNe8YfDqRn3U+OxtmTajypbIhyny10PhWvV61BnhzwPxHuAdqau1eZhlB4CH24gL/VpAXAt6W/e5pZ5XN+OnxXcPy+xixc2DKfLdEnK26mogrAF4RBVnAFmjpPcC71L3CEn3tAPAQ61F1dTUXQOkWyverW8WInWjPrL+RlvNUiOiPrObPR814KiFWqaNEYDspWxrQ9KW1dY7DNkefvXv1EaEndcA6Rrg3ePrs+p49by6UR+1fntaZnZzMUudIr+eQo4qXKteiyquCSe3KOLsuPIa4NbqWPWs/h2G7ADwEBsxE3h0nTVAvdVNwl5memf9jPDhXRw9f7Vjwd44cA1YZb01YayV7xlm3hLcVp1IPdS/w6QdAO5uIy7qI4EzGmZ7gu6an02kbkvZWmsFdstYcGYcWKvbc/x3NBBHg3VLcJd6x5hwix0A7mq9L/B7gtRI8O7pRqK2jlUvmp9tb4RFZjBz09QfKtMr9Nxbufb2vQWIe4wN9wxje20dRnQAuKPtEb5rg20vr2Xr8eJIvue/1bdnNWO9xbJjvlb4uWa2c0Qd1wIzC1cExWx4ugbEa0O7to5V77ADwM229XjvHsqOAv3eAe3lWT6zfnpbSyi6x5hvFq6yjgfNPZTl5SOqOAPiHmDtPZas1bHqfWw7ADzUat7eNYHaA1p77Ve0bG/oRj7zDPzW/Ilm1gG37m4V3W2qx7hujXptVZ2ZceJI/UzZTL80v5bVwvSAsLQDwE22Rth5axi1Kt61+jRyvHjUmPDeQtCZ8LPVh8iYr6WQR43r1ijdNULZa6rhHmW18qXOEY6O2gHgKusddt5a9baAd8v+rKnqNR9Wea9exkfUvFBgbXsWVItF4JqB8jdKGvJjQbYGxtlytWVbQDxCpfeazEVKHavex7MQgKdp+oeJ6N8johMR/Z7b7fbvDO3Vrm1v8N0TeHsDei049wpNt0zaivjIWA8/kclWRO2KNwLTUj4C5B4wbinHy44E8dbA1vx6dbx6H8fcX+k0TSci+veJ6B8kop8moj8yTdN/c7vd/rfRndufvYWQc225NcA7ur9bh9Ct8l49aVOw3Ai7Pf56ffXC0d8oPrw1vRl1uyZkewF2KxCvGb7mdQ4Iaxa5GvxqIvrTt9vtzxARTdP0nxPRryOiDwbg2hDhiIv9aODtBby9yrT0wSprlbfqEG0LWM+8vnmA7gFYrfxoGFvA2grsGjhbVG7vkPQB4RqLAPgHiein2PlPE9HfKQtN0/QdIvrO/ewXdujaW7IeYee9qMi1Q8Mj4dzSh0wbVvliewZu1tBrubHjFsBq5WthHFGFPRVmDdiivmrrjYAwsgPCWYsA2Pu13RNut+8S0XeJiKbpBxb5b9tqLrp7CiX3Ur2jYVnTXgS6a4xXF3tPoM2YdZkYpXgj5SL1sr6zk7ZqoV6rhrdSzFpZr45X7/1aBMA/TUQ/xM7/OiL6mTHd2ZvVjueNuLiPAtZIEI4KM4+GbrTcR4Vt1DQoZ4CMynrlamCcAeiIEHYWqDVquFUxo35Kf1pZy7fVl/dtEQD/ESL65dM0/fVE9H8R0T9JRL9paK92YbWhxjXguxa01oRzzWscOWa8E+BGfqE9zVu91GzyPURALh2pBW0NjCNw7FWGl/P8WCDupYazcG1VwweEi7k/79vtdpmm6V8iov+R7suQfu/tdvtTw3u2qe0FvnsG16gwc1axj1Trg4EbhetaEL4E2uoO6IhKbgFtBIge/DKqOBtS9mAYUa1bqOEDwj1sut36D9fex4C/093vOjYaviNDziNUb482e/e7VwRAlhkAXA9oe4BwBqpW2SHqGV2fZEPyYo064pWR+dnyNf0a4WPEexH1o5XTylrlrTpvwb5Lt9vPuBeUtQNc79S8sWLL9qIca3z2UMW9FW9NnzqDV/tV9YJxbT3tWmfVl3W04Vsvr9r4ZyMndWXDwBl1GlXFnprtoYgz+V75Gp9RP1o5yz62Ej4APLMa9avVGTVJqQbOa6vetcPM2fyOwEUf4R4BHAkv9zStvSYoSxhL0Fpjxt5s514gtvqU9VGbXxPGHg1hC6YfF8IHgJ/WC749w857BtlotbtD6PaA7QgIR+pkhckIQ1Cu7pP8PL2xXg+MXn62PO9TC2hHquEeCh35yZSzykfqvW07ALyLMd/RIec1wdvzJmFj6EaBu6UK3vIXbKnc2n51AbLVeAbGvVVxTf5oNRyBZ01Y2ypHoKxW3vL/9u2DA3iP8PX89FS9ewFvz340QFe62juAa2C9lQrW1K/3Gqr6q4WqM8q3RRX3BHEvtWxBtMdYNCqjldPKWuWtOm/XPjCA14bv2iHnUXBtAfqodgZCtyeUrXQvr6UsqtcDxFsAPd2epow95ZsBNVEM3DUg7gnp3iFu9GU6IJyxDwrgtw7fXmHcEXle/zaGbitwR6jiaH60TMSi8FwTslIRR85TFoWx7FQG1DVQj6jabJ70q6nhVtUu+xItg/rC7WNA+IMCuMZaws5emZqwdKTs1nkj2hgA3hrI7kUJR8uja1k0/IvKaXnRUHMNbLXz6jC1taypVnFaoNOUopdX276EtBWSbrXIndoWIZN92wcEcI36XXPMtzak20NZ9gDmiDBzB+j2Vr61QLbSvbyacqh89Bq41+ulNXac6m/NWHGtIq4db65Rw9Gx3p5jzLVltHKoT7IO79/btA8G4PcC3x6gXBO8NX0iqgJvFLpbAbgVvj1+sU3KkfnYI5ylhfsYCU97YWMrLwJtD7ZRNZyBZ2bctzYcfcyO1uwDAViDbya8q5VvhW8GzCMB2wrejdRuDXRbABsBa2/4jvilRkBslUHXxWjaGlYdpi7fQUsVy4YyalaDag3oe8A7q3Zb81EZq6xV3qqzf/sgAI6My0bqRODrgVeWqR1T7QnYKBwj4K250egI3R4AXlv9tqriVouCOArhNS2ylAnVCVmNKs4o3YiC9VRvzbh1NCR9QHi0fQAArxl2zqheL78Gvj0BOwq8ndRuDWjXAnArkL08yyQnaupq9aKwjZSTZXqAfBUYt6pimY7UJy+XAXR0bNhTwzWTvGryURmrrFXeqrNfe+cA7gXflnJae3uCb2u4uaYfSfi2AHbPELbSvTzPamGk1es1w1mmyXYzeZk6XnrINBAT5dWpB+IsVDPpVl60nMyryUdlPo69YwD3hK8HT69MLXx7hpZHq94B4B0N3VoA18B2tAK2ymdmPVvl0XUykuZdX0defzVVbKWHLKOItdB0RIG2wFZri4w6e4Lw+1fB7xTAa4adZblM2NnKy4Z6W9JHg7ez2l0bwHtRw5kyXvm1J15lICvV6lbiKNSup4iRQ5SuqWFNMUfSS1u1Y8l7gTAFy3p19mfvEMAfBb490rU+bADeHiB9CzDW0qx0L6/GuL/smG8Uwl77vceAW80LaZuW3WWLj/FqMK0Bce9QdVQxy7yafFTGK0tK+bdh7wzAW8LXy4sq2pGQzaher552s9FB7W4N4FEwzqRF8nqZBWPtGofSPajWQjdzI5A1b+JWGsREfnhaLlWSaR6ILYBG4ZxJ19oq6aTkyXqRfFSm1vYfjn5HAF4Tvl6ZteHbo6wHWa+NSvD2BOwIAG+hhL28SL5lNeFnK70XdHneSOj2sKbwNAJqRO16ijkD55p0DcKZvEg+KqOV08p6dfZh7wTAveBbW64Vvi3jtBmlisrW1OFpg8A7AsCjlHAmz0qz0r28jFmKV5bpMd5rnfcCasYPUr1a+Nmr3wXEBNI0oHoKtxbO0fQDwj3tHQA4CtKIWfDMlEF50bfaK9dTDa8I317A3KNKrjnPpGXyM5YBTcZP5rz3caSs1q9W/65JEKOJUtbkKQ+EHkDXgDC37N1VFJTvB8JvHMAefLWXlx3P1cpYoemoKm4N/fL0DJCzdRrB2wu2o6EdSbeOa861tEheiyH4oPyI4uXl0HlEAWePkWWv+aWf2RuRZhDXqmEUkiaR70GYgmWt9EiZTB4ZZShQzvLp1dnO3jCAR8PXG/ftCd8MZHl6TVqLn5XBuyWUa457nHvp2TLIasLOMl1Law01ZwBaA9uoRRWzlu/2ywpLR8PL2gSt7Ljw3iGcKaeV9epsY28UwDVjvlq9teAr69TAtwXILeAlCsG3Fwh7ALgVujXAzeRl0iJ5GeN+0HUqC+IaCEfgXANwrX6t9VDHpiEQF7NmS2tqOApuEn7eAoSRvW0Iv0EA1475rg1fq04LUL36KM3y7fkYDN63BGWtnlU+cq6lWenZcp7qReU0UGegK89bgKz5j9TpabXq2DQ0PmzBEkE1qoZbVbNMj0KYWwTC0rQybxfCbwzAbyXsHOnL2vC1yjeEm0cAckSel5bJjx57eZm0SJ5lqF6L+o2cR+bmeODN5O/B0NhwWhFbajgzNoxg2JJGRnpWRcu8SD4q49m+IfyGANwTvi3lvPZknjb+itK8q3EWpgPhuxZUe/pqhW0rgCPnWlomf5TVhGO9ctqxVdZLs/ojy1u+vDxKlJdpphUI8waisCQjzyrfA8KeP5mO6tdCuBam20L4jQC4N3wjL1uWsUAZGfcdqXIj8I2EoRvBuzZIe/qO1o0eZ/KsNCu91bjf6HgvSouo4Oyx5l+DWDRNWgiIScvcDKimhaSlAwnLrBL2Qs8ZCEdDzt6b3hvCXnvbQfgNALgWvtHykfD03uBr+YuAtlH17gWuvfx5aZn8bB4619Iy+Z5pwJV5HnS9857gRTYCoBmzVH9EgZc01crvkhfWIEqgjDVmHAWuBmFkUdBmfEbLWOX2CeGdAzgbFvbqRl5uBNAobwR8o3Vrxnt3Dt6asiP65aVZx5k8K81KrzUNuDzPAnHkvOa4B3gjUO4N7giIPSCbxseGJUQJpCEIk1K/FsKobSIdwla4mStxmUesTGTiVguEeR/G244BHIGv1v0ofGU5D74aZDPwRf6yoEXteaCtUL29gZnxs1adXmnWcSYvku7leWapX56PID0KvLI/Wlo2T1oNeC2AamVr/blqGIWkEXRlGQqUpYo0Av60fJku86RtAWGrbn/bKYBbws57h2+ryl0ZvqNhl60zCtAt5aPHNedeeo15F30JVZS2NniRZYBbA17NeoFYlg31s2dIOqqkyUkj4E/Ll+nSMoDOlMmWXwfCOwNwi+rV6kfg6+VrkNXqZMLOkXIWUKPwrQQvShsJ3DXbyJbJ5FvHkXMtLZLnWasCjo73lnoehFFZrdxIpTvCMuoZ1VXNCklr0PQgTIo/AmkWTLMQlh+WB2HUJvrALYjuA8I7AnDLeG9r/dq3wavn5SNVK+taZTrDVzY9AqQ9fY3oQzav5jhyrqVF8jxbC041KtDKa1WV8oYik59pw/pLlXWgRSAsLQJhWRYZasMDs9YX5K8Gwl4bNTYWwjsBcBSe2e5a0NLK9Aw9W/VqJkzxtMHK9z2Atkefo+VrjiPnXrpWNqIQi0VD0Fb4uZxr5RCAon0OAylRp8YntxpFK+sOhzBqmMiHMAIpArWVhtqR+dJa7wy1+i3jwaU+KT7abGMAZ1Sr1dU9j/v2hm8mRN0AXw1AHqDWArBsZ0S/onmZ/Oi5lmalZ8pIuKI8C7TauQwpy/RMmgXqLLCy13atfAt4W03tvxwXLqaNC0fC0b0gTMKHzLeUbkQFk1MGtc8t88Xor4Y3+iplw8VZ+EbK9YCvVj8CX1Q3Cl8N3MnJViMBOervKN+1Zbw06zhy7qVH8jUgaWVqwRs5roVwFqBZq/XvhbJluWj9ISHp7JhwDwi/l0lZvD9EvUC8MoBrxmmz8EXlewIf+Y1OsEJpmbCzln6mZb0OIWcJji1A27PtDGwjZb206HHk3Eu3TKujqWAJ2pJmgdg6zkIY9b8GUKOhbZkGZA/UUd+qbQVhEmW0tD1PyiJQR7M+IB4M4NaJVVn41vq1ABoJPVv5EqwozTsvx5qvBvjuBY577lc2L3ocOdfSMvnFUDgX5aNrkQbYkteieknJqwWoBuJWv6PMg7QFc2gjISwtAmqeJo+RLwJteuHfHhDW6lgmOZAD8iAAT7QNfFGdbOhZy9Pga4WUkWmwtSzyeivgq6X1BmNPnyP91/Tfq28d15xLG/QLftMWBRqq4ylXq73av8VHsWhd07IQLhaFtQdc+WI063WXlbH+Y7lz30TRFSc7/fnWdCsCXy9fg6xWp2XSleZX1omo5Ar47gGMvdsZcXNg/fXSao6zaRlD9a0wtDwvZSIh6IwKjlxLtbKRa36Lf2Qt4eOMr2j4ulkJE81DqhJQGWWMfGvtbRWK1sp6dfrbDgHsdaln6LlHHs+Pwjcaeu4E3zUBNwrAW/QL/Y3mRfK9PCKi8w0kEtG54QJxYQ3JNi/TPN2DbclDcOXlrbQatedB1mJDr+trBsQ1ihqdpxVxBMLFMZEPxgjMSdTR0nqEokdCmJR6/WxnAK6FL6q3VugZXjWNNnrANzHmOwJqa8B1jb7JOpqPiB8vzTwWkEVwPV+XacK+Bcp8vpx8X7zM87pzFucAzNZxjQKu/Tt7bSLNglMvEGcsEv6uzauGMNH8AySljGaWX288WPqw/G9hY9veCYAj3RgJXw2yHnyRzwiQe8C3WAf4toJ0DwDuDeXM31Qag60ErQAjAioR0SkA40jZawEvK/NZpj3PHwU4mDmUowrYu8ZqZTN1a8ug8q2WUboteU0QJsIh54zqtSBMogy3SCg6k4fytba1stLGQXgHAB4N30z7Gnw1/xKQqFxP+Mp2g/DdEn6j2xl5Y5D5q6Y9gGvAVoJWQvNkhJvPCRhfhBrmfq8PsPK2r5fTEs4czBzKz+NJB7KnYiPXbA/UqIxn2fKt1kMFe2nQNAgTza9hPK8m9FzMKpMdD5a2BYRJqV9vGwN4jeZlGxHISkOARXUtIGfMg3TSDT8OgwP8HQ3AaPk9gRjmAZWrADcCWw2yGSVcyl9RSPrRhgS0ZZ/VnPImBPcd51YzploLM698tK7mIwNLqz8E/KK0aggTqCDB6YWjM+PBUcAiy94hZfxHy/a9S9sIwC3gs3xkZz1reWclPTOhCqV551Zb/DwZdt4qrbff3tCWeZGyBMoT0ULpBoDLYSshi+AaAe7pxBTsdQlU6YMDueSVtNKnAubS3+vlPC97vs5D10gdc2Xc+peSedz6Xj/zNwCWj5obgGYIE+WWJ5EoQ4Qb2kMoGplVZn0IrwzgXs1F4auBNNqX6Lgvslr4oqu7Nb4Mio+A2kgAr1Un0ldZRq2jq1wEXA22SwUszk8AxMEf/+mkl7s+Xoj0f72eFmFoBGYO5TCQa2BcLAtYVB6Vi+T3sCiUs+DVfIchTGQr2HLtsZYUIR+eX62tLUPRXlvSBxl+YrYCgGubyIz7trabCUuj/ChstfKonuZDUb9bQK4XBFvr9L45kHnPczCeK6BrAfekKWEBQQTYM+nq92TkcbvSS+1Kf5dHXoG2BDQHs4QyV8omkLMwJnGMzrW0GusNXc9aFK92nIawBCE/L06KRceDs4DTIKyVyX5QoyBc/BTLf3kGAbh8sLWWHUNda9Yzyvdgq/XDm3SF8gLw3QJma4K+Z1krbfaXgTegcjPA5bCVUERgjcIWGapboMzzrnR69gWBWUL5+lTD1yeQkUJOwZgoBmYL1jItWkeztQAdBWumbBWECeRlIRxRxppF3/CaULRXLjs+XfwVe7M7YfUe97V8aHVbQs+yjAVoq0wQvsXO4HgkfEcBeA0wh9LwmO63zlc4jiuhi4CrwfakHMs63CxF7NmFKWHu/6l6H76vdIJg5lDWgCwVslTHJowpqIo1kLaJA0fHAAAgAElEQVSCtqdlYFrjK9OG+folMIl0mGrhZ8+ndYeUDUVLXzWhaM9q6uRsZwDOwjdSLgpoD+4Skigte26V4cfOpKsWQPWA4xoAXg3CNwhdIl/pPv8awNVgK0EbUcORvGLXGXSvMI+3eaHTs08czBzKUil7QEYwfr1gPm5MvirmlgFtpGwtrDMw9er3OA5DGC1PIsLwtCCIymiWCUVHIexZNhSt1elnOwJwVsmiOt7L4fmR0HNPy9wYBPuAWB05PgfSM6CLtLMmfKsArIeZa8GLVK4GXQ+4GmTDE7Lo8gRp1rjqTVlFleXypvMLwpplFGWkbCS9Bn7SF7GypNTLpmvAPYO0mVnLkyxYamUy48O1dzzSRoSix9oOAByBDepmJgys+cjWbVG/Eb9nUD857rvnYy1fKxNJ7wFeI8xcC10LuC3h55bQM6rLlS4RDkOX84XiZQqZq2OuqKUyluPGcv3xIjx9dzRXxM800o+1a+p219q7RVRy9MZAgz0p6e5rRzOjuWmw1T4MzSJgl8fcb0YFy3wvXI5MzgTvZxsDuCd8Zbmowjwr6Vb7WdjKfG+C1w7g2wK/iJ+sz57QJgqBtxW6NUpYKy+tZTKWFo7mgCXCkC3lZBi6lEXlZmU4jM8nPzwtx4kpCGJue4DxCLXd6geanJTFzdtIIzohi4w6yK9n2bo1EK7pl28bArgWvjWmQVZLtyZeRfqEYIpmPVsADy43KseR9Bq4tQKxZ3vNNxXLiVUozIzAWwvdTOjZVsPWGLBPER5+1saAkeot51L5onHhxSQtBmRY5kQLVTyfVT2ftPWZKA/iKHwjdbLWAkt5Hj0mevU/mg4NvQlInfaYFR1tMwraSCh6HxDeAMAtk6K0+rJs79CzVU7CE8FUmgXoM1U911ee7xGAI9t3fcwVLwcvDzNbarcWupnQs6WMpY+MaeFn2Y5UsLxPEqLFBwJtKY/UsReiJqIZiJ/vRwuI0flezFK4WQjzc/4+aOnueDCRvj5YmxXtWUYZy+PoHVXteHDE+oWkVwRwZnJTL/ha9c9KupWvwTUKY01lB9V1BkI1dboCb4N2O4EXqd1W6CLI1k7I0tKipq395W2jsWEEWARkTR3z13p9vKuWKibS1hYnQSzPe+VlrQa0UR8SttE6LoSJsGpF8JRp2rllvIwH9lY1WquCeX1q6sMKAB41qzhikZfnhZ5b/Uvfko7SnNCz5wJBCNXx8nrDN3pzMAK+gTFerngRPCPgtZYd1Yai0bmsmzU0I1pCssWqZ03POxS258zpy/n+mdOUA1wmj5Sy2THbSF5pC7Xr5XHTbiJCnEGgrZkVnfGPrGZCVosKzpStB/EgAE9UD16tS6PUr9eHXupXS0uGnrsCarAfLU+mZyAeamOperPgRYo2onYtpZsLRc9//FroOaOEta0oZShaC0NboedSVhvv5dBfhKBpOaZMRG5omk/WMtXwvbHtQtMtynct1eyGoi2CW/CUZaw6GaXcyyJ9z/gq9iZ3wsrAN+NLqx+deOX518yb9VwRepbFI3k94VsL4F4+zfJ2uDkL3qwSxvC1Q9W8DC8n/WjnyCQ8tbqRbSj9WdD2WDAKQZc2EahL/dPjfy00vXjNPCz9tDPNdtUqSdY1tTW/xqIg9fJbVLMLYSKsgnnFaOjZy0dlZPuoXZku81A+KoP6McZ2BOBsV2T51sldVn5Ji6pdBH+LkkRm6NmDGT+38r2yI+Hcs10EXiJC4eZW8HpAfuXlgdsyAzoSgtbKyLW+9zQ84aocZ2dBIxifHm1cgfItNp9FvZyw9QTxbAkTGB+Wa4it39caYqtF6Xq+SJSvCam7EEZ3MZFZ0dxqlwh54W9pNXdR/ZcYRWwnALa6URN6RgC0/GbVr+VPwlhLSyw5KscRqGn1miGXrD+67WcaHueVE6ws8GqhZCvEXBuiLobBLMHbNwyNtpwk0idclTo1s6C18DPvM1K+C+CSA2KmiOWmHrPNPOj8uO4qYWl0rqVploFo1hfR3J81Hu3V18qGxoOJYhOyivValoR8e/myD55Zk7II9K/dNgaw13wEvpl8lOeBUqZp58i8mc5GXQQgeR7Ji5RvAmCwfPbcLTNXvWicV85sjipeD7wxMGMlPC/TZ0KWNG3bSS8Ebc2EjsyCjsC4+JKhaVnfAzF7Ufc/YtmSOT4sw9K1lvWRBbQFVa080bwNeZ7Jm1mPULRn0fJbLUvq8aVZetzIauCbLVe77Eim1U7E0vx+YunOgxb4scZuD1qyfgR0Xp3ewI208TzXVa8MN8t1vBK82vguTvfC0Hb4uS0MHVPDkfzM+l8ESF4+MvEKjwHrYWye/0qfg7gEtYlek7WevhcwFuPDZ7LD0rNyRn5Plav5Q2WIpXkhaFkmOjasvm5U0ApFo7oZQCOwa5aFLMr32ugL4Y0AXNusVy/rtzX0rMFV+glOtkJuZRULylr5SJ0o0GtvAqw2IjcBQfhq63mz8EXw9MLMHnhrn46EYBoNO9eYNit5TZvDXj4W8Yxf/6Ob/HGI9/Pz8/wz0UMJEz2XLOmdeJQTabWws8rLOrxeNAQd8eOVN/kSXRvMLQssBOVe0GsNRRfrB+ENABxpcm31i0zrp6d+NR/lOKF+PXjJ8xTIOqVly6DyIT/+0iI01hsBbyTU7M2E9qBrh6Lbws/ZMWAUipYTsrQtJXn5SOjZGuvlylZCf6ZwFzcERlg6MDYMQ9IjLRtKtupRwFfNTQHKD6ngYp4Kjo4FRy0yIzpitTDtA+EVARxtSgOkVz/7UryxX1lO+kftWepXHgdmPctmMqDV6si03vDtCeBn+kv1oqVF3lhvNtwcAW/LTOjarSl5Xcv4GK5V13vyEU+vmXSFQsvu2l8S4WQjT274MYOzMzY8X7JkQLjPdbbeasLSkXoZhTyzlh2ySDkvZkG5FtSyrV4quPguVvclGQjgGtcZ+K459ivry3zUhkVRxTSQ1oA2CtRM2R6QRnXUdDzRCs1wRuFmK6yM07wwtB2evr+EnBKOhKB5PVRWM60MmmzF28zOgi51IjDWxno11ftKfeWV1zY/B3A+nQhNRuOWHheutZrxXs8fAZ88rSacbfl4mnxiUmSHLJRvzYCOWFQFexD2bggiVgfjQQAeHNIxlx3V1NfSMv49nwH1W5qyeO2BtzYtW3Y4gHHI2VK9NeHmjOL11G4Wur1C0NIHMu1pSFr4mcieBS3Vsh5iluHs+bpgNL5sjTujELTmh1WyTS5XImU/6VaLKtdImubTSuM+PNUcet2S2BEV7EE3q4JHh6Jr1gfHb+QGAbjGakPPlp+zkm75Lmk91W9gEpYFWguIWh2ZVgNTKz0K10iZRbo/0Uob60XQ1MB7LzduXLjk4b+ZMLSthiOG1v5K39o4b6kf234y8PQjwuO9HOIlzxrvlSFo/n4t1h2fLnQ9nRc7aS2WKz08p0RERrlG61sg1tKjZa1ylmqeWc2yJGQRFVwDQWnSf8Znj/ax7QTALaHn0S8h4j86nkyUUr+RMhHAeumaHyu9pi+oD4s8f7zXCjlr478y7V5Xh29kGVIuBF03KYuXleU0sxRkpkym3J5MbixS0ojo+b15prPx4W+dr3MI8ycrzZ0t0yMK00tHv7GMHw/QJV1yTutzekKWWZDlZ9cFI/NC31Z6TXtjbAcAziz7qfXlLQmKbrJh5XsK23irLSXrgRGl1aTXADyqesMAnsNXm+WcmWiF1XE8PM3L4zwrBL1Uy1r+6y2OTcaS9TJ51uSrcm7Ngn5tKYl3u9JC0NHdrlCeG2Z+vm5cdqamhZsyS7pZCSOzwBqFs5UXha7lxxs7Tk3I0o5b1wVHx4szELX6FCnbbhsDODvumlG/0ZcWuQHITvhKjP1KMKE8EmVqoBhWoAPrqL5yk63ioJXquC48jfP8EHXJl3la/isvH362VLGEkTX5qvjiY8NoXNga643OgLZAbMFWhqpf9ZYhaVT2UeH+R8ySLlY9OSszuSoL1do8L6ws02RdVGdmHFrasSy7hQrOwNlrr49tCODWSU9RfxoMtTZb1a82Dpzc8QoBS9ZB6dE6EZCvAmB7shURQfh6IWcExvhELRu8LbtkafnF0NiwLIPOLZNlpeItadbkq1JGwjYz1iuBbO12VepoM6P5+yXTrPRikVnS8MlKtWaNE2cnWbXkZSZolTSTWR9JBWvl620jANeEnVvVb2ac1mpXq++1abgpxxrzZRkPrNE8lL8qmGOTrazxXh/G8XFepJBf+flxYe6Lp8n8UneZ50M3si64WO1TkFAo2oJxJPwsQ87c0GQsPaycG5+GYFZcLB9xGIRwBn4Ri4SmCZTxxnqtdJmm1Z1V2FoFa3VqVLDXJint5mxlAEeAVwGy1MznaJuofnSpkSRYctmRBUAvHeVFoRn1YeWHARyfbOWt442q3kxoWrYz94nD0K3h59YwNK+LwMTrZWZBIyBbm21EVPEcxDjPfo34gRPW63cczgzunvV4JautFUb53CwgZ/IiE7q6qWBkEsgRQKNO1QK9VtW2q+GVANwKwtpyVl0Lpp4U1ep7/g2XGkRRvQgwtTZb4ez50MrM0nOTrVonWnmqNzqhS/pd5uX2itbKvd7GiALOjQlr4efSXmT7SSsMLZcUWVD1FHEkLI3KeptvqBYdF26BcBaypbmsr1ZljMp3UcG1m29YUI6AsHY9r9fHNjW8AoB7znKutZ7jzRr9KnxHoFsL3IjKjfqrVc0wj435MrNmOiPTw9B2uHpe1wc6T5d+X3l2CFrL08rJPP28ZUJJf0MPSUBLguL+Tgt/KK2kF2t6X04E1woXCy1TIopPluLWA6bRNi21G0lbGFfB3LyxYE31RlQwsmi4uZcK5vUp7WMQgCfKg1frijf22xp+luWlgkWK9pORJo8DjzyzgIfSRingaFlPNas+4mO+0c010HjvvWm7nOZP1r2X08PgvHxJ575fZedgtSZlST/zj6VtFrQVhs5uxLFUxb4iRttOIkOzl9UZzcQVu+03ZE71hRKOqtpeV1sL7qgMKqvla8O1XtqikRFPSiqW3ewj65dbto/l2v+mdsKKwrfGrMlXvdWvdgyqZJWulh6Gn1E2Wj6jjDvCNzvZKluOaAnje5qukLlfXhaly3xZZl4Oh6A9NWwZUpE8PRuCtmZAyzI8TbbxyrOXIekznQv8O0BXWm8IE9WFn0sTPep4NwLWWHBEdatjwZ55qtcKW3uAtCAdhWvtjULMs2nTNP1eIvpHiegv3G63X7VBF4yyGfVrtZNRv6iNRvUbUboRhYvK9VC5NXUQfB/WCt/IZKusOp77yoMXLz3SJ2XN/+J8eYzOX+n2BQLtBY1AzI8zM6CLH00583yerm07yftaC1fu88o+9YQD06ogXGMRxZup40G7WQUjp5ElSahui0Kuscis6n4W+Tj/IyL63UT0n3RvPQTFvZk3+Uoeg2KekI6Wj0IzUqcFuCaA+yrfzGSrCFAz4WZP8ebC0GNnQkvzQs+8PQ5RBGQMY/3pR6V9bdcrNKPZW9/rqV5rlnTKaiBcTpF5Ys2zyExoq05ETWvADqtgTcmidAk2DXSZdcLyWCtjtYesP4Tdj+92u/3BaZp+addWXYso2Ij6jcx0js5mRm1Yfeqofr08y3cGmrV11b7WLTXKQjWqZjPlXnl99oq+/11CNxOG5mW8NGRS8Za00oamdksdpHw56JBa9UCMNtrQHj2Y2Y6yVjUbTlVbZYmSZq0TulCdyCzpkh6aEU2UB2ZmtrRXJgvO7PKneusWMJmm6TtE9J372V+zZtOd2vKArOUlNgixVG4mveRlFbBlrb4WdefKl6gOvkRostQLdMgs+EbKvfLqniOM0u9vkR6mRuV4WXks67xFk7OmtRnTaAMR2y+eKV1r6IlLRMbsaK6EpUUUaMZqQKvVzUzMiraxcKI5XPN73H9LyVrrRsHb7fZdIvouEdE0/RI0Hz3YbFb9aukRWHpmTdaSsjFoGtiiyne0AkZ9SfsbF3ZGCvQL+noB2Yyv+0usUcL60iSezuvI/NJ2MRyKrp8JzZVgzQxoro4zM6B5fmmHp5fcyAMXrNnP87rz8d7ulg1Hr2E1oNfqojpe+Bmys3ZjjuiSJHmOfMhjC/Iobx0VvKYMHdRkhEZamjf5Clnl5CsPrFqeZq2QRX3L3AB48H3YKPhaZYiQarZ93etg//e3wQY3r4/T4xOuEJhlWXSOTIOyFYaWY8MSyN4M6PIa0JIjOTbL4Y3SLJiiusOtF4S9ZUKt1ntGdVQdP20SBbTjHutvazb2iIwFexCmZJu6lxUs0lSL+q3xXVtfU7/Oj84CYUQZZ2BqtYF81QDdgi94sMIa8O01cetern7Lylc6VsPzvzElzMvO03wQc4h5k6/KsT3pSt8D+vW4Qn+8dw5vrHTnY8NtKvdEF/oefankXenrSJ0WCNdM0tLUp+VHs5pJYJHJWSaHIhOiNJVLwXzNb1QF11obiN2Pb5qm/4yIfoSIftE0TT9NRP/m7Xb78Y5NPCy7dEjme+FnWSe69EhrgwLpzIXkdET9bgrT7L91ws6jyhDh2dF+er8JWfwvLyPTrRnQUtlqdS60VMEyHD0H8kshRx9FWPrjhZp5efR66kA7B/r36AuW+/UT6BK4X9L36EpX+noB6a8fNwZflAZMqwpHa8uYapYUaVargLV8l2mygLWJRlaFWm3VbE/Z0n4diF063m63fyrlkYhe4YfeFlGx1sYbWUP1NZ+BH1pW/fK8zD+truWzti0B3zVmO39JX0M4fknfmwEuD+j8dpWyLG+b55X0+9tsK2ENtks1bCtflM/ByNPmIegCV+1xgvFHEfogRuuI50pXMw59r94Xj9cpYa4B90v6GkCY6CTqWyDedHa0Zi0KGJUzVbDcnlKqWM20GdHR8la+d8fQ4yaA6I3thNVT/fawqL/A26cpXK1sVAF7baK6XtudbLTyfbYDYHhP7w9fpHrRTcD9rdSVcEmTeTwdjQ/L89rZz3IM1i+PFShKr1WrPe0F/ItIf91IyDRefq7MUdpyIhuy8oCRxd7RlsJFYOPpGQVqpWsWHTeO9m1m0XW5suHaMHTUonAdM3N6BwCOwi4LWY1A3Jd27rUvj523EYEvCtqmsPAa/5ZPNloj7PwFfY+IXrD9gr4HIYpnSLdv3CHT7x8VBnU5n/+9mMCVqvj5dbgKKF/iy22u55dKLXY5LUPP93bLOC4f650rYx5OLmVK36Uibnm27zy8bavj+/cAKd2vF3VK2nxM+Gt1jFg1LxxdnqykgUxTlFYaz8umR0y7GUhbdjJWLVQz+0P3AHcf2xjAkV2lMvk9lh7JNiKTr4hCIYca0PYy7wbgjcD3i0eYuc+YsD/W66nj+1uJAc/Ll/SS5oWhieaw5aA9XV66itsJXFOuZ57/maV/a+b3emZh6FNk4tUcxq8yOAStg9h+6EJ5Z8fa1zSf1DWH8JnQmLAw0MXr5fGanmvhH+faU5Q0aGYtC2XNh7SIeg9PxmpdksQ7FYGppWCju2P1V8EbAjgDxuzmGMii6hcp3cjSI6VJCdIsaHspVa0/pJzvAL5c5X75BG9/+Fpl7m/HspxML/3Uws8R6BbgarDlgD0HhS8qdzlJGL/Or+dv0elyfQJZKmQLxnK8WIK0vGdIvaKynnHgS9V6oquYeJW1OYS1MWHR6NOulxPeqONy7gdZIswKjR81ws9TwiHwysZ7qODWdbpemXUgvBGAI7OUs/maUq0xVF9Tv8G2Ii8rCmate1HYR+Bs+loHvuXC3wO+rRO07vW0dJxWjs1Z0NcrBK4G20leEzIX1Mfn+elR5yYEWgEzB3IZy+RARsq4vLYCYp5eXq8GYk/lzlU2Vs18ZnPJLxOv+Gzn+/sfBfMcwqFx996Tsrhq1cZeR17Fa5ZFuZOxohbZeIOcfE9po3LRfrXbBgDOwrdF/Xpju7J+1J+0wMYbJS2qfL06lh9P5UahLH2tDN8sJMt4LxEpPtpUbyt4kdJFCrcAcQZbfqypX28SDa93Ev7PdzDfzjqQX+r4ughTz8eC5VjxC7ASxK/u4BnQvR41WGY7FzCjJUjYyvKju49QnR4Q1sRixDRoS39Rk+1GZkWr5oWhI3DzgMzLtJjlow+EVwRwzVhsYp/lUBkNyBb4tT4kJl95ajYCQlk+Wj+saqM+5HKjbeD75eNSeFLr9Fs3fH+rcLnShxO99NwrjYFahJdPl886cDXYakD2zLsIn1/tTOxiz4EsYfxSxnMYS4VL9IKu/uAFezerF+DnY7ElBO2GhhULA5XZmbS7H2FZCBdoZmBrqWPNT41ironULkw+JYk7RkBFX9Lasd7oZCxUzoMwKb5jtoEC1qylKz2XIWnU02zw+r6IMs368OqqEJ6HkU5igLHA93kOYWWDcF5Xn7Usy2wBX6l6LcWbAu9VnMtjXmawlW/38usCJoINnCvFwS3Ta5ZkFVXrAbWo+uwDIR6F574u59fypIvILNd5C5jWjZRUoSlV6ph1rdDUcLjN1jXB2dnTI5YT1ftcAcC91+hafs8g/yzOo/kyrWLylZaegaHmP+q3RnnLdgp8ndDzveh8rFPCKjNea4GyTNCSy4wyS5dk2DoD6OInAl4+rhuGrkwnka6de2aoXzrRUomJ/n46I1W8DE+jfaDvTeghaLTV5Kv+coz3Sme27CinhPESpKWV5VihSVjYARHNJ2VdLyeaz4xWbuKzqlibmNV6lfcUcLTss4I1g4woF4auKWMp7awK5vUI1PV7OMAmyoEXdcMKP7dAPfKSI8ujAn4ykE2HghW/KD/iwypD5MK3qF8UlkWqNaZCW5citc+evvd5WQ+Fm2WoWapdCF2kcj0FjK4FnjArvLNClbJ9CeQHrKfH8SxE/QhPE9EMxHc3LxDLhy5EQtBR42t941D21v2+xoBrlPaj4ixadEWbdKA9oyPKMwpoWaaXKrbmHZiTsbSlPwiOPVRuq/LNtE30hnbCisDXspa1v1L9Wgoa+Q5OvuJ5WZWq+dD8oXoppYv+3X80kUlXRGi2sL2pRQaukXwiem5X2Tcs3QBeBFdP/cpjbTw4YkgRSdCWPADdBYwfaQXGZ5qDuIwTcxDfm7o+3rH4rlmljpw4dSL88ARuMaV7h7DnLzz+K+xKr9CzvjzpUwymCKRIhWoqODPGbBn6/p2d/FlBT3VmZixbgK5RymN2vdJa3tCizUfKabQiioWbCeRp5Z3+RFWvVseCrNaFDNxNpSv/zR+ykJ90hScsaROqauH7pZq3hDPyd3/pywldvM883KyFmk3wcsBq0EWh515jwREVjGBb8ng+0QzQCxCfiApeZGh63iW+dGkeXkbqmM9mvtLZeHiCNBuy5WETFmS/YP9H7X7jcLEnZV1O99+ZtlVlsawq9q4/rSq4tKX5C4lGLQwj82smSNUuSYr0tY9tCGCt6cxSoB47X0W2oYzkEwZeDYy1JmsUdBTsMG857ktEqRnPRP6EqpJnzWZugW8EzhHV64F3Nr4rwauBmGgJXaSEPfUbGafTVLAE6sXI4wqYpz/K8/C0DE3fm+VjxKewCvZMKl0M2q+f0F4+Bele34Ps4mEMwK702lVsVh7uluWMB8tohJZHIJ+XQ9bj6p8KQRPZYWhy0pFj7zxqURXcF8IbK+CIjeqi5VeDuBN+jjSZgaJMy/qW+VSR9zAeeob5Bsx4GVSe59nLfawtInW48vxX2/XwReHmxRivpXij4I2qYO96YF285TGHrlY32Mb8mWhi1vSAGdP8EYscgvP8C8wraXw/7JJeVPq927pCRnthL8qzSVlEr7HhxUMb2Onis4rkkShHwbKtFvYfAZ4VWvZmR1ttRepY1g/CGwG4h/r1/JW0lcPPpUhW9UbLegrYg3k4b/mIQTv0nB1jxflafWu28zJPKud+ytcNN0vQaoo3MhZsHWscQCpXlpehaKmiAmO/C2UmL/KP84l0NTwXh/OxYf68Xr5m2Bqj5eHoEy23orzn32dUo60ridBEq7tqvg9f6MoYQV0avwGQS/g+FyVsbVVp3Qx5eUS2WrbgbEEV+ZH5i3raYwrVCg/LAjM7thxVwahsnW0A4F5U2jL8rEy+0u4DNNWpAdRTyl4bnj8vT1lyZIWeiSxlGQemVh+FnYnQMqQ4fOUTlMq5BV4iWqpeTfHycwldMtL4XyI7/GxdA7QLpoS0NetZgzFPI5FOy3pFDb9APJ+kpT0i8QVNfi73jZagfYWT9f2g5xAu21Zam3NY6jcSmi7fs+tJqO/Lmb51vj4gXN44sEEHf4s0SMo6Mo9EOV7fgrPmJ6K6TfN2xtKcjwhDe/3rbysC2GtqhPqNnmvtJNb+RlxbII0o5oj6zShjqw5YckREqUlXGpCzwJzPaNbHdL01wV88Lq36mHBM9aoTrCLglXUI/PWUMOKAd70pnyuHbamnQNOEMVLF3AfwySdq3Y0HXjmIcxOdylpgBE4Lwlf4Rr5AKc2CrObrlc/3z77M1T+aFU1nek7KQvC1YBgBNoH8MDQVH6gvbmXvLnFEGNoCfQbeNW8Y9jDYaprJqt9IOWvzjsjDHIKvI6NekdsW9WvlWRB+pj/UL73Gp9BmG7XwnYeZ52pWA2akLTtEbW9VyduZ3QhYY70ctlHwjhwH5ibHcWV5qXa05UiyX/LCLsFrgZj1bbrcN/Tgarg8HpFO9NyrWQtJa6apVw3C2uYaWrjZgqy1RvgJ3WUlul5Oi3kVn4n0ULQFXw/KWl7J9xQzMut7aN4AWGFoy6KKtPjroWA9H/WKeyCAM6577JYVDSdH29T8GeHnFgUbBXVW/Ubbe/59hZ6JCIaeNbgS0exvZJyVT7Lyws6WSq6BbyTknAo3W+BFateDrheOlnleOlLBUjWV48j4r6aAlaVKEhLqJC0jmivHeZfh5+89x41liPl79AWdaD47WoMwCjdbkLXGfzXlzNcHc4OhaCJb1TOhcfUAACAASURBVGpiDKlcBNpaBaxZikk1D2iQgI002KKCIxDO2yAAZ2YIe1tKyjIRpcrLSYVbo6wTNwg93tEaBSzb9wAN28EbbhAR2GzjoZIVmGbgu/S1DDtnQtTasiUUgq6Gbw14tfCzVLkIuJ76jSiRjArmalcb/9XK8dcl2XOdl0dquIwNf33iS4r0cV6pjLXJVmWcV8ISgRVBsway95eshbQvi/fnOR5cEvgGHfJzlNeEiArWQJtRwAj8VhnV+AMaUCfQ3YTneMQuWDX2JnbCGrVPdNQknHmadRxwGwGoBsSMb5mOui19qtB+0IaWG24U42qXX5DkxhXz8kulrPmSQJa+UYgbtXNPW7bLbyC6w1dTxTyNRDpSx5nZ0MXsIcjdm1TD1/MrbIugyU3L58uS7uXOi+8gqivr8bq8XhnTJSLYzitv/jrkgyBKOaLXePDzYQ18gw4JSE3RRrmFgB4Bp6bCvfI9lHXKUjI8YP1BvjGAkdV0KRt+rrXE7GdkFpA1QMt6XvsI5iFoz9Uv0WsMOLLkSB/3zS5HyreDlLEcE5Yq2YLvF199joGXjHwy0jQQkyjH//IyBPIsQxdkKwxtqV8CaRII8nvG3wPjt8Ih/MVX34BZ0rEZzcXkmHBRzXO1uqyLYC5VclG1WqhaAvuefnqA++XrQic6abOiWY8Wu2TJz6mkES3f44gyRuWyYOaWhXQqDJ2ZfIU6VhuGzrYV681GVjORKhp+9tpCPjvMfs7AWNbV/GjqNaKALfU7K4O3m7wfeypUbnBhLU+yASuhiZYeefBFMLbg+wV93a56W8GrQTc6ASuqfr31v2jcV8JYu/Aj6HKfnj3eH2tc+BVuRiCOQRiVlSFitBsWClsjyEbV+KIseGoSEVfCM2c2ZC1lHFHMBPJRe7JfKD9kslPRMLTML+e1kFw/VL0RgKNLimpD1JoijsR3veOASUhqsEQqFXXHUs2e0vXSiEiu+dWecmSFfGvOvYlUlh80czoDXz7TWYVvuXJzmH5FGKwczEQ2nBGIPSXM82S6laYpGu4vMu7L/3oKODD2O6srypdx4bstJ2fdoXqfUDWHLoYwAiKHbmQMWM6M1kLimaVNvOyVzvffGn9qEtqmUgOtl0ZOujQPoB68w+Vbt6aMNCyhHJX041XwBgBuhSrRvNu14edI+cCTjzLNRspbCjiifrU0FcKvpQBl4tXzGEy8siZOZWEslTFWu7kQtQXf1+YdDny/ppzqbQWvBt3IBCxP/fJ8pIDLuQVdFIaOKGAJ2qR9IppNzqJv0wzCV0K7Wi0fuoCWFfHZz0glI5ByBYsmXcnw8jx9qX552aeifgD3cnntlrWYkEVkw5dbVBlLa1W2mmIOW/RhCprqjUKydolRHwivDGALvr3Vrzw/g3wv/Bw0DYzZep4CjqR7cJ5BWN9ukmg5iQlNaOqvjPExV7eRMV8d6NcZfMt4LxHRxNVtFr5ybNgLTxNIL2lkpPM0ctKKoQttASuRvv5Xpkv1aoFXCztLMPPXy88fJseFOYRftoTwlc4z1amN1RbLzoz2AM0Nl+W+5qFouDa4PDFJquBiSNmSSOuhgKPXtzRw5Z0BOs76qbEMWNshvCKA157x3PLSEO2S1TW4RkGNFLCW7ilgDcwP48uOiF7ql5u8W+djwnd318UF6ATSZFltLTA/1vJkGxrQeT4RzZQvEXuIQg/4SpUrwawp4RYVrKW9BZPXS3D95BAu24FKCF9ZJf5QhGJSsXLoSYWK8uSDHpaTsvB48L3ty+y89O0K+ilV8NPKPtFEmDFI2ZJIyyrgWgZaBn1lw9C1HdJ8tIC0DcIrAdiDr9cNL/ycNeTDUuBK+LmlWZRuwbklzKzVYROviHLq1wofZ0LPlmq12pB5OGTtj/l+KuFmBNivHm9MOeehaQ/aSPUiOJMoR0a6PPbCz6hc5kEMUmldRX2prs4gTapdqV6/EvW+Ivj9f0L4q8/0vW+L10JziKFnBEsVOh9/9fMsNS2BXAC+GONd3KDOVfA97QJV8GxzDvTc4F4K2Kor8y3TrnVmfQlWD27eJhyZTTpQPa1fXvm4DQZwBJCoC1mwFh/e5K7a/aYNt5rSzdTlXdR8a/WIsB8XzMtNN4jm6tcLL9/TtDFiHKaOTbSqHfedb7pRDd+vlPSIIpaQRTDOKGCZz9O0c2TaRRdBlf9F48IyzYJBi4n3REL4dLnS1w/GlolZ3ObjvPMdr/i5VLMy2nP/e3p0yQbp/Zzt+Qx83l/SS1HD9cqzseALXc+n5RaVGlRbFLAGY5RvmfWdTAvYqFqtBW62D1rbRFkQDwLwRNtushEBbu3NQbCa98+rG0lHIJZ/NXWtbLpBNIfqvSoOA0sFi9b7toz7anlylys5Przs24rw9RQyKfkE/lpKmOdHTKpgTQFLuBI71hRwOUeqWRpSxt9m598GdfgM6eL+q/ujDc/n62J29LyqDsFyvlwv/Do/0zz8jCdZ2Up3NsbL/KLjZxtMBc8mZEkVjKBqgVlTwNIP0fJz7M20mWX3hi75WfU5Igwt/RO9kZ2wIup3ZPgZpQXekp7vmgXmWgWMzmdll5tuEMXUrwQsz5P1ahStVs5+0hEOOz/rsQlXRAC+MrSsQVWbHa2FmyPgjUK3lwIu5SMKWEuTdVBomavjqziXxsPOSgiamzUxKwO6SJ5Ut7Kcp3TvZVCdMp683GHr2fZZjFtrzwyOgFZTxVYdaZay9sxT1jPzNuXIWK8wNFX48G1jAPew6EtAwI5svqHcyXhK1jJPCUfUrkxLQdlXvxrk7mVsiN6b1MLQc8BHx4cj64l52PmZx5Qv3GBDg28Uykgdk1GW5xFI539lunXsmVQ2UQWspREtweuBtvQDqdykaRCWm2jw89MDfEXdcvChMDLREp5auWIWoK80n3Rl5ckdsooKXowFE3sjLNAiZWspYATn+QvFbVppIdMg56lVqYgtWLasN+4L4Q0BHGk683CEmocvWPnBt0YqWE2tWtC1ICq7orUj8zXfypaTRf1as5C1sV2Z502Ykmo1Mj6sgdnK+/L69RO+X37dGb58kw4PzATOLWVMohz/y8sQyNOMfye0UHJUASMQo4s/Ur9neqlc/jqscLqE9qMdbXb0EpLlfL48yVpWVPKWs535uO1F+EDjwxHI6yq4gLlMyIJjwfcOYbDKPJmPIIzKWMpYmsco1VftIwpbrAbUfVvfkWXWCY9oR7ZROfs5o44RZLV0C95RH0QkZz4Xs0JpUv3yckgZyzzuh0Oclzsp56htBPNXOjt/jPkSEQajBswIVGvgK9N4v0ikkShPIk07rzWkhGrNWgcs25PHPJ+rb+BjerRVlpRdTsslRVxV3ovP1a0MI5cxXzl2W8qVdG1p0pW9+OKHt8v7YbVNRE8VfH0sSZqp4Au7jmnqVeahsp7glOmk5HW1SBhaql7PegG9343BRgDeivud2u3hxlLDEdDycuhYwreoXz7bWTzrl0hfVxtVv5nlSly18rIWVPFGHPLhCnzSFb1CzxKSaMKVN87L84mlkVHHA68HXQU+pmqUVspqy5Ak7CSMkZpCypf3k+ejsny8V/PD+1pMwP2Foc/3CVRsTw45oWru5vX94qaN/75mQsfHdLn/kofWH8snJPFZ10T0jFY9H9TAN+YgwjdOmsLVPk8iXF+7OZIm62o2DN7aG5B5RGHLgx7ytgEJtSatyVda+lmkRX3LtIaHL3hpPB2Fj4mda/4QaFFdBGnpV+x6RUTmlpP36hEF6oeU8XKlJWQ1oOuTuvByo9lTjSRYvdnOCNZovDeqeqPg1ZQw0Ry4GRWshR+Lz5btJ2UfeN2MWVeigK/zs/7n2czoe3UM1AxorZnQ1r7SHMh39fw6jyjwMiOaiJ4PaljsES1nRL8cLT8vCVTELAL5EeWrgTxtEVkeWY7U2l7vOtjLilbbXLaeBeTIE5US7SGoWrBFdWWTFmhRmxZ4n8dL9VuOi0nlev+rAVFfD8zL8TwJ0rm/ZUhZg7tZR5t05alaoiWUeXoUvqgcGedI7co0YmnyNx9RwVL9Fj/y4mzB2ANxFLr8Pcia/J4zP9NXROfHOLHcLYvfQHLTFe0StNqMaRl61lS2Fs6W/Srl4POH5ZIk/qQkBEkLvhLCZNTlFgGxZyaoa5cjbWHtba8IYKupqPod1T7K7/DwBaupCPs1uKPyWjmRbu35zI+XqnWpTl/pesjanjSllbOXLan1xVrf2VONOBwRUBGULajKXbK0chHwSrhqKthSwFpaRP2WPKSAuVkgRn2R8JY+L5SbEf0VK1/C1+IpSmciul4+38eEHzOjX6DFypWDloORA1MLMXP1bG13qU3WKsdynHgxO/p0ne2ONVPB6CEN5ZhIhy+CqaaIUTlp3TmYWY7Ucxw4E4Zug/BKAB7RTNRnZverRPg5Y5Yi1vK0crKOLIvSwfN+73+vs6UOUv2ipUX3fH3SFII2P8agX8LdB/Ny3Fc+2WgGQQ2UCLQWfDnMiTDMyWiPRBqBOjKNn8tjdK7lWQq2tIWgK0PRsp5My4SgC1S9mwfehlbmdL9t/pKILqeXEr6K+Q3fEztgZUArFe18VvQrpMx9yZ2uuI+MCi7rgmdLkoho8ZAGSwHz900CmkA9EumeGOXtaRbildXBSD3vaUlEeEKXZmMgvAKAvSYyajez/KhXmwlDEPVC0JH0iAL2yj2MLz16FcWQndUTFwoOSJ4uw33cN68392WDWbZb/srQMxHhSVdES0BKVWpBUqpYouXvTVO6FpxRPzwVjNqOhHTlTGJkIqxr1kf+5ASviHG4y7YtAJR6/Bp9Zcd0nxl9Pc8VbVk+JCEnZ0ij9bmyzlX4KuU1mL5eht6uHP+9ElPYTAU/J2MR0fMhDfx90t4/nq7BmkC+51uW6a6GkfPaCVIjOljncyCAa11LONb6GVxPKtcMeLVmPD+R8LN6rE++smCnjdsWCy0FYup1WQdvuIF8ayHqqnFfTaGW8LIWTo48K5iMfDLKk5Im8wmkeyYvtFb4GSlZpJrReUb9yv7JcDR6cINcD3xZli2haCJS1wdL0MrxWRQ6jq0NfvnRJm6hMHcBrYTzHOb3PaJnk7GI6LkkyQo9y3Si+edNII+fEyiHfGdMrSvHgSOOegO1JsydZ85KIWjNem4nGSmvTcCS/jo9/QjVt8LQ2rls3wo/L9p7Tb4iosXkKzRxSk6okiC11K8MWUNgsmO09tgCM9rYA477WqDlEEVAbYGvp3o1EBMri6DMz+UxiXLctC0i5bEWauZ5sg46r7UzLQGLTFPdIq1s0nG9PB9n/wxFE73Ggy3Qag9M0CZTSRXMzzlYZZhbW0+srUGGk7HQs4IlYC1Ao7JI/WoK2cqTloJ2ZivKlq0qS8eGSXdoGwPYM969EWHj5PgvUrvROkTLehHQyr8ucFG962LnK6IlWMvxK01Xv0iVzutpY7rzdiww42M79AxBak26siDbA74ytK2dE0gnkUcij0CeNKRkLKCSkS7VraV2+Wv/tki3IIsu+tF88b2fiOh0IqJ7oJZOp1fl1/dyORMaPYJQwlXuhCWXF83LvX5vVvia9wuFqMv2lDwMfe/co35RwREFnIGwBXFu0RuzMOMswhdwZp6O1PLgBiut3jYEsLc2N+MDKdxebQRNwtkDtRaClsea0rWAO6snFC8LPxPNJ39okOXHHKqyDgemthtWDLKR0LOy5AiB1go3a3UivjLw1cLTxMoQ6eBFKpiIbtGL2YVo8i6Q8kKspWVNPmAhonR5nyI3GPyYpZX1wdcz3W/WlKVJWiTmlTYHtdwJC02s4u1o48Q8fF3a1MaWnyqahaGLPVUwf1awBc+oekUQttJXMa/RSKc26TjsxRuzSJdRmcj2k4m34yz+ec1bKtZStlYXXQX82veZSA8/S2De//pgRuqX10Hq14O0DGujtFmeDD1H4WmFqMtxWWqEHl0o94KWO2RpfmUeAqwBXQ7cy+tteNo34prySSpfIjoz9TtZcC3pUuleQNrVKM+ttGNBWNY9if6dlOPLMo0vTXp29cRDvwboSF8eNB+b1ZYbLVXwPX0ebkZwXmxJKcD8CkNflk9JqoGnpZJlPeSHQPmIqXX5OPCaD0mI+OmngjcC8MBn8YbM8h17jmNVc9l7hwjYk/5R+PmZB1SBBmY0uxnV8SCLQs859Uvz0HMxCTEJQQ3OBI5lfelDgtCCumxbtofS6AVeDl0JW2QIyMXH+fTyC7/1/AJ7BemyLDdwc2CqLl5GtkWi3pWWF3/U10eaFopGG3TItcEItDzcrIGSH8uJVk+IGqCV7czGi1kY+nJR7nSs0DLKl+nyGOVrbUbKFdtehFLfXbVytiMFbEG5JWzc4SV64eSa5j3lnAlBm39f6lcLP2tjvMUQmF95y0cRyjq2mr7AOrJfi7+P0DPRQ/0S2eoXwbYmBG2p5qKCySiH+knsL0uT0OUwvYALFwLyJ/Edu1xeYdlvLq/8UmwG4qJkpUK2FPPVyCd6qVNNIaNJY1Z9+f7x8gwG5+s9DE1EdL5eoQq+u10uUbq7wsuDpPLV1g+jCV0WaGU7i349wtBEtHxAgwZfTeV6EAbvpwvXVmWsWnRDjtLJUXs79/GzAYB7jcFGn2gUqZ/c/zkCVa+cVk/Lt4618mi7SRB+fuYZKldTr/M0bUOOum0lVVV8veY23LDSJGRRuNk7lpO8yKij5dMrj4NXg66ELQpH83T+bHcO3kXa9VH2IsaMLSuvoWb5UcQ3N/6d52uREdhZWosKnpfT94mW478ItMWXB1oZukY3AOoDGi7sNkoLNyMIk1JG+tL8aia/RykgR2R1bYjaCsOsI813pIC5ZbpVym40AQtBGXXfgyU61/wiBbw4no//yq0n738xTLMTpDxf1o5aqE4ps2z7aj/lKApf7R8KN19Jf2oSKW0Q6W1K1aso3gJYBF0J28h9+DdX/O1HMC52JhCajqrhiEVuUDVFbIFZSUMPbEDbVEq1eU+bh4vljlj3MvMnGCHQ8jaK33ud5Q2ABm0ehiYiPA5svUcWODMhaA3e3cxaD7weJONPTsrbigDuEWKu7W7nCVileLRKLXwjPlA+CD8XQ+Hn+zl+AtK8DA5PSzBLv7JcVP0u23/40jbcsP4RLSHIYYng7ClfIv/xhQi2om0LvAi6/Cdf+/NHQEYwnoWme8K31PfSpX+kdPm1mNcVac8JWef7EEZ5dvB8VvJ8i0lLBfNjTQVHxpIl0LkKRuk8DE1E860p+XOCvRCz97eUle9rLbwtc8v3nIjVc3lRG4R3qoC59Vay8iVzXwMnYFnp0RC0lz7z8fjhs7W/WvhZG+PlFwAN2Fp9pGqttmUbnvp92lX8lUqWp0WUcTRfg7qmelFZusOXj/Fq4C0/cflTz1zjVF5KRc1AXI5nIO5lkXHgiNI9sTSpyARUeChaquC7q9f3MzM7WZsFrc2olqBdrPcFftVxaL41JdqUIwNhme+do3T+3hPpnyE384tsgXXcgxLi7dRDeCUAj5pg5Rl/eZXtoBBzpEmrTgS2lg8Ugp61uww/F9OgG1sGZEOzlLHGfmUblvotKrn4Mreb1OCnQdWqq5XTQs0efDmwH+ea6uXgRUr3AtK4WeJRs7KdwbN/qAwDcTcIR6I5GgS0i77MA2klFM0f1oAnO+lhYTlp6t6Es3RI1EGg1aAt2y5haCJaPif4uUEHLSEr3x/5vloqNgphad1D1NkdseTErEi9LLzrIPytdI20ZcHXck8w+H7CgjGCoszX8rS2vPqWL+PJR1qY+OXWV7nzGco6mHkaalv6smZHE9FL/WpKl5Q0LY93T1O2Mh/5LH6t36wC38vlBd/LdQ7fbx7/eLMlTXZJNo3yviHdJ/+rjUNfro/+ixsK9+YDvefoBoXYMc8nUQ59DpE8es2aP7G1wfObPfQd9I95ffuG9rIoz/uBTPZptnsWeMCKadHhLHTeenkedolea1vjvja49VZ1q+3dLNOyzxPuqLojXyovhKyde/WD+fLJR0Q2NLXj7NIha+MOqYpln+ZjxK+Zz0Rg2ZEGAE/VklMueyz9gnIo5IxUr1S8SAHz9B7GRRIRqWqYqFIJy1AxcoqOS+fQsfzuozwJ4TM9lyWdLtfFFpVoj+ZybE2acpcOAaWsqeOIaj7RhehEr4cyPF/345Msu2KVD1Z7z/kHfwHpsj7y1UPlhkRnz7By1iLKm5wycxsE4Ik2fSxgug3lbTAVppPv+bBCzV4Y2wxBvx6+IO+IrfCzHL9F6bKuDeZ5+ciSJrSz1rOMtukGUrpWqBmpL6SyWkBMOK/AV4ac+TivB94hY8CWsa+QnKRVDsMgtkKgMnogy/DJVwgY8m8px8uzPDkWfD2dH125En9QgzejGY3lWqCVvpZhaw5wLTQ+3yeaiJbjwOV9lRAlWr4f3KJ8iwC9CyetHbFaGhm5wcYniv4qttXfVdYL2iu89NYxYJSugVrkoUcPzt05oV6QjsLHHJZyuZEVykMTrlAbafXLL+QS0giYFkS1NK0eb8uAL59oJVWvB96RCti0K9H5hDf7CKlhtGa3GLpgy7LlfdWUrgSNV15RwdcnEM+z7+W9K7FJU6UuAu2rDVsdRzcCIaLlIwrRwxmQgtVg6aXzc/neyvooX1qzekZjtz0AiwD/rh/GMLo70v+AGdBeuDkKXwu0ZvsXQuO/xbRxWqx6/WVFWLUud8dCx3K50TL/pX6JCG+6QbSEY+YfCZ+a/wi0FUhL+MqQM4frSAXcbCAkXba2dCHMv8PcDwczL8thgcoiWGt5SDU/9pc+XWj2oAa+LhhPjsKTpu7d42p1DnBvTbFUxy8/WDWXtNIH/ojClwIWm3Ig82CphaaRD68N6bNY6EssnURB6N1FyLSxW09K27ECrlW68glJLb4oF2r2QBlN99qzQtDC+OYbSPUiNaulexOrMEyX64OhytWO2eMGJ+0CK4FJ7Fj+lWmWyuXHXphaAXMEvhyuWyrgc9SfADHcyMO75vE8ra524Y6qOQ0uj5sA/qCG61nOXL6KEPALlpHtJYmWM5rl5h2aOi7taaqZ94eI8CMK5Xss34dsCBm9r6ieZrxbq941FlsXrFFbYRZ0D4sScJRvekEPATkCTC9NK2OBdpH32jVGmxGZgSjKlxOrMuZtUKAeP5YeEdESnsU0eEbzyjEKV6N8AumVypeUYwu+1kxo9E+rx9NKWU2Ry8sXf12z2dHyPUI3KTzP+yy9zyyaZ6SfLtfXzZ74HqLZykTzm9SMyaEZ6UdLl+1qv9Vvna+vMHRy6KrJhsk5S8VvoSH7zV3aSAH3eAGl67XPEO5krfCNhKqTlh3/9cLMxTLrgNFYsPTphr3lxhvowowu0OXYChkjRasde6FnWZbalK+nguVLlXkt9gn4hqawxwxFF5Ukw84lLI3gWX4HV3EeAUrxK/2zCVrT5T4ZqzyoYT42q81otidH3bu/DDF7m3rc/cXS0a5Ys3HgFsuoYK2Mp4i1dilST3OeVblrPuZQ974T21FXIhYJTWdfkhei5n/Vi464mz4vIUeUU8JnWM9+hjAqg7e3vKjliQhPvrLCyQiu/K9Mk/WkLwLHKPTM6ykWhW9UAZNxzg1tSyC7idJ4SFoNTwMQQwjzcdirku5d3OXMZl4W5V0UX+X384Dz+UrP5wXL7Sk1oKIwtBdiluFjOd4r61rp87d2/ozgp6GnI2nviwY/FL5Hx7JOLYQ/mL0x6rWoXUt2AmuNaEeUrQfcdNsMZmf8zUdhYxlORmFmLRRnqdmXD3l+WdSFs6f55CuimGq14KupX2LHUlVbbSMlTFj9WvCNhHyRCo5MyAqP61ZY+XXJh0OU5ww/ISyhOysMztFnI9VssRPI49Dgvk7imIHiHmV5LUl6gRMv/7HGe19dw+oYbU3JZ1VH0/nNAbdy0w2fjuRZRP1qdbJ5VZZRrVpZr1ORNvqMKW8wBryX9cHclC9o79sTDb6ams6OAT9M7owjoSvDxjI9cpzZvYqXR8Dmdefh58/z8LMGzStIR2FjS8ly0KJ8WU7261HWg28xDt+LckziXP5DL4toCW5ZhvcFtUOBY94naWU3r0Un5PtJIp1AHoF66HPWbsi0dtjxxPydLvOZy0T6mK01X2JxMzn7bSyPz+ImOJI+a/MxzHRW5n6Y140ekTrLhyZGovVD1sqMzAvoZ29kEpa0nQp3T/22+HDLz/d/Lsa3n/TGc3n6y33sAgLHcEFdlI7Kn9gVfJIXXCJdyaKLMa8ny5Y8DdISzhda+gzCV4LWC0Uj8PJuEciXW1hm6pZ83l95TKzuLF+8biIxKUu+l/z9LCZvcNDnq0UkeBq6mdL+PsqcrzR7yMf8+3xRgWqBVttwBrXBLZuuTgazJmJZFrmOtUL7LP5VOcnWW1vY+bYTAPe6+0BLkLyynawGstF61hiwVkW5E/bGc2X6/Ny+IHhLl6yLD5ywdTHCz+hv5AKs5ck0pOBI5Mt0IrhRxSyfYvAtx/wvgjJPt/6RqKelE9n90tIQhBf7RhdDNzqWCtY+b5RmfTf4X+Sf6DHj3gadHsVZftf1mc7L30wkfZ4m1tGz9f/qvtDq3BHSrylZcFv5XbXT1kBtb39lAI96w6xPtbFN9KXJKNxaMGdMmYD1yvZ/zDLdK5MJv3lrjVH4eWbogmuBlJ9HL9paOQvELJ3v8aypXxSuzcCXn1vdQaFhWTaytInAsexn2CwVzBvRGs7eTGk++Tnrx3SZ/3y0YRtpFmi1OtpcCqRkZbqmdtUlgcpckLBFoJopX20DHhW7A1sRwCPgOzLuD4pGYOzlZSZhRceAhWk7YGkTsOZN+3fk3mxmlI7AjNo3Zz8TOObn3oXWCmnKNA3EUv2y+nybSQTfiziOwFcqVQJpKJSM8rS6KK2URa+BRH5IBUtDNz3oc4p+ZrI8grN2oyWYxoc/lkvkLix9fuPIYYyjPRcIZQ32LK1rSQAAIABJREFU1k2AekPQOgbshauj0bsWEKfr8gq9JupKP1qn2hi0kxD0WrbyU5DW9OU8gGHZJL7I3OvEwmBeiBrV0yZszZQDmv1c/krVql28LWVlqSmZpoQqeTpXv0R2GFobT+XHHHpEPih599A/6Vu+HKSyNSXsjQc/09jNyLMyunGx3mfl/VbLeX+LGQAv48DnK54zcT/2fyvFtAlb0TkYyFRgi/X+z/kgbIOeaquZZFVzTes2HrzTeULCdgBg+UZpkBwVvu4c2rAmMGTUr9eG8yX3dsKSx/dz/OP3drC6d2OpErJhbDn+OzNDsbgKOHLRtvzIkClQYtbEKy0EjZSx7IoHRw2yGpyRD55mKWHeBlLEzzz5vnAVbIX0NeVqhZq1PPTXAb33nGAiHai8vDzWFa6MUAUiQ4sb5+Vv9ny+4mWIgevGonwmfc2yzdazsXo2rQTgrR+W/DbuhmaWCQs9TM6ALmaBNgJd6SO7XKmcZ8d/J0kO7WJNtLywygu+Fmouf7U0TQE/8qX69cxSkURLCJJy7kFXS9eUL0+zIGwp4gurI5/8NHshFnhlOS0Nhaa1Gyfthg3kRcaBI8uUIBiNdNROOcZha3wDvHTufDmt4S6tbDbvMNV2oIB7mzflPPBNaZ4MlfDXY6xECTHxkJQ203lRJ3FXzn1b6XFIP8ozBfI0pH7kuaeM+YU+o4BlGZEfVb/oXeIgjsK3nEfC0KSU56rbm3jlhZs94888RjcxixdA4q8F2ojSJZEn64K+nC46FOfpy+84qufNqJbp8thqY1YmMgacNW8uS039JvukHHtl92crAHjfb4BqI+/oeoR2FDudL/pifK2OA1o8O/OSSpdlPDNfgqZ0Sh6q6120IxdscPHOqF8iHWBIDWvwlQbuCcw8bTa2dezdQCBFL98bGIbWOinLRULTqHPoWNYReXI9cOQmFOVHbnJrrAbMwsG2Zd+sWu6/2uYNKuAVP70eX76WiQjeLOhZHfwjjO52hcpm/EWWaWjLLGbn/KptqRmkngica3XQxVu7KEtAP8rJ2b2e+tXGgC0FGhkD5qaFo5Eilm1KBS77gPrupS/C0FqHiPThAi/ULOtbSleeizy+6YtcDicnYlnL7bhFlg5pM6ctH94cDlUNv5zO/2ppqI527rWVrZcyC4L7pP5gAHt3Bft8U1azHi8/OQkr7jYO7poyZqjbEsjWeF7kgq7V1epZ/okWuz95ZoWjiTD4EAit8LKVznmmgdwKRWs3EtIWfXmEoRcbc3jDBlYjqLyndK0Xysd/xTBIZC3usy7p+6ZnQVoFZvnbLxOyel9us/60iandN+iwbGRENu/7DSpgzTYMdbcq5ZovcqJO7TiTnDgVWdKE0qNjx4sJWNwiapdoCc1o/eSFXJt8JWHnzRi2ZhrzblgTsKRpQLRmWaN2tb4RSEevE4WhnxYBo/U5os9MKyvbc/IyG3JoE7GkRTf2iJZx+9V7LDirdIcNs60p2sYzZSCA9zb2mxm472S9x0+cMt4a4Naxp3lX8OxMLV2WQcdEQnlYCrRGSXmgrbmQlyJXH1iaRdSnNG+pkTzn9aR/S2kjQGdfn9ygZNEBdI6iENGIhqeeg30owyGRzTOQxcrEx3Mj/qRpKyNCKyve/ZhusZ48yPkaBOD3uW3Y06K7wWh1IuUybQS2m2tRui0TS/j4WPTisrhmWBdMK89L1wypLMVPJvxMlJuEVY4tQCrdWuRrqlmDMDq2YCzzYfmHw5v1nmbvETUoe1GQTN7DNFhGZ0K/zpeNReZfaP5meafsG/jsQAzKkfw3bT1e3CeKMnBnIejM3UPkwQsDlO4bWJrcOv6baisYclvm+1CfWebi6YUm5UX7AtKcNso610hXLOhG1W8Gvmg8WJb1FKylgi3TQulmZ7RIh5WG5H3xpbWD2lXy5DyE7EzomrW71uM8m5Vxj92wotayE9YHs50BeOfWvF1kl16Y/rwlSNaPtTVE3RqWW8yA1szqpgfdqBnl4d7G5CtAzVpgJ/14vrywdm3bZtnoe5+PsMbrWSCubbfCeg4DfTx7f5HVA8CeWbP03sAdXu2dc+YOvNaafUYunJnxwgi8A/C1QJa51kdnQVttWn3R1hdbb4mmrj0r0YJZ1CDy8fPohBfZaA1nP8xaiiQtsy64powVmnYVtTY0NXoi1mFhOwA8ykZNYNjBj6D2UW1Vpl2wMxNteJkateQVT17otXW60eaj8NXys8OjmTJam0SkrwdG59HGIj4b7/NiW7fmGslA1wpN78Z2cF1ax/q+UBfA0zT90DRN/9M0TT8xTdOfmqbpt3XtwWFdTJ3tuEMzVfmI0GCv0CZadtTp3qK2TE2Y20r3dsTiJse3vXuiZ/oaX9XonIHO4efsZhyt1gTkdwVN/mL2tgJHt4gCvhDRb7/dbn8jEf0aIvoXp2n6m8Z2aw0b9O3byZe6ejaksJoLR+aisEoYeoD/FvBGzAJjD0uN4SbKWpuMmNb6de31efA1wGhP8rdorTfnW1zTdnIdHW0ugG+325+73W5//HH8l4joJ4joB0d3bPd3NGvvkdrxC2k/9oznza9qkT1oh4TIooolshSFp5e/V5AW6RYo6y3VscpHIJuZyWy1lWmnxbQ2zaVIxdCQQ/brlR1zNmz5DG37XRqlertbzXXnTawR3j/FU2PA0zT9UiL6W4noD4O870zT9EenafqjRD/Xp3dP633/T9R8iRkhIaJhs0a70gkeL8vZX2BU1/JXbdE10bJp7+JR/p5AWqRboKy8Vfz0cFn+euXdNhvq1rbTYlofp8hnegJlsl8v7rvxq3kRDrzfhyy/W6u57vS4pg23TRsPWRjA0zR9HxH9fiL6sdvttiDs7Xb77u12++Hb7fbDRL+gZx/flu3kM79e6378FkBHXFCagb3/m9ywWXu19YAt9zHyaXJVH8leWMX6cT3rl8c3A1ciokvzncdhgywE4GmaPtEdvv/p7Xb7L8d2qdjxqWfsc+uPTLGaC40HVVN1jwBqy7ILRUF9Os//1rpvLRMFs1auBexSjRelj/KH2ypP2/HtbYF56w4Ylu5by+DMdhaZBT0R0Y8T0U/cbrffNb5L78RGfbl3+KPRgNpF3daOQaGmow+xWOHiLcGX2nnU8VVjxaemwi2AR0PrJWR/RqFl7dyzyPp8a2gi0J4Xao7YMnwd/23w9mW9IUM+NbbD69JbsIgC/ruJ6J8hor9/mqY/8fj3o4P7tS9rHQep8b2C1V5YsvW08umLR+OFFNatHYvkSYmXIVWiZXKzVaueBUgL9si0tyTT90U/shED/vmcQJpVp9FuzM/lZI/7lu9wy02oLMNhbSlqqx4R0fWivCEHLBus75vnfmVvt9sfove4B1jULnR/l8r73vIjL756GfB3uZxme0Ff6TSbmXylszo7k5dd1ju5sz4t36H2z6fX0o8z6bNWT6T/Ds4ir5S16iTbmEDfCpguNIdUpMlP9Aqa8WPLysfO/Zd2vxHnqB7PjwCem6Z6NVNvUKKT5twGAv4tpb1iuHo3irXGNgf3ivtZr2Q72wkr9ZCzx99eu9sGbfMvoW/XQePBqT4krmqhi1JmqURNeNrLQzOekRoG52h8FJW3mJCBJFK90qfnp+XhnaG61uzkyIz06HBCxpg/ORchunKg5EdWCGRmVb8pcFcs6fuoNgjA7+9ORbXa6fjZ/QbNsv6VyBqDWo4r4TCbVdYLwXljYLzNxf2DpWQiKsdTSDzMKesrVCyqDi1FipiEZGbsVU50ahnWlmCP3hCUOvIGg7/loSVIsgHvBsj7LL1hCg38DTCP/gYsy4wRW78ddfXDxQli8m1aD3A22jcUZeBABby3mWi1z5wBNnINnLW3bdKfBVKvrGfa2FRkzMoa45ot/bCuW5mJNjxNXsgRZSxFDfr06TwPs1rvJArfetBDcETjusivTOfg11S1dTOQDT8/+3Jevk+zTkjjQJVwPoFy0qd19xAMTV/POhSvdA4oYfziaidV1czZcFdH9FgD/OaBbT3mZKztLATdYhsCv3VTjuhDApzyNaFnTxnPLxYY6JqPkq4rA/2CckMwjISaTxSDqmeBi7aECYebpQ5lHe+Yn2sw5V3TVDFaIqQtG4qoX81mdU/KxCu0+Un2s/LqRcLcII//jCRotTDyazKWD92oZWCcDlFvtIXr24J11XO/UqUHA9jrzJv6NPrbwFnUHMbe2FPWes745CZnnM4sAmJPFWvlkTIu9ZV2Sxj10zkXhpZQBq5ncDzTEpayOW3Ml+dF4fvJOJY3EegG45Moz+15w4Lg591wRWHr3TgFlbHchCM6M1la5LfSMgQEfV9OdEE349kbfVm3Ns3zm6qzZ2bkgf2OFPAA67HdZEsYOjMuE1S/kbt5eczLRseq5PKMK51ndZdKm51HlIx14bbqRMKZ3jiiEYbmoNLgNKtHc7BqkEUQ1sLLCLokyntA9tR4Rs+V8DORswUlCg2jmyNPnsvPyPpuCJ8tS5C4Gka/JZkeUbHexCzL36sDzqeVeTpUS/hZttP9qVSRJ3Hva2h0BQBv+RyXnTbTAmunzPVynt39Ru7WFwAMKGYNqDIdt2eMgT1k0qXAUrso87+yjFVH86OlaRO1zneYZNYAE+khaQS8Us4bs9VCzjxPawuBHR0j6Fo3Gp9oGX6e+OclPw/rJgulnUGad+PEzQA0vwHUfhs1ytZK92AcuTle+NRuyiM39TXzTqLjyXsWsab1X3HzDhVwz+nFlU2v9QVLtGMpUL1OVO3iyz+aHZoJvc0sAjrtAhyVaxE1DXzJMHRkGdCsfqCMzPfGfxGUvVC0JyxLWU3NWwbDz9Z57WfmfXZRZSzM++7Xbr/afXjIg26N9Qg1d7WOE2o3tncI4GINM9t6f7lGP+XoscRAznjUliREJlZp51qaTNdC1s8uizv6eQj6/rU0J2JFL7wy/OyFrjNh6PM8pIpmQyNgIRVshaI1JczrWUBE4NXgi2Y9a9CNqF8efl5UlmpWi0JEP2tNYVufpfi8y0/oej65N5Za+v37vAQzT28d7gmDOzMxc5R22Q2s92crAbhmgw2i+Sc36o3svGbZUsGRMAyqL9MCExesSVhaegTM0ZnQqC2siOf+yrjbVbsYE+njwLJcFs5am1oYuiQz2DzPKTYT2oOwBkikctEYsFae9w/5tiaIpceAT48bFQTa7A2QB1mZFlXGzPgELD7Oah0j82dGz3+j2s1uNmp0uZzwNpRoTknkehOxHnNgVgV1z8bq2bQDBbzmu94R4jWz/ay81rtLZaJFZKLHQoEqP3JtiZKXLlWAbKdczJ7ncmA1Ejb0LsiemtKUMYIFgsnDvL2ONRhrECblXIMrerkI0sgfV9u8r7Lf2mtx1a92IxO9AYpCVr5o+R1RbtyiE7CsSE92bDi6sQ26OV4o5NpNOLIWVcq99kFoK7hrWxHAIxRsq8/GD7EmZJNVwZE7VWZX5e5XrunVLhhaaFgLmWnjyi//rwsKB27kQnM5zS+KswsnumCXMhpc0QXYKy/9gwt4mYzFoaOpYO5mAa5HHoIrUqy8rDWOrAGbCMO4/JXw1fqO4Pssy9Wv7Jx8Mdpn4d1hyPLcP/oM+bm4GbieXzeAy5n8OJyMZvyj3w1Pt6JNWnoI7izypW7CkbymmOleXo2l/aFIadRJNOI6BvgrK+BRYeT+s9NmrtE/mV/TtZayqJ4cA774Y0laenR50Ssdg1a2j28C5heyy+k0X4dpXWgllEmUsy78SDFZ6kvrx3k+I9qDMFKR6HiLEDS6GZDHkRA0VL/8PUWAJZq/59rNl7yRQtELSxkDWN/OtNiAg2h5o+oNzWgRHm7o5lcLaVtLmub9UD6RcjNeG7Gzlh2ha9+wiah73d64jS87CEETvZdwQthWmMwAF+ILi48Naz96HbTZtlEbV3FRNFUMT7MULBl5llqy4M6sNQTNjz+Jv0gh8+5p3UaQ9vzxvsp+o9eCQs8L9Ys6J9PkMbrpQXWsMkThGfJy/JebF2ZGpoWLpU8vXVu6BNMv574PZOl5ef5gl3rPdgJgyzJz4DPhh85qvFYFR+4gUZlFGAmP88hxIak6y3E2HR3P2gXhueV42fwCMlMPbBz4hpRoMaScZDqvZ4U5Sxovp7UNFFkkFM27h0LQSIGSSEeKNaqMCfiQ/sk4ln0PWUT9Wu8xgTre0IEGcEUZX06viX+XEx4uKef3v8swM/qua+mRMeHs0qXQul9rEpanXr1Q9ah5LmoD2Wt47whsu7+dAnjtqeOdwhstX+BOExs+X07PH6KcCV3749cmnXgXGQxv3Id5CPtxfP7WfFcsBEmiOQyRYrLUlKaevboapIlCs6KLedDjUCZagtgCciQELctkQ9Bh9SvfLy1ddtb6TMjI02Ar653m8wz4jZ8MJ0fCzGiIRZq3RCmajmwW+Wp5EEMkP1pWExDasF6VRXbBqrVxsn0DALfAtdcdT+ANrf1SRMZOvO5Elxst7mKxJtEU62UGzVz6vBs+aGeznNkFRZ0VzWahXtCFVIOtVEhWqFlTZujCj+qAevJRezIkrUHsLNI5qC0QI8CifxqcZRkS5dGx9GfCV0YsinmRiOhnROJvRBkDKN8nX90vh3KylK9m52BGN7vFT3ZM2UqftcMiXdfL6TUBq0TGojf/0bHfqHVnV4QBpdEML7Id7SMS8RV7E7vQ2O509h9xh8rwNJmv+Szp/C+JNGHXy5nO5ytdLyc6na50oROd6PrKpxOd6PL4m08vF4KTSC8XmFLmTNdn3ZefV3+ujxL3Opd5+vmRfvlMtzPRVG5ITuw9KBfVK3hvruwv0fw3dmV/z+DY+2zQZ/GwiZSvxhUlvuwbVo8f9zJtprQ10Use87QwfOWxBCaJPFmOQB3Nf8Sv8DMXjThShG4gSzovO4f1HMyvdD10jdK1tmQ7zSFora4GXw/Wux3v9Tq2XgR2IwB/Q/PLwZq+OrYNLr6wTA2Es/cLz3on+kxEp/OVLpcTnc4SonP4nRkVoulLOMdAS1TAvIR2KXNi/i+nE50uV7qeic4SphyqCIQc1Cdavuc8j7+HRPi9l+dXpdzDVAjzvj8sAtsL4W+tlo5MtmGBt5zL4zB8eaNa1ACF8PmxBVj5otBf6YvY8aNcCT/fhzuWYeaiMqMqt5xrcLWWLmnpWIELhfwcdmLp3kMYpNWAsyd8w3V6kX37XbJ2pIAt8yimlan1rRTjlmm6tvtI6SJ4P/9Oz7zr5USn8wOG1xOdThyMc4VbftSR9Bcsy4XgGgZtUbtIHfMLzyy9PJzh8pk+IXBKpcvVLPpr5aELPH+f+bkzvEaEIfzN5Q4qTQ17QM0AF5k221k7R8ch5csdIvgiRYvKa2URnLVhB+SXpZe1v89d2AT8LKWqLVeSflAZXSEv09H4rxzCKfb5cnrJegTEjPrVzlGdHlyEPqw5OrzCCKCiDvVrZ6eTsIj6vpkNvqJjwZExkpoveqM974wJP6XIW6PL071ZmdbFR5vIhfo2S2djwXBvaCJd5WTywIX5afyiTqTDhOcLQztDaROeJPhkWe5ejgUji8yC9uDLfcnNNqBJGEtDihYpVk/hZvKAfxm1Rd/lebr+fY6CWWsPlUFjzYsy13KTGrgr9Cxyjaq9PtXOq3nHtqEC7hmGRn4jsrNzH6yxWUvBat3T6lrKuISdztfFOHAxTX1y5SvT+RgyV8koPH3vGgslM9XMj5HilmFoors6uZ4/z8PQ8gJrhaat950rUZ7ufXWsPKaQiwq+XJfQulzxt08LSdeqX+krqoJlnlS+RMlxX3ku1SrKJ9IVLpF/o8XriRd9O9Nz8tV97HcJTQumaGcrC8xy6VJkTFlLX9wggJUPiwlY3hhwZHxXM6scAm8axrJwVFSVetYS1e3uCjYEMLJIOHgUuG90v1x2tMjLyY4BmyHoV95nMf5brGYcmMNSghaFp+d+5qFqPulKg/bLN0s/f4sul890psdkLPn6UWga/eXHMpSMwtSyDs9HEAdmjgcH6hf7RPlYDvqlSEXL07SQMxHBPZ6r4IsiD0gFS3hKNRv5x+sJIPMnHxXjY74aTGVYOgLmSDg5O17Mbw5mdjnRYgesDFyjoWfNTyZUfWH/qm3NaGnfMPfOADzCNGBbUtROdvO8cpk0IhvIXvMPEF+vJ6ITV6b+TGdtRvNcDWM1fc+7PutzX1IRL9NfKpiI9MlYmgqW75l875BqLuWIlmDmdYiV0coCK7d26kcYhHDWUHtRBczBS7Qc8yWqhC8CpVSr2rGV5pVnUOaTr4r6tWBaYKdBVoKZCKtWXJ//ZnS1jdKJlAlYGfMAa+VpZYaEmyP7M0vF22LjlfEgAN/o9QZYatVTszzfopb0M0olg+aLWe+kFwb1QtGpEPRDb5XQ8/ny+KuHjFuWDhWf93KvTkvQzn3NJ2ZxFfxSx/fJWMVvWZIUUsHlvZGAvijnF8JA56Yp4iQ4I2pYKl3+kVtpSCHXKuASbiZiavcsQs6lYg18I1DWYEriWFO6Mo3llZ2v+IMXMHTtvc01YHMVzeHN/Zbypb4bZkZtifHf2QMYrDCz9lfWRedR5dzFRu0BPWoGdPEb6/cKCjgLw0qpl6pbCWgLuJ5a9SAszyOhaSMETZcTyXFgIqLTCS//wWO2d2fa0qFXngbt5brhe17xu/TF275wyCMVTOCvVME8LTreK6GKVC5aWxy0AuHziejy8HM+E124rw6KGP0SvLXAMtxc+kakLDXqCV8Ues7CWWuf9ZmrXyILuMvvLAerDFXbYWlf5c7Lz8FshrTl+O/lTHD8l0hPs8r2gq+nikO/Ja1QLVAzP+D+4ekdz4LubSvMhC5l+d9oeXQeaRfe5d5/fOVuODI70r5g4DEpfoxmNC/HsPT6qO35hez8WpLEX06F+nnmyWNUDuVznxkFyHzzHbOkwiSi2faVRHOlemZpcga0YA0sh3yU4/NpCd9P5wr4ctPK8U7LdOSDlyVRTn7WKI19rmjfZyIMx8hTiqK/m9olTZotws+eAkZWC9XotW5IODpj0WcErLlL493QTfIAsxRnJgwdrVMsMtjKfYGJWK2CnAJdQKFRmX8Wf5HfgKExWzm7OTaj+d64NaOZq1srjC2VhhoCP5VQ+n1G9POTQhdtmYaUMXoPtXIov9EmuoPt5l0XHm1ak7D410KmS/sEjlG4uZzD8d7iXLvpKPlfOuUy6drNTlT9nl+PHUQbb8zHav3w8avscrZ0VuUu83wwywetLLafRBYNPVvDq9FyGngvRh40WTCqRFuo31MZ67YSgInaIDzKWuha0YwVYpZpWtfCIegzyXFgIpptSxkB7b0Ze+kQ8kUkZjFTCTPrm3rIMen5mPIjTY4F3wvqNyfWNpS8HDnlUH4nk+PCn873DTvguQHjyC9oppbZ9dsFL5Gp6BfgI4rBVwOnpZq9crwPLO0FX3puvPEKJesTsfgxgiyaZCXTZZ0eS5qKwQiXBVov1Bwpi0zzYVkaxtL4ryDqpAaYY8aMVwQwUZty1dJLWgTwVpkkjOVnjRQrcp+FMCn1ZDoCkBgHJqLnrlhR0BLNoalBu9QvhsaLiebjv/dzfTLX6dk+3p6SiF67Y/GLM38vT0r6q0Nz08oV+zYRfQXSI8Y/H3E+PY4tEMu0M9FzDDnUvLhOS+iWNBW85RidW9C04GtB2gOsBn6ZR+wvzcd+ieYwjKhfOQ4sfcn6xfezfQDmYpklTVf05LPZVpTgbxao2bJdjU9kisyAbrFtoLwygHuat7woE9pOKHArrEwsz+I5gimJNAT0SGj66eO+LWVZD1zukk9nfRtIBFoiGRa+wguGVef+0pZriuUNgLU95b2NuQqehaK9LSf5+2ZB1gtBW+maFThcRBqAJwIxEYaxlY7KcZPQJQqCt/Rdwq4Gvt6x5Uemke0non6JEACdCVCEJm8tjz0wyzqyHSv8vBj/RaDVIKqV80LQvJ2s2k1ZhP69J2BlQ971tgGANdiNClF3CjNr4K2tkw1BZyBc2hRhaCJaPB1Jm518d61fALJwrlXB/Ph5YeKPKkTLkkgcZyAr1fGZdMVrAZorcxQtcS5EBcRojFhCdzGDWjYH+imh+2yz9E9GDhCMJZB7wffboG4EzkbaC77Ldb+ZpUNS/aKx3yhkNTCjdqDfy2m5/IiP/1oKWMsnpwzyQ0reRfzrbgiMMk2OB/eC6Zt+HGEEqJ3AmfbdeSIWr6/BU2tLAhxBVvP/THuFoYtdzyei0wt83tIhbalSyUNjZvP6Mn2ucC048+OyLOlK5ycMrufPRMQUHn8/UVp5b14Nzk1+Pqi+rAeG4FRDyrekKWAu30YOY76EqeQR4ZC1NBW6pS/8HEG2pMu0LHwlaLUQs0zPKOPzfMvJMvFqCdU4ZIkwTMtxMVT/nr4EM68j20Hql8N3EX72FHAkXStjgTRTrhrK2S0oW32OfWLSG1yGFHljM29+9FvTaJkfQuRHgcqVtKfP+XKkiMWWGi3zssdyuVJsGRTIe4znzR7UII95WkkvLhBYJHzkhZ1oCV2tHQ9UvIz0c1rWnc4vaJYlQ+Uf0WvJUPmHyhUfk+xzsA+L90K+pqjytd4j9J7L90z2h2jZJ6LZlpPoiUdEL/VajnmZcszB/ErH9bXfkbXDlQVmzWD4uVg0wmqVjZapvXSGQByB4MBr98L6QRnd269kLcuLZPki91onYiVM+7ylikHvcEbBEjifhZlFmwufZyK2EQd/OENkB6u7S/xowWJySdLL17y+TM8ug7q/rIAK5u8RP7ZC0ShfszIRi1/4uZXPA/mT349IXkln6nkCZd0nFP3/7Z1NqC1detf/9e7d770BCUHMIKZDIihiCNgBCYFMJGTQJiFOFeJI6IlCRCXoSBw4cCKZZNKoKESU4AdIQCRgmiBotKMxJLRCEMUYoRUJGqTv+57zloPaa++nnno+11r1cc6pP1xO1Vpx+L3lAAAgAElEQVTP+tj7nFu//X/Wqtqlr6KLUK7BuBzzcg7IKHzpuRbjuWNeJqSupS9ckNxvkbQOq7lfbe1Xuv+dp5h5f8vx52CW0s9Fi/SzlWqOpqAtE0BjVksvR7+CsFaZTyfraUcAZ1UDzhU2YllpyVJvgVOr0+IBv70L5wtwv33n9h/8loaWb0Oag3F57+/jP7/2HGgtxQw8Ut92uvlRNt/odZm3ucC+N5geS+81Fd/hXKAn6T1rL0AypBLPP0RpfdG4MrfoeJJrpz9LDC/XwMvPuTP14KuloKVyLdaAvXTPr7apKrMO6639Tn1fFudFkpsOg/n5Mnv4hph+LpJS0Va5FufBmNdpfaRhHbHzkht9YnW1UI2sMbdpZwB70JMIVSPPIfNxlHVgVE5HgiIf2gM1by/9hNAH2Q1dxF2wBFruWul6MYfzVP9wwfzcc9h0E5b2cI6p7RLEAPR7g+8v+N7RdPwNVg4hFlhCtkUFDk/KOR1fGpPCmMdobWi9Vma5YAm0dO40hoOQtnnH2r8T2mnH79iYViwr03Y9c/drQ1Zzu/LjKCXIe+5XcuMSmPnmqwd8Wfo564C9Oi3GquvmjD8NHFtlXv26a7yeVgRwLTy32qCl9dGhb6+LaAoaTlzYAV+B6/PslqTyDUnlnmBAd61zaOouGJjDlJ5f8HTr48LK5Z3TUsqaflED1X1d75aKvoLsip4akGDyXrXc0xtV+T1YwNQ+SGllwNIdR/9kJeDSYw5mCbTauQfHKHB5uQRZrY/bTz/1vExFL4/lh2PwOFpeju0Utdw3ILvpUg5g8ehJMf38aOQ7Xc/hWu1rU9Dd09e9PiV7/fRfi14RwEDMNmZcsLVuzF2uRcEO68Ce45AAKvXB66S3zHPH/CLNy6/AYzf0/BuS9LXc+fcBTz/nLvgxhYczlcBd+pYA/8ziJcCXcaU16/s5SUUDwPU9MBS48t9Vr8dNXiEDnLpbz+GWc8nhWulpOvfo/3kJuPxYSkF76WepLAPf97e2HL7S7UjcPdMYAl8p9Uz/fjhktdQzUKCog1lqr23KKudT2yW0yzHtm6afAcxvPdK++9dywBJUJSBacZaaeRhd/13zCxiyfde96JUBXNQrlVzT50oP5MhIgySv06DLzzXYan3e0tBF9BuSLpfY9wFP3S4f0jG1mz9AQ9vEVcTT3HQT1lRfuQZ9v7/mM/l7g6l7lN63UnaBLB7PH/DRImtcr110DjyOA5aWcajSMsn18vOM8/XG4POhfWB+LD1wA5hvrvJSvcv08HXRB48r4tmZzLjlnPbNyxdPviqKOF2pXKrLlPF6zymHOeVNMNIu07aH+81rIwADOUe6Bgg7pZaLsl3Vulh+ztuVei89XVJWwCINXf6vL8E4Txt7KWpg6XSXrth2waWPKXbpgvmxtCsawHw9+NFw7lqzKWhp41UNNGl7K+WsxXK3DKUNWEyRl4bmQJXKaLkG1Ah8i6sF7I1WXhr69tN+4IbseLU1YWDuQjXHrLlfCeDerupyzsv55qupg5v7lb56MJJ+1uoiKWhpPKufKmnQyzyAg5/3cNBc9S90QwAD9RDMtos+VcuiorARK6pI5t2K8UALck7jpdTmvfz2yH/lCxqA4oBlmM4dKE9dy06X1j3Ol31E1pOl9bB5/x/j46mzqVxbD+bvbe3/AArB0g9PJUOo11LJVhoakFPRIOfRDwLaa5fcLi+3XCoHJLAE6HtW7gH3vVBupKk/fQfxgRscrD487c1agLTZSt6gxevo+TLNvYS2++SrKSjmgDW48j6ktrzcArOnKjhvuVnKg3lR8yeMrQEM6DCNut7IOrA3ltdnoF3EcUhApPVSP1pbaVqSewKLXVywL6BPxlq6YC1tvHTBPI6nzfi3IEmbsPixDtqre0xvTcJ74ONvTP9x0vfHRso9FWjwC58GYsnhepCm8/OuBREXLEGX/9TAW86jrteLi8CX/ORPu6K7nj/gYwZj+9aiDJi1uOlXYvcPyHAWy7Vbj6R7fyMOuMa9RsCZgasYx9d/tU8M1i1G26zf9tAOAI6q525oCdA1z6RuEDfbgDx16SW1OODZ8fyWJOqCASy+JeleDvrFCA8HOw39SDXzzVEcoFoKOwba5YcBfjxz25f5pqzFb5S7VG3jVSnPpJr570Iq5yDmMZYrlqBb44DpuQXdUs/BW44liAJ94au56ety09WHy5TT9kD6Ae9EOE5t48975sAtY2sOl/av9Tkr1zZfFUVcbdQBa2URiFtttX5E1QJRs/CZ24+2c7/AbgCuccFR2Ea08v3AkRgepwGal1sOGAj0cTtgLhiYb6aamkr39C4d7FR3Yec8Ze2noqfyCGgfY38A8A6f3F4yuwVK+takVmkQ5Y6X6qK0k/qgztdyx6UthPG0efM5SXUaZKUyC7Zg5xp835E+JIdL14cpfInzfboAn7xfOl+eQo6s+3oOV3OwUh+0nh4v2xrp7Nvar/i1g0+D7GQt0HqxWhuprRXXrMj9vxZgJfWabL8XfWAH3Ko1vns4KQuK0lASYDUIa2CWxpw5svnXFAKYrQXrtxTJD+Ao57SunNN2VNrTs3jKWj623Pl8HPFbk+4FkF2jVp6NiarnTmpLfL4SdOkxd7xSmeV0wc41J8vnJjlprW/gvulqOn64R+DhQgHZgZYYno3hQORxVh+eMy7ttGUbLQM0PXiDvGgqD7b02IOn5VJ78mu/rC+TNZH11513BHAEcJE0cemn9zqwI+v3JgGWlnspaK8PD8L8fOGmruDPhwZwXwvWbhuajrnTlV1qEU9LT9O5iHVaKvoTvMPkdfVNXVJ/dGf0bFPWYkYVmn2oMeqpYwU7j7hfXl7aQTjPzF069hxv+Sm53NLec720X+k+30g6+h2/3egjfHj3WOf9MG3Hm51TqGqp5+iasLW2S8dtccZ05zN1v7MHb2hOlqd7tRQylHip3HLRXmxY2fVfSS3Q3P5LH3Z2wBIcrVuSWlyptQ7M+6VjNuyG9qSliWkdSAxIHHe2HAhS3eznZXZLUhF3wYDsZq26xxSWqWcL5loqmtblPgCQndFkU1YIwldMtyhdyHFUEpx5GloCsQZdWg7WDsJY2pz4fKQ6ywFrQLYcsFbvuWMpHX075vC1djxb6eWa1PPyeAlRWqY54wjgAZDHThL3y7920Eo9S1COpJ8zKWirD+mfKR5Qm14u52veftSulQBsPcmklyLrxdHbkaS2hrwQ6Y9McjC8Pw5QbUzNAUM5X4B5fktSEd0RbbtgfU13PuV5qpjugp7a6OvIGmjpmi8/53Wzfm4Qvjw9A98Q7hGWfp/0vt9yzN9LClYOWQhl9Ly0t9Z9aT0g/86z6fCMA74KdZLj5eeSS+4B3/dL+H64PBwtd7uRHcvFFQPyuqx1a1Lknl/JGdNzsY7c9wso7rfIcr+AfD2KuNcIrLuJMiOyQYoDtkYWlK0vefD0KaIMXNEB0xeQ/cKF2p3IHlQzT8XS5iZ0zSU1kS6cYGWaA9agKkHdcsGLPh4uGJDXgou024amrmynO7W5Ltpmxqit+4CPH1C+DffJeywhnN3tzFPLvK6899rvQ3LAHoyldkDsupB1wBHwlnIO4lrXK9WRx1RKzpfCVwLsJ7d0czkGINZx18r7BGA62KltvTMu6uJ+tbJaByyZS6tv7+8xxLEa2ke+/ehIj69cFcBUrd965KWhA6BU4yPrzJ2/HUnrx3LItFyCrwfnoAsGcP+qwiK68YlvgpqmYzvdqfyyiLXWgK0xrLoPeIcLnphLDkKY6gr7O3+BOTQ0B0xBLMVY6WZeDuGYvKaQ+N+WBF8NulIZd8sWnGvgeyu31nw5UDNrtpk67dahFmcsbfqSvnJQdL+W27UgqzldLVZrx+ulMaJQFjvz0scecGthm21X78I3AjCwzv21PW9bsq5yybcp+uFN61aCabbchC89vtzulL0VESBfLlNguTBEnS5fD5aepkX7pW2lY6+ObtIq4uno2VgChHElX95QZH3nL39fqaIOOAJdWs77oG+D9Tcn/Z3RMskN8w8evcAr1b9jfbEvXKDw/eT952aPmLTg+wk+nh23g9laO65zxvT43u628YruzRDdL5XmSHm9B1Srv1ap/dSmnzMDW314AF3DUU/aEMBADpi9gF2zDlyprCv23K8EU16uxWufH2ZjPlzwvZrenkQachdc9Hwvm8OatpPWh/ktR7St90hL657jRxn/xiaWL75V3XdHb3U7UK0k15xpy6VBl9bzcskFS4C1nK1UDyFecb4ABNjx9LH+wIsSJ4FQq5McbBEfT5qf1hc/BnB/6AYguN8pcH7sgVKDnuZkI7D1AF8Fa8nG8+OjqX0z1w6XnB7ru5IrLWU168DaNyI5c+V/G7XvpuZmtfEkp6uVS07NccHPT+TqflkCMXq7kRbL09hWKlrqh6/zTrud55uvuCuWXDJuac6Pv/Epnq/A5dL4cayAg0+PumHJ+ba4XwrlyPy08wsrk6BbfmpO2AKx5YqVutia79Ltlnp6u5HkWqlr/gD56VmWu+Wg5h8ItPuBdSd8gzx/5rP0pQuWk80AkgMcRl0W8N3ZGbn9qHVQPobWX5+d1Dt95o/uQI7AuhboFsS14+DtSJm/Ac+pWrHaxVgq81wwsLgtqeyKpg+0kG43ugiOVYudynV3C8iwnD/96h3esXoJ9BKEn2+XwdmacNkdXb5L+ErS0RSEXLSOf9CR0tCai9WgK2Uzyjz4RiyQGD5HLsn90mMNxi3gBTsPwveT95PrldZ8Nfg+7gN+gNG691eD5nINOJZ6foy9bFvqxHGeL7ONV7O9Gdp9v15KOQpIr99apZyx9sQrK9YDpGf/a0Da7zamnQAM1IEzek8wv79Xu983Mo+KB3Rk3lXNqUYdMC/nsVLfvOwKSA/neC5fWXjrWEsnLx1pKZffCO8xllJbDt2n24XLugUJUJwv5I1Zk24Qfn/7FiXtfdMuKBy6vIw7YM35cvBrtyKV8yLNCUu/iogDlqAcBbHmeoHlQzhIf/xbjbQ1XwAifDn4JPhG1oR5P/4tTXbquZyLaXLtoRuRnc/ZsqgD5mVSP9q/sEZhEH7csv5bFIFm1P32044A1lTjgrW2mjJp6MCQVNbwEiij/dJ23AFDOOfxvJy74OsI7eEcAICLDFqeTp7XyeXS7UfPuMzSyFJb2u4TvLt9IFg+F3rqC7NYDcJXPONjAM+XKy6Xsns6+NQsyQHzD0meA7bKFr8nEgfoLtiT54AtJ6yVWeAFUq7Xgq98n68O3wg0I+nrTFo6k7a+g5lsvBK/79dyqGBlPBZKucU9CeAZpdtEHS8fhNZJwNbaRMaMzqNeOwN4i41WlrhDpmXacSANrf3haUDU4iL9Si5YAzTvZxbzSEXz25IALO4N1m83kp/zTKWt+drrvLKj5s74AwBpE1eBMHXND32MsrHsw7vJ/V+envH89BkuF0wpaQ5aaa0XpD7qgK24UgYs/xRpHS2T5LnfiBOOOGDucjloJRgH1nsB3OCqg02D7/xe36meAzd6S5EEagmo2gM3eJqapp6LxNuOpmDf0Wpu1ivPgjbjdKtcsZeKXuPLFyLut/8TtA7ogAHbBa+Rhj6YLNBKsfxCfFXKeV8StDH/usIi+oQsYHm7Ed3JLKWqH8CWn7DFH3PpbcR6gD7zweD2AUMk5yx4+vH02f1B/8GPXnJf3o7lSDbDirfaaH83EnRpeQa85WflWrDmfIH5/oD8ZigGOgWKdBzrnt3HPORxeL9W6vk+Lkk9m7cdlZ+Wo/XKIcRokiBvOe8q0FpPi5I6ytrwouM8epJrJRLRvL43RO/7g6OA7bgbugxbFHWwEjij/UuOiNelyx8umH5d4WwalyUYAX29F7DhJ8Hwk/IM58UY83TzFc+L2JKalh5ZWS590iYuYdLLzVkQHl/JXe0Tae/9DqiT5nXWRqzS/+ONefTvvSY+f+lYgi59TbzOAm+JrUw5081WGnytdHEkLS255PpzeR7Tr2kJdgCLjVfiFy5kHK1WbvVVDVFBqfbSJweutdPPvdwvbbf7oyiLIiCWAJd1qrU7prlD5mPzeShPxeJTjbgRz/XQMs3l8r5r4DvT4+sKueiGrPk05V3QRdbjJ7X1Y6k/DZwasLWNWaWvC55wXwPGFc+YP0ELl+kDh5qS1n7HGoglsHrQLeUgdUXRz7jSHMlrXJRz91vKOFB5eQS8t/IW+GrApPUAFvAtu6Ol9rU7nrNwBogjZ0+8AiBvvCo/OWAlaHqwlfrSFIG11zYE9E9J0B7pZ0/rfUvSBgAu8oCa2Y2cvSeYx2ThXsZErF1N914/2u/Xqvfq1PLbxYAW00dWMjZqEJXqOcAz9w9bY1kQniArg3gSWQMGyKXz9h3HsyGZG6aQoZC1QMw/WD0JPymMAflvQXLBkqS3LOJ+pZ9S+jmxCctON8ubrYAlTCVgWrcaae21dV2tLyk+sgOaul9ATj0/83t+uZuVYCuVU2ltpHrPJUuqdtB89zPvtMi6nahmZ7OnLEjbQL8hgIH6j+ySvBRypg96dZNAHyCq5EatmIg0lxsdV3PBVt0TcN+QdX3GZ7dbkfiu6MuFruna7w2t52At4HzGdbGZKrOj2epr0se3y+E0YzcFzUWm/XzFww0/K2lpfk6hyR2w5nzp76qHC+YxWkpac8KeA6bgZecFvEB7yrkXfC0XXet0p1/RA7bmvcLR1LPmcIH531oEohlQhmHaosijJ7mkTxG0jfZJROq7Zve1No+8NgawJ+/biKIP8MiModVxF83HMrbkeG41Ksm4W/1a9dx5eXVXTFdM4csagOm2HSCwoQl8I420u/mRmpuXz79zuMja0fzJDbTeOi9NQT+2hj3OpxJ6+bzg+fKMy+UJ1+fyGj67P0FrlpaWHDB9f6U4DXYcxJYLjkpzvxEn7K0Dl3ICXkB2vRxcUfiWFDLgO+Oa25asFLf3QYCmmgFl45jwwA3znl8Lwlodj5Nkud8IvKN9L8TXRzlANfX4koReQO3zyWQnAGeAmYmV2tWkoSu/ISkypYwiDtjqtyk9PX9CFlV5Qpb0tYWSqOu1djdLD9+YdlfLj5qcQOuv82r11WJrwzQtjQLiW5zodIE5eLm7pR+IJOcr/elaf1vS340EW15+Feq89DMBsZRuBtDN9bbAWd+cVeeMedn0KxHqvAduSN/1W35KYPTqeH3U/WZU1TcPsr75SOqQg7QGrLXA7/fm7eiANQBm0shrpaElBT4IULfTQ1kHnJnPwu1CgPLyMZUAu094dvh8a365HwMPByulq8vtR8WDzuumeGmTV4m37jem/a8itjb8fAUuT25+JHZrUlZSdoPWSXOQ6q20s1bPUtKW6wUkVxhL63rw5eus5VjvU4enNt6j36vaP4BFPID7/b6LB25wSa42UsfrIzCMuGutvJlDPdPP2nlUPT+RxLVzCjrqbmlcSxqau2JJmTS0MxSXx3cpLgL1GgfM69X0tP69wXddMINkBnr27UvFySzTyY/bkPQ1YaDseH2s+T4jtwZcEtLLlPTtw8jtCVrUDd/T0s9soxZ3uNbab9T90t+Z95bzt5qfZ6HLyrR1XkB2vdNL6+N8y4aqSB/UKevx+ngfiMuOjveM6+z/j5h61p54lUkLS9Jio+yy2KSNq85HSz9bAwDrp5+jsX1BvTOANbXeG6w9hIPLqm9IQ2t8jqYJJRh7v/ea8aL1V4B/Y9JiKOX+YE80/axBFsD9gi2JQ1YSXfPl55eZB1+uC0t6wmUGYghpaQpiXNkasbURC5hfiGkZ3/lc8z/Yc7/02NuABRm803FurXd6STropDRzDKaPtDMAN74Fzur5wv0q8I24Tgt4GZcadboRpdrwACv9LKn23l+pD2s+0b7qtRKAYzchT4q6YKrK5zZXzYVfAa2FOKMLyOFmO6ut5YS4tOlb8TP4LteDL9en+bcmVf4p0TVcD7KW0536mpxyca1efETFMfMNWgXMDxA/blkSQfzE1oipy5WgKwGZx2l/Z1zSr0YDrwRnxe0CuKeZAd3xAmDwksrrXG/UGXvxUThXnbNbjtRnPWtApL/fqDP24jWIS6qBuyjKBe3hFy2bpGrdckTZF7v7gzjom+ABUqJPRdrXBKjnij2od/yCBul3qTlSDZhWPL9APwl1UhsTzvJTsqz7g6Mqu50j6eQIhAscizOmG7EoUOnmLOpouRuW5zwH8aPs1pqlpsutS4DgiimMI19D6GVLNGkpZ17PgXsro9AFluDla7zT8Ry8pYwDax5bD98CW0B+4IYGX2tuveEbuuVIAinYuQdiCG2sPqxyTVqc2s6apBZrPQkrKu3Wo4j7jYxVB/2NUtAReGWdcC9gSlaynGsbtCp3Q0ecsNamKOKCsmlrCgFTy6dkSd+alBWFpuekabq5QFB6AMdyDMxTxrOy+aYxLupyOZgfpU/3Pp5Jf3cQPz/j+XqZwfhyA6sK46kz2wW33obEz4X0MiBDd/opb66apvg49tLNFiSn2HlamkLb/65fH75R4EcfxOHCl95yRH+fnmvV+JVpYzldrTzigKucsbdW6+12jt77a43Xqvo+N1wDLpOs2aFclIW0119NLL8KOvOJOhTtj9ZLZ3vOuGZM3v/s88kjFf2R8rzoKBQk6D07jUubAsVIm0NInOJ8Vf1KDgbvIhb6wKS00+ZF6iLgneplZ/s4lx0uj/du6aH9lnMAszJtJ7IFV6k/b0e2JWn3M4Xv/U3lqWfAZ0jEHduTW55XQbNG2fRz2FIztW6+4vLGbQP6hgAusiAoAS26Y9nqQ3O5kc1alV/QYDlUSdpvQmN8xAFb4/GxNbAvLvT6/cEzBZhI13+ni5u/Zvt4tOTkoFa5z/emR5pZ/qDAN2nRtHQ5LrvDZ6lpPM2fMV3gVlLUzBkDxB0DtvulU7V+BwJsgQdwgTh0y08O3sexD16tvDYtnb1vuCbVPf0qloCmG64W9/ve32gn9WxBVqvP9KXBPuJ0tTauNPtOlXnucqub5XOIfCmDFlunHQAM5CEcqY/cPhSVB3HpOPg9wRZoJWXXhjOyUpum+kGYPhkrssb70Pz5zROUC8wnyBVQz8d7gJOCm7aRdkA/EtXLFLSelr5CSk3ff97S0wAWKWr6VYgFyFMcFn9DM7es/H2NQjlfPdCAO8XK67tAgZC1/qs5ZN+d9oRv+ZKGVvhqr2H2WrVNVwDcp11FQHr/xQjnnmvWxrYUnYt7/dDSy5Zz9YCrfZqwxs7UtcTa2gnAQJ90cMu4miuWYitdcOm2yHKmETB7zjazPqz1EZYM4Su/X9iBML/HNwdhro/vl8t52RKSwHxdWHK5wBzMVjl3xLN7hQmIS+pchDFuzvgGYwAzh0yhPJ2Xg/g79Hzl5x+x84fLLXMvr4/+fGLnGjgf740NXl4eTR979+jSslJufX1hdGzVzbubrkjquSgCxyycPZcrKet+EagHsPziBc8J116YMrczdXlhzdoRwED9QzVofXQzVsQ5e/GaCwZCX1NoORXLAUfa0/ro+nCt7v0vn5S12JQFhCBM3SaF8DMuoU1WrXqkj+ewpmCe75R+wFVyvzyellswBoDnyxRXgAxgAWVgCdOp7vFxiMN19noFd1teD31P6E8JuuU8C95Sv7brXS9GeA2RTVdS6vn+iwier/VPU9T5NrtfqYy7X88NR8bO1LXE+toZwEDc3WZdsAVQ6xakmnGdDwyWI4VSJ8WsJQnMEsRFsA/3cvVJWUB6t+7cCU8uljvjZ6HME3WqWrqZanGfL+lHA3GJLmnoefkzaftYKy6QkoBcHPJ0/LR46MnjyyHmYJ29DuFBKXyzEAduef3zOmvtV9401Qpe3seW8P1A0tYlhj8IpAm+rW5WKqu9ZmTAHB7HevKV5FSzk7eA3Nv99t9BfQAAA/HNVFp9r7VeDdB8DOqSYY/d6oJrfkMe8CPlVhmfm/D9waIqIEyhJz3xSr7Xl67nLl2tJ+qGl9CdA1sDMa2j5XPX+wDs9FMHcomjcLz3fYn/kdD2UpkG3HnZHIylbOmUdfDSNlJZBJBlrB7w5aAtZXzu9N7i+2tcA75RQHvQXsMBS3WmntD3uc/ZW48sRaG6xu1LqwG45Pz34HvjQzRmkoCsva5S7nxNYXa3s9WXJisFrbVtSk/PU9EfXZX11OfLAsIUVo+pLL/IgZbRW084ICXxNPJrEQV8pg2VdGvPdHwVyuQ0c/mpQVmCJW2T3QlN597L+fL58vdFur2oCr6PycfAZpVb/dWoxf2mxvRg5t37m5V1exOXVJ8d/wkHeBJWmUh0mIgLzt4XLNVzqGrn3hwbb0nS4KjVc3kvW4rV+uyyNhzcGQ3Mv9xeeCHS1wjSZzfP14TLxivL5T5iNGD5qeZlWwrA5Xqvn4KWXTF3vI/Us+R+az9QSLDldZKj9eo5SEt9DXil2Ihj1m4RagG0eF7jfAH5/xp3tLxOA6JX3uqAvTpT0c1Xtelnq30Emj1dbd3cN7KoGRBLbbMA7+GCI0CW5mc8GYv+jjzgWpusPEVTzzXzMlUD4Y9VMNIvY5hLbxMVv+1I6oumkx9lc9BT2AIPENPUNG2j7oImoAX01DNNaVNpa9j0tSzLLuL53P350H28L8uYyG1JWjrZSlfHHO1URp9epfWlQbsLfIs4ZCUwr/3PUtSRS87bVObWI9oxjdHOM+Ot4X7bnItLtmEY3gP4RQDvbvH/cBzHv1I3nEeCCCR7bMbSYqKbsbT46IcF1gRKs55Q9uSlrSWJY9c54a1EwSjVSTug+ZryI56v986dLR2v1E9lSxgD9DuO531I68Elns49+vqpuIP2Us9SjARRXp8Br1QmxdQ42tJOuhWpvDZaxu8dDsN3/iavB1lpHOuakIFzrTMGUL/5qufu5ky77eELxGjxAcAPjuP4O8MwfA7AvxyG4Z+N4/iv64e1QJXdkEXrsrckeRWupIcAACAASURBVLdBSS5YKiu/COP50FI4lDJep9XzGE+9YO1qXwg/PC2F6eNcUoGh3Jd+K9Iz65eOxEHL5yeBVkpFA8t0dImXVMay0tNa2pkeR5ywBl6vXAOj52Y9YLaknAGIz3qmryPsfKdG27pWrbxnX1KbhUZS2cP98jbhiSTqs+rTn3v5HsdxBPA7t9PP3f5lvm9QUYVbvOsILlgrM8bS3K7WRAK1VBdV2s0G+lPbrQ9hnkbO7HSegzS621leHy7HEnAlR0shO738+Zpv6aPEln4eMfM3jLv5SLpZKreAS48lR8whyvvQ3C1t02t3dNRFR/qq3u08TaAPaHtCu9VNR2G+aCQd87LsbUPerUfRnddZ99sP5iECDsNwAfDLAH4/gJ8ex/GXhJgvAfjSdPa7G6eV3ZCluWBLWRfszY+XB74lSQKyBV2tjdV3VJH14Wi7e5vY7mhAhoYnKY08De8TXdp9XcRTvVrZS5I0dy39TOOjqWgvBS251lLnrc9q5bRP6bVl4au/dw585Qm0OdC1QOuN36Pcr7wp8nCM3s61VX3nE7rqjeP4DOALwzB8C4B/MgzD94zj+Gss5ssAvgwAw/CdQYfc4oIjWuOWJK1MO1a6AmTwZjZnWX8LvdaLa8A8S6sfb01Ycri0TnoOtPbFC8DDTdNyPwW9TGvz1DM/ntrO09Clfe716+lnei65Y2tTVmZt2AJvGac25RyN81LdobQzsHS/HjB7QdbqKxNv1UvlprRvPco+9zlTLzlobfNVi/vt/2EgRb9xHH97GIavAPgigF9zwoPSYNVrLTjS1lsbltaWI7chJR5PGXXBnkPmMVQ9U9Bm+pnHrAdhDlO+UWoZv9zZDDwgyNsu4Sk/8YrG8tQ0rQe0tPL8liTedgliOw0tvU9emQVcWh9xwp7jpeVaypjGe7Gaa86knelrCK/5Aj58qXq6WatdTaxWl4lfNNKOrbKI1nkwxpbwBWK7oL8VwKc3+H4TgB8C8Nf7TiMD4Uy9FlN7i1HEBSPWNwevBlbNAWfdb7ZNr7+3FSGsbZySVGDmgWoeL9/n68XyMXk9hfgybr7ZyoI2HysqHiut/fI4C7rlpxSTAS/tpzU1TfuNwFeEdit8H29w3OnWuOMMnDPzlMpNZdxv5rnPljwHm3W/0TH6KOKAvw3A372tA38E4GfHcfw5u8mIdTZKZeJ6uWCpjeeCAw/miHAdiXIphiviWmms1Vc0Zjbu9uloKX38qFveXiTDUd6kRZ2rVs4d7fTSlulk7Zakx7G/A1r6MLLnTujyM7P2a7nhls1Wkbj0hivAhm8UoHDiLXltWhywNUdzQt6xVSYpcqtSD0fcy1V/im5PwhrH8VcBfG/9RIC2rxLMuOAaJ50FuueCpXLnwRyWC651wBaErblk+srM6a4+EKbpWanO2hEtuWHL4Ur98jno9/7On4ZF+5peon7vb3YHdGQjm5eK9txwJg2dcbzl2Esj0zY1KWctjrpeAO23Gnl1cGJq+rL6tcaT6qS+TK3lfrO7kaMP3uB1rannOnivuQOKKAriKAxbxB1urbzd08FpWM08rkf7puWaeqw1WyCegXwJ4QvZIR35PmFrVzJ3mJG2NN2rSQJgRNTBAnO4bi1p/pkUdCQVrUG55fakFvjy12+tAQMB+D7euHbQZWFq1UXirP4jZaasAVrV2kcNINeFL7AZgIsi0JPo4d1r2/uWJO9cmxuNByl3bkmiU+7hgjXXmlnnTbnaGslO+PnpisuVDVq1MUt2s1pKWnLUtIw7ZKmOlvMUtJRS5qnnZUz/HdCP1+ann/lx7U7oKHhpnbUuXPqKxHpp7K7O1yrX6no4ZknR9lIdL7POF6rZzZy5yEjtswCMut/oXOq1MYCBPmlpIO+Wa29JstaSI+lvY57l7+DKjr3mViwCdVJMDWgt0If6q/0CB3nTU604fCM7nS+sbtlGT0Fr9XTDlQ3i3A5oqY1WbgGX1tekoKX66EatKFA90NI58M1WANoesiGVa7ERsHrtI9Dn9VzeBwUI9QtpX7oQvfWIn0vtI4puvorIu4D1WS/eAcBF2XXZ2rVgzaFqpNNirPpGFywNVSTBzHO4NVCs6dNrF5o3gfDTBTAe1oHLfK2VywKz5Hx5meWcaT3wADEv15xtqZtehv8NSHyzFU+bzz8w5Fwwj1+maXXg0vio2y0/LcdLyzXw0njrfuHIzmltpzOA7eBbC2ar3msX6YuXSceiJChJIJQ6yjya0oOrNVFel22vtanTjgAG2iEsxfScQ7Y9hzRYefAZ0dbasBZD5aWupTqrXaTO/c9p6QFhQHbDz08XXK7P01qxwJvM/b3ypqh5e83dPursbz/S0tC0veZ8I+nn6C5oLZb2SV+zdBzZCa253fIzsi7MYb3G/cKRnc4A7O/zbQEwnD68OqtPXscVjffOZ8q6XwumkXoqz2Fb5bXq29/OAAbaAaj1RckVvSWJAzR6bo0BoVyQBGJgCTdrrZgPG4G0VZeBbcapS3oabuPm1oW13cuaG+bpZl5mwVZPJVs7oO1nQWvumcY9XvJxdkHTWG1HM4+xUs28fc2GLKnMcr2AkXIGlvDNwFaKscq3aiPNE6Scn5v/f72dz09KPVcEalHwWRPmdVn32//hHwcAMJDbUdzqgrNrwZH+O7lgDZyWA44CzoJhdi131Q1a83Xhz54u6jOkn3HB5RL7Hl/gAWvaXrutiMdrII6knzUY1977K93OlJXkirPAleIst8v7yIKXxoYcbsD1AkbKeRpgGwDXlEtjRsqtOG0MVV5gb/fLY/ixNnZE28IXOAyALWUBm2lr1XOAZndES+XGeFHQWulqqR+rnP69WWvQvEyT5c61DxdiHElJ3+A7uzXppsv1edq9GmQQv9VIcpQvQdY6eKaP+bm8GctKP9NjbX23/PTccuae4RBoHfje5y8536IM3CKAjvTJpf2as9CV5uBpE/cbGawH/CLud83xZR0IwJlUtOWCPQhqMQFIitLIdjXqnQ1ZgA+uzKYtrdxbK/ZA3LL2677N/uassi4MwIUwT0lbtxXxcynFTI8jO6AtVzxNX38EJU9Dl7GptI1jUqxVl30QB20jrf9G1oY1YLfeLxy5xQgQ1nunQWJuNFJW266mHEI5L9NiurlfyaVq7tbbCa2Nx+N5fS/3ux58gdUAzBfmo8O0pKK1Og/OERfMXS8/p7HaLuikC9ZAXMpqXWYUzlq5NHabGXto8dYMwNPngOv0aTtyq5K0mar2e32XdfpaL63XYWunnqUPA9bmq5pUtJd65n1Jx5H7gbX6iFO2XHJkN3Q65QwgtNmqpizaJts/L+dlMOIioJX6uSvy1CurjMu6gNT2afXP2/eAL++j06Mo+0gig6baTVkWSKPjtLpgrU8I9cHbkjQQZ1yq166U9wJpdy3vF565X17GNmhZ0twtreP3/vKvGSztcs537nYz9/5yONdIArYG3uwuaKk+sjacSU+7O6QV11vKXNfLzzV4ZWOkNh4Ys2W1oDWhy6V1Wo6P6n57O9q2i+bGKegoiKNOdU0XzKHqnUtjc5JaaWknLAtiD7AtKWXPBdfA3P3Mo6ekyy7p65W5WrZBiwJ2mYJegpg7U+uJV/OyvPNdK/1MX3uk3EtB0+MIdLW4KHijbWZlbK03dIvR1HE7TNdoky2Dc+6B2QQxzW5q7vdToUwaiJ5HnW7PjVVWfatzj2mnNWD3alvZLttvdke0NR4HcsPDOShcLfBaQG0BcwSmuzjmZUpa2iXN14atW4v4ubfeCzxATEGrueIW50sByDeQteyEju6A5scRJxyFbqnznHIqBa3cXlTO3VuMAPs8C9jW9tl++Nje3LS5qpJSzxrFeZnmdiPxUr9rul8vrt+Fb8dNWB4soyDccy04Mget38CHBc53YMl7GPUQYnq1KXFeHy0fGCRdMV04S4Pr83RhNXS5zGH2GlS7E1p6HzjAo9ClxxFXHL1v2HtKltSf5nqBTvCFE8PrvfZef1Ybb1yrjRUvHS8kBda6X97GG28r99u7ja6dr0oBCKXbZPusXQu2IN7JBbc64BDMjPNIm2w9lQR371d3j7lB+OkKXJ/UDVr8CVryE6/8FLO31jtvk0k9Lx0vT0OXvou0VHRGUlst/Uzj+U/aLrM+HAFz6OlZ0bVeAKldzjxGapOJt2Ij8ZHxW88laN+lbbyiHfF6CdBSvdSHpb3cb1/4ArsDGMhDLhJH+1xrLVirl+YkxdDNWQ6EyzHYuZdmrklLZ6G8Syr6JuHpWTQlzZ+gRTdpWWlpafOWt9ZLU9DTjJagBqKpZz0NXebH5W02q3kcJT/nQKXts9DlMdEU9L1cAO90Hry9iB73gGambY/z2v6ltmDHqqQGkQdiSPHauVemzSdTp9VvC1/gEAAG8hC24mvG8mCpydtsxfuW5lCOA+vB/DxSF63fG7rWZx8rBoDkhvna8NPT5b5JS9stPcFSd77AA8R8rXeqk9eSCxwzm64oiKXzUlaUSbFL7rdHGjqzKSu7Nqztbgagb7ICYN5eRI9bz6N1Pcesga1XJ6rmoRsSoCPy4rV6a804ctvR9vAFDgNgoB3Cazycg/flpaattWKpLLHhS4KtBVpvTTUD2T1dbpH3mYu6YZaWppuyliC+3NeIrXt/+a1IUopZcrK5+3/lb0EqcyptilpS0Fr7ml3QNDYKXamfjOMFUJduts55XS1kawGcmWstbKU4XjfTSAI+VY4BGYCe243edhRNeUs6LnyB1QA8ou5+3t4QrhmH1lsAjZ5DKaPxQDoVXZQBreV0Jci2tG2V9FaF6sv7d0tLK0/RoiC+i60R81TzNJT9kI3lGnLdLujH+TwFXZN+LvPWFH0Qx9obsqS6MHgBhNLN9HgtyNLz3v31nBePW4jCF8axtfEKrM66UHi3HW1za1B7X5/iIA/ioG9Yza09rZIgyOU50podzlJ7aROWRJHgrUne2nAUlkdzuhFZcL6fs1uWni747PqMj67PoiO+0HICYmtjlnY7EhD5zl87FV3GK/H0nJZN5bn/L5EUNAd2BLilnfYISw5w0yWzW4qAAHgBqPf1Qjleo27N/loBK7U3xSHLj3kZj9cGiThoKZ7Xr5V6zlwIs2n2hzZMQZdJtjjUVhfce0MW75fXW4DWdkg7vxINPhqgM23QWJc53qIOwH19+PoEPF0Wu6Uv16f7Bp6F2jK81eI7teVNYcuvVYz1Lb8oDbi8TWbtl8fwPsUU9PMcuuYGKwBp10uPt4QvyDmSdV4chHOpjQZoUZKDkxp6rpWeZ6Cm9X00tc1xhzXgXmniqLL9RF1wdD2YHnup6OCtSfRYgmMUWN0g55RHFP3QEK2blRM3rKwP0x3TjzLdEUduOdJuV8o8epKuDxdZu6Gj0lyzBlt6Hln7pXGhFLSSap7KjA1WAEKbrLTjaF20Ta/jNdpIr8UUhawEXJ561j4NcGXWj7V6Xq6NYc2lxf32+XCwA4CBnBuW2u7hgrMbsHgfHMJam3LspKKLNDi2ulXpXFJLTM1nrDR86TlZH3664rPrE8qDPPitSyU1Te8jfsZ8w1YNjIHYNx9ZaWfJxVpu2Nqs5aWjM6loDlVaJ6agBbcLYJFqBpSdzdOgj5+9odkC0bXm1LO9Ku9xk9p/Zikmsys6Aj4+F6nty4AvsBuAizw37MHOitVAm52X1Ta7Icvb1AWEUtEahKS/nYhbjawDZ91tr/Xk6K9Oi5PeK2XHdAGx9UUP958VMJ5GtHdBT+XyYye1NWBe5ymShs5uzErdnuS43VI3SzMDNnjp8dYglI6z7daYM5xyUdHHTVobryL/8TVA8z69teHoeBF5/fRPie8MYKAvhC3RfiIuuCbtrI3HZfXD6wLfG8yPNffbmkqOgLqHIjDNltPXfy8TQEx2TfP0NHfFGRgDgJeKfsSsm34u6vFYShpjpqizbhfAYnPV1Hkb6LY6XrO/KGSfhBjebibtliNAhqLnbrMbs7jWSD3XOt911qMPAGDAT0lHIczjrPreG7L4OZ8Dr7dS0YH14DIFIJdetlLWGRhrMWuCmcqDrgRfrX0BMds1TdPTLTAGHs7XSkVP01o65RIL5NPPRdk0dOZ+YBo/izWgO50/1nYBY313GqAP7LT6KOx6ATjTV+8PAqKsW44sl6rFRODrud+IrLbRC9E+8AUOA+CItCvumrJSxlKcB2WpDy2G1hkQpmH02IMwnPJMf/wYRn1tX9GYaKzannzRw03Sc6bN3dP3oGWR9h3F3q5m67uNpYd0SPVW3/P4XPqZtuHQpcdSmhkION7yMwuZVmAdDb5IHEfrxWBr3TcCox4xNbcdtY7Zq01cBwNwNq0steGgbnXBtanoyGuxwMzrEl/a0Ao6SWu7XO0DQDYmGkvfIy01zXdOs/Q0ANcV32Pw+H5iyR1P5ctd0eW8tKPi34YUTUtHdkDzc9URPy9BS+Ebgi4A9T5e/rMVvF59z357jkXLWuYlStp0JTXwUs+8TaRPCa41kF3D/a4LX2A1AJdfaE33FriifXoQjrTL7oqO7oLm55bzDa4594DwHmnkHpLeNg2+FnR5f/efenq6HGspagAmkIH5VyV6j6GcYrZ7FOUUw9yw4XCBJXBpvQndafDHzyyErbq9YNur715zEmVtuuqZeqaqTT1HwWx9ePDiMvOxxj/Ek7DoC8wMlYVwdN1Wqss4Va/fllR06RtOG2M9uBbCMOoz4Jb66aUMaKNteJwWcz9n9xMDM2cs7aLm7ngqo/UylIH45qvej6IE5s6WzpMfP83KFZcLxKDr/TwiBLcYu0cbUZFNVxJINbhGnK4FZG0cq1zrM1PfGl9/sdswBZ2FcQ8IW/UahLXybCo6CuHSD4SxJFA7m7Jq3G0vYB7BOXsg5mUWfDUQ33dPA1qausCHu2MAC4cM8JQ2cbxXefNVgfRUl/tvzOF6L3/SoQvIsOVxC5cLtEGX/2yB35ptesxvrTmLkjZdFWnwze4gjkBcirf6tNpk2nlzbukjrg0BTCVdESW1pqN5jNVf7a5oz9VK7SywW+DG7bgRwmB1Wtke6WkJgBYUvTKrP+tPyAP07P0Q1owBE8gAFlAGoIK5xBdxONZK6odvLtNgCwSBC7RBl/+kf38RYFl1RwRwz7mJ4vD9lB3zOqvcO5dEJ+fBnddJbaU6LUaL8+YQaZ/XTgAG5lcwS5mNWZFUdDSdLPXrtbXgKb0GXh9JWQPNEO4N2T2cbxS6NXXRn2IfujsGCLAUKANzME/nczhTLb7RyZC1a5uO9yhTYAvIwAWwcLn02PtZjlug3Bt82ba1Y6/RhygLvhDq6M8a+GoxPE4aX+srqmPDF9gVwEURCHoAi8RGFIGzlYqW5EE5CmGpz0YI87je8TwGLFZSD/eerVtV869HlCTd5kQlPZnrUfd4hrXdh/1/THLCn/EyD7qADtXIT15WA+a1QFwbL/3s0adXJkqCL5W3PkvPI/+Jov/Rog5Xa9N7Pmu1X+oAAAbWhzCPsUBbm4rmZZE1Yw/CtB2UNgkIF0UBuLcifxZSvPVr0WKi5VY/5oeS4VEGgO6qpilrYO6SiygMP7ouH5OZ1QKuRQvosjdSgm3kuAXMLbDbA7JrzClTJ0qDr3cOVs615q7nyPiaMv17setdEA8CYCB/td1qbA/wEnA1wFr9av0Ayyt8JYRr09KtjrIV6hGgWu2yv15eHoEwhLG0+vuxAGVgCeYiDmhJFM5RMEvu+In9PWmA1eqyZT1+rgnlzBj8dW45Z1G18O2ZeqbK7nq22vN2WlvvA4Sm9eALHArAwBI4XK0umPYd3RWt9VkLYcndSm2AJYgt91wB4aItYdqiDEgj0I7+tMaLAJfXQ4gBPR/m5/cx2d/kVbjX0Ek1TzHOo02tMg3E3nELfMvxWnBeC5iZNj3mIGor+FJFgRyBrwfXlwtf4HAALrKufD3Xg6MQ1sqj68HR1LM0P5BYfkzPAxAuigBXBIMSG20T6cP61UdiNRB7cK2BslXG6yEca/Pl9WBl91jj8aRRRaDLyyJQ7lHWAjt+3guqR52bqC3hmwXy23a+RSsBeETbZihgPQjzGGueGQhL9RYhMlC2nDcQhjBtUuSlmy3HHD3vLQ2e2nmmLyumBcLSMSC/dwiUQaj3FPnw48VrIPaOI6C16tb4uRY0a+dRO4aoveEb3axl1dfWeVoTvqXvQzwJi77QFhhrfffuE8hdvSNtJaAWZZ2xVp5IR/NpanCxfgI6SDQYe+UZV17zoeGtK/J+7AVgqcyLiZavDegeP1vbLtQbvpa8NV6pTOs3k3qOjCm9SWvAN7uh7KENU9A1MOZXe6nPyM7krAum9WumoqV5axCOwjoBYUtZkHrte4i/bS2flaz++U8rxioD5u+D9wFGOqdlEOqk+qi0dhnwWnUWaKT6HkBqAS0/P+JP93e9Bny9tpmymtQzV+QPvuY/RbZNPXiLNgQwFd9k5Mm60q4FYa2tB2Gp3irLbNxaAcJbu8ke/Wkgbv0pjZEBrgZYLwVtnYOVS3VSjBcbibNAy89rj1ugq9Vp9UcBbev4qlrhK6kVvlRR+EbrMjFSXKRNtp+cdgJwUSaNbEE4Gp+BcLTO+wAQhTCEsloIU10RhjDXlu52b2Vg7JV5xwic0zKrnM8zKivWg3EvEGcgbNUd9edafYrq5Xwjbam8siyssheWLeHbD7xFOwMYyLthrY/opqxMX1kIe/VeGZ+3BWFLUlvA3SHdax33CJLm5bnfTB0vQ+IYgXNaZpX3kNZfbxDX1O8BuSOANgxeYHv4Zsv4sRbDX6wH1ygQW+HbH7xFBwBwUcQNW0CNumnJBcPo1xpTqrMAzsta0tFWe+28IiVdoy1BbEEz29aK0eJrjhE4p2W8nNdl5f1ueoGXnnvwlWJbAFfTZosxatuI8sArldWs+VIdGb7SG3Zc+AKHAjCwDoQ9SEb6kaBptbFAqs1JiuN9WzFcnSAslUV+orJNVi19Zsf34o6UAbBkzVGrq4Fu5LgVwFbdlnBeM1aU91xnWqbBV1ItkLWymk1XNdDL/sfbH77A4QAMtEM4Gr/Vpiyvned6IZTxdDR/OAeU2ASEqVrgtpesPxEN2FKdV8br4cRo8+NtaRkv53WtikJXKmsBcY+ynnBdu002VlU05SyVZVxyaxmE+h51rannY8AXOCSAgTYIa2vKEWhbEI7WWSlirV0NmDmEodTRc6oynw63Klmw7eFyLVkwreknU1ZzDOOcllnlvC4r7/eQBS8/73EcgVZt3VZtatubOjJ8uTSIZVLPkT4zkD4OfIHDAhjQQUqVvdpaEI3EtEIYqAOuVMbB6u2Q5mOXGMcN06GjsK3VVpCW6rQyqW1v8Eagu6YDtvrzwMvLIsf0/Egg7hXbUqfKSjlrMKZla7lcaywrhpd77aR6KUaL02KjbdfRgQFc5LlhDcJauwiErb4s6HsQ9vrskaKuTUkDVWlpSUdJP1twjcJYq+8JXi8VTculuhpZv59aGG8J32hZb1ivVaeKPtIwAloJklvCl+ulwHdb8Ba9AAAD/SHsxWWuxNG1Yq9tLYSlMi8lLSnhhnkzCjWpziuTprIlwCWA1sDWAu2W67+175/UJlK2Noil2FoQb1UXjTfFXS9Ql3KOxktlEYBKsLdiuDz4SsrA19M+8AVeDICBvhCWYj0IW/UchhDqJChKbS248vZemZWu1sAcWBumL5OrJ4i98VtWH3hZpj5yHKlDoIyWS3WSou+rFafV9YavdlxTvzWcW+JN1bpeWpaNj5ZZ5ZEY/gas7Xy1+Ei79fWCAAzEHW1Ea0I4O34Uwt78rdckjWeNFXDDNJz+RGMZOtVlyjL1XjtrzEz9FspCOANgft7juEfZ3vGmesIXQp1UpsFSUgt899De/8FsvTAAAzboJABZbbR4KybjhL314AiEgdjDOqS4UmatGVt9BNaGyzSoekExoujnEK+t10/kWKpD4hxOOa2jiv4vjryvWkwrjI8I4payaDw/VmWBN1PW2+W2OF8uXue1e53rvlQvEMBAPYRhtLP69iCste8BYVpuwZLHAXPQRtPP/I+yAcRHkgfbSGwNhKPnRdF1YD7fFmWumZGynmB+SVC2jk1F1nq9shp4rg3f2jpen43TYiPtttULBTBQB2EtFvABa0E4WtcTwrysvAbPNfM2YPGADudEWro04cNstUa8hVohDCz/TL1yKPVZee+tVp+BKz9vATE9XqO+F2xTf7MWeGl5i+v1+mmJjaadLfhKWhO+xwBv0QsGMLBuOvroEAbstWLLNXspa62sjAk0g7hGNf14n8U0iEaOM3XlHE6MFSvV95TVp1TXC8Za3JaA7tmnq5Z0My3fwuGuDd8InF8nfIEXD2Dg9UEYiIGVlmug9ByytzYstSljBtPS9GVRvQSHS9ULwlpMkeV81/jf6v0OIuCVynrA+EgAjsS6ksAL1K3RrpFyjpb3WPON1Gv9vw74Aq8CwEBfCNfGaeNlIayNnXHImT4iQLcceALEdAjujjnApHpelqnXFP0gYPWZGc+Ksdqu+YElcw21yqOQra1bA7w9+gop6nppuQfADDi3gK8FuV7wfV16JQAG+kFYiuVxnlPWxuN10XQ0ELt/mJZn3LTloKkst13hiHvBsUXWryrahn+AgFGvxVjltE6rzyryvvaCr3ceOabnkfKeMLbGdhVd59XKs2nfKNxryqPwXcv5arFWvNVmf70iAHvaE8LROg22NE4CpARnXu5BNvKwEGvsUt4I4qOmprOgtiDt9WmBmNZTeevcGWXAK5XXwteqW/O45sOAKS/VXFPe28me8D2CXhmAvXTx3hAGfJdL++FX4ozr1cqjIK5p1wjiiNYGNHezLWu9Vt+0DEpbD8RSbIusPiKuVyp7aTCmx9VulzdeA3xrut7oHDJ1kXopxoq14q02x9ErAzCwhBnXnhDm9VZdy/ovB2TNJq8sKxPMhwAAEv9JREFUcDuAmE/Rc8V7p6g9CGddb8Tx9v4f671/GTfslb1EGIe0N3jXKs/EZeEr6W3BF3iVAC468ppwDwgDNgRpm0i55Ya9GKmci77Gzq64VRH32rNvC8Jw5tIK4+j7+tLdMD2PlDdBl3dwBPD2nIcV540r1UdjpDgv3mpzPL1iAAMvC8LAHLDaurAWF3XJUl+9Qez1W+mKqfZaK+7lejPO2poLl7TZK6st4OvF9ARwpo0rze0C6wAvCsIad7sHfM+0M9UrB3BPrQ1hXh/98JCFcE0by5UDtsu22iRBTLvlrKfDPbFy6zhTV3OeKYvUSbFUXru1HLBU/lIgHFY21WzVZV1vdMzWvrgyfwg1aWdNrx++wJsAcC8XrMVvBeEawGXcs9dGcsNenFQu1TU44r2ccKt6OOAS21s94CuV9TzfxO0CMejW1q2VPu4xn0wfkXopJhOnxXptjq03AGDg5UMY0B2oFpcFdG2bmrVgK21d1JCeLl1tAWb+q5T+PLQ/MQ/CMOrX0lrwlcq2BnBKreC1ANUK3tpxrf5O+O6hNwJgYAkOKgvCUptaCNO+WiDd6mx5/zWuNQri2v7pBXBFGK8B6l4QLvVwYnrIew+yYD4KgFOqWd/N1K0J3pa66Lxq6qWYTJwW67V5GXpDAPZkXQklN1wDYR5jgUqrp/3XuuFSFwWlVRcBsRSbqatcK34p8iAcjWkZvzamFr5SWU8ghxXdzdxS1wPeawC7Fa418NV+UW8PvsCbBHBNOlpr1wPCUkx0XZifR93wGnXczUbcc7auwhXTaZZujgjnPSAcfR/WcL9SWet5Smu73V79tIx/wvfoeoMABuohHI3fAsLA3HVGgZ2po2N4dTD6bYF9GYfXVbhiaQgNzl69FcPLpLY8XmqTiemhPdLQUtlq4LXcLrAOeNcaZ6v51dRLMZreLnyBNwtgoA7CWps9IMzra4FpOU7e1qrz+q1xvbzeSk8DTSnqvZzx3unn0n9LXO/0dFenC2yTZm7pi9e3OFur7Vau9lzzjeoNAxjYB8JAPWQj9dk1Zq2vCIhLfcQRg8RE+uL1EVBXwphOWdPeqes1IXw0AFt9hhVNMXv1e7rJI82zpo9MX1as1+bl6o0DGKiHMIR2EQhLcRHI0vE8sPYCbbbeAyRvX+O+o2M1wBjwAbA3kHsp8xqyKWitvLvDLap1utl6z+FFHGCt462p791fNEaKy8Z6bV62TgADqF8TjsA1GueBT+qntxves74FtivDGGiDxJFhfQQAV8tb0wX6gm7ttdO9wVszZrQfK9aKt9q8fJ0AvusIEJbiIm4ZyLlhK36t+hLjwbMVthvAGJCvFzWgPQKcW1PQVl3315bZSKVNwIIyr+8Bqd7p3y3mXBujxWmxVrzV5nXoBPBMR4YwoENP6kdyw7TNViBu6SOaoub1Jcaqp/0UNQAZQvdliB4QWhPUa7vgJnHgSgOtsX65hXtco4+11nJP+K6hE8AL1UI4Gt8Ca66sW65p0+rAtT5oTKQPKZ1utYnOi8Z0csdUGpSj9VbcmoqMt+qcjgremj4jMT366AXWSMwJ3x46ASyqBsJamzWdcCTGg1mkjec8M320jJMZt8RYrliKKXEcAJ2ADGE4PvTeKemiTecRAS6wHiB7p4l79pMFb6RNbUwmTou14q02r08ngFXtBWHAd7Geo4zE9HCqkZge0LTmL7Up7WpioMStCGSqVujxP7OjwHyhWuBG49aAbm3MmmNtvZZ7wrenwgAehuEC4KsA/vs4jj+63pSOJA/CgAxWCO0i8KKxEcBK/WVjom3o+JkYGtcjRgJmDeS9vr15bgTkrA4JXAm2QPwCL8XWAmNvt9grZg9He8K3tzIO+CcAfA3AN680l4Mqshabadd7XbinG6ZlvUAsxbUC04rJuGmpbxobSVeXWA0yBwHzZsrAFshdqPeGrhS3pmvX+tra9faIteKtNq9bIQAPw/B5AD8C4K8B+POrzuiQqnHCVru1U9JSXBSWLY6YxkUcpxSXjSlxEixr2vWIpW00IAEvE87W6wHqLrKtF/0IpKS2PUHZu79e4F0jLhurxUfavW59FIz7KQA/CeAzLWAYhi8Nw/DVYRi+Cvy/LpM7lrb4I4mO8akQu7Vj2CLuSYhreU2R/mtjtXlp7YAJZvTfERWZo/c6vfcnEq/9LdT+nqOAjv4/q53va4GvpRO+mlwHPAzDjwL4+jiOvzwMwx/V4sZx/DKAL09tfu9RryaN8pyw5oIhtLPWkGtja1PCUlxtWprG0disI65NYXtxkbSy1F6LteK1+Wnta/7bZFx0y3/LyEW3xgH1cMV7fGDcInXe2rb3nLXYmnirzdtRJAX9AwB+bBiGHwbwHsA3D8PwM+M4/vi6UzuqaiBstYumozOxWhywBFukv9qUM43tuU7cGkdjvfZWH6WNlYK2LjIROEt9UrV+1s26mchFc+00tFa+lyvcK4W+RpwW2zPeavO2NIxj/D/wzQH/RW8X9OSAv9Q4taPL25ilgVhrl4lvjW2J69G+95zWeD+scu9za+3fRk1fPZW5KG7tiLdynNF5rbVZac8PAj1ivTZeu9eiL2Mcf8tNT533AVdLSy0XWSnpqLvV4lvT19m0NI9tbR+NbXG8tX3S2Izj1cblffI5SPL62kIZZ+zNseZi3MOFvSRwrbEuu0fK2WrjtXt7SgF4HMevAPjKKjN5laqBMIQ21jpy79jMHKLrvzSWxnuxrevKPWL5PLQ6Kw0ttePKAHoPtaaevT7WTHseOXarlHa235p4q43X7m3qdMDNstaEa9tZa8nR2B7OOdpvBvqZufX64JHptyji5Hmd1yfv1+pH629NZS+QrWnoninqI8C01fFm+zjh+9J1AriLPJgCOSdc2rVAxovPuGHet9ZvqyOm8a3uOTIPC57ZjVjS+JF+ubTfyx7qmYbufeHeGtC94o8+v5p4q43X7m3rBHA3eU7YcoNQ2u61jizNJ+Mkax3mWqlsq2/apgbIUjve1roAeY45I+l33zOdHb2QrrEmbLVby0326rtnP3uA2mrT0u7UCeCuqoWw1bYHKHvHWy5NA08G6Dy+FsY0PgpXC6yek41unorCWWujqRa2tRfJtdeFezqxPSDda1wtfgsHWwter+0p4ATwCrIcLVAHYatdjRuW5pcBsQYsq/8ecI3Ms1f/VNH0s7cRSxrb6i/aZi31XhN+ic64Jr6nw9zrtVltvHZe21NFJ4BXUw1Ma9tloWqN0xvcUputPgRE21hOl7fz2kbaS/1Y/UUl/T57Xwh7rgtvmfLcYh30iODt3cZr57U9RXUCeFW1QBhK2z3T2L3b1K4V8zatMLbG8ebnjZnpR1Lmv2jrhW/NFPYe7niLVOzeHxR6t2lp57U9xXUCeHXVQthq23Nnde9xeoLY6q/nB4FoO6+t1l7qR+vL6vsIylxgX0pKurbNVs7yKJumTvj21gngTbQGhK22NQ66JwStNla77KYtq02NK+btvLaR9lo/Ul+StrwPGKi7iEY/JLQA12u/VQp2S7Ad4fVG2kban5J0AngzeSAF+q4LW+1aXGItvKXxrHbZ9DRtw9ttnW723geujGveUz3XfyP9Hckhb+0oj+J6vbaR9qc0nQDeVBZIgbbNWVDabrWeTMeyxpPaRjZsSXU9XG4Ph1u7Bmz16Y3RU61p7ugFODLOWinQLd3uGnM5Wjuv7amITgBvrlYIw2i/tRsuWmO9NeOKo31KbaOvQ2vP+9D6kfqy+vTG2FrZi+1LTUuv1WdL2z0AesJ3C50A3kUtEPbar7kJaY8xpba9gJpNN/P2Uh9SP1pfWp+a1loP3mr3dI+0tNfPGtBt6bel7R5jem0j7U9FdQJ4N60JYa997zXlaFso7VvWwFv71dpG2tM+rH5oX1TZ/35HufD1XguO9rmWYzuii2zJeOzV9lRWJ4B31ZEhDKVtK7TWcMTRfmv7bkkxZ6HsjbGFWi7CWwE30ofX/qiblo7qfCN9nMroBPDuikAU2N6VemNvAeKasTMwXXvNV+pP69Mb42h6iWvCrf3vCV6v/dpjR/o4ldUJ4EPIgyiwHkij7fccW2sfdcVavQfjSB+8H68/3ifX1vf9Wqq94G59u1Kknz3h9dLbR/o4VaMTwIdRK4Qjfay1uau0RaC91sfaIG+dH+2jKJNejv5Xi1zoekC65wU169aPAN3IGC+9/RZzONWiE8CH0tEhHG2Phj56gVjro8bRrgFkr29Le14Ua1LjW64LR2L2BudrmcOpVp0APpy2gjCMPnruDl4LpBnH6rliKyY6Fu/P61Pqm2uv/55bbMLKjtXqdiNjHQF6R5nHCd8tdAL4xaoVwhG1uuGj9BFx5ZGYMhac8XifkX6tsSS1/tftvclrDfBG+3wpwHop8D21lU4AH1JReK7thHv2AaOfHm62xzxojBcXdcVSv5H+Pe15Ea1xR703Zr0maPaay1av51QvnQA+rLaCcLQPOP1EnWxrP703U/WGsTWu1X9knK3VeiFe44Edrw2aL20up3rqBPCh1SONHO2nVyoYG/UThXmPfjJxdNyizH8z7wLYE9C9L7Zr7IbOxL1G2B2tn1M9dQL48OoJTzh99YBw6QdOXz0ButX7Q+MisXR8qpb/dke6SK65IzoTezRIvdZ+TvXWCeAXoV6QifTVC3rROW2ZIi/q8WznbGzNXI6mrXZHv2bw9uzrhO9L10v633/KVRTCPZTZNbwFhKP9RPvK9FdikYinc6E60n/JHhu99gJvtL/XDN9TR9eR/refMtVrPTjaV09I9UyRw+mr9+1EWbCucevRFv9Ne+6qzsIhE98TTq8dvifIj64TwC9KRwRnpi8E+juyG0awz5Y2kiIXUu81rH3bUs2FvDd4M32+VPhGdd7r+xJ0AvhV6qgQjva39caqmodr1IA42y6jPS64te7pNYA32le0v6P2dWpNfbT3BE5l1fvisHVf0f72uNA8JfusdX21bY+glvln270V+Eb1Uv9mTmk6AfzmdeT1pCiEe88t+wCJFif4UmDc43VGlf0gFO2zl97S3E6tqRPAL1J7/MeO6rU4iLUeKmG1P9pFsccHhGzbNZ6edeT07gnMt6wTwKewj3PtrTUuZFtDuPSx98W21xzWfB2v4W+2t06YvzSdAD6V0B5rwcC+bqIGwj1BvOXFsud4Nf2skbE58rrvCcy3rhPAL1bnf/LttPYjFyN9rfX7WQP0a8P3yEswp07FdQL41Eo6+geEl/iB4wigXKPPE5Sn3qZOAJ9K6rxYxrWma21t/xI/gAD7zfvoHxTP/5cvUSeAT70yrXUhOtoF7ogAPeKcPL3EOZ96LRrGcezf6TD8TwD/tXvH6+r3APhfe0/ilet8j7fR+T5vo/N93kYv8X3+znEcv9ULWgXAL1HDMHx1HMc/svc8XrPO93gbne/zNjrf5230mt/nMwV96tSpU6dO7aATwKdOnTp16tQOOgH80Jf3nsAb0Pkeb6Pzfd5G5/u8jV7t+3yuAZ86derUqVM76HTAp06dOnXq1A46AXzq1KlTp07toDcP4GEYvjgMw38ahuE3hmH4S3vP5zVqGIa/PQzD14dh+LW95/KaNQzDdwzD8AvDMHxtGIZfH4bhJ/ae02vUMAzvh2H4N8Mw/Ifb+/xX957Ta9UwDJdhGP79MAw/t/dc1tCbBvAwDBcAPw3gjwH4bgB/chiG7953Vq9SfwfAF/eexBvQE4C/MI7jHwLw/QD+zPn3vIo+APjBcRz/MIAvAPjiMAzfv/OcXqt+AsDX9p7EWnrTAAbwfQB+YxzH/zyO4ycA/gGAP77znF6dxnH8RQD/e+95vHaN4/g/xnH8d7fj/4vpwvXt+87q9Wmc9Du308/d/p27WTtrGIbPA/gRAH9z77mspbcO4G8H8N/I+W/ivGCdegUahuG7AHwvgF/adyavU7fU6K8A+DqAnx/H8Xyf++unAPwkgM/2nshaeusAHoSy85PsqRetYRh+F4B/BODPjeP4f/aez2vUOI7P4zh+AcDnAXzfMAzfs/ecXpOGYfhRAF8fx/GX957LmnrrAP5NAN9Bzj8P4Ld2msupU80ahuFzmOD798Zx/Md7z+e1axzH3wbwFZx7HHrrBwD82DAM/wXT0uAPDsPwM/tOqb/eOoD/LYA/MAzD7xuG4WMAfwLAP915TqdOVWkYhgHA3wLwtXEc/8be83mtGobhW4dh+Jbb8TcB+CEA/3HfWb0ujeP4l8dx/Pw4jt+F6br8L8Zx/PGdp9VdbxrA4zg+AfizAP45pg0rPzuO46/vO6vXp2EY/j6AfwXgDw7D8JvDMPzpvef0SvUDAP4UJrfwK7d/P7z3pF6hvg3ALwzD8KuYPsT//DiOr/I2mVPr6nwU5alTp06dOrWD3rQDPnXq1KlTp/bSCeBTp06dOnVqB50APnXq1KlTp3bQCeBTp06dOnVqB50APnXq1KlTp3bQCeBTp06dOnVqB50APnXq1KlTp3bQ/we5egeI3ld27AAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x1eddfe679b0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "heatmap(grid, cmap='jet', interpolation='spline16')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's define the problem.\n",
    "This time, we will allow movement in eight directions as defined in `directions8`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'E': (1, 0),\n",
       " 'N': (0, 1),\n",
       " 'NE': (1, 1),\n",
       " 'NW': (-1, 1),\n",
       " 'S': (0, -1),\n",
       " 'SE': (1, -1),\n",
       " 'SW': (-1, -1),\n",
       " 'W': (-1, 0)}"
      ]
     },
     "execution_count": 71,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "directions8"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll solve the problem just like we did last time.\n",
    "<br>\n",
    "Let's also time it."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "metadata": {},
   "outputs": [],
   "source": [
    "problem = PeakFindingProblem(initial, grid, directions8)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "533 ms ± 51 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "solutions = {problem.value(simulated_annealing(problem)) for i in range(100)}"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "9"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "max(solutions)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The peak is at 1.0 which is how gaussian distributions are defined.\n",
    "<br>\n",
    "This could also be solved by Hill Climbing as follows."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "206 µs ± 21.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "solution = problem.value(hill_climbing(problem))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1.0"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "solution = problem.value(hill_climbing(problem))\n",
    "solution"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As you can see, Hill-Climbing is about 24 times faster than Simulated Annealing.\n",
    "(Notice that we ran Simulated Annealing for 100 iterations whereas we ran Hill Climbing only once.)\n",
    "<br>\n",
    "Simulated Annealing makes up for its tardiness by its ability to be applicable in a larger number of scenarios than Hill Climbing as illustrated by the example below.\n",
    "<br>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's define a 2D surface as a matrix."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {},
   "outputs": [],
   "source": [
    "grid = [[0, 0, 0, 1, 4], \n",
    "        [0, 0, 2, 8, 10], \n",
    "        [0, 0, 2, 4, 12], \n",
    "        [0, 2, 4, 8, 16], \n",
    "        [1, 4, 8, 16, 32]]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHwCAYAAAB+ArwOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvNQv5yAAAIABJREFUeJztvX/MdV1a13et93ned4AMZZpIUueHjka0NSRCO1Ia0taMNB2RiqZJiwYTf2WSWuPQ0FLxD9umfzVNiH+UNHkLRBONaIttLdUaGiGUhCIzCAYcNRMYwxTiSA2BSWfeee9ndv84977vfda5fq9rrb32Ptc3eXKfvda11tr3eZ7nfM73Wj92WZYFUqlUKpVKjdVre99AKpVKpVL3qARwKpVKpVI7KAGcSqVSqdQOSgCnUqlUKrWDEsCpVCqVSu2gBHAqlUqlUjsoAZxKpVKp1A5KAKdSg1RK+WQp5eursj9SSvnRgL6XUspvae0nlUqNUwI4lUqlUqkdlABOpSZRKeXdpZTvL6X8s1LKz5dS/vSm7mtKKT9WSvmVUsovlVL+u1LKG491P/IY9tOllM+UUv7DUsrvKqV8qpTy7aWUTz+2+f2llG8opfzjUso/L6X8WU3/j/VLKeVPl1J+rpTyy6WU/7aUkp8fqVSD8j9QKjWBHmH2vwHATwPAewDgdwPAt5ZS/t3HkFcA8J8AwK8DgH/jsf5PAgAsy/JvPcb8jmVZ3rksy199vP6XAOCLHvv7cwDwPwDAtwDAvwYA/yYA/LlSym+W+t/oDwDABwDgXwWAbwKAPxbxu6dS96qSZ0GnUmNUSvkkXAD3sCl+AwB+EgC+DQD+x2VZfsMm/jsA4Lcuy/JHkb6+FQD+7WVZ/sDj9QIAX7Esyycer38XAPwtAHjnsiyvSilfCgC/CgBfuyzLjz/GfAwA/utlWf4XZf+/Z1mW/+Px+k8CwL+/LMvvbnhLUqm71su9byCVujP9/mVZ/s/1opTyRwDgTwDAbwSAd5dSfmUT+wIA/q/HuN8KAN8JFwf6JXD5v/sxYaz/d1mWV4+vP/v4859u6j8LAO809P8Lm9f/BADeLYyfSqUYZQo6lZpDvwAAP78sy7s2f750WZZveKz/7wHgH8LF5f4LAPBnAaAEjq/p/32b178BAH4xcPxU6u6UAE6l5tDfBYBfLaX856WULy6lvCilfGUp5Xc+1q8p5M+UUv5lAPiPqvb/FAB+M/gl9Q8A8J+VUv7FUsr7AOAjAPBXkZhUKqVUAjiVmkCPqeJ/DwC+CgB+HgB+GQC+GwC+7DHkPwWAPwQAvwaXxVQ1/P5LAPiLj6uY/wPHLUj9AwD8r3BJS/8UAPzvAPA9jnFSqdSjchFWKpUSVS/ySqVS7UoHnEqlUqnUDkoAp1KpVCq1gzIFnUqlUqnUDkoHnEqlUqnUDupyEEcpX7IAvKtH16lUKnUA1VuoLdfaOq4N1r61X889cvfDxWvLvGNGxVL6JCzLL4sddToJ610A8OE+XadSqdT0er26rj9qufrXiXKuTtPGM6am3FKH1dfXWBsqjovXtrX2pdHvlEMgU9CpVCp1YlnAM4usAIyE71glgFOpVGpX7X0k/7yAGq+xfxcJ4FQqlbo77QV9L+zP+SUhAZxKpVKhOics+qj3ezV67temBHAqlUodQtxCqyhxi6k0bSx1qQRwKpVKdZW0CjjlVxTg9/mikABOpVKpaeRxuTM549YvF5btR1Grn/dz6QngVCqVCpMVQD0//F8nXu+lGe6h1r4p8gRwKpVKdVNU+jkSXp55Xk1fljrt2L3d777KGfJUKpUKUeuH/t4p01Yw94S5RaPfR//RlQngVCqV6iLL8ZNSW0qaoyIjwTjSwXvc7wj4RpwVfVGmoFOpVGp3jUqZas+PtvZlleXLSLTmgC9AOuBUKpUKUE+Aah+I0Hs8i0akyWtp3g/PfcVCd6sEcCqVSoXL+/QjqU4zHpV+bv24124/sj79yPrkI2l8Stbfvx94VyWAU6lUqknWx+95Fel+90w/e9UypqVtf/CuSgCnUqmUWx4QjnK/HrUeBCLVed1vS+pZ+3uMA++qBHAqlUq5pAFF1GIjD2Q1c8fRp221ztFa4Htc8K7KVdCpVCplltWladSaCp7d/daawf/tB1+AOd6BVCqVOpA8DhSAd8eWOuvYVHvP+c49n3wU5X7nd76rEsCpVCqllvZwiJaFWR4Yag/esK4WjrhP7FrzfvSC7/7gXZUATqVSKZV6wVfrKj2uWNM+YrEXVzcLfOcB76oEcCqVSrGyfOi3Pg2pdR6WGr/nimoLRjSxVvgey/VulQBOpVIpVFa35VkV7anzuF+q3DO/25J6luKtccdzvVslgFOpVOpGI+DrSelyfVpTzK1zzVJdROrZm3KeG7yrchtSKpVKXSlihW2Ped9aniMnW1dEa/ryxkb1dwz4AqQDTqVSqUd59622LrqKTgNr+m4d03reM3df1D140s7HgS9AAjiVSt29Wg6MiIQv17f2HkadeEW1wa6lLw4Rx1EeC7yrEsCpVOpOFQleLD7qIA5u7EjIRhwMYj16837hC5AATqVSdyXrQRTa9r3gG7HoqnUvsLZNxP5nC8CPC95VCeBUKnUH6gVerN2IU7Ba9/VGrMDeqkcqnhrv+OBdlQBOpVInVit4pT72OAVLGxd92hUo6xK+WiWAU6nUyRS1jaZ1L3CPfcD1dS+HG3E/Uj9YPRaz6lzwBUgAp1Kp02gv8GJtZoFvrehTsEbA93zgXZUATqVSB1bkoRE9wCvF9IZvrzaWPjz1qw4C3/r2H3zNUqlUanJpoQvQ5na59qO3Id0bfCcDbydSJoBTqdTksgAXoN3tcn2M3obUc/529JzvQVLOA6mYAE6lUhNqD+hy/XjBK8UkfJ+1E3h3pGACOJVKTaQe4NX02+PwjTrG4oqtMMMU3caTuqbGngC+UfTD+nk19hZSqVTKIStwAcZAl2sfvQWpro8A3V5zvhPP93pp15GSCeBUKjVQHuACxEFX6qt17y8W1yPFOyrt7F3BrakfAF4r4QYTUfU84FLKh0op/6iU8olSyp/pfVOpVOoser36Y9HLzR/tON6+qPZUOyy+jqtjsHouth4Pq9P272nTsn1qR/ha/tm8BFt8sMQhSykvAOC7AODfAYBPAcBPlFL+xrIs/6D3zaVSqaPJ63BXRTpdqT+r26XatKakW0DXq03EPdV1AN3BGxET0e7zcd1+DQB8YlmWnwMAKKV8HwB8EwAkgFOpFLRB1/rJ1ppilvoYuf1Iit8rHd1rvrcTfKW/7onT0Jqh3gMAv7C5/hQA/Ot1UCnlwwDw4cvVlwXcWiqVmlejnK5lrD3Bi8Va4BsNWK7uJPCNAu+OK6E0Q2Pv3HJTsCxvAsCbAAClvPumPpVKHVUjYWsZrwW4XHsLdLH4HuD11mnbHCTlHAHdVuB6qens6lMA8L7N9XsB4Bd13adSqePpqMCV+vLMB7fMBXvBW9f3hLIlbkfXy/3VRaegvW06DfMTAPAVpZTfBAD/DwB8MwD8oa53lUqlBqoVuADHc7lc20joYmXRKWWuLiLdbBkbIAy8I6C7Y/pZNfyyLA+llD8FAH8bAF4AwPcuy/Kz3e8slUp1VLpcXTvvqucW9xjhhrl2k6ebqb+KPdPP1naBKWhYluVvAsDfNN5CKpWaRqOBaxnzqNDFYkeA11vXAlcO/B3B2+KCtTGe2CDtbMBTqVRfndXpSn1Ywduy2pkqiwJcRN3ErtfqeCPnfGdPQadSqaMpoatrExHfulCp98Ksg4HX63hnSj/P0XUqlRqrFvCeaREV167V6WLlmoVYo93wxOlmC3i9Llgb44kNVAI4lTq8vOBN6OpjJWhpYnpB8aCOd4/UcwTxNH1ELsJKpVKzaZTbPSJ0e6SWtWNZY6LqJgWv1u16oNsDuIOJmABOpQ6lEW53ZuiOnM+l2nv2A/eY+43sZyLwtkBX+8+8B/m2faYDTqXOpFnAe1ToalPLlvYt0JXqpbYR88RYfTB4ezpgTb02JqLNvMOkUimfZgGvps/ovbpndLvW+hOlmkelnidPO08ydCqVojULeI8I3T3cribmZI43Os3she6ItLO1baagU6kj6gjg9aaZZ4XurG44atV0XT+R251h8VU64FTq3nV08PZ2u9pY7VizQre+nsTtYt3NAt2RC6+0faQDTqWOoBnA2yPN3Au6Z3S61nhL3Q6LqiKgO9IBe+KDlABOpXbRiH28ezjeiLSxNrYndD0xPaFb1x/Y7Vrnf6X6GR3wPt2lUilZR3a9MzjekVDVxCR4xRht24g6S0xEmwYlgFOpYTqy6+3leM8K3Tqm5x7hidPMoxZe7b3oyvlXkgBOpborweuP2wuonhjp/qPnkQO3EHmg2wrX3sBNB5xK3bNGgFczztHAO2ofriam1elKfe4IXaxsr7neVuCOnAfW9JcOOJXaU7O7XusCq2jw9nK7e6xgrssmcrpYd73mea1w7QVjbUxLfJASwKlUqGYHL9d+VvDuAVWp3vpl4Y6gGwncSNhG0U7TTzrgVGqk7iXdHDUHq2k3W711DvjOodsDuCdyvzsPnUqdRQlfW0zvudmZtg1p6ncG797zvKPmf62xLX2mA06lRuhs8G1Zsbx32jYS2gndZrgexQF72wQoAZxKudQCXoB953tbXG8P8PbcI9vidhO6zWVceUudpt4bO6KfPt2lUvegdL14zMjVwZFQ7pnO7rhtKAqoe6egpbromJb4YCWAUymT7mGVsxUyWEwUIKOgfFDoRgC1N4StsS11lhhLXHT7nANOpSJ1NteLxUe43hGu1Vt3Euj2grC2naU/Tz+9YlriO2mS20ilZlbrfO9s42jHOit8I1PdO4J3hhS0p7ylzhJjiYvuIx1wKhWhe3S+1rT0aLh6U83ePiaG7mgIR5ZLddExLfGdNMltpFIz6mzwjZjvjXK9PcEbPS7A1NCNdLR7gVhTr42xxEW3XZUOOJVqUcJ3zHxqJJSjoe6ErhWIo+Z4ZwJuBIwtcdbYFr2EBHAq5VeudO4D31ZnawWvB8hBTneP1LIXsBaA7gXbns53RwomgFOpK50dvhJ46xjvQRWRgI0Cb2e3e8ZU80jXGxnjiY3sJx1wKmXV7PDl2kbAV6rvlTo+GHhnh+4RgHvHrnerSW4jldpbs8PX2kazx5eTxflq+pgBvpOCd2S6WdtXZHlUvTXOGjuinzHdplJH0hHgG5l2rmM41xo5p6spnwy8FnBGxWLX3pgeZVLd6FRzOuBU6qiaHb6te3ylmJ7wjSifALxakJ4h3Tw61dzDzbZSLYKKOQecSkm6B/hqnClW3wO+1HgW1zsBePeE8N7A7QXiXnHeeKvq/hPAqRSnUft8vX3NAl8NNK3lra43GLytoG2BqMfl7g3hljpLTI+4qHZBSgCn7lCj4CuNE/XfT7PPl6vrAV8vRLV9DQLvDC7YG2Mp85RLdZp6bUzv2Og+0gGnUnuqBb69D9nQ1mnisHLt4qy6TNvXAPhGuN+90s0WkI52vzPBdgL6TXALqdRIzTDvuyd8OSBa5lcj5oFbUs6B4J3Z/Y5IN/eAbY/U8VHcL0A64FTqVglfvM664CoS1No2ja43GrwjoTsKuHu73jtwvLUmvKVUqofuDb7WeizOA1RLe63DbXC9reCNSEVb+tG2by3zlLfUWWI8sZ741nYBSgCnUqyOCl/PXt/Z4Iv14Ug3t4I3Iv0c4XJngXBEvTXOEx9NN0t/mYJOpVZ53e+I/x7W7UaauB7wpcaMgC8X3+B6PZCNTD/PlnqOLNfWa2N6x0a066CJbiWVOqr23G5kiWmBr7RCmWvfMt+7KgC+HuBSUNwbvHtBdy/na20TSTZPX+mAUymA/u53ptSzZcWzJE86OhK+RucbBVmvE7bUea61Mdq2UnlLnSXGEzu6TUdNdjup1L1oJHy5/lrTya3w5cZ3ut4e7rcVyBHXrWWecqlOU2+NGxUf3X6rdMCp1MzuVxvvWfHM9eFNMU8IXw6aLRBuAe+RIdxSZ4mxxLW260k4ru8EcCrl0Z6pZ400kKbAGrHiWRNnga9zpbMGoNY6bz0XH3HtjfGWS3Waem1MS7y3TUu7YE1yG6lUtFog17Pv1tSzFKOBL9Ve+lTHnGsdxzn2TvBthbFUpqm31HmutTHathF1mnprXGu7KKINImMCOJV6Uu//vXvO+0pxEmgtW4cGOt8oCLc64vp1j+vWMq68pc4S0xI/epwBmvjWUimv9nS/vT4drP1GzPtyZVh/VJ3GOU8GXwuQufiIa2+MVN5Sp6m3xrW2m8n95hxw6j6156EbXB+W+2pNPVOi4Mt9mmv36dbul4Nvw4KrmSCsfR1xrY2JLNfWa2Na4lvaTUy5iW8tlRol7X8DL9xHp541c79YW+scb13GtafGEOCrgaYHtFrgWsBsqfNcW8o85VKdpl4bE9GmpV1rW0npgFOpker1X0mCb63RqWcOvpIb7gjf3u53NghbY1vqLDGe2Na2kf8VvX0lgFP3J49Dndn9Wj8FvaddtZxSRSkIvhT8ejljT1n92lKnuW4t48pb6jxx3viIthPSbsJbSqWOpohPn+h5X8tpV1x/HHy1874Hge9MEPbGeMulOkuMJW7vdlHta6UDTqUk7eV+NbL+1/QAXCrTAJ7bXhQkDHxY+SwO2ALbSPD2gG4klL3xEe0nJd2kt5VKWdVz6xGnI7lfa1ndnwWyQe43+qc31lJvrdNca2M85VKdJcYSt3e7qPbHHDqVOoIi3W/UJ1hdbz3xSlOmgW3n1POon9Y67WtLnebaUsaVt9RZYlriI9r3pJvUd6agU/ejXouvog/d8IwhxVgPyeDKWlY9HxS+VuC2QliK1bS3lHHlUp2m3hrX2mbvtsGa6FZSqSOJ+6+jdb/Rx01aFl55z3XWyNhub+j2cMKWOs21NsZTHlXvjY1sH0W01n7SAadSlCLcb3S7vceKdL91O+bTiGqSENbHaNtq6zT12piW+Kg+JqbcxLeWSmm0x+KriE+eVvdb1/VyvxJ8pXYOK3AUCHtee661MZ5yqU5Tb42bqW1Ee0zpgFOp0dprJXarWu67oS0HOWubnvDlxudeW+o015YyrrylzhPnjY/sY1LSTXpbqVQvaf7JR4LU+2kWOffL9YuNQbncDu63BZDePlqd72gH3Apirs7ypScqbqa2Ee0xpQNOpWr1/Are8rQj6315j5zEylpWYTdstWoBqqfN3hC21LXEeMu19dqYlvjZxvX0nQBOnV89Ur4zpJFncr/WbUerFAuvNIDiYGht0wJfL4QtdZprSxlXLtVp6q1xUe0i2k9CvkluI5U6gqzuF4u3ut+6vof7jbYoyq//2yYRLtfTZpQD7gHeSPc7q/P19BFJtc6ETACnDqoIEI1W66EbXGyL+61jWt0vIyvwtLEREPbGaMeX6jTXljJPubZeGxPZrrWPGT4CKk14S6nUXtpj8ZVFmiMnJfX+L+9wv1wdBWUuVtO/d0yvA7bUSWN7yrhybb02xhMb2U/0P3FPfzkHnEpFypp+9vTpXZxFuV/OoWrTz9R+Y0ca2+N+ufYW59r6UyrTvrbUYdeWMq5cqtPUW+Na20S0n4x4k91OKtVDo/+ZY+O1uusId869D1JaWfMeDnC/HpfaA74zgDcy7Tyj+90zzdzaTzrgVMoi60MNWtViPzTbglpgK2mA+21xu9y4e8B3Rgcc4X73cqF7gjlYk95WKsUpeqtQ70cORi++ksbz9luDtRXURPdeJ+Z1zVR7y/1o4euF7ewOeKT7PRLYKaUDTqV6auTc74yLrwynXlkAh5VFO2MJUB5XzL221HmuqTJPubZeGxPRprWPiSk38a2lUhGa6WuxR9rUeHT6uWGxFSYrzDR1dYxlXE8qmrun1lS059pSxpVLdZYYS1xk+9n+m6cDTqVGy5t+7qWW9LNFhsVX2JDeOi+wLWNZxuReS2NGwJgq75163iNlvJf7DtaEt5RKjdTei68ijp2U2rfAlbsPxfujdbqaeGudFOuN04zbKx2tjfGUS3Wa+tb4vceL6mO+oVKpCM14VvPe47Tej/aTujH9zNV5nSNX1wJlb6pc+1qqk+K1baTyljpPXGubvcbrJPGWSinfCwDfCACfXpblK/vfUioVpZH/4zTp55H3Y3nwQt2GKsf6aFx8pS3rAWWLtI47XbA/NqL96PEoKWdlXlPE/AUA+FDDraRSk2p0+lka35N+ltLSvdLPRmndI1fG9eVJG1vcr0Yj4PtSEcPFYeVSnaa+jpFiuTbesTRfHLzjdZI45LIsP1JKeX//W0mljqDZ0s+9FbT6WVunjfeAlpMF+NJ97OWCLWVcuVSnqffGHmksTqNXQZdSPgwAH75cfVlUt6nUQTULQL3awQ7sqQc41q9s/fLS2rdnHO/9eNqNahOssFtYluVNAHgTAKCUdy9R/aZS86vVYo1UnZKe5b5SXWR1vy2uWBvTEj96HG/fuQ84lTqLrNuPWtz3QZz76lgx58rV9b6fvRSRep49Jd3beUe1n3OoVCr1rD1XSE+svUGmkeUeZ/t9IqGsqbfGzdZ3Z4mroEspfwUAfgwAflsp5VOllD/e/7ZSKUpv730DEynSrXZyvg99ujWp9R4eqp/e8fZ+L0bDt3U19F59W/vC/kSloJdl+YO+O02lUj5FwXCSr/lR4tzkXq50Noe7qtU9jkhH93KuIxd/NUqzDziVSgHAYeZHj6LRjrAej7q2Ot570l7wtbhia5+trrhBM353S6VS9y6vs/QswIpysdt+qD6pmJmcdC8H2WOh1ojFXx37muWvPJWaSK3/LaxOmRsvXfeNLJCNhis2tjSG5x6igWxZJW3pQ9NPNEx7r4YeSMVMQadSpxIG7AkgzqV1vXV1jGV8aaGUd9yWtPUMKe8jLNSK6q+O3yEVnQ44lWpSz1UhKZNanGaPFLAm3awdd6YU9apZFmr1dsSevgIfxpBKTabcijSFq5Xkda2j3K5WXH89F2zN4IgB7OlrqS7a7WpivIu+qD9BSgCnUsPlhWdPCyR9qelEg6jUdAuYpZ9acYD2vNaMpb32KmqeWNtXBHg9ae2d0tAJ4FQqtVGH7EIUDDyQjZa2/9kc8Qg33ZqSjgKvRjtuPdoqAZxKHV49PkmoT+wa0I7nrkSnmC2x3kVYWocuLczSuF2PI45Qr7nUqJR0Sx8tDvflYv+Tc8CpVKpdlCN2kMGSJvXEemBlWe2sgTFVZoF0Sz97ybNKunX+NjIVDUDDtKMSwKkTa6ZPqBQpC9h6zvW2zCtTZZZUdetccK954K0s7rHXQq2oVPRA0JK3sMuoqVSz3oY5VwLPeE87qt4+o9lOo2lTbx/yjGMRNx5XhvWhfa1pO4OioNxar4WuVy8N32iKbpx0wKnUVDopwD2rdiPbRLpgrWO3rIrGFOGCuf56Ombvth9PvdjW6HJfPuB/OigBnErdtXZeWtuSYg68DdV4VhhjcZr6yMVZe8zCWOeDe7peD3QHKgGcSqUErQuxHqrrVR3mz1rmY3vMAXudcc/FWTOodeV0D9erdbxR0H356vZProJOpVIX7XxymDa92xOyUnttPRfrKZP6bn3N9bu3WhZpoeWdoIsBdvunQQng1IGVR1L6pXnvBn1aW+dtqXaWMTT1Hmes7VPqj3stjaFt20PWYyu1fazlHHzZPg3QDQSspARwKpWqZPliY/x07wHTnqlnaQyqThOP9U/VU7Ga8paxeilqnlhyvRrwDgRurQRwKrWrZtpP0pJREByIFhpR0LSmmKPngaV70brfKHfsgbMk7wlWVJkHvuS4AnidwH3t5SvVH+26iARwKnVX8loeaSFWgCLcWIs77OWIPWXYWFQ9FTujwtLRBOC04FUIB2usEsCpVGqMvO511E9OFhhr4y1lrWCObEvJm8yJcr7B4B2hBHAq1VUzpZg94j6da1e8w3F+kuONgLsnPS3dS09HbE1V91LLQxai4Suop8tlxx06WiqVmlDYh1enFea9XKvkZjVzuZ75X01MzzIgylpS8b3UvGcYgS+XchZcrxe6L16+Ev+UPIoydR/KrUix4t7P2vEO0p6pZo2jbYFwXRdVpqm3fFnpIcuWJQq+aKwOvBphcI1UAjiVUmnmM5q9dkf75SU4DT0CmD1SzVrQUjHWPrG+qDKtS6a0pzOWZIUvIS14e8EWvafuI6RSp9XR53e32vkTeKSbbUk1a2OjXLK2LzCU7fFXXf9XUW9PaoevBrwR0H3x8uHpTz4NKZW6S41KyXOf4g4X3HILFjhHttH2YxlDqx7paW8iJUId4cvJC90tbJ+g61ACOJW6C23BrP2wwGDOlTV+Uvd0rL3aRI1prQOkzlJmAbOnj5HJIQd8LeCNgi2mBHAqlaqEQdZqr4JdcC+Xq4FwFGCl2Mg6qWwmtbhfBKJcylkL3h6wxZQATqWGarbFXJ6UNdfG+YEV6VyjY6UYi6NudcK1IvjQG9Ca+d+r+jb4UpLAOwq6WyWAUyfXjF/5ZxX2XkmAXttgcQYXjJW1uF2uzupO9wC+5r48ddrxNPWj1AhfyfVaofvy5SvxT8nnAadSKb+0aWhMxk9ub4o4Eoxcf5r2lrGi7ivSGY+CseSGa/cbAF9KWvDWcI1UAjiVSgmSFmNhLngtUx5PGeXwvDDnYnqAFZMlVtPG8p5IZbMoAL4a8PYCbq0EcCp1SLVuN/J+yg78dG51eFFOVtO3B/hRoLXICuM91TAXy8FXHHbgedAJ4FTq1Np+4FDQ9mxRovoLdMFS3V7p5Ii0cWQK2ut0veqWjhb+nSjdrwe+HsebZ0GnUilEUYdxvE28xiR9KjekoqPT01ydBnhSe21MT2fscfFcjLdeK83cbyUtfLmUswW6Pc6ETgCnUmGabYuRRRZoS67a66iZYeqyFtDu4YA1/Xp+euSFcqSLtqoCngW+ZJcTnAudAE6l7lbUhxMFWIsLdm5LqrvRwBEr88ZLgLWAUXq910+rwlxuTDet8JVcbz6MIZUK05kemBChqPQ0BVvJOg2GcKQ7toCOGkeCYXS51YGPEvffsgan4jzn2zIavlw/vnOhkUcW5j7gVCoVIwra0qd2YypIM4rRAAAgAElEQVRaYrk1XRoZT8VIwNOOEVVe188obvGVIvVcywtfrSLnghPAqdSV7tkxa4BpXUndkIredmVN52rLPC5Zajc6lWyFq/bLgOaLx86qAWiFr/5s6D5p6QRwKuXSHqD2fiL2/CS1WC5HKnrbzALhnmAeCd/6/rgyb5+WfwK9wbsFqOB+tTDk4MtpxFxwAjiVujtp54EpJ6txwVT5IAhjZRQ4rQ54JHwfkGtrHxHy9tfpe6p23tcD31ELsAASwKlU6kqeRVoUqDXlnSDc0wFT8S0/6365Oo07tt6nFK+RB9LS4RuPkuZ+tfDl4Gp6RvCLV+yfovx3nQBO3amOvGd3L1m2JK3SQNggDpDUa48D5oA1g9OtX0uxknqnljVi0s9baeZ9KfhS/anmgTeAjVICOJUSdURYew/WsNRZFl5xMrjgeiisTFsvxVniW1LDHpBaIDtberrz8gkrfCVFQ3erBHAq1U1HXVHNAZSrG5SK3jaVnLCmnoqLdsLbsVtAbfkiwKk3mIO0TT9L7jcSvj3BuyoBnEoNU7STbnG5ddsIF8zVdYTw9rUmHa1J63pgLf1sSTNb6ywx2jY9AU2kn7m5X82TjTzw9YD3BTxc/dH+W04Ap1IpRByg6zrt3O5ACFuATLXxuGLuJ3bfUfDl+sbUAlMPkAckg2r3i6+UZhZhKcFbw/ZFw5uZAE6lUg55UtFcXTCEt68lIEeUaYGqAbi2DpAybTxVNzINrVwBverFVSpaTj1z7a/KFeCNgC2mBHAqFaIzLNSypqm5VdGTQXj7utXtetPP2P22wNTqdDVjTiTNsZOUbueKafiy/XSA7lYJ4FTqSUddNKVV70/ZCSDckoZuKYtOKUuQjEhL90pRc8L+iym2H1ncbwR8W8D7El5pn8WQAE6dWb2AenZQc5JcMifPgi0jhCmNhDA3fi9wtrha6/gTy3KQBlln+GVfwqubPxYlgFN3qFnSxb1B3nqqlacPS9paW7eA+cQsyglLALSknLkyTapaWxb15QGEsonEbT3aSpr7RRdiEfDVuN4W2GJKAKcOrt4wnQXWvaQBrHWuuAeEAboszrLWa2HNtbP0ifUl9UcpwjnvDO5t+tmTesbgK4E3Eri1EsCp1LTqAX/NJ6jnU7YVwg/Kus4rpKMcsPQzGrTS70nF7iVsBbThEA0pzgJfSr2gu1UCOJXqorPNE2NAjXTCdT1XN8HiLE06m/vpGZN7jSna9WN9t8IcOUyDWv3Mud/ruBj4WvQCXl39yYcxpFKHU6vj9X4aYmlorC/PnHJPCA84tMPigDXQle4Fq+faePs6kTRHSt6UEW+KxvXWsH3R4JITwKmTyupAsXgtEDVxZ51LloDqaaOFsENeyNVl1G1409XSPVjgq9FsgBbSz173a4Uvp1bYYkoApw4sD9RaQXiG1LLW3XrjpFS0pk0N4aAV0nXzCCdsSTdHpqDBWO5JWWvG2FHaOeKneOSXkFxvD/CuSgCnUofRkeAfDeG6vq7baYV0K3wl8FP3TPXLlWP9TAZV6fSrl8z2JMn9UvCl1BO8qxLAqdShwNZTkS4Yi6udLNauZfX0TmdIa+Z6LcCV4N1SvqcM/824k6+keIA2+GrBi80FP7fNRVipU2uP9HOkRkHfs3CqVnTKOhLCdX3HFdIaCEt1dUwdZ4Ev16c0lqcfr6h/6itYHWc+S48TvLo2wpcdN2Dh1VYJ4NQJFQG3FlgfwVFHfMqOhvAO88KtZaPmdFthOgrGAKanIGkWX1nngTH4clCNhu5WCeBUSq2WldJHEeWYqU/iaAhzkMX67jwvjLli6/ywta0lNV2/xq4xWcE6IIWtffpRi/ul4Ev2l3PAqVRPjXCrZ4O0Rl4IY9oJwly9NPcquVOre/XAdwSYOwgDrMb9RsLX6ni3zwt+AQ/5NKTUmcUBjQLqKAh6gT7TnHaEC6biPeloTUyHxVnaOWHPXC9Xr32tGctap5E2vvG7rbT4ypJ6tsJXUg1crxLAqdSNZnCsnnvYc+659bGEnqMuLfWd54Rb5ou519Q9adu0yNsn98+wnv99hGhr+plzv1r4Sq43Ari1EsCplEqR87+zLNLyfJBE2SVtOvpAEJbKpL6xWCnlrZHXGfeUYmvRU6jxIQ0SICn4cv1FQnerBHDqYPKkn6Pi70mco41IRVPxXgg/VPXcCmmDJLhSsdr23GstfGeBKiflf7UVrFj6WeN+pXlfC3yt4N0+tjAfxpBKPcniVKO3H93bOdEjIexdnBUI4WhnzJVjdVHOeFJZ3e9VWwG+VMpZA94tbFseW5gATqVcGg3NPdy6xwVz7aIhzI0ljR+wOpors6SgqZhWHQCwreLc71WcEpBa8EYpAZw6kPZKP8+Yqp7BNc8IYSwdTbVvWB2tKa/LNCllb50US5VRioI3uyDregGWNf2MPenoedgtmLWLsPBfutXlckoAp06uGUC1lQbmI++59ZN2BIRbtykFQrjuoiUFTcVY67BrSQdIVVvSz9Kq5+vY2xXTnqck8co54NSpFOl+PWNIcWed/209SzpqT3HrNqUgCGtdZuRcrwRADSBHQFT6b7huQTKsgAaQ3S8HX2ze9/qadr3ifbEPY9ApAZw6sSi47ZV+3iOVHQF4CcLSB2ovCGN9tDxXWKnWFDTXB9WPN1Zq71HgP2Mq/dyy+Oop3gFf7bOB82EMqTvSXu53lrnfWe6Dk/dTfTSEubaOdLRnrrV3qjmijVbkk44UMQp53a8Xvug95MMYUimrItyvtt/IQzqOfrgHpch9xa3nR3PtlRDWQC5yDpgaQ7qvCIUmgR5v0OpmMRAHwZdyvR7orm3yLOjUSTRijnSvedjRkG6RBnreVDTXVjsHbSUP9wCHhiGj5oBbYiPaeRUIa+vKZ7QP5Zyv1I6K8c79rkoApyaWBJojbT3y9je7s7UqCsLRx1YGbE+K1GypZo+u0tD0e6qZ/71po3S/VJu1nefxhDkHnEqxYOp18lXv9HO09rgPzSf8TBDW1ima9FqENaP7DZjjtT6AQXK/XOpZ+2jCqMcTaiUCuJTyvlLKD5VSPl5K+dlSykfC7yKVulF0enY294vd51nnf61qhbAUo5kPHnhmdMRK5mjYtvyTErcjYSucr93vi+rnVaxiz68HvlQ/nucCa8+C1rzNDwDwbcuy/GQp5UsB4GOllB9cluUfqO8qlQrVLNt5ervflv61cZb38m1lvw+KfrV9aVT3pRmfUkvbgG41cZ1ukZUIVUW54QELN3GI+6VSzxb4ep8JHPV0JNEBL8vyS8uy/OTj618DgI8DwHtCRk+lUHm3HVnd70xbj2ZJW0ep9QMqelHWABeMDSvVj14kRcnzz17bZjv/q3j+r8b9auB7cxvKJyNJT0fa7XnApZT3A8BXA8CPI3UfLqV8tJTyUYD/L+buUneoGUHU4n5nniO2ynLfZ0uLM/LsBU51V69n+EZKDeBSyjsB4PsB4FuXZfnVun5ZljeXZfnAsiwfAPiSyHtM3Y1aVj1HuN+9tBfg7wiSKbvqfx6WNLThn5a0+tm69QjTyOcCW6QCcCnldbjA9y8vy/LXu9xJKsUqatUzFx8NvZndrxW+6X6nkTr129B2gOxHSyJzyMq5X7lv+SEPWl1gH7QIq5RSAOB7AODjy7J8p/luUilRvaB01EcO9gZ8T/hGaaa/j46K+jV7vV0tLviq3OcgpcVXGlkf0PBcrrvnlscUahzw1wHAHwaAD5ZSfurxzze4R0ylrtQKjJ4Lr0a439Fw6w1fbf+zZAICZHGaM6xeHvV8EcM4mu1HtTzuV7ulSIJv1DOCxbdoWZYfBVAfbZlKGTQDfK19zyKP+50Fvi2K+ns5uMNuBWtL+8a3TnsAx1beOVjrs4E1Y7VCd6s8CSs1sSLnfT1jaGJb9uWOnDeeCTjRXxQ0fcz+hepRPf6aev/Va9PUzAEc+qH88Is4ySoSvpf+Uqnh6uV8uXYj3W/kf6s99ip7fv89P0pa/74C4TzybTiCC2bOgI4SlX6Odr/R8L30mUoN1Uzw7eF+W+Z+W/47Rj0zuTd8e2w166XAmbegudLw8TUQ1tyf8Xfg5ng1Zz97HhMotafg2wO8qzIFnRqoHit0ve16LLyKVgSkR+cfOY0CaM+DjANkXUkc9Vce/baoXfAz2LD533oBVi39IwT9e3X3gO+l/1Squ6IOhvA42b1Tz3u63yM5X6k/qr2m3zpm0Mde5C64nrcctVLaeRCHvnv94RncIwq17tkC37pPbe4kAZzqrN7w9bQZlXrec4wzwdeinfY4a+BjAdSM25Wa/on7FmBJh2+gQwnP89WMoYFvzKKuVKqLIo9DHDHv2yP1PGLfbwuoRyy2ioBvpPvV3scEOy81AOy939gK4asvGfoFWPX+X83xky0nX7W3i0lN5xxwqoMiIRO1uIiLH7XqeaanL3m0h7tsgS+m4Pd7tJPtsfK5RY7+rEdQXobxAc8DSs/qaa+O9L8/Nb2izwvey/lS8aPmk6NP4NK0k9QLvpGrnq00fJ2pc6j1+6AWrpayHq7Z+aWDW4ClVWT62Zp6jgTv83ipVLOiPyi9W1VmPpxjxLGWPeDr+YjoDd/eK9WD0889tiC1grX1k187n+08AxpAf6QkFRcJzB7wBUgAp5o1C3w9bUadCz3DKUwzuV5P354xuPE6Hb7xEinjbsNaL8W2QtgLa+NfJ7cAK+Lxgzd9NrjfXvC9jJlKmdXrw7zHIQ0RbrnH3O1I93sU1yv11Wu6wLn4ygtLKfXcuvrYCmFsvJYFYDdxG7eKrobm9wGvYLSkn63QjIDvNrZEPY4wlXpWTxc1A3xHrXpumWyz/h30hu+oef+Wv7OO7hcbgnLBIyFsVYTLNa6Ats7/rrKufpbcbyt8WxxyAjil1D3Cl1LkfGNE+6g58Vnha9EIt+9v1jRGj7lcy/gNsj4BaYWkZ/UzB0T9qVq5Dzg1hXpu92id7+0N39bU84iFV5axKc0O3sgsAjeWY/GVtBipdQGWF8LWFdDe8VmXr1+AZdn/+9RG8eCFllXT9Li5DSnVXb33WfZwvVy70XPEvVfqRvTZc65X2791tbOlLwm+A+Z+63hLWtoyvgW4rXAWIYynn5/neh9uyiS9UM4D8320u9/oBVkJ4FSlEQccHBW+PQDaMs5I+PZw1F74en5vCc4OYXO9mvlfqh8prm7TA7gtZZic87yXIXSpZGrxlcf9joTv5R5SqS7zj95xRsHXOoblQ7/3Xl5LXGu7HnOqnpQz13crXAPcrwVSUiwG79YlCty4mvGs97zRa1eroB/ndpGV0Wv6uXaqEeDTLLyixsltSKlOOgp4pT488LUAdRR8KWljPe9R65iW/jV99pgqCEo9Y11YwGRxuh4ItkjTt+aen177D+CgJIHQ4n61fUf1QykBfJcaBV7tWDPANyK2ddFWr9Rz9JclT99e18uNoXlvAuFrAZCnPy0EvWXUGJzMEObnf6Wymxjh6UW6pxbx7rcFvq3uOAF8d7oH+HrGaz0Vq8fBHhHzy73gG9nvHvBtUEt6VlzA5LyH1jKLtE7eMP9bp581YPXM/WpXPec2pFSgeqy0bR2vBbxc+97zxK2QGuWSLf3u5XqlmIgvS1R9gPv1zvtaIdw679zqmqWxb/p5dpza+V9JXthJK59xh51PQ0qFaEbwavr1ut7eK6T3nvfdG757g5dqZ3W+DfCl5n69Md5rTlZga8a2uHyFPI8kBMCB6nW/VvjmKuiUQbOlmrX9nhW+lEa5ZM0YLf1Z+uz5dzUAvt56S91aX/c/cq63w/wvdvwklX7m9v5a535b4JuroFNKjZ4ztIzZK+UstY2Ar2Xc1rRpD5fs7T96/jhyWkHz3jXCl5LV/WqdrzYF3JJStqSZ6/vDrsl2FfCQVdFWF2xxv9pDN7C2mvIoJYBPo6OmmzV9eeAb2Ua76CpyzlKK7QnfmcFLxXeAbwtYLbGY06X6kcpHwJm9V3z+VxK199frfrn424cztD6M4Rb2+TSku9LIdLNlvJ4pZ8t9aNq0wtc6nja21SVb40emm7nxJoQvVu8Fryb9zF17pE1Va8ZmIYwvsnopPHbw0hUFwxj3G/mEI6vLxpQAPrTS9ca0i4DvrPO+0a63N3i5tjuknSUXzA1tLdc44x5zwJr5XhHCOsdXy/LwhcuQ/njtvK+8CjrukJEE8CF1ZPBq+hs132ttEwHwkfO+EdvBLH1p4nqBF4sLPOVK64IpSG/LOahqU8C908yeexO2H11e37pgy+Kr5zay+5VgbV8FHX+6VwL4cJpxdbO275YPZ6l9b/hG9GGBb4tLPhp4ufY7wVeq5xyiJYaqk5wv1gcVaymTJEGZSC9zq58laQ/nsKSetfPAUr+tSgAfRkd2va1AmGFr0lEWXUXBd0bwUvEd4Kt1txqX3DsFrZXm/rRjMOnn14S5Xqyccr/efb9c6lm/CEsP3vrLQS7COpVmdL0j0s1S+6h0ptSmF3xboOr5rxvpekd/qdK+B53hi7XZOwVtSTVbvgxYwEw8fEF69q8WctLTizSPJ9Rca+/LOhdN95OaWGd2vS3g5dr3dr3WfkbCt3WB2IzgpdoEud66K9HtCT/rMq1bjkhBv0RiW+FscdzC6udt+Tb9TG0T4tyvZ95XA99R4H3uL3VSWf5qjzTXq70HbZue8KXU+sXK0ucR0s1c253ga3GP2vrW/jz3tI2L6k+Rfq6lcb+adLJFLY8njLoHud/UpPJ+SM/sejX9zDrf6+mnh6PV9sn1q2lridkLvADd4atJM2vipdR0HYfVczEWp2rtT8wKVCB9mgMm0tLI4qtbd3q78Mrifq0PVKCcby/wPvefmlAj4Hsm15vw1fcrtbPGjPp7CXS9dXceF9ySgpbSxFoAasDpTWfXZeh4G/erWP3MLb56ijGcSuWZ97WknXXnTbc669Rk8sD3zK5Xat97sRXXV/SeXE+/1ri9HS/XfoDrrbtscb6aWCyeKueAisGU6lsDbK+TvrnW7/0FuH3wwuW17H6pWKneA1/P/mGvEsBT6UjwnRW8XDuuzR7wbXHJVkjv7Xi5tpbfJSjlXF974Outt7rdWl6Ycn1Z7uklkO5XWnx13Y3N/VoXXnHwtbreXg9lSABPoZlSziNc7yxzilJdLzdL9R2519cSv9fcveW9CXS99bUFpJo4rcO21GmcrhamFjhz9xDofuuVz/W+4K00qWcrfKPAu8bnPuDTa1b49nS9Uvs94Wv5++jx3877ZWGmdDMVPxi+UqymP+0YotNkrrE2lDzpZW3MozTuV3uq1U3fwlORtCueo+Gbc8CHV++081ng22N1dG/49lhIFeWS91hgxbXrAN6628gUdE8IS/+NeqSgpb6urunFV5L7xeRxv1r4ck9J8oA3OhWdAN5VM8B3dvBK7T0f9r3TpSNje8DXC16urfXLyyD4asqpWGkMrp5LQdf1VNo4MgVtdd8vH57g+9rLVy73a32EoHRIRit8W58L7FECeDclfMeDl6uz9jcDqK3wne2L0ADXW197X2vdcA1N7rVUV/cttbe00/bFud9KGvcrPfFIcyY0DnD9nG/L1idKt18Ocg74ZNL+VY1a5dyzfY+2vV2vNX4kfO8EvFjXo+Bbg9QyDlanAaPkbDXtNOMFul9MlscRtsBX63rzecCnl9X9RsK3t+ud7cPe2+c9wHcG8AJ0gW8LiLX1GkCvr6Vy6p6tDpXrx+x26zb0sZOt7pdzpdp9wRb4zvAsYIAE8AEU7Xxb+2n5J5Pwtd1Ly4EcVHttPwdyvXX3rS6Yq8dAKsVqyjEnTckLZqovSzvieEkAm/ul5nU1W4Z0q5Nj4OsFr/ZfdgJ4uCygPIvzbfmwbxk3ar6Xa7O386Vie3yZmdz11tfRLtjqbuv6+l64txODstaxcu2ofiRnXq183j7z1+N+r4ePm/e1zvfm4wjvSrPCd8a0cUvbURAZuThL22+C9+Za40StEObqLUDWALO+d6y9Fs5cO/H6ee4XwLbv9/KaBqwmfdwC39ZHEebTkA6vM8J3Rsc8m+u1xrfM+Ub+7t52ncGLDRHlerevW4G8LZOcM9a2h5P1tjPM/UrP+6X2/Nb1dVscuDjora434klIdZ95EtbpNTN87831RsUfAb4Tgbcua4FvC5AxWHJtJAcMVX19rYEs1sbV7hEkiPtd4fuyWgm9PXKyJfUcDd8I8OZBHIdUtPvtDd8ebXumuaPv5+zwPZnrra81r7fXWvh6HTD1WqqTwKxpY4Uz2ub6zOeI1HNv+Fpd70joXo+bmkizw3d0O6ntyPsZPT/cAt/oL0EHAW997X3d6oCxsggH3ORkkXHEsfCFVwCX1PPLzUKsp/IXr9jjIr0PYvDC1wve1nOgMwU9jaK2B2nV0/l62iV842I1GuH4uTYHhy/X/7YMA3PLeFp3zMVIYMYkjVVtO8IeK7iWY+c96/fzao6i7A/fkedAX+4hNYki3O9ZnK8XvFy/e6ape8RGOd8JXS82jBZeXGwP51v/pNpJ5dK1xrVyfXjc7wpfwf1KTzvCDtywH0WpHyMSvB7oWtokgLtK637vCb735Hqt8Vhsr7RzFKwHgle6toK4Bcga+FLu0upePVBtgfVVDL7war1+ek3s+W2Z942Gb9QZ0JFOOAG8u44I35nAK/V9lG1J0fDt/aVjMHjrsijXS732QJgro0BN1Wmu63G4NhZYr+6XOe/5xdYBC6uePfO+rfCNOwmr3wIsgARwR42a+z06fEeDl2vXG1qtsa3wjfoCcWDXu329lwP21PV0wFf98Ht+rauet9D0wtd2KIf+MA5L2XW9fDxlLsI6hCLcr7ftCAfoHadXn7O5Xio+Gr4nBG99PaMDll5b6rbX0bC++R0u7pc7bnJ74AYH2bX8qe0g+FrBu8eDGAASwJNrpoMyPP9UEr72+ISv+ZpzxNr4CAdsuTfp95F+JyuIqTGv2mwWXj2K2vMLgM/7AvBbjq6HHw/fqLOg63FqpQPeVb336krtZ04731PK2Ro/I3w7gxcr04KKi/W4XazMCmGqHeeGLe7YDFVFPy8BLHt+63nfp7hq0dWl62tXbHW+ONjtc715FvTdaMTc75lAJNVxfUptR71PR4HvSV0vV6d1qBEOmCvD+rPUuaAK16JgrThu8vkaXxRFLZaithtty6LhawFvyznQEQu0EsC7qMX93hN8vb+rt21vp2+J9UL1AK63F4j3dsB1mfTaUre99sKaBfbtcZPcWc9ah7uWX35yW5H4uWEshhqnfo1f51GUJ1SE++3hoD1/zb3hO5Pr7Q1eKt7y3tTtD+B6sSF6uFyubk8HrC2n6iwOV9OmHgcAsAM3uLOeuXlfDJ4R8G3bB0yvkK77ofqw1gPkHPDEannLjwQXLn6WRVbediPhq23bCt87c73b1xEO2ApiCpQRoFW3ked9uf2+1IpnDKyt8PU8H/j5euxJWBYlgIdKervP4uyoeO/v19J2RIqdatP63kTDdwfwYmU9XHAUcLVlGuDW9VjMaBd8c41vOeL2+0rpZaocg69mvtd2AAfteFsO5MD645UOeLBGHbwRMe4Mzk4zbmvb6Dlxzzia2JZ/OwnfrvD11FkcsFRX9yO1V7e5Pu0K4Bq06zW23xcAX/EslWM/a/kXZPUBb889wAAJ4IHqBRlrmyPBd5Z2o7MCJ3C+kddWKHuA3OKApf5ncMBXZbenXT2nmh/QRVfPQ8grnqlyW2ral3JuOYyjbl/LshVJ+78rATyFjgQMa9+R6fHR7Xq/973hS93LwEcGSjFncMCUg9W8puq8oKVinsqutxxh8F0lzftqVkK3wNfrem0HcfTZhpSLsIaqZUVv9JgJ35h2vTMIkfDdwfVaQWu9bgFxtAOWYinIamK0YMbirTEIfFdJh21wK54t8NUutuK3IdnAq4EuBdxchHV6zXYgBBXfCzBSPzO1S/ii3fe8jn7tdcCan1SZBGWsfQucWWeMH7ahge86v2uFLwdXTcq5F3itW5BsME4HPEi93G/vvxorNLSxkYd0eAHqbdvbKbd+sZHg2xm82BBRcPXWeRxwDwhHu2APnFlAX5/zvD1so4bvqtHw5ff/0qCmYuv4uk0dqynX1ucc8CG05wrm1r4t/Y6E78h2rfC1jKdxvrUmhi/Xd0/4Yv1GOGBuDO6epN+bi1e34Q/bAADypCuAa1heutTvAb68bn8kIRZ7W0873lmfCZwAnlJRfy0RQNXGzuB8Z3S9VLm2D+37X8ftuNCqhwuOeK0BLVfXwwFTdRKo1a7YftgGt7KZ2+srzfl64RvxVKQ6DruWyuv+OeUirCHqkQb1jGf5a9wbvrOA19uuF3wj44LgK4HWeu2NjXTAvSC8vqbgzMFaE1vXm4BNH7YhwZdatWxNO9tWQceBV14FTUG47XGEOQd8WFk/4C3xCV+5XZRTbn1fNHFYzCD4WuHcCtvtdZTrxcq8UKbiuPvzulx1m+fDNqSTrrC9vq3wxQDrfRyhNB9MxWqusb7qPjXa9ptzwN012v1aZF2BrInV3nNvsO3RrpfrtcRK8D3IKucernf7ugeE19eacovT5eq8cDbAd7viOdr5ahdbtYI38jGEe2xFSgBPpQh4RS/2oeIitipZ47k2PdqNdr1Y7I4p50iXy8Va46LqPU5Y44Kp19iYFhijoMXK8GMmsWf7RsK35WlImm1Iaz/bmNt63aKsug+qjbauVs4Bd9XILTAjF1KNgu9IiHLtItuMeu93gm/LtQfE3tfWsigYe143u1ysnX67kXTEpLTVyLLYCk9H6xZjcTHc6227bdvrehuE6z5pJYBPLMtf255/xQlfXWzCtxt8sbG5f0peByy95hwxV68tewmg3W6E7fWtYUo5zFtQ43VyOlq7Ejr2TOg6jiur+9FoHSvngHfTCPfbIzba/UakqLk2Pdp52hwYvhykPNd7gngv57v+1Dhdiwvm6g3MUpMAACAASURBVNG42+1G0gMWJPhiKWQKol74jjgPuo7Dr2MewmBVAtis3guoJLW637PDd5RTHrUqHYsZAF9rfStsqbojQFh6TdVpXLEKyPIZz9ijBTXw9aSdW07Fouq3P29f38Kai9+22SpyEVbYHHAp5YsA4EcA4B2P8f/Tsiz/hfmO7kIzud/Z4XvPrlcbOwi+kde9nS71OhrC2nItiDWwxa7VMfTTjVrgSzlYySljbdb6y69gT0djsdt4Kvb52r8Iq9dKaI2degsAPrgsy2dKKa8DwI+WUv7Wsiz/d5c7mlozul/tPZ0ZvmdzvVRcI3wlV2u9jnS61Os9IOz5aYWvxuVKMFY8WpCC76oe8OVWOUedBd3rHGh+FbR+PjjMAS/LsgDAZx4vX3/8o+v9rhQJjh77eL0aBd9oiEaPtSd8B7jeumwkiC2Qldp5wdwLvsDUUfVYTA3sRvjWoJXdMA1Z76Eccp2clqbint9GzhFjAI6ZCw7dhlRKeQEAHwOA3wIA37Usy48jMR8GgA9frr5MeZupNo10pj37PxN8oxdlnTDlvL2m/jqOAt9tn1I5d611vVtVe30BAOpTrgBk+D7FbWC6jXu+boevfvWzdTGW9yhK/Vww1UeLVABeluUVAHxVKeVdAPA/l1K+clmWn6li3gSANwEASnn3CR3ynqcrRTpaqj/LwRJSTAR8jwZeKr4ldjL4RoO41e1i9Xs5YK0jphytKeb6oI16ry92vjPlcuWyW+fLwVWa65UXYN3GrOXXP+d+HnCXgziWZfmVUsoPA8CHAOBnhPATadTc76iFV5oY7xeBFofMxUvtotvsfQBK8Hzv0UDc4oAtdVIbKX5H+FIPV6AWXGlgqpnvleaHL7eqB69tLljniLexdTweG7P4ah2zwBdU8eInainlywHg7Uf4fjEAfD0A/Demuzq1ot2YJjYy9eyFb48tSVT8yDYHX2iFddsLtlxs9OuIsh4/LfDVwJZtcw1fas53PeGqhiq2pcgz36txyWvdtvw2/rYe63OVdv7Xsh2JLuMXXElp6siDOH49APzFx3ng1wDgry3L8gPK/k8gr/u1ttsr9Rx1H63w3dv1Wvu6M9dbX2tee9pY4YrV94axFcQt8H0qv4XverZzDV89aHGYavcDa+Z5ow7iwCAqwZlq93zdby9w5Crovw8AX20a/TSSIOoBpOXDHFPkgQ5Ri65aoLM3eLk6S18tsQdyvVGA1by2Aper88LYGtMCW6yMWO3MPdXIstKZc728E8ahvMbj5Zo54Fsob1/bUtD4Iq26PdaWKsOEgTwfxrCrIuaMW/5qerr2yIVZnM4IXyzuQPDlxu3xmqvn4jwxLW3X19L7iMVLZQA38N0Kc74ANvg+t7mO3ZZR/W7L6njt/PDabq27Ltc74tvXEXPAur2/df8J4GYd1f16nWdU33s4X+7voudcLxW/03zvWVxwRJnWAUswtThf6rXVCT+V6+d8JedLOVxubrgue+7bcoa0DF4rdCPngK3bkKypaEkJYFQt8N174ZVGHvhiioZv5Pt64hXOWLezwnZ73RPCHhh7fmpATIFVE8PAl5vzlVPM+GIry0Ir7dzwtp9tHVa+7evyuu04Si1sex5D+QJexa2CTlkUCYmo8TWQlNpg7TyA5sa3vke9wUvFt8Z2hu8eYI54HQnhKBh7QKyFLdamEb60y+WBKjlkrLwuq/u9/Ho+8GqgG3Uwh6UM65tSPo7QrR6pZ4u8zsrrYj1zuh5AjziIY5Z0MxY74Nm9vcBsHYOK8QA5CsJUmygwd4Yvt+BKcqhSGplOQ9PpaWnrUn0P2z7WOiy+/sm5XCtwpXlfCqyWIyhXpQN2aWTqudc+Wk4R874e+FKKAKDU5g5cb30dFeuBsgeylnoPhFt+auta4SusduZOt2p1s1pIY22x2G3Z5de1zAnbFmVhMfxrec6Xd786GKcDnlotqWcvpD2p517umIrjxrTGn2SRFdZ1D9hysVEgbgEuVtYLwtY6C2yxstX1ApDw5U63srhZ7aIsy57h27Fo8GJAtUJ35Epo/yrodMBGHWXhlbeviL49/1wSvk2SoKmN7V3XCl9sjL0csKWuLudgXJdtnS8ACd9VUtp5Kw6qT/0xK6Iv9T74tmxPWsuuf/pWQ2/bcPF1m/p9lISBOx2wSdGLoaxjaf8aNEDQxESknkdsSZoJvFR8J/ha3Gp9HRXb87W2vgW0UozXDXMuWOuEt/Bl0s5W5yutdLY4ZMu88GXM2O1Ja911OT3/q4GtdCBHHa8px5T7gNXyrgqW2re+tVFfCnqlnq19pOtVqwdALbF7OOBoCK+vPS7YA2QOtliZEr7cuc6eeVzLPmDPyul63Ou28opnaVFW3X4VB+Y6to7Druv2t3U8jBPAYfLA1xLf8oHvWfwUsZ3Iu+hKuheuP+v2ol7gpWI7wHcEiKMAq3kdAWEPjHtBd/uauq7LjPCV4EhBFUADbQq0Nkg/t5PBq0lP4z/1Z0NrD+LAAIuB1bcKOgGsUK8tR1aAeORZIBWxqKpXahqLk+JPssIZ6zrCvVrqtH1Gwnc0hDEoSrEcdKnXXJkRvtK2IgmqFjdribv8apq0NJeGjlmUhcXcvn5Ay7dtqXpt3VYJYFGt8N3zxCtPTK95X0k94Huifb1Y1xHQ9NZp2mjKI4HL1UltPIBuAXEwfD3p5MjUtG5fMe/A6/aXt+YW9GubtX6tu/5pe0rStp47kMOaggYAePmKhnECuKsiUs97K+Kv3gpw671Y3reR8A2UBFht7BHhq+kfq6PeI+09RsEXqvJG+FLywBfvIzo1LT+iUOeEr/tay65/6t0wBl0JuOj+YAawLx6EOeAlAcxoZOrZEjvS/Upjt7rjFud7hynnumwkbLVx3tdWSEc4YC90ubrOzhfAttrZ4ny51LFvNTTvrJ+v9eDFoFq7Vg641lXQNWAxqL540O3nfVHxu+ia3SOAR6eeo7cdSTERq56j4Gq5B6mvXk5254VW0rU3djSIPfVRdRbY1tcW6G7LpL6N8PWudo6MsY5/iZcd83WcvCDr8jbiQN5em1ZBb2C7BS0G2Bqmz33g5ZiKzgDfG4BbU8E9U88el+rptxWe0j8ZDeQi4HtC11tfRzvdPVxvSxkVI7XRwJark8q41zWgAVTw9a52HhEDQK+OvtTZU9PPfV7Hb8vX+LWsjtn+3MZqYFtDtoZr4aZ/NYdjJYBr9drvK7XTxHpdcoQTbe3TWm9xoXfqeqXrVsB6+tvbAff4GQ3iGr7MgxU0q53fAZ9nIPcK3gFv3bR5Ca/gDfj8pjwC0PqFXJe3g4f0tv02vi6XoFsDV4KtCFkMrJzr5UCcKeitWuHraaeFYetpUZa+JbiOrsdiuHLLe90aO2iVs3TdE8RU3BkhbK3zvH76077aeYUvBrU34K2bNu+At1DobfvZguwN+DwB1pgFWnw5nX7moKsB7tbZrsC9Am0NzRqwGFR1x0Ff95UOeFUEfKNWMXvf7oiFV0eBb6859hO5Xq4uEsqt8PVCuBXK3pgWEG/hq3iwAvcsXws0+6Wl7XuHKfDWZXV/6/Xl7SRccgXdGrhbd4sC9xVSRl1TrlcLYoAEsF4tb0EPKGju5wx/ba1bjA6ecra2p+q0wG1p73G72HhaByy11wBbM04kfG/GtW01Arhd9ftc/gylOv42rl453DflrJkTrsu2/UWB9wm627eEgi4VU9dpyqnYBDBAjHPde89vxIlXs7nf1rRzK3w7ghfrfhbna+2Lio92w1EOOLJOA9yb1/KcL0D7VqOtEwaAx+t459vijp/LcRi/gFdQu+G1TgNd1uVqYMulpSnYGlZBJ4C7p54tb11P9+vZ82vpr1YP+J5kvpdzYJprD2y1cdGvR0O45ae2TgPlBvh6tho9L6i6hW9k2vmNxwVd2oVeXL/Y77iWYeDdul0VdCngSrDlQIvBtcUN3/cirL3g29v9ev66rIDl2h8FvpY+JzhYQ7rW9DMSypHA5epaYFtfc1DlylSv9audL0308N22aYHvukgLAFu01edgj3WsLXhv3DHidl9c3koAMECXc78aF4xd1/G1OBDfrwOeDb5eQMyYeo7smyprBWqmnE39asq1cMXqLaDVxGjdrKZOUy/G4/ClpHWgeJpZB8p3bLYhbVdMx6WptWlpHXhX6AKA7HQtwI2aA5YcL1Z/nw54phXPmrEscaP/qjxfCCglfNHrvUHsfR1Rpo3hHK32Z4jLrV4LW40AgF3xXF9jaVkrBOutSNpU9xvVfmNsFTY1z7y2qfslfycEvKjbfQWyy7W4YA60rU4Ya3t/Djg6/YvJ8sFPKerEq97ul1OLc6bGOhh8sa6tMPbU7f26B3yl9tg1VhfhfKXXV9cbelSywHe7FWcLtrVs+1rqY9vGts2oTidf168x8sEb1673CtKPc7zb+d0bx6txu9s6qn5bvi3jXtdtqBhN/X0BWAuPFvdrfat6ut/Rc82RcI6Grzb139H1YmVaN2uJnRm4WP1eDri7C35OOwOAaa+vZ7UzAGxcqexkrc43avU0l24mU81bWFIgXn+2zAPXryPngrF29wPgEfCNahflfqU2rQ7V2/cM8O3oerHuI697g5jqs6cD9jjhlp/R8L26vk47A/SDrxWEEkytMF+vb+emr+eUAa5XN9fpZtLx1uClQMxBl1vpzDlkqh6Ieq6M0vkB3HqQg6Uvqn2P/ahSjPVeW+Ac6YwTvs2A3V5HwFTz+ggQ1tZZQczA97Wred54+N4unrpts24R0sI3ymlz6WZunpcEL5Z2plywdh4Yq6Pq69d13FZaCJ97EdYM8LXEe6GiGTtycZTld7XAOfr333m+FxvKC1sudtTrnkDuBWFrHVWmKScWXAFAJ+dbQw2HLwdvALhZTFXHS/Xciu31HgFuF1mR4K1BW19TLpgq06aksbq6vq7DrqXyrc7rgCPh29J+xKIvacw9U8+WcT3xB4WvF7ZcXTRkqfII4GJlURD2xjS9Hg9faTWzBF/pUA9pDzBfL6ebb1Y2b1c1U+ClFl9h0PXMAXtPwfI64fM54NYTnqx9euCrcXXauOi/mhY4WwDb+iWBupeDp5zr6x4g7gltC0S5Om2bKDC3whd5sAKADF8A+5OFtoCLhK8uRa378nC5h+pJTZLrrV8DU+ZJR9flgMRzr7kFWVQZ1narczngHm5zDwdLacS2I04tgLV8UYn853YS+HLjWl9H9ucpo+q4WM0YUr91mQbSYvktfFdt9/pSeoF8Mr/clHHAe46Rtithe3Jv66i+rNfXzvd2rvcdbwnzvBhUI+eBe5yG5XXA5wHwaOcr9bHHwqtWRcKZkzWjEJkdOCh8R7jWiD68btgb63XA2r6MzhfgdsHVU5lrr6+8+tgKSGpOt80Z61POrOv1LMDSzAN7FmVR9XUMdr0V9x3s+AD2ONSIXycKvlrN7H6lfl8ydVw/WLxmPKqvSeE7GsSRsdp6D4QjfnrKuNdP1zr4tj7ZyFtPPRO4Fb7U/DB2L+946/O3e3o/B/SWIu08cN1mew1CmWbhlXcFtOR2sfrjzgF7U8PaX2VU6nkv99sC5yhnLPWjcbSTL7aqr71gjgJxbzjPBGELaKV6Ab7UnC9A22MF/fUyfFeY1vCl5o8pqK/zvU99eV2vZgGWNA/csgraOvdrnQfG+jueA24BYxR8e7pfLWSkmMh5Va4tB26uLmJl9uTwtcCWa9sC397AlepHQdgacwD4Pm/fsW0P4oFKp5WpPcUm17yB781c71ugn+eVwCuloS1zwBhsKdBq5n41EF51DABHuNEZ4Rvl4jUnSXH1Un+963rBd9KUs3RtBbGmfLTbxcp6Qdha1xm+q8bs9eXT0tHwJV3zq8fDPj73dpvrresAqQfiWjsHrElD168tC7LqeE5zAzgqDTwCvla1nmFskeW+W7Ydaeui0tva8RplhWlLf9q+qDisvJfz1ZRp/om0/pTqsPvUwvcpXr/auV5wRelF9clNAfq57rr+cpu30Nz2tb7exq5j0yujOcg/IOM+PD2n9/HtiYEvNefbejAH54Bb54GxGEoPMNMccK8511Hw7bHwStOf9X2LPHQjok4aX/OlBIsZlHbu5Xy5uh7O1VKPxba64b0csOq1f7UzAL8dKGLLjzxXK6eOsaMl6362J1ttnS8731svumoFb+14tfPA2lXQEozrGOyaKsO0rwMu0Hex0yjjHpF69oImoo2n7Qj3q/mycVD4jgBxD/h6QcvVzQ7fp/uPg699xbPlmk8tS/DF0s7YSmcSvutcrwTYtx7fVwnMFHip+V4OxBHzwFR8LQ2E505Be2W93R7zvlHxLX1JAJvJ/SZ8TXWj4DuzAx4FX+Z4yVVb+D6VGeBbp469cK6BW/eznRNeH9Jgge+TK6YWW9Xg/BxRrnHE2pXQEogx6HLApcBrnQeu22CaJwUdpVnga7mPXu7XMqZl7663Ttrzq6njYgLgi3XbC7aW2FHO1VPfWtcTvm4Q4081AriGb33E5KU5BVYavtyiKmq7EbYtSNpOxKWvw+C7dcAUYNfUNFR1WLmUmt5eg1C+lgFSbnXB2n3AnBM+lwOOcnSe/jTtZnK/o6V1yd4vIyeCLxWnKef6sbTxOlpr/CjHi5UZ4btNOz9f8/CtF2FJK54BtIuh8GstYLm08/Y1Bd83PveF6/neNZ1cwxfbeqRJN2vAS7ldbsUzBmmqvq6ryzGwco4Xiz+HA97j9nqu0Pb03XI/PeZ+o7IDmt8rcLvRVi3wtfTtebulsSQgauM0X0qwuh7OVxoHuz/LlxQEvqs4+D43vwbpU9vKDT+X4+74+le57u9FNQbW9nYO2l631l/Bf+N8ARDnC4DDMwK+1i1IGvC2zgOnAwbw3Vqr+/XARQtIz9GLkedgc2N5XbXX/Q7c69sK22i3a30d7WhbynrAd4QDRuC7zvu+ePn8Kbo9aAPgeksPVkalli9D49uCuNSzdtEVtopZV3e92nl7utWN86VWOnPOdxsPQKesAenDuyBLgm6UA+Zgi7nj4wLYe0s9U89Wacbx3IsFlD2cfIT7PQl8I+oSvreKhu9TvzR8pVOuAPBFVJdheqWeuUM7dHVu+GKQxVZAf+7xvcXiPe4YiDLOFXNlgJRvy7jXGFQ5CNcxx0tBt9xKBHyj3C8WG3HkpKQe7pfrs2XuF5j6hK+7/ojw5Rywpkx8vaDwfepKccQkAP1owFXauVztvC+3L3gL0eex6ZXSbvhSK525cit4gagHJgaQOAAaupj7xcBMxWwlrX42amcARww/E3y16u1+e8i77Yjro9M/v3uGbzS494Kv1+0q4as533kVBV/t4RtYH5cyDXCv221XQFNbmqg9wutxkyh8a4eLQRaLAei7IIuCMQbXiFXQyvnfRXLDczvgqGFng+8o92vZW9vb/XJxHJixdh1WPB8NvlIfUllL2zPC91GW852fyhCQrore76t1yZQrpsB8DePrBVcq+NaQpVLU27S0dzEWIPXbMoBbEFNlGhdMpKVruD7UUH7U2wyEvzDHHHCv7qPcX6SL1P6uEe6XUw9nzD3tKGrshO/VawucNW1bQcvVeX9SdRb4Alauf7iC5qCN63J+v+/lVm5XMtvT0rb0NQbim/lgbJ+vBF/NIizqhCwqdQ1MHFbPXQPyU5uShmvYbkGLwfWBAW4d/4V9HXDp13XToRQWWd2vN7YVmFFwtszbamRxv532+lrqLfHauj1ccJRrpupGQFgqq+uvyq+PmNxqu+L5cv3KvN1IuyWpTj1jsdsxsTrMQdf3WW83em537ZAB4Op4yavHCW4hCJvXlGOlnKvG+daulhoDmPjtNcDtfddl22t4hi4H3Bq2lNul3LHSAPd2wNGKhG/UftZoRT5SUEuKiCcVafsYBF8LkHs4YQmsmngtnK1uWBungaclXut2sX5VDljeblTP+wLotxvVwgCIbUnCYRmReqaOqqzPd36Ad7z1+auznUmXW28dqh3sKyIOK9fOCUtgBriFKwZYAroccLegvYFwBde3QdYaozTARwLwKPh62mHjefb99lTE7xwx9ztAUUC1xHohq+nH6mCtfXjgq/l9te01YObaXJXL8F1l2W50GYpOPWOuVZNSvrRp35pErXh+nvfdPFhhC1Jq7vatzU8AGb7c3G+dugakvQW8igVYNXRr4G5hewVmuBYGXSYTbdZBADwq7expr43XxFndrxaC3jrPgRyWcSeY942ItYLY0o+1zFvHxffsRypT1+u2GwHcPt1Igq98zjPubum0MQ5PyjFvX79RHSeJpZvred83Pvf29VONapBqXDAGX8rtYtDWOGIg6qAqA6QNXKArAZeC7fZ1DVjK+XIgPokDjtwLq+mTaz/b3K+lv4iFU545Yq7NBPD1wlgLXwm6s8BXWwdIXB1rccCa+5DaAAC24nmVZtEVwG06+bmchi8d87Dp8xaQmpQyB2ntwq3nRVeI86VAyK12luDLPaxhWwdAg5lbkAVVDFw7XQm6GHAfkLK6HKvfCos9AYCPAF+sjfZwDqnd2dzvVpPBtyWWksUhW+rrMk2dBPKWdhI8rf1KDvimXF7xvIpbdMWtgq4XXNVx122eHe+lXD6j2TPve/vEJATy9XYjKsXMAVMDX8xBAxLLwZZKNTPg3bpdCbo1cCnYeiFc6+CLsHpvpTmboue0I/qPXlXd0J3F+VrGsrpiC8hb4cn1KZVJfUs/sb6tcLfe60sckgC6M54v3V9D9KoPBpScG962rftaX2NjUwCn2nDzvmULQCR1S8IQc8sYTKEqr6+18KXuB56vKcdrBa8Gut7537fhsA44YjVudPvoQzewuFHHTnr7pOJ2cr+1IgGrdcY9X3tdsBd4mrrWn9a6ugx9jR+2IS262sqTeqaAWgPS4n7reWhN6plMSVepZxSqq2vd/sTiuMcQWh/WULtjLq76osA5Xg66rc7XM/8LcDgH3PtYxxHzvp7+tW16PiIRU+t4A92v5ToqttWBa/tsdbpR0NY6XW18XYfFU/eHwbdKPQMAmnrGjpC8hSQN2lo8YLUPUKAXb1GLq9gY7KQrzNFyZdRWJC98LQ9rgOtrDLyY29VAFwOrNv3MpZ6xugM44FFw65F6nsn9Riy+0n4JodyvVo3utwW+1r6pOo8rtsS2uERrDHZvmlisXANhz++Glt/Cd1XEs33xgzP4hyfUfdcLseoxqPljzZwwt98XPWyD+sPt2aXqNfDFjq/UwNcA3hq68HhNQdcD4d5bkACGA3iPox+9fVhSz57+tW2itmB53K8nfU0Be2f49nC7FqBa+vC6YatjtjhXyf1q+8FiOVjflOMnXWmf7buV7mQrft4XBy73IAbu4A5r6pnf73sFRmoRFVVXQ7FOWT8A/jCGliclAVzBVwNei/PlgHuybUgF+i568sDE0of13nsuZurRnydF3Op+d1QUfK3A1bpcbCypzANWbXttf5rfwxKL1aPtVsLw+30Bbh+ygEHtKfYGiLdzxlthgL3c6isUktt2FGTX/p7jArYcaRdY1S4XA3I9h1xDtu7b8KQkK3gxsGoh7FkFLa2A3sYfIAXtVQR8e4+tje259ajjPCw5bicwt7rd6DptWlbbVgtnL3SlGIuLjYKwywG37fel5nQpID8Pz7nhGqz1eDRM1/J6DGqh17af+ktC87yvpo5LKXNPUKqBDNf9UenmFbwAz8DlwKuFbl2+LavL6zoqptbBFmFpFXW7ke5XqyO4Rk/6mdL2PQ5c+Sz9ExgBY02cFrTe/rd1FuhqxpLaSIDF4rwO+On1der5tat53uuPyK0DvnTDO91a3HzwNgbrn5oX5l5fQ5sCM/7Epcvb8djPA/KQhfon5Xg1dVwf29fA9A3VawB0SxHneqm5Xyt4W5wvl34GOCWA93S+3PhRB29YdSfpZwtwRzjjltfavr0OVxMbkYKuy7l+re6eff2cegYAVep5KyqlzLna53bY3O6tw63jsXHrOO7Eq9vFWrz7JeFJpYIpmGJ11FYl7VhVOZZy1rjeGrbYa20qelvGldd1terYk6WgI29zVvd7pvRzkPttAaqlL22dNQ0tvda6QQ9srRCPSD17xqnL0Nf4fl8A32lXVEp5K2nVM+VKNc7YcuIVNw564IbWzVpSz9KCKmkRF5K65uDbCl4JuhYI13VUTK2TOGDr7R3F/bYq4mxnrp3nC8NgjXa7lnux9ql1qNbUsKYNN2Y0jLF40QHrnu9rPe0KEwVbPPahase7X6x8vZ/t/W7r+BXQxIEblJuVAFvP4WKglRZiOeD72c/xrpeCcA1R76KsbRlX3ksTA7gHfPdwv5qxWtyvd1zKvdbSxHVw3L3crhSrifM6ZEs9VacBcg+n622P9SHd0/p6+3zfR2lXPW+FzedqQXuJxVPU3JwuNl/r2XZ0fb/XK6rRhVcA/J5b7o8mhS3t7RXg+/bjIqzPfs7mejHHq90HrNkDPAK2mCYF8EzwbXW/vcEeQZetImHqTD9b3a3lLeDA4AWrJ56rj3CtUW3qtpoY7ZcFqv6q/PEjEjlwYyvPgRu18FQz/zQkzP3W/VErmuttR2sdte3o6h65s545KFKQtYAag2u9P7gac1md7oOcctakoKX0NBDXox2upAkBPOEtTaXeD144uCJSzxFjcbER7lc7ngeyLS65BcJX94LPonHuF0A+cONqCMTVWoRBddvv+horr1PRVIqactwvHvftPP36mPuF6vWrqryOrfvZxtVldR/1WEh9BHw1h3BY5n731kS0897KLO5XK2v6uaVvSpHOODj93NP9euqiXnPjaAEmxbS4YCm+pR9LClrpfrmFVwDynl9M2hOv+JiHq/625VvYUwdqrPGXt+M2VX15O57dLwDI7reOkeaL1z9bJ0sdS4k54nWv72bO97Nv2eFbQ1i7EItLSc+mCQDccgszLRbqlX723r+2XS9n3OGpIel29gAAFONJREFUR7V6wNgCUK0kF6gZL9LRemJb+9CmoAHActzkVprTrZ6Hu00rU5LcMeZSMZhu72lbh9/XA12+PfEKAyKAnI7GoKuJwR7UwKS41wVXEnw/+3jbGISlvcAa9zurdgTwBOwf7n5b5V2c5TkqU7I+HRTpdj3A5RThfq1lkWljT5ueKWjq9VPsA2iOm8ROvAKgockdrmHZdiTPBVPzt5TLvYau5H4BqrlfgGsIAshOdxujATMG4hq+G9e8wpdbcPVZwCG6hS9XD8zrI2gHCkYM2TPV6pHW/fZc/dzzi4F19fMO7jcitsX99gBxXWcBs7YPawraC2HJAT+V8cdNbkWdeIWtRqYXY92ukNaoXji1HZ8qx8Bc3+v6egtqyv2anS0QMRo3LI1FON+3Gee7ha/W9VLp5aOBd9UAQs3gdDHtPfe7l7a/2yz3BMd3v56xrA5Sau9xw9pxLW2pdtrUNAC0nHgFAGQZB1qL+73c8u2iqnqcOt28ff0Sheyrq7ZXC7pq90stgOKgu42VQKyFb/WH2ue7QhdAhi8FXA7CR1QnOpZ+XU/nfveSljKR6Wcqfqud3S8Hjkgwex2v95+lFqYtaWuq3nIPaqeLtbGdeHXdnTTPe+1YMbBaVC/Oql+v19c/6ScePbe5TVev5Vcrn7ffLziHS0G1XqSFtQEgIUv1WZ9wVTvfbbca+GpTz0fVa3vfgE1Rjs37mEJtfMTiMCk9bR3PqwHzwi3uN2pMTVzkfWjhpe1HC1HrPVHlmr8j75eRlzQMa/eLxiDu9zKcZjGVbu53jcf6xg/hoMH8PDY1n/zq9oELANcQBLgGJ2xioKp/qOrqfjCIA/ITAzrAzeMEsT28ALd19wZfgNPaxB6/Vu90bVT/Fnt4QPVIN1tTzJpyD5Couoi/NmtaWhuvSSdTcVdtrvf9ag/dsB45KaWVPdK42fqe6vQzdt83bnl94AIAvc1o+5pKFwNTL80XMylrasUz5Xa3aWguDoiyM+hAn8hRqedI96vtPxre0fd5oLlgS9vWOE0bayJDKusx5+tJS2tiqWuqP/L15shJ5dwvJmw7kSXNTLnf535wh7zWX34tvLwGM97/A9Judb6vbvf9wuYaSyXXIIUqhuurLpcWeQGQi64ouGrgu97CGeELYEhBl1JelFL+XinlB3reEK69AUGN3zqhJ/WvrY9sp5k/Dpz/bQFshNmPyqq3uN+odLQkq6sd5X4raVc+U4uqNAutLJJS19iRktfl13PEWDnWzxPwscVXAPSpV1gMVk+5X+oaNj+3b8mj++Xmfan5Xs1hHGeFL4BtDvgjAPDxXjdCywKRlk+rmZIBlnsZtSit0/yvZ0isbhSMLaC1ppw5tbpfj7O13AcXw76+feACwK37vap7Uad6uYVWOKS5eV2qreSQsXvh4CqV36TVKZiu1/UcMAZSyv1SKW0ulf1YVqeeuf25np9nhS+AEsCllPcCwO8FgO/uezu1op3vHvO4I9PP2k/3vTMKj2pJN1v6peqivq/1SkP3+G7TA+Ct7ldx5GT9uMFLF7j75eZ+OVFOV2qLwbTeosSlpbfbkOrxto8cvFp8haWUMZhSgKaASjloDOKPP+vUM8Ctc/XCd7sn+IzSOuA/DwDfDgBfoAJKKR8upXy0lPJRgM8E3JoVEr2cWHT6eTZNAuNaUQ7X4357mX2vI9bCcNQ/yRb32yjszGdTe2Qe13wPW0CK88o01LF6bBHXlarU781cbZ0qrl+vfTxU11vVfTA/l8fXD48/t7AF4vXZoWqRCOBSyjcCwKeXZfkYF7csy5vLsnxgWZYPALwz7Abj1HvxlVbW+d+RGjz/61VvGHvbtECn5d68c7jS2B4XbClrPPP5+brP4iv5Gb3btPV1Cnn7unbGz28F7pCpZ/4+qYYuwK27XX9iKWUsBa1xzOs4jz+3e34Bnt3v1sEC8rqOkVZAn1kaB/x1APD7SimfBIDvA4APllL+Ute7umv3GwXoyKcUdbBcPeZwveMbFwmFpZ97pKE9jlpzX9o+NGVY+hmuF18BAHvwBn5LtKtt3Wp02x8PXCzNfH0vt+X19XbvLwDgbhdzsxRMAW5Ty1g/2lT1GrKZ+926W2wRFoAewvcgEcDLsnzHsizvXZbl/QDwzQDwd5Zl+ZZ+t9TDEe7lfo+yd3hntcwFj5jv1bSXxmr9gmGdo40CuaYf1xww7X634o6d9EBV42yp/uutR5Sb3cZvf8pnRSOOmlv9DNVPzBnXLrcuoxZura9rMG9+YnO/9RA1bKX9vfcEX4DpTsI6MlBG3HuETYza/7vTHPio+d6Itj1A3KqWxVZUH1IdmUlA5jjhduvR7RB8SnpbZoG0tPqZbnftZjFI12CWti4BwPWDF1bV8Fx/Ui54206CLQX5bf3jn+22IwB8WxFUr6VDNgDuC74Axv/yy7L8MAD8cJc7cWt0+rlF1nsd+YVk4PxvD4fbMgbWxgtpT0qWqmt1ra3yThNwEL7p8/KJL6WfNYuvsO1I13U82LWqH0O4/Sk99xdzwNghHGv6+UlY+rku4+aBOUDXq6glMMOz492+rud8LRDetr8nTeSAj+J+I4Hf8vhBS78tGux0e8/39uizpf+W9LPUhzVNTfVnTTtLqo6dXMWlnwFu3aJnTpd75i96T0zK2zunzH0RuOp/m35ehQ2JwRnglmgYtLEYaqzHuu3K5+15z3VzDLzYrd9j6nnVJAD2AkPzv3+W1c/ROslToSwuloPe6PSzJ7anY49oZ/kyoK0zLr7SPPP3qp5ID3uecERBWeoLP8GKdsZ1ObcV6WXlPAEAX1RFlWPzwnU5l36uob0CdzP3yzleawr63jQBgI/ifDmNOIDjJBo5z+ltM1P6uefiKU8/XCxVZhwbO/nq6hqFlvTwBX4e13R/V4C9TTNv4+oYbBvTWne7/agamHO6NYjrcmx1NADuchkwb0+9WiUttMJWQN+z691qZwDPCqkZ5n8t7VsXYFkt0bY8cP9vj/neqFRxa59WEFOxrYAdtQiLbGtf/QzAp23rOM1Z0NRDFbi+6nlk6jCNerw6pj71qtZ2/rdQaWMszawpX0VtNZIWYcH1vt968ZQmBU3NFd+jdgRwK+T2SD/3nP+11ke3k9p3+FLSG7jasTXfM6IWjkXE76WIRVgA3dPPlzq726XmhLk5Ynwrkm4hGHV0JQDcHr4BQLtXbDEWVc7BHCurwPx01OTDdTgAn3bevqbmg+9ROwF4BHyPJsvvNGvm4ASKnFedLf2sTXRo2kmQxcoUi69mTz/X/T6XXaeit6+p+d/69drPi6slxkCvYoaGcixtLSzQoo6dpB6akCloWTsA+GzwmHn+d/vpN8E9RS9CsvQ5Kv3ckpKWYrWrlq39WfoJex+ZtK3i1CvcYcrpZ6vqOVv8yUr1lqTtNqVbMG/LsfYAcDv/C0ADEksXa8uxhVvMIqw6/Uy5XyrdXJfduwYDeCQE9krhplTqmdK19Lf3orCW8Ufee4dFWPXe363q5/5aJM3Jco8V3I55nVJud9DYnDJ3z6UmFhDXEeWUc96GIOnnbZMaqNS8MHdL96ZBudwD70sNUc8FWB5FLcDqpN7zv5r2Fkj3cL1e9XD6lhjxvcI/erHTr7bpZ2qrUaQsJ2fRz/W9hSp33vPNSVivXj3t/wUAfLvRes0truLmfzVzwNvXr/D08zaFTC2sytOueHX+SJjVTe69AEvq2/K+jVgYFnACVk9wjurT0n/0/K3Uv3UeN2IVNFWGzg/Lq5/r+V8A/iAMqmxb3mv+F0D3BQADc90WO5YSTQ7U87ZSOcBtGpoqr1dBI2Cun3r0VL5psl5j6WmAnPut1SkFXWBe+PaW5vfu9d7c2Xs+2nnu6YSj5389as4wyO635/yv72CO23ld6n6kgzuohzFsX98swNKsUpbKt3WYk66FgLlOP1OQpcx0rnzGNcFBHBZpPwHOPP97hHsU1GP+d4btR1JfVN2ssyrRq6A30s7/XrrQp58l0HLP/q1jtn3S/fFjYTHYAqyres0CLNhcc+XaxVxUynobtoEvNhy1wrkeKt3vsw4G4Nl0Ahi6FXgAx1ajU9Wtfc84/6tNL3vS0C73rjv7+apO8fCFaFlcMrW1iFowxp1j/eSc6wM4MHHlmjS0Zv63ilk219iDF7BrQOoTvLdKAJ9Wk21BotQbfD00q2PVqueqcucY2PyvJK8zbdF2xbRusZbuiwQKbm4B1iqtK9b2R/S7XflMpZupLrC9wamLTghgCTazLcA6kga/DxFwHr3lqGWcqAVYkbKmycV58gpIzPyv5ulH1KlTa/v66UdWaZ5+hD2akLrX+v5uYrYroAH4NLMEVGoBFtcfsg0J236EQXV7q9wWpNSzDgTgo0Jwti1Imr6Dx5zxry56LljrAvdcgOUZk6uzvCfE8ZPybcjQwuKsklZXSwuwuHvSrIC+qteuXN6Kmu+t64R53qfyR2Hbj1ZRJ1xB9TrTz7QOBODemjhNS8rzCWzdahT8vsy+5Wi0Sx6RDraUR2cdNE2ZhzLgQ/FbjzRttQuw1jJsLOyaArXmOMoX9f4eaZEVpofqj6U/wa7W8791KHf0ZP06dVECOFQeWLXsAY5oN5EiFv+MdNs9XW+rtAuv6nJNn6b70D39aKt6AZZV3vlf6wIs3xwwvgJ6XYB1swJ6uy93Kw60WPta2KrnepzH7Uea+V9u6pkrv3cdBMAz5jDvGJRRurcFWD2des/MQss2pACNWAGtFeeGr5/7K7tmqsy8AhqABu3azroAqz5sg4Aw52qpldGpZx0EwFr1WIA1k+4I3hF/VXsswPLKunWIuj6QIhZgkX3D7SP+XPco7Nm19qHuR7OlqBYH2rV++1MoX6prKp3MHTuZzpfXyQDcQwf+hEvJ6rUAK1p7p9Y1dWQb38ewbi5W7tt7JKVmBbS2PR9H/A6at80CWq7dA1EOzwuwuC6lc57TBeNKAKcc6nQIxyhFLP5ugfJe3+mk3ztySsBxApZuKP2pWBZx+3W5/rEtSLr+K1f88Op2CxIAf4SkBrSeum26eV0Fjfxa0vGS6YJlHQDA9+xAIz4RT562PlKauVbv+7UuxOL6sI6pDRcWZuldpN3dYmlqbdrae1+qLUiUWkBrXVHN9CdlsKlV0KlbHQDAI9QLUkchgmYLUsDv4nWFR3kbvSugo36/XlubIvpsdL5bcS5TAiMXoz2oQ3PsJAZX9UEgEY6W29+rXGlNPfVIuo2UXglgl07uKiN1FHhqdKbfRVLEFwflGdDba+0WJM1DEHoIByu/B5iKr19fqQXC3EIsqg/CIT880CdgbRdbcSdfpQumNTmAj3jCwlE06BSsaE1+e6T2OrVq1HhHngroLAnM24cwXEkDUOm7hmfrEjHfi71OtWlyAFu0tyvde3yNJrrH3innMwPhoL+PdgGWa9vOAFmdtfVhEehjCAFkyEpvj3deWanchuTXiQDcQzN/0s18bwfX3quUPWctR99DZ71wbk0aLcupV5zEuWlsBTSA7ulGVL22H0T1HmBD05RBCeBdlRDdVSHznBE3otTewB24B7iWdQ9w9CEcdMztKVgtIk/BApCdrlfEHuC3mXvJ/b4xSgBPpYlSxCN1dIj1HiMCkr2+SHR6PyP29gLQ242sfUSp9XAPVpIjZg7b4BzydjW05QzohLGsBPBQ9QJsgntoX0dKXPRaazfJQyfiQG2bd9ZvWXJkAFrmbLXDKeM8LjilVwI4lRqpUZA6wJcEz2MIe4g7BStSve7/Rq0rpJFyyx7gBLNeEwN41CfInbrH1H3K4/R3gnmvU7Ci2nJA7XoOtOWWB66cyj3Adk0M4JRPB7A+PXSnv3bKL+5QDU5SzDCnCzDF0uSErF8J4FQqQp3PTD60Bh1DaetnP3LtOfaNqIO45th6fXolgFNjNNkq29T9ioK117lKT0LqIgvDg3ifTjdeCeBUqpfOtr3qBNrjVC33mNy2odQplABOpVLxIh7EkLrVi9Z87w4Z7YmS6IdWAvgwytXaqVQqdSaVZYn/plpK+WcA8E/CO+6rXwcAv7z3TZxc+R6PUb7PY5Tv8xgd8X3+jcuyfLkU1AXAR1Qp5aPLsnxg7/s4s/I9HqN8n8co3+cxOvP7nCnoVCqVSqV2UAI4lUqlUqkdlAB+1pt738AdKN/jMcr3eYzyfR6j077POQecSqVSqdQOSgecSqVSqdQOSgCnUqlUKrWD7h7ApZQPlVL+USnlE6WUP7P3/ZxRpZTvLaV8upTyM3vfy5lVSnlfKeWHSikfL6X8bCnlI3vf0xlVSvmiUsrfLaX89OP7/F/tfU9nVSnlRSnl75VSfmDve+mhuwZwKeUFAHwXAPweAPjtAPAHSym/fd+7OqX+AgB8aO+buAM9AMC3LcvyrwDA1wLAf5z/nrvoLQD44LIsvwMAvgoAPlRK+dqd7+ms+ggAfHzvm+iluwYwAHwNAHxiWZafW5bl8wDwfQDwTTvf0+m0LMuPAMA/3/s+zq5lWX5pWZaffHz9a3D54HrPvnd1Pi0Xfebx8vXHP7maNVillPcCwO8FgO/e+1566d4B/B4A+IXN9acgP7BSJ1Ap5f0A8NUA8OP73sk59Zga/SkA+DQA/OCyLPk+x+vPA8C3A8AX9r6RXrp3ABekLL/Jpg6tUso7AeD7AeBbl2X51b3v54xaluXVsixfBQDvBYCvKaV85d73dCaVUr4RAD69LMvH9r6Xnrp3AH8KAN63uX4vAPziTveSSjWrlPI6XOD7l5dl+et738/ZtSzLrwDAD0OucYjW1wHA7yulfBIuU4MfLKX8pX1vKV73DuCfAICvKKX8plLKGwDwzQDwN3a+p1TKpVJKAYDvAYCPL8vynXvfz1lVSvnyUsq7Hl9/MQB8PQD8w33v6lxaluU7lmV577Is74fL5/LfWZblW3a+rXDdNYCXZXkAgD8FAH8bLgtW/tqyLD+7712dT6WUvwIAPwYAv62U8qlSyh/f+55Oqq8DgD8MF7fwU49/vmHvmzqhfj0A/FAp5e/D5Uv8Dy7LcsptMqm+yqMoU6lUKpXaQXftgFOpVCqV2ksJ4FQqlUqldlACOJVKpVKpHZQATqVSqVRqByWAU6lUKpXaQQngVCqVSqV2UAI4lUqlUqkd9P8DnGSSkMm/7/MAAAAASUVORK5CYII=\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x1ede2e5b1d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "heatmap(grid, cmap='jet', interpolation='spline16')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The peak value is 32 at the lower right corner.\n",
    "<br>\n",
    "The region at the upper left corner is planar."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's instantiate `PeakFindingProblem` one last time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "metadata": {},
   "outputs": [],
   "source": [
    "problem = PeakFindingProblem(initial, grid, directions8)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Solution by Hill Climbing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "solution = problem.value(hill_climbing(problem))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "solution"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Solution by Simulated Annealing"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "32"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "solutions = {problem.value(simulated_annealing(problem)) for i in range(100)}\n",
    "max(solutions)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice that even though both algorithms started at the same initial state, \n",
    "Hill Climbing could never escape from the planar region and gave a locally optimum solution of **0**,\n",
    "whereas Simulated Annealing could reach the peak at **32**.\n",
    "<br>\n",
    "A very similar situation arises when there are two peaks of different heights.\n",
    "One should carefully consider the possible search space before choosing the algorithm for the task."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## GENETIC ALGORITHM\n",
    "\n",
    "Genetic algorithms (or GA) are inspired by natural evolution and are particularly useful in optimization and search problems with large state spaces.\n",
    "\n",
    "Given a problem, algorithms in the domain make use of a *population* of solutions (also called *states*), where each solution/state represents a feasible solution. At each iteration (often called *generation*), the population gets updated using methods inspired by biology and evolution, like *crossover*, *mutation* and *natural selection*."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Overview\n",
    "\n",
    "A genetic algorithm works in the following way:\n",
    "\n",
    "1) Initialize random population.\n",
    "\n",
    "2) Calculate population fitness.\n",
    "\n",
    "3) Select individuals for mating.\n",
    "\n",
    "4) Mate selected individuals to produce new population.\n",
    "\n",
    "     * Random chance to mutate individuals.\n",
    "\n",
    "5) Repeat from step 2) until an individual is fit enough or the maximum number of iterations was reached."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Glossary\n",
    "\n",
    "Before we continue, we will lay the basic terminology of the algorithm.\n",
    "\n",
    "* Individual/State: A list of elements (called *genes*) that represent possible solutions.\n",
    "\n",
    "* Population: The list of all the individuals/states.\n",
    "\n",
    "* Gene pool: The alphabet of possible values for an individual's genes.\n",
    "\n",
    "* Generation/Iteration: The number of times the population will be updated.\n",
    "\n",
    "* Fitness: An individual's score, calculated by a function specific to the problem."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Crossover\n",
    "\n",
    "Two individuals/states can \"mate\" and produce one child. This offspring bears characteristics from both of its parents. There are many ways we can implement this crossover. Here we will take a look at the most common ones. Most other methods are variations of those below.\n",
    "\n",
    "* Point Crossover: The crossover occurs around one (or more) point. The parents get \"split\" at the chosen point or points and then get merged. In the example below we see two parents get split and merged at the 3rd digit, producing the following offspring after the crossover.\n",
    "\n",
    "![point crossover](images/point_crossover.png)\n",
    "\n",
    "* Uniform Crossover: This type of crossover chooses randomly the genes to get merged. Here the genes 1, 2 and 5 were chosen from the first parent, so the genes 3, 4 were added by the second parent.\n",
    "\n",
    "![uniform crossover](images/uniform_crossover.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Mutation\n",
    "\n",
    "When an offspring is produced, there is a chance it will mutate, having one (or more, depending on the implementation) of its genes altered.\n",
    "\n",
    "For example, let's say the new individual to undergo mutation is \"abcde\". Randomly we pick to change its third gene to 'z'. The individual now becomes \"abzde\" and is added to the population."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Selection\n",
    "\n",
    "At each iteration, the fittest individuals are picked randomly to mate and produce offsprings. We measure an individual's fitness with a *fitness function*. That function depends on the given problem and it is used to score an individual. Usually the higher the better.\n",
    "\n",
    "The selection process is this:\n",
    "\n",
    "1) Individuals are scored by the fitness function.\n",
    "\n",
    "2) Individuals are picked randomly, according to their score (higher score means higher chance to get picked). Usually the formula to calculate the chance to pick an individual is the following (for population *P* and individual *i*):\n",
    "\n",
    "$$ chance(i) = \\dfrac{fitness(i)}{\\sum_{k \\, in \\, P}{fitness(k)}} $$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation\n",
    "\n",
    "Below we look over the implementation of the algorithm in the `search` module.\n",
    "\n",
    "First the implementation of the main core of the algorithm:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">genetic_algorithm</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"o\">=</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">],</span> <span class=\"n\">f_thres</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">ngen</span><span class=\"o\">=</span><span class=\"mi\">1000</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"o\">=</span><span class=\"mf\">0.1</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;[Figure 4.8]&quot;&quot;&quot;</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">ngen</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">population</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">mutate</span><span class=\"p\">(</span><span class=\"n\">recombine</span><span class=\"p\">(</span><span class=\"o\">*</span><span class=\"n\">select</span><span class=\"p\">(</span><span class=\"mi\">2</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">)),</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"p\">)</span>\n",
       "                      <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">))]</span>\n",
       "\n",
       "        <span class=\"n\">fittest_individual</span> <span class=\"o\">=</span> <span class=\"n\">fitness_threshold</span><span class=\"p\">(</span><span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">f_thres</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">fittest_individual</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">fittest_individual</span>\n",
       "\n",
       "\n",
       "    <span class=\"k\">return</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">fitness_fn</span><span class=\"p\">)</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(genetic_algorithm)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The algorithm takes the following input:\n",
    "\n",
    "* `population`: The initial population.\n",
    "\n",
    "* `fitness_fn`: The problem's fitness function.\n",
    "\n",
    "* `gene_pool`: The gene pool of the states/individuals. By default 0 and 1.\n",
    "\n",
    "* `f_thres`: The fitness threshold. If an individual reaches that score, iteration stops. By default 'None', which means the algorithm will not halt until the generations are ran.\n",
    "\n",
    "* `ngen`: The number of iterations/generations.\n",
    "\n",
    "* `pmut`: The probability of mutation.\n",
    "\n",
    "The algorithm gives as output the state with the largest score."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For each generation, the algorithm updates the population. First it calculates the fitnesses of the individuals, then it selects the most fit ones and finally crosses them over to produce offsprings. There is a chance that the offspring will be mutated, given by `pmut`. If at the end of the generation an individual meets the fitness threshold, the algorithm halts and returns that individual.\n",
    "\n",
    "The function of mating is accomplished by the method `recombine`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">recombine</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">y</span><span class=\"p\">):</span>\n",
       "    <span class=\"n\">n</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">c</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">n</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">x</span><span class=\"p\">[:</span><span class=\"n\">c</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">y</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"p\">:]</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(recombine)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The method picks at random a point and merges the parents (`x` and `y`) around it.\n",
    "\n",
    "The mutation is done in the method `mutate`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">mutate</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"p\">):</span>\n",
       "    <span class=\"k\">if</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">uniform</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">)</span> <span class=\"o\">&gt;=</span> <span class=\"n\">pmut</span><span class=\"p\">:</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">x</span>\n",
       "\n",
       "    <span class=\"n\">n</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">g</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">gene_pool</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">c</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">n</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">r</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">g</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"n\">new_gene</span> <span class=\"o\">=</span> <span class=\"n\">gene_pool</span><span class=\"p\">[</span><span class=\"n\">r</span><span class=\"p\">]</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">x</span><span class=\"p\">[:</span><span class=\"n\">c</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"p\">[</span><span class=\"n\">new_gene</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">x</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"o\">+</span><span class=\"mi\">1</span><span class=\"p\">:]</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(mutate)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We pick a gene in `x` to mutate and a gene from the gene pool to replace it with.\n",
    "\n",
    "To help initializing the population we have the helper function `init_population`\":"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">init_population</span><span class=\"p\">(</span><span class=\"n\">pop_number</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">state_length</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Initializes population for genetic algorithm</span>\n",
       "<span class=\"sd\">    pop_number  :  Number of individuals in population</span>\n",
       "<span class=\"sd\">    gene_pool   :  List of possible values for individuals</span>\n",
       "<span class=\"sd\">    state_length:  The length of each individual&quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">g</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">gene_pool</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">population</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">pop_number</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">new_individual</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">gene_pool</span><span class=\"p\">[</span><span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">g</span><span class=\"p\">)]</span> <span class=\"k\">for</span> <span class=\"n\">j</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">state_length</span><span class=\"p\">)]</span>\n",
       "        <span class=\"n\">population</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">new_individual</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">return</span> <span class=\"n\">population</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(init_population)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The function takes as input the number of individuals in the population, the gene pool and the length of each individual/state. It creates individuals with random genes and returns the population when done."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Explanation\n",
    "\n",
    "Before we solve problems using the genetic algorithm, we will explain how to intuitively understand the algorithm using a trivial example.\n",
    "\n",
    "#### Generating Phrases\n",
    "\n",
    "In this problem, we use a genetic algorithm to generate a particular target phrase from a population of random strings. This is a classic example that helps build intuition about how to use this algorithm in other problems as well. Before we break the problem down, let us try to brute force the solution. Let us say that we want to generate the phrase \"genetic algorithm\". The phrase is 17 characters long. We can use any character from the 26 lowercase characters and the space character. To generate a random phrase of length 17, each space can be filled in 27 ways. So the total number of possible phrases is\n",
    "\n",
    "$$ 27^{17} = 2153693963075557766310747 $$\n",
    "\n",
    "which is a massive number. If we wanted to generate the phrase \"Genetic Algorithm\", we would also have to include all the 26 uppercase characters into consideration thereby increasing the sample space from 27 characters to 53 characters and the total number of possible phrases then would be\n",
    "\n",
    "$$ 53^{17} = 205442259656281392806087233013 $$\n",
    "\n",
    "If we wanted to include punctuations and numerals into the sample space, we would have further complicated an already impossible problem. Hence, brute forcing is not an option. Now we'll apply the genetic algorithm and see how it significantly reduces the search space. We essentially want to *evolve* our population of random strings so that they better approximate the target phrase as the number of generations increase. Genetic algorithms work on the principle of Darwinian Natural Selection according to which, there are three key concepts that need to be in place for evolution to happen. They are:\n",
    "\n",
    "* **Heredity**: There must be a process in place by which children receive the properties of their parents. <br> \n",
    "For this particular problem, two strings from the population will be chosen as parents and will be split at a random index and recombined as described in the `recombine` function to create a child. This child string will then be added to the new generation.\n",
    "\n",
    "\n",
    "* **Variation**: There must be a variety of traits present in the population or a means with which to introduce variation. <br>If there is no variation in the sample space, we might never reach the global optimum. To ensure that there is enough variation, we can initialize a large population, but this gets computationally expensive as the population gets larger. Hence, we often use another method called mutation. In this method, we randomly change one or more characters of some strings in the population based on a predefined probability value called the mutation rate or mutation probability as described in the `mutate` function. The mutation rate is usually kept quite low. A mutation rate of zero fails to introduce variation in the population and a high mutation rate (say 50%) is as good as a coin flip and the population fails to benefit from the previous recombinations. An optimum balance has to be maintained between population size and mutation rate so as to reduce the computational cost as well as have sufficient variation in the population.\n",
    "\n",
    "\n",
    "* **Selection**: There must be some mechanism by which some members of the population have the opportunity to be parents and pass down their genetic information and some do not. This is typically referred to as \"survival of the fittest\". <br>\n",
    "There has to be some way of determining which phrases in our population have a better chance of eventually evolving into the target phrase. This is done by introducing a fitness function that calculates how close the generated phrase is to the target phrase. The function will simply return a scalar value corresponding to the number of matching characters between the generated phrase and the target phrase."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Before solving the problem, we first need to define our target phrase."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "target = 'Genetic Algorithm'"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "We then need to define our gene pool, i.e the elements which an individual from the population might comprise of. Here, the gene pool contains all uppercase and lowercase letters of the English alphabet and the space character."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# The ASCII values of uppercase characters ranges from 65 to 91\n",
    "u_case = [chr(x) for x in range(65, 91)]\n",
    "# The ASCII values of lowercase characters ranges from 97 to 123\n",
    "l_case = [chr(x) for x in range(97, 123)]\n",
    "\n",
    "gene_pool = []\n",
    "gene_pool.extend(u_case) # adds the uppercase list to the gene pool\n",
    "gene_pool.extend(l_case) # adds the lowercase list to the gene pool\n",
    "gene_pool.append(' ')    # adds the space character to the gene pool"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We now need to define the maximum size of each population. Larger populations have more variation but are computationally more  expensive to run algorithms on."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "max_population = 100"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "As our population is not very large, we can afford to keep a relatively large mutation rate."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "mutation_rate = 0.07 # 7%"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Great! Now, we need to define the most important metric for the genetic algorithm, i.e the fitness function. This will simply return the number of matching characters between the generated sample and the target phrase."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def fitness_fn(sample):\n",
    "    # initialize fitness to 0\n",
    "    fitness = 0\n",
    "    for i in range(len(sample)):\n",
    "        # increment fitness by 1 for every matching character\n",
    "        if sample[i] == target[i]:\n",
    "            fitness += 1\n",
    "    return fitness"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Before we run our genetic algorithm, we need to initialize a random population. We will use the `init_population` function to do this. We need to pass in the maximum population size, the gene pool and the length of each individual, which in this case will be the same as the length of the target phrase."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "population = init_population(max_population, gene_pool, len(target))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will now define how the individuals in the population should change as the number of generations increases. First, the `select` function will be run on the population to select *two* individuals with high fitness values. These will be the parents which will then be recombined using the `recombine` function to generate the child."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "parents = select(2, population, fitness_fn) "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# The recombine function takes two parents as arguments, so we need to unpack the previous variable\n",
    "child = recombine(*parents)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next, we need to apply a mutation according to the mutation rate. We call the `mutate` function on the child with the gene pool and mutation rate as the additional arguments."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "child = mutate(child, gene_pool, mutation_rate)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The above lines can be condensed into\n",
    "\n",
    "`child = mutate(recombine(*select(2, population, fitness_fn)), gene_pool, mutation_rate)`\n",
    "\n",
    "And, we need to do this `for` every individual in the current population to generate the new population."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, mutation_rate) for i in range(len(population))]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The individual with the highest fitness can then be found using the `max` function."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "current_best = max(population, key=fitness_fn)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's print this out"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['J', 'y', 'O', 'e', ' ', 'h', 'c', 'r', 'C', 'W', 'H', 'o', 'r', 'R', 'y', 'P', 'U']\n"
     ]
    }
   ],
   "source": [
    "print(current_best)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We see that this is a list of characters. This can be converted to a string using the join function"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "JyOe hcrCWHorRyPU\n"
     ]
    }
   ],
   "source": [
    "current_best_string = ''.join(current_best)\n",
    "print(current_best_string)"
    "We now need to define the conditions to terminate the algorithm. This can happen in two ways\n",
    "1. Termination after a predefined number of generations\n",
    "2. Termination when the fitness of the best individual of the current generation reaches a predefined threshold value.\n",
    "We define these variables below"
   "execution_count": 68,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
    "ngen = 1200 # maximum number of generations\n",
    "# we set the threshold fitness equal to the length of the target phrase\n",
    "# i.e the algorithm only terminates whne it has got all the characters correct \n",
    "# or it has completed 'ngen' number of generations\n",
    "f_thres = len(target)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "To generate `ngen` number of generations, we run a `for` loop `ngen` number of times. After each generation, we calculate the fitness of the best individual of the generation and compare it to the value of `f_thres` using the `fitness_threshold` function. After every generation, we print out the best individual of the generation and the corresponding fitness value. Lets now write a function to do this."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def genetic_algorithm_stepwise(population, fitness_fn, gene_pool=[0, 1], f_thres=None, ngen=1200, pmut=0.1):\n",
    "    for generation in range(ngen):\n",
    "        population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, pmut) for i in range(len(population))]\n",
    "        # stores the individual genome with the highest fitness in the current population\n",
    "        current_best = ''.join(max(population, key=fitness_fn))\n",
    "        print(f'Current best: {current_best}\\t\\tGeneration: {str(generation)}\\t\\tFitness: {fitness_fn(current_best)}\\r', end='')\n",
    "        \n",
    "        # compare the fitness of the current best individual to f_thres\n",
    "        fittest_individual = fitness_threshold(fitness_fn, f_thres, population)\n",
    "        \n",
    "        # if fitness is greater than or equal to f_thres, we terminate the algorithm\n",
    "        if fittest_individual:\n",
    "            return fittest_individual, generation\n",
    "    return max(population, key=fitness_fn) , generation       "
    "The function defined above is essentially the same as the one defined in `search.py` with the added functionality of printing out the data of each generation."
   "execution_count": 70,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">genetic_algorithm</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"o\">=</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">],</span> <span class=\"n\">f_thres</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">ngen</span><span class=\"o\">=</span><span class=\"mi\">1000</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"o\">=</span><span class=\"mf\">0.1</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;[Figure 4.8]&quot;&quot;&quot;</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">ngen</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">population</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">mutate</span><span class=\"p\">(</span><span class=\"n\">recombine</span><span class=\"p\">(</span><span class=\"o\">*</span><span class=\"n\">select</span><span class=\"p\">(</span><span class=\"mi\">2</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">)),</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"p\">)</span>\n",
       "                      <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">))]</span>\n",
       "        <span class=\"n\">fittest_individual</span> <span class=\"o\">=</span> <span class=\"n\">fitness_threshold</span><span class=\"p\">(</span><span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">f_thres</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">fittest_individual</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">fittest_individual</span>\n",
       "\n",
       "\n",
       "    <span class=\"k\">return</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">fitness_fn</span><span class=\"p\">)</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "psource(genetic_algorithm)"
   "metadata": {},
    "We have defined all the required functions and variables. Let's now create a new population and test the function we wrote above."
   "execution_count": 71,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Current best: Genetic Algorithm\t\tGeneration: 985\t\tFitness: 17\r"
     ]
    }
   ],
    "population = init_population(max_population, gene_pool, len(target))\n",
    "solution, generations = genetic_algorithm_stepwise(population, fitness_fn, gene_pool, f_thres, ngen, mutation_rate)"
   ]
  },
  {
   "cell_type": "markdown",
    "The genetic algorithm was able to converge!\n",
    "We implore you to rerun the above cell and play around with `target, max_population, f_thres, ngen` etc parameters to get a better intuition of how the algorithm works. To summarize, if we can define the problem states in simple array format and if we can create a fitness function to gauge how good or bad our approximate solutions are, there is a high chance that we can get a satisfactory solution using a genetic algorithm. \n",
    "- There is also a better GUI version of this program `genetic_algorithm_example.py` in the GUI folder for you to play around with."
   "cell_type": "markdown",
   "metadata": {},
    "### Usage\n",
    "\n",
    "Below we give two example usages for the genetic algorithm, for a graph coloring problem and the 8 queens problem.\n",
    "\n",
    "#### Graph Coloring\n",
    "\n",
    "First we will take on the simpler problem of coloring a small graph with two colors. Before we do anything, let's imagine how a solution might look. First, we have to represent our colors. Say, 'R' for red and 'G' for green. These make up our gene pool. What of the individual solutions though? For that, we will look at our problem. We stated we have a graph. A graph has nodes and edges, and we want to color the nodes. Naturally, we want to store each node's color. If we have four nodes, we can store their colors in a list of genes, one for each node. A possible solution will then look like this: ['R', 'R', 'G', 'R']. In the general case, we will represent each solution with a list of chars ('R' and 'G'), with length the number of nodes.\n",
    "\n",
    "Next we need to come up with a fitness function that appropriately scores individuals. Again, we will look at the problem definition at hand. We want to color a graph. For a solution to be optimal, no edge should connect two nodes of the same color. How can we use this information to score a solution? A naive (and ineffective) approach would be to count the different colors in the string. So ['R', 'R', 'R', 'R'] has a score of 1 and ['R', 'R', 'G', 'G'] has a score of 2. Why that fitness function is not ideal though? Why, we forgot the information about the edges! The edges are pivotal to the problem and the above function only deals with node colors. We didn't use all the information at hand and ended up with an ineffective answer. How, then, can we use that information to our advantage?\n",
    "\n",
    "We said that the optimal solution will have all the edges connecting nodes of different color. So, to score a solution we can count how many edges are valid (aka connecting nodes of different color). That is a great fitness function!\n",
    "\n",
    "Let's jump into solving this problem using the `genetic_algorithm` function."
    "First we need to represent the graph. Since we mostly need information about edges, we will just store the edges. We will denote edges with capital letters and nodes with integers:"
   "execution_count": 72,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "edges = {\n",
    "    'A': [0, 1],\n",
    "    'B': [0, 3],\n",
    "    'C': [1, 2],\n",
    "    'D': [2, 3]\n",
    "}"
    "Edge 'A' connects nodes 0 and 1, edge 'B' connects nodes 0 and 3 etc.\n",
    "\n",
    "We already said our gene pool is 'R' and 'G', so we can jump right into initializing our population. Since we have only four nodes, `state_length` should be 4. For the number of individuals, we will try 8. We can increase this number if we need higher accuracy, but be careful! Larger populations need more computating power and take longer. You need to strike that sweet balance between accuracy and cost (the ultimate dilemma of the programmer!)."
   "execution_count": 73,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[['R', 'G', 'G', 'G'], ['G', 'R', 'R', 'G'], ['G', 'G', 'G', 'G'], ['G', 'R', 'G', 'G'], ['G', 'G', 'G', 'R'], ['G', 'R', 'R', 'G'], ['G', 'R', 'G', 'G'], ['G', 'G', 'R', 'G']]\n"
     ]
    }
   ],
    "population = init_population(8, ['R', 'G'], 4)\n",
    "print(population)"
    "We created and printed the population. You can see that the genes in the individuals are random and there are 8 individuals each with 4 genes.\n",
    "\n",
    "Next we need to write our fitness function. We previously said we want the function to count how many edges are valid. So, given a coloring/individual `c`, we will do just that:"
   "execution_count": 74,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def fitness(c):\n",
    "    return sum(c[n1] != c[n2] for (n1, n2) in edges.values())"
    "Great! Now we will run the genetic algorithm and see what solution it gives."
   "execution_count": 75,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "['R', 'G', 'R', 'G']\n"
     ]
    }
   ],
    "solution = genetic_algorithm(population, fitness, gene_pool=['R', 'G'])\n",
    "print(solution)"
   "cell_type": "markdown",
   "metadata": {},
    "The algorithm converged to a solution. Let's check its score:"
   "cell_type": "code",
   "execution_count": 76,
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "4\n"
     ]
    }
   ],
    "print(fitness(solution))"
   "cell_type": "markdown",
   "metadata": {},
    "The solution has a score of 4. Which means it is optimal, since we have exactly 4 edges in our graph, meaning all are valid!\n",
    "\n",
    "*NOTE: Because the algorithm is non-deterministic, there is a chance a different solution is given. It might even be wrong, if we are very unlucky!*"
    "#### Eight Queens\n",
    "Let's take a look at a more complicated problem.\n",
    "In the *Eight Queens* problem, we are tasked with placing eight queens on an 8x8 chessboard without any queen threatening the others (aka queens should not be in the same row, column or diagonal). In its general form the problem is defined as placing *N* queens in an NxN chessboard without any conflicts.\n",
    "\n",
    "First we need to think about the representation of each solution. We can go the naive route of representing the whole chessboard with the queens' placements on it. That is definitely one way to go about it, but for the purpose of this tutorial we will do something different. We have eight queens, so we will have a gene for each of them. The gene pool will be numbers from 0 to 7, for the different columns. The *position* of the gene in the state will denote the row the particular queen is placed in.\n",
    "\n",
    "For example, we can have the state \"03304577\". Here the first gene with a value of 0 means \"the queen at row 0 is placed at column 0\", for the second gene \"the queen at row 1 is placed at column 3\" and so forth.\n",
    "\n",
    "We now need to think about the fitness function. On the graph coloring problem we counted the valid edges. The same thought process can be applied here. Instead of edges though, we have positioning between queens. If two queens are not threatening each other, we say they are at a \"non-attacking\" positioning. We can, therefore, count how many such positionings are there.\n",
    "\n",
    "Let's dive right in and initialize our population:"
   "execution_count": 77,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[[2, 6, 2, 0, 2, 3, 4, 7], [7, 2, 0, 6, 3, 3, 0, 6], [2, 3, 0, 6, 6, 2, 5, 5], [2, 6, 4, 2, 3, 5, 5, 5], [3, 1, 5, 1, 5, 1, 0, 3]]\n"
     ]
    }
   ],
    "population = init_population(100, range(8), 8)\n",
    "print(population[:5])"
    "We have a population of 100 and each individual has 8 genes. The gene pool is the integers from 0 to 7, in string form. Above you can see the first five individuals.\n",
    "\n",
    "Next we need to write our fitness function. Remember, queens threaten each other if they are at the same row, column or diagonal.\n",
    "\n",
    "Since positionings are mutual, we must take care not to count them twice. Therefore for each queen, we will only check for conflicts for the queens after her.\n",
    "\n",
    "A gene's value in an individual `q` denotes the queen's column, and the position of the gene denotes its row. We can check if the aforementioned values between two genes are the same. We also need to check for diagonals. A queen *a* is in the diagonal of another queen, *b*, if the difference of the rows between them is equal to either their difference in columns (for the diagonal on the right of *a*) or equal to the negative difference of their columns (for the left diagonal of *a*). Below is given the fitness function."
   "execution_count": 78,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def fitness(q):\n",
    "    non_attacking = 0\n",
    "    for row1 in range(len(q)):\n",
    "        for row2 in range(row1+1, len(q)):\n",
    "            col1 = int(q[row1])\n",
    "            col2 = int(q[row2])\n",
    "            row_diff = row1 - row2\n",
    "            col_diff = col1 - col2\n",
    "\n",
    "            if col1 != col2 and row_diff != col_diff and row_diff != -col_diff:\n",
    "                non_attacking += 1\n",
    "\n",
    "    return non_attacking"
    "Note that the best score achievable is 28. That is because for each queen we only check for the queens after her. For the first queen we check 7 other queens, for the second queen 6 others and so on. In short, the number of checks we make is the sum 7+6+5+...+1. Which is equal to 7\\*(7+1)/2 = 28.\n",
    "\n",
    "Because it is very hard and will take long to find a perfect solution, we will set the fitness threshold at 25. If we find an individual with a score greater or equal to that, we will halt. Let's see how the genetic algorithm will fare."
   "execution_count": 79,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[2, 5, 7, 1, 3, 6, 4, 6]\n",
      "25\n"
    "solution = genetic_algorithm(population, fitness, f_thres=25, gene_pool=range(8))\n",
    "print(solution)\n",
    "print(fitness(solution))"
    "Above you can see the solution and its fitness score, which should be no less than 25."
   "metadata": {},
    "This is where we conclude Genetic Algorithms."
   ]
  },
  {
   "cell_type": "markdown",
    "### N-Queens Problem\n",
    "Here, we will look at the generalized cae of the Eight Queens problem.\n",
    "<br>\n",
    "We are given a `N` x `N` chessboard, with `N` queens, and we need to place them in such a way that no two queens can attack each other.\n",
    "<br>\n",
    "We will solve this problem using search algorithms.\n",
    "To do this, we already have a `NQueensProblem` class in `search.py`."
   "execution_count": 80,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">NQueensProblem</span><span class=\"p\">(</span><span class=\"n\">Problem</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;The problem of placing N queens on an NxN board with none attacking</span>\n",
       "<span class=\"sd\">    each other.  A state is represented as an N-element array, where</span>\n",
       "<span class=\"sd\">    a value of r in the c-th entry means there is a queen at column c,</span>\n",
       "<span class=\"sd\">    row r, and a value of -1 means that the c-th column has not been</span>\n",
       "<span class=\"sd\">    filled in yet.  We fill in columns left to right.</span>\n",
       "<span class=\"sd\">    &gt;&gt;&gt; depth_first_tree_search(NQueensProblem(8))</span>\n",
       "<span class=\"sd\">    &lt;Node (7, 3, 0, 2, 5, 1, 6, 4)&gt;</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">N</span><span class=\"p\">):</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">N</span> <span class=\"o\">=</span> <span class=\"n\">N</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">initial</span> <span class=\"o\">=</span> <span class=\"nb\">tuple</span><span class=\"p\">([</span><span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"o\">*</span> <span class=\"n\">N</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">Problem</span><span class=\"o\">.</span><span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">initial</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">actions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;In the leftmost empty column, try all non-conflicting rows.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">state</span><span class=\"p\">[</span><span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"p\">[]</span>  <span class=\"c1\"># All columns filled; no successors</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">col</span> <span class=\"o\">=</span> <span class=\"n\">state</span><span class=\"o\">.</span><span class=\"n\">index</span><span class=\"p\">(</span><span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">return</span> <span class=\"p\">[</span><span class=\"n\">row</span> <span class=\"k\">for</span> <span class=\"n\">row</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">N</span><span class=\"p\">)</span>\n",
       "                    <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">conflicted</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">row</span><span class=\"p\">,</span> <span class=\"n\">col</span><span class=\"p\">)]</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">result</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">row</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Place the next queen at the given row.&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">col</span> <span class=\"o\">=</span> <span class=\"n\">state</span><span class=\"o\">.</span><span class=\"n\">index</span><span class=\"p\">(</span><span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">new</span> <span class=\"o\">=</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">[:])</span>\n",
       "        <span class=\"n\">new</span><span class=\"p\">[</span><span class=\"n\">col</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">row</span>\n",
       "        <span class=\"k\">return</span> <span class=\"nb\">tuple</span><span class=\"p\">(</span><span class=\"n\">new</span><span class=\"p\">)</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">conflicted</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">row</span><span class=\"p\">,</span> <span class=\"n\">col</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Would placing a queen at (row, col) conflict with anything?&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"nb\">any</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">conflict</span><span class=\"p\">(</span><span class=\"n\">row</span><span class=\"p\">,</span> <span class=\"n\">col</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"p\">],</span> <span class=\"n\">c</span><span class=\"p\">)</span>\n",
       "                   <span class=\"k\">for</span> <span class=\"n\">c</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">col</span><span class=\"p\">))</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">conflict</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">row1</span><span class=\"p\">,</span> <span class=\"n\">col1</span><span class=\"p\">,</span> <span class=\"n\">row2</span><span class=\"p\">,</span> <span class=\"n\">col2</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Would putting two queens in (row1, col1) and (row2, col2) conflict?&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"p\">(</span><span class=\"n\">row1</span> <span class=\"o\">==</span> <span class=\"n\">row2</span> <span class=\"ow\">or</span>  <span class=\"c1\"># same row</span>\n",
       "                <span class=\"n\">col1</span> <span class=\"o\">==</span> <span class=\"n\">col2</span> <span class=\"ow\">or</span>  <span class=\"c1\"># same column</span>\n",
       "                <span class=\"n\">row1</span> <span class=\"o\">-</span> <span class=\"n\">col1</span> <span class=\"o\">==</span> <span class=\"n\">row2</span> <span class=\"o\">-</span> <span class=\"n\">col2</span> <span class=\"ow\">or</span>  <span class=\"c1\"># same \\ diagonal</span>\n",
       "                <span class=\"n\">row1</span> <span class=\"o\">+</span> <span class=\"n\">col1</span> <span class=\"o\">==</span> <span class=\"n\">row2</span> <span class=\"o\">+</span> <span class=\"n\">col2</span><span class=\"p\">)</span>   <span class=\"c1\"># same / diagonal</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">goal_test</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Check if all columns filled, no conflicts.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">state</span><span class=\"p\">[</span><span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">]</span> <span class=\"ow\">is</span> <span class=\"o\">-</span><span class=\"mi\">1</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">False</span>\n",
       "        <span class=\"k\">return</span> <span class=\"ow\">not</span> <span class=\"nb\">any</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">conflicted</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">state</span><span class=\"p\">[</span><span class=\"n\">col</span><span class=\"p\">],</span> <span class=\"n\">col</span><span class=\"p\">)</span>\n",
       "                       <span class=\"k\">for</span> <span class=\"n\">col</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">)))</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">h</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">node</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return number of conflicting queens for a given node&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">num_conflicts</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
       "        <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">r1</span><span class=\"p\">,</span> <span class=\"n\">c1</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"nb\">enumerate</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "            <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">r2</span><span class=\"p\">,</span> <span class=\"n\">c2</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"nb\">enumerate</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "                <span class=\"k\">if</span> <span class=\"p\">(</span><span class=\"n\">r1</span><span class=\"p\">,</span> <span class=\"n\">c1</span><span class=\"p\">)</span> <span class=\"o\">!=</span> <span class=\"p\">(</span><span class=\"n\">r2</span><span class=\"p\">,</span> <span class=\"n\">c2</span><span class=\"p\">):</span>\n",
       "                    <span class=\"n\">num_conflicts</span> <span class=\"o\">+=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">conflict</span><span class=\"p\">(</span><span class=\"n\">r1</span><span class=\"p\">,</span> <span class=\"n\">c1</span><span class=\"p\">,</span> <span class=\"n\">r2</span><span class=\"p\">,</span> <span class=\"n\">c2</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"n\">num_conflicts</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "psource(NQueensProblem)"
    "In [`csp.ipynb`](https://github.com/aimacode/aima-python/blob/master/csp.ipynb) we have seen that the N-Queens problem can be formulated as a CSP and can be solved by \n",
    "the `min_conflicts` algorithm in a way similar to Hill-Climbing. \n",
    "Here, we want to solve it using heuristic search algorithms and even some classical search algorithms.\n",
    "The `NQueensProblem` class derives from the `Problem` class and is implemented in such a way that the search algorithms we already have, can solve it.\n",
    "<br>\n",
    "Let's instantiate the class."
   "execution_count": 81,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
    "nqp = NQueensProblem(8)"
   ]
  },
  {
   "cell_type": "markdown",
    "Let's use `depth_first_tree_search` first.\n",
    "<br>\n",
    "We will also use the %%timeit magic with each algorithm to see how much time they take."
   "cell_type": "code",
   "execution_count": 82,
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "4.82 ms ± 498 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
     ]
    }
   ],
    "%%timeit\n",
    "depth_first_tree_search(nqp)"
   "execution_count": 83,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "dfts = depth_first_tree_search(nqp).solution()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+4FdWd7/nP93IOIIZfBw6YAGOg\nkyczHQO2nBa7iQwxpA0IRmd6umGMXs1kuJO5hiDY6Zbn6Scmz41mVCB07OncXGnw3jagaduI2lGi\nEQwYtQ+00jHpnseAiYj8OMIJ6DERuGv+qLM9e+9TVbvO3lW7dlW9X8+zn7131aq11t6Lw3evVatW\nmXNOAACgtf27tCsAAABqI2ADAJABBGwAADKAgA0AQAYQsAEAyAACNgAAGUDABgAgAwjYAABkAAEb\naDFm9kEz+0czO2Fmh83sbjNrC0k/zsz+pj9tn5n9i5n9+2bWGUDyCNhA6/l/JR2V9H5JF0r6nyX9\n334JzWy4pCclnS/pDySNlfRnku4wsxVNqS2ApiBgA61nuqQHnHO/cc4dlvS4pI8GpL1W0v8g6X9z\nzh1wzp12zj0uaYWk/2RmoyXJzJyZfah0kJltNrP/VPZ+sZm9aGa9Zvasmc0s2/cBM3vQzI6Z2YHy\nHwJmdquZPWBm/9XMTpnZy2bWVbb/z83s9f59/2Zmn4znKwKKh4ANtJ4Nkpaa2SgzmyJpobyg7edT\nkn7gnHu7avuDkkZJuqRWYWZ2kaS/lfQfJE2Q9J8lbTOzEWb27yQ9IuklSVMkfVLSSjO7vCyLKyVt\nlTRO0jZJd/fn+xFJN0r6fefcaEmXS3q1Vn0A+CNgA61np7we9UlJByV1S/p+QNqJkt6o3uicOyOp\nR1JnhPL+T0n/2Tn3vHPurHPuXkm/lRfsf19Sp3Pua865d51z+yX9F0lLy47f5Zz7R+fcWUn/TdKs\n/u1nJY2Q9Ltm1u6ce9U594sI9QHgg4ANtJD+Hu0Tkv5B0rnyAvJ4Sf9PwCE98s51V+fT1n/ssQjF\nni9pdf9weK+Z9UqaJukD/fs+ULVvjaTJZccfLnvdJ2mkmbU5516RtFLSrZKOmtlWM/tAhPoA8EHA\nBlpLh7xgebdz7rfOuTclbZK0KCD9k5IWmtm5Vdv/V0mnJb3Q/75P3hB5yXllr1+T9HXn3Liyxyjn\n3Jb+fQeq9o12zgXVp4Jz7rvOuY/LC/xOwT88ANRAwAZaiHOuR9IBSV8wszYzGyfp38s7h+znv8kb\nNv9e/+Vg7f3nl/9K0h3OuV/3p3tR0v9uZsPM7NPyZp6X/BdJ/5eZzTHPuWZ2Rf+EtRckneyfPHZO\n//EXmNnv1/osZvYRM7vMzEZI+o2kd+QNkwOoAwEbaD3/i6RPyxvOfkXSGUk3+SV0zv1W0gJ5PeHn\n5QXFxyV9U9JXy5J+SdISSb2SrlHZOXHnXLe889h3SzrRX+b1/fvO9h93obwfEj2S7pF3+VgtIyR9\no/+Yw5ImyRtOB1AHc86lXQcAMTGzdkk/kPS6pOsdf+BAbtDDBnLEOXda3vnrX0j6SMrVARAjetgA\nAGQAPWwAADIg8IYCzTJx4kT3wQ9+MO1qJGbPnj1pVyFRs2fPTrsKiaMNs432y768t6GkHudczUWO\nUh8S7+rqct3d3anWIUlmlnYVEhXrv589MXxXs+P/90wbZhvtl315b0NJe5xzXbUSMSSOdB250wvU\ncQRraSCvI2vjyQ8AWgQBG+k4/aYXWA9+OZn8D97s5X/6SDL5A0CTpX4OGwUUV286in39K3AmMFQO\nAM1EDxvN1cxg3QrlAkBMCNhojr0j0g+ae0w6vjXdOgBAnQjYSN4ek9y7DWdz4x0x1OXAsvR/OABA\nHTiHjWTtHdlwFlZ2scNfP+A9u0avBNw7Qrrotw1mAgDNQw8byXK1g2LnAum+H/jvs4ArE4O2RxZD\njx8AmomAjeTUGHq2Lu/R0yt99i8bD8Kl/EqPC/6ksfoBQCshYCMZNYLht+73315v0PY77uX9EQ4k\naAPICAI24nfmaM0kK+5sQj0U8QfAmZ7E6wEAjSJgI34vTY4tq6DJZQ1POiv3Us019wEgdcwSR7ze\nGLj2yq93Wwq0rjv68Lfrlk71SWPmSSefkUaPil6dTV8ZeB1WHx1eL513U/SMAaDJ6GEjXof+XFJw\nMD5YNlo+d9bg/UE951KQDgrWQcddv8R7/tVh//3v1fP1Vf4JAKBFELDRVNMWDbzetbEy0IYNc3/4\nau95wmXBaarzKn9//uKh1RMAWg0BG/FpcMb16yFz1V55zXs+fjI4Tdi+SJgxDqCFEbDRVIvmBu+b\nuih4XxRhve/FlzaWNwCkjYCNRPTt9t/+2Ibm1qPkkfX+2995trn1AIB6EbARj9OVs7rOGeGdQz5n\nxMC2KJdibX6kvuIf3lk7TXn5o0Z670cOr0p0+lh9FQCAhBGwEY997/fd3LdbOv289zrKZVw3fHXw\ntjNnK9/39A5Oc9Xq2nmXyu/dIb29KyDRvkm1MwKAFBCwkbi2YY0dP/ySyvedCxrLb+z7GjseANJA\nwEZTRellL11T+d658PSf+1o85QJAKyNgo+Xcv31o6TdtS6YeANBKEgnYZvZpM/s3M3vFzP4iiTLQ\nWlati5622b3doZQ3lM8BAM0Ue8A2s2GS/lrSQkm/K2mZmf1u3OWgtayLeWXPL9weLV3cd/2K+3MA\nQFyS6GFfLOkV59x+59y7krZK+kwC5SDDFq8M3//tB73nnXv99297xnsOuq92SfXs8euuqF03AGhF\nSQTsKZJeK3t/sH/be8xsuZl1m1n3sWNc91oE0z9Q+f6xoMuqqsxf7r/9MxF7wtXXZ9/rc9kYAGRB\nEgHbb0Hminm+zrnvOOe6nHNdnZ3ci7gIfnzP4G0LV4Qf0xGy1Kgkjf9E+P6Va8P3A0CWJBGwD0qa\nVvZ+qqRDCZSDVjIrfKRkis96JI/XWBb0RI2befSeCt+/YUv4fl8ze+o4CACSl0TA/idJHzaz6WY2\nXNJSSVx4k3dtE+s6LKkZ41ffXOeB7RNirQcAxKUt7gydc2fM7EZJT0gaJulvnXMvx10OEOb7O9Ku\nAQDEK/aALUnOuX+U9I9J5I3smtwhHTmeXvlzLkivbABoFCudIT6zw9cQPTzEFczKfexD0oKLpd+Z\nWn8ez22ukaBG/QEgTYn0sIEgrjv4vPWiuY3dL/vyG6XtzwWXCwBZRsBGvKbeJR0Mn/HVu0MaN997\nfWS7NKmjcv/1t0r3Phq9yLmzpF0bpSfuHth24JA040rvdaSe/bS/il4gAKSAIXHEa3LtG1OXbm/p\nur1gvXW71+suPYYSrCVp90uVx295wluopdSrntwRfrwkadIXh1YoADSZuVr3LkxYV1eX6+7O73il\nmd86Mvnh++/n9DFpn8+F11WiXtK1ZJ50wxJp/mzpxCnpJ/uk2zZJP9sfoX5R/mnN7Am9nKuQbZgj\ntF/25b0NJe1xztX8H5EhccSvvf7V67at8wJ0kPFjpBlTpGsWVm7f9aJ06efrLJRrrwFkAAEbyZjt\npD3hv4pLE9Da26R3qyaLDWVBFdctffzCgd50+xzpzNmIvWtmhgPICAI2khMhaEsDwbreVc/Kjzv7\ngnT6+Yh5EawBZAiTzpCs6bUX9C5NFvNz63LpxNNeb7n06Nvtbfcz7OKIwXr69yIkAoDWwaSzhOV9\nskSkfz8BvezqwHrVfOmhu+qvy7I13ozzcoHD4kPoXdOG2Ub7ZV/e21BMOkPLmO2kvaMk986gXT1P\nSRPGVm4bPU96qy969h1jpDd/JG25zXtI0jc2S7fc7ZN4+hapY2n0zAGgRRCw0RwX9Ufgqt522zBp\n+pXSqw3cgPX4ycre+i8fHdzTlsQ5awCZxjlsNFdZ0HTd0sM7GwvWfs5f7F23XTEcTrAGkHH0sNF8\ns510+ri0b4Kuu0K67ooEy5p5tKHrwgGgVdDDRjraO7zAPW19MvlP2+DlT7AGkBP0sJGuSSu9hxTp\nmu2aGPoGkFP0sNE6ZruBx6wTg3av9uuMz3yj8jgAyCl62GhNbeMGBeC1f5dSXQCgBdDDBgAgAwjY\nAABkAAEbAIAMIGADAJABqd/8w8xyPbU37e83aQVYlJ82zDjaL/sK0Ibc/AMAEnP2hPRiR8Wm1eul\ntTdVpZt5SGp/f/Pqhdyih52wtL/fpPHrPvvy3oaxtl8LLu6T9/aTCvE3GKmHzTlsAAhz5E4vUMcR\nrKWBvI6sjSc/FAY97ISl/f0mjV/32Zf3Nqy7/U6/Ke2bGG9l/Mw8LLVPrvvwvLefVIi/Qc5hA0Bd\n4upNR7HvPO+ZpXVRA0PiAFCumcG6FcpFZhCwAUCS9o5IP2juMen41nTrgJZFwAaAPSa5dxvO5sY7\nYqjLgWXp/3BAS2LSWcLS/n6TxoSX7Mt7G9Zsv70jJffbhsown+lCrruhLCUbLl1Uu155bz+pEH+D\nXNYFADVFCNadC6T7fuC/zy9Yh22PLIYeP/KFHnbC0v5+k8av++zLexuGtl+NoecoPeewwFwr7Udn\nSD99ILQKNWeP5739pEL8DdLDBoBANYL1t+73315vz9nvuJf3RziQ89noR8AGUDxnjtZMsuLOJtRD\nEX8AnOlJvB5ofQRsAMXzUv0ri1ULmlzW8KSzci91xpgZsoqVzgAUyxsD116FnaN23dGHv123dKpP\nGjNPOvmMNHpU9Ops+srA69Bz5ofXS+dV3woMRUIPG0CxHPpzScHB+GDZaPncWYP3B/WcS0E6KFgH\nHXf9Eu/5V4f9979Xz9dX+SdAYRCwAaDMtEUDr3dtrAy0YcPcH77ae55wWXCa6rzK35+/eGj1RPEQ\nsAEUR4Mzrl8Pmav2ymve8/GTwWnC9kXCjPFCI2ADQJlFc4P3TV0UvC+KsN734ksbyxv5R8AGUEh9\nu/23P7ahufUoeWS9//Z3nm1uPdC6CNgAiuF05ayuc0Z455DPGTGwLcqlWJsfqa/4h3fWTlNe/qiR\n3vuRw6sSnT5WXwWQeSxNmrC0v9+ksSxi9uW9Dd9rv5Dzv2fOSu1z+tP7BO3qGeXVacqPl6RjT0oT\nxw0tj/I0vTukse8LrG7FcqV5bz+pEH+DLE0KAFG0DWvs+OGXVL7vXNBYfqHBGoVFwAaAMlEWS1m6\npvJ9rQ7g574WT7kottgDtpn9rZkdNbOfxp03ALSC+7cPLf2mbcnUA8WSRA97s6RPJ5AvANRt1bro\naZvd2x1KeUP5HMiX2AO2c+4ZScfjzhcAGrEu5pU9v3B7tHRx3/Ur7s+B7OAcNgD4WLwyfP+3H/Se\nd+7137/tGe856L7aJVetrnx/3RW164ZiSiVgm9lyM+s2szhvQAcAdZv+gcr3j+2Kdtz85f7bPxOx\nJ1x9ffa9X412HIonlYDtnPuOc64rynVnANAMP75n8LaFK8KP6QhZalSSxn8ifP/KteH7gXIMiQMo\nhlnhK4RNmTR42+M1lgU9UeNmHr2nwvdv2BK+39fMnjoOQh4kcVnXFkk/kfQRMztoZv9H3GUAwJC1\nTazrsKRmjF99c50Htk+ItR7Ijra4M3TOLYs7TwDIm+/vSLsGyBqGxAGg3+SOdMufc0G65aO1cfOP\nhKX9/SaNGw9kX97bcFD7hdwERKp/CPxjH/IC/oFD0i8O1pdHzbuFzR78bzHv7ScV4m8w0s0/Yh8S\nB4Asc93BQXvR3Mbul335jdL254LLBcIQsAEUy9S7pIPhM756d0jj5nuvj2yXJlUNlV9/q3Tvo9GL\nnDtL2rVReuLugW0HDkkzrvReH46yNvm0v4peIHKJIfGEpf39Jo3huOzLexv6tl+NYXHJ62WXer1b\nt0vL1oSnH4rvfl1advngckL5DIdL+W8/qRB/g5GGxAnYCUv7+00a/1lkX97b0Lf9Th+T9vlceF0l\n6vnsJfOkG5ZI82dLJ05JP9kn3bZJ+tn+CPWLEqxn9gRezpX39pMK8TfIOWwA8NXeWfeh29Z5ATrI\n+DHSjCnSNQsrt+96Ubr083UWyrXXED3sxKX9/SaNX/fZl/c2DG2/iEPj7W3Su88N3h65DlW96PY5\n0pmzjQ2Fv1ePnLefVIi/QXrYABBqtosUtEvBut5LvsqPO/uCdPr5iHnVCNYoFhZOAVBs02sv6G1d\nwQH21uXSiae93nLp0bfb2+5n2MURg/X070VIhCJhSDxhaX+/SWM4Lvvy3oaR2i+gl10dWK+aLz10\nV/11WbbGm3FeLnBYPGLvOu/tJxXib5BZ4q0g7e83afxnkX15b8PI7bd3lOTeqdhkXVLPU9KEsZVJ\nR8+T3uqLXoeOMdKbP6rc9o3N0i13+wTs6VukjqWR8857+0mF+BvkHDYARHZRfwSu6m23DZOmXym9\neqj+rI+frOyt//LRwT1tSZyzRijOYQNAubKg6bqlh3c2Fqz9nL/Yu267ondNsEYNDIknLO3vN2kM\nx2Vf3tuw7vY7fVza14Trn2cebei68Ly3n1SIv8FIQ+L0sAHAT3uH1+udtj6Z/Kdt8PJvIFijWOhh\nJyzt7zdp/LrPvry3YaztF+Ga7ZpiHvrOe/tJhfgbpIcNALGa7QYes04M2r3arzM+843K44A60cNO\nWNrfb9L4dZ99eW9D2i/7CtCG9LABAMgLAjYAABlAwAYAIANSX+ls9uzZ6u6Oco+5bMr7+aW8n1uS\naMOso/2yL+9tGBU9bAAAMiD1HjZQFIF3ZRqCeu/HDCD76GEDCbr52oF7JMehlNeqa+LJD0B2ELCB\nBHSM8QLrnV9KJv+1N3n5T+pIJn8ArYchcSBmcfWmozjSf4tGhsqB/KOHDcSomcG6FcoF0DwEbCAG\nv3k2/aDpuqU//VS6dQCQHAI20CDXLY0Y3ng+N97ReB5bb0//hwOAZHAOG2jAO7sbz6P8/PNfP+A9\nNxp0f/OsNPIPG8sDQGuhhw00YOSI2mk6F0j3/cB/X9BksUYnkcXR4wfQWgjYQJ1q9YKty3v09Eqf\n/cvGg3Apv9Ljgj9prH4AsoWADdShVjD81v3+2+sN2n7Hvby/9nEEbSA/CNjAEHVGWKxkxZ3J10OK\n9gNgwtjk6wEgeQRsYIiObo8vr6AecJw9456n4ssLQHqYJQ4MwZ9dO/Dar3dbCrSuO/rwt+uWTvVJ\nY+ZJJ5+RRo+KXp9NX4lWn5XLpG9uiZ4vgNZDDxsYgjv61wYPCsYHjw68njtr8P6gnnMpSAcF66Dj\nrl/iPf/qsP/+Uj3Xr/bfDyA7CNhAjKYtGni9a2NloA0b5v7w1d7zhMuC01TnVf7+/MVDqyeA7CFg\nAxE1el759aPB+155zXs+fjI4Tdi+KJgxDmQbARuI0aK5wfumLgreF0VY73vxpY3lDaD1EbCBOvQF\nLEn62Ibm1qPkkfX+2995trn1AJAcAjYQweQJle/PGeENMZ9TtjRplCHnzY/UV/7DO2unKS9/1Ejv\n/ciqJUonjquvfADpI2ADERx+wn97327p9PPe6yiXcd3w1cHbzpytfN/TOzjNVRFmeZfK790hvb3L\nP82xJ2vnA6A1EbCBBrUNa+z44ZdUvu9c0Fh+Y9/X2PEAWhMBG4hRlF720jWV750LT/+5r8VTLoBs\nI2ADTXb/EJc23bQtmXoAyJbYA7aZTTOzp83s52b2spl9Ke4ygGZbtS562mb3dodS3lA+B4DWkkQP\n+4yk1c65/0nSJZL+o5n9bgLlAE2zblW8+X3h9mjp4r7rV9yfA0DzxB6wnXNvOOf29r8+JennkqbE\nXQ7QyhavDN//7Qe95517/fdve8Z7Drqvdkn17PHrrqhdNwDZlOg5bDP7oKTfk/R81fblZtZtZt3H\njh1LsgpAU0z/QOX7xwIuq6o2f7n/9s9E7AlXX599r89lYwDyIbGAbWbvk/SgpJXOuYpVkJ1z33HO\ndTnnujo7O5OqAtA0P75n8LaFK8KP6QhZalSSxn8ifP/KteH7AeRLIgHbzNrlBev7nHP/kEQZQDNN\n/GT4/imTBm97vMayoCdq3Myj91T4/g113N86bD1yAK0tiVniJmmjpJ8755iTilx489f1HZfUjPGr\nb67vuEbv+AUgPUn0sOdKulbSZWb2Yv+jwfsUASj3/R1p1wBAs7XFnaFzbpckiztfoNVN7pCOHE+v\n/DkXpFc2gOSx0hkQUa3h7cNDXMGs3Mc+JC24WPqdqfXn8dzm8P0sXwpkW+w9bKDIXHdwYFw0t7H7\nZV9+o7T9ueByAeQbARsYgtXrpbU3hafp3SGNm++9PrJdmtRRuf/6W6V7H41e5txZ0q6N0hN3D2w7\ncEiacaX3OkrP/osxr5gGoPnM1bpVUMK6urpcd3d+uwfepPn8SvvfTzNUt2GU3qx1DaTbul1atiY8\n/VB89+vSsssHl1OrPkHy3ob8DWZf3ttQ0h7nXM2TVgTshOX9H1ra/36aoboNJ46Tjj0Z4biI54yX\nzJNuWCLNny2dOCX9ZJ902ybpZ/trHxslWE+4LPxyrry3IX+D2Zf3NlTEgM2QODBEPb31H7ttnReg\ng4wfI82YIl2zsHL7rhelSz9fX5lcew3kAwEbqEOUoejSBLT2NundqsliQ5mx7bqlj184UF77HOnM\n2caHwgFkCwEbqFPU88elYF1v8Cw/7uwL0unno+VFsAbyheuwgQYsvaV2GusKDp63LpdOPO0F/tKj\nb7e33c+wi6MF4j/+cu00ALKFSWcJy/tkibT//TRDrTYM6mVXB9ar5ksP3VV/PZat8Wac11N2mLy3\nIX+D2Zf3NhSTzoDmsC7p7V3SqJGD9/U8JU0YW7lt9Dzprb7o+XeMkd78kbTlNu8hSd/YLN1y9+C0\nS2+R7v9h9LwBZAcBG4jBuR/3nqt7vG3DpOlXSq8eqj/v4ycre8y/fHRwT1vinDWQd5zDBmJUHjRd\nt/TwzsaCtZ/zF3vXbZf/OCBYA/lHDxuImXVJ40dLx5+WrrvCeySlc0Fj14UDyA562EACTpzyAvfK\ntcnkv+JOL3+CNVAc9LCBBG3Y4j2keO6oxdA3UFz0sIEmKV2PbV0Dd/Mqt3r94G3nXV55HIDioocN\npODXb/kH4HX3Nb8uALKBHjYAABlAwAYAIAMI2AAAZAABGwCADEj95h9mluuV69P+fpNWgEX5acOM\no/2yrwBtyM0/cu3sCenFjopNq9dLa2+qSjfzkNT+/ubVCwCQCHrYCYv1+90Twy/p2fF+3fy6z768\ntyHtl30FaMNIPWzOYbe6I3d6gTqOYC0N5HUkoTUzAQCJoIedsLq/39NvSvsmxlsZPzMPS+2T6z6c\nX/fZl/c2pP2yrwBtyDnszIqrNx3FvvO855iHygEA8WJIvNU0M1i3QrkAgEgI2K1i74j0g+Yek45v\nTbcOAABfBOxWsMck927D2dx4Rwx1ObAs/R8OAIBBmHSWsJrf796RkvttQ2X43fWp4Xsv23Dpotr1\nYsJL9uW9DWm/7CtAG3JZVyZECNadC6T7fuC/L+geyQ3fOzmGHj8AID70sBMW+v3WGHqO0nMOC8y1\n0n50hvTTB0KrUHP2OL/usy/vbUj7ZV8B2pAedkurEay/db//9np7zn7Hvbw/woGczwaAlkDATsOZ\nozWTrLizCfVQxB8AZ3oSrwcAIBwBOw0v1b+yWLWgyWUNTzor91JnjJkBAOrBSmfN9sbAtVdh56hd\nd/Thb9ctneqTxsyTTj4jjR4VvTqbvjLwOvSc+eH10nnVtwIDADQLPexmO/TnkoKD8cGy0fK5swbv\nD+o5l4J0ULAOOu76Jd7zrw7773+vnq+v8k8AAGgKAnaLmbZo4PWujZWBNmyY+8NXe88TLgtOU51X\n+fvzFw+tngCA5iJgN1ODM65fD5mr9spr3vPxk8FpwvZFwoxxAEgNAbvFLJobvG/qouB9UYT1vhdf\n2ljeAIBkEbBT0rfbf/tjG5pbj5JH1vtvf+fZ5tYDAOCPgN0spytndZ0zwjuHfM6IgW1RLsXa/Eh9\nxT+8s3aa8vJHjfTejxxelej0sfoqAABoCEuTJuy97zfk/O+Zs1L7nP70PkG7ekZ5dZry4yXp2JPS\nxHFDy6M8Te8Oaez7AqtbsVwpyyJmX97bkPbLvgK0IUuTZkXbsMaOH35J5fvOBY3lFxqsAQCpIGC3\nmCiLpSxdU/m+1o/Pz30tnnIBAOmJPWCb2Ugze8HMXjKzl83sq3GXUXT3bx9a+k3bkqkHAKB5kuhh\n/1bSZc65WZIulPRpM7ukxjG5t2pd9LTN7u0OpbyhfA4AQHxiD9jO81b/2/b+R75nDESwLuaVPb9w\ne7R0cd/1K+7PAQCIJpFz2GY2zMxelHRU0g+dc89X7V9uZt1mFuc9pXJl8crw/d9+0Hveudd//7Zn\nvOeg+2qXXLW68v11V9SuGwCg+RK9rMvMxkl6SNIXnXM/DUiT6953lMu6JGnGldKBQ1XH9v+cCRqy\nrnVHr7D9QXlHui0nl3XlSt7bkPbLvgK0YfqXdTnneiXtkPTpJMvJgx/fM3jbwhXhx3SELDUqSeM/\nEb5/5drw/QCA1pHELPHO/p61zOwcSQsk/Wvc5WTOrPAVwqZMGrzt8RrLgp6ocTOP3lPh+zdsCd/v\na2ZPHQcBABrVlkCe75d0r5kNk/eD4AHn3KMJlJMtbRPrOiypGeNX31znge0TYq0HACCa2AO2c26f\npN+LO1/E6/s70q4BAGAoWOmshUzuSLf8ORekWz4AIBg3/0jYoO+3xmzxeofAP/YhL+AfOCT94mB9\nedScIT57cFMxQzX78t6GtF/2FaANI80ST+IcNhoQdinWormN3S/78hul7c8FlwsAaF0E7Gabepd0\nMHzGV+8Oadx87/WR7dKkqqHy62+V7h3CNL65s6RdG6Un7h7YduCQd+23JB2Osjb5tL+KXiAAIHYM\niSfM9/utMSwueb3sUq9363Zp2Zrw9EPx3a9Lyy4fXE4on+FwieG4PMh7G9J+2VeANow0JE7ATpjv\n93v6mLTP58LrKlHPZy+ZJ92wRJo/WzpxSvrJPum2TdLP9keoX5RgPbMn8HIu/rPIvry3Ie2XfQVo\nQ85ht6z2zroP3bbOC9BBxo+RZkyRrllYuX3Xi9Kln6+zUK69BoDU0cNOWOj3G3FovL1Neve5wdsj\n16GqF90+RzpztrGh8Pfqwa//wb/SAAAgAElEQVT7zMt7G9J+2VeANqSH3fJmu0hBuxSs673kq/y4\nsy9Ip5+PmFeNYA0AaB4WTknb9NoLeltXcIC9dbl04mmvt1x69O32tvsZdnHEYD39exESAQCahSHx\nhEX6fgN62dWB9ar50kN31V+XZWu8GeflAofFI/auGY7Lvry3Ie2XfQVoQ2aJt4LI3+/eUZJ7p2KT\ndUk9T0kTxlYmHT1Peqsveh06xkhv/qhy2zc2S7fc7ROwp2+ROpZGzpv/LLIv721I+2VfAdqQc9iZ\nclF/BK7qbbcNk6ZfKb16qP6sj5+s7K3/8tHBPW1JnLMGgBbGOexWUxY0Xbf08M7GgrWf8xd7121X\n9K4J1gDQ0hgST1jd3+/p49K+Jlz/PPNoQ9eFMxyXfXlvQ9ov+wrQhpGGxOlht6r2Dq/XO219MvlP\n2+Dl30CwBgA0Dz3shMX6/Ua4ZrummIe++XWffXlvQ9ov+wrQhvSwc2e2G3jMOjFo92q/zvjMNyqP\nAwBkEj3shKX9/SaNX/fZl/c2pP2yrwBtSA8bAIC8IGADAJABBGwAADIg9ZXOZs+ere7uKPd5zKa8\nn1/K+7kliTbMOtov+/LehlHRwwYAIANS72EDANAsgXcoHIJItyhOAD1sAECu3XytF6jjCNbSQF6r\nroknv6gI2ACAXOoY4wXWO7+UTP5rb/Lyn9SRTP7VGBIHAOROXL3pKI7036446aFyetgAgFxpZrBu\nZrkEbABALvzm2fSCdYnrlv70U8nkTcAGAGSe65ZGDG88nxvvaDyPrbcn88OBc9gAgEx7Z3fjeZSf\nf/7rB7znRoPub56VRv5hY3mUo4cNAMi0kSNqp+lcIN33A/99QZPFGp1EFkePvxwBGwCQWbV6wdbl\nPXp6pc/+ZeNBuJRf6XHBnzRWv6EgYAMAMqlWMPzW/f7b6w3afse9vL/2cXEFbQI2ACBzOiMsVrLi\nzuTrIUX7ATBhbOPlELABAJlzdHt8eQX1gOMczu55qvE8mCUOAMiUP7t24LVf77YUaF139OFv1y2d\n6pPGzJNOPiONHhW9Ppu+Eq0+K5dJ39wSPd9q9LABAJlyR//a4EHB+ODRgddzZw3eH9RzLgXpoGAd\ndNz1S7znXx3231+q5/rV/vujImADAHJl2qKB17s2VgbasGHuD1/tPU+4LDhNdV7l789fPLR6DhUB\nGwCQGY2eV379aPC+V17zno+fDE4Tti+KRupPwAYA5MqiucH7pi4K3hdFWO978aWN5V0LARsAkEl9\nAUuSPrahufUoeWS9//Z3no0nfwI2ACATJk+ofH/OCG+I+ZyypUmjDDlvfqS+8h/eWTtNefmjRnrv\nR1YtUTpxXH3lE7ABAJlw+An/7X27pdPPe6+jXMZ1w1cHbztztvJ9T+/gNFdFmOVdKr93h/T2Lv80\nx56snY8fAjYAIPPahjV2/PBLKt93Lmgsv7Hva+x4PwRsAECuROllL11T+d658PSf+1o85TYikYBt\nZsPM7J/N7NEk8gcAoBH3D3Fp003bkqnHUCTVw/6SpJ8nlDcAoIBWrYueNunebiPlDeVzlIs9YJvZ\nVElXSLon7rwBAMW1blW8+X3h9mjp4r7rV72fI4ke9jclfVnSfw9KYGbLzazbzLqPHTuWQBUAAEW3\neGX4/m8/6D3v3Ou/f9sz3nPQfbVLqmePX3dF7brVI9aAbWaLJR11zu0JS+ec+45zrss519XZ2Rln\nFQAABTX9A5XvHwu4rKra/OX+2z8TsSdcfX32vT6XjcUh7h72XElXmtmrkrZKuszM/i7mMgAAGOTH\nPidiF64IP6YjZKlRSRr/ifD9K9eG749TrAHbOXeLc26qc+6DkpZK+pFz7rNxlgEAKKaJnwzfP2XS\n4G2P11gW9ESNm3n0ngrfv6GO+1uHrUcehuuwAQCZ8Oav6zsuqRnjV99c33H13vGrrb7DanPO7ZC0\nI6n8AQBI0/d3NLc8etgAgNyY3JFu+XMuSC5vAjYAIDNqDW8fHuIKZuU+9iFpwcXS70ytP4/nNofv\nb2R4PrEhcQAA0uC6gwPjormN3S/78hul7c8Fl5skAjYAIFNWr5fW3hSepneHNG6+9/rIdmlS1VD5\n9bdK9w7hbhdzZ0m7NkpP3D2w7cAhacaV3usoPfsvNrhimrlatyhJWFdXl+vuTvhnSYrMLO0qJCrt\nfz/NQBtmG+2XfX5tGKU3a10D6bZul5atCU8/FN/9urTs8sHl1KpPgD3OuZqD5QTshPGfRfbRhtlG\n+2WfXxtOHCcdezLCsRHPGS+ZJ92wRJo/WzpxSvrJPum2TdLP9tc+NkqwnnBZ6OVckQI2Q+IAgMzp\n6a3/2G3rvAAdZPwYacYU6ZqFldt3vShd+vn6yqz32utyBGwAQCZFGYouTUBrb5PerZosNpQZ265b\n+viFA+W1z5HOnG14KHxICNgAgMyKev64FKzrDZ7lx519QTr9fLS84lxljeuwAQCZtvSW2mmsKzh4\n3rpcOvG0F/hLj77d3nY/wy6OFoj/+Mu10wwFk84SxoSX7KMNs432y74obRjUy64OrFfNlx66q/66\nLFvjzTivp+wQTDoDABSDdUlv75JGjRy8r+cpacLYym2j50lv9UXPv2OM9OaPpC23eQ9J+sZm6Za7\nB6ddeot0/w+j5x0VARsAkAvnftx7ru7xtg2Tpl8pvXqo/ryPn6zsMf/y0cE9bSm5O4NJnMMGAORM\nedB03dLDOxsL1n7OX+xdt13+4yDJYC3RwwYA5JB1SeNHS8eflq67wnskpXNBY9eFR0UPGwCQSydO\neYF75dpk8l9xp5d/M4K1RA8bAJBzG7Z4DymeO2olPfQdhB42AKAwStdjW9fA3bzKrV4/eNt5l1ce\nlxZ62ACAQvr1W/4BeN19za9LFPSwAQDIAAI2AAAZQMAGACADUl9L3MxyvRBu2t9v0vK+TrNEG2Yd\n7Zd9BWjDSGuJ08MGACADmCUOIDZZvsYVaHX0sAE05OZrB+4hHIdSXquuiSc/IC84h52wtL/fpHH+\nLPvqbcPS7QaTNvmPpKPH6z+e9su+ArQh98MGkIy4etNRHOm/hSFD5Sg6hsQBDEkzg3UrlAu0CgI2\ngEh+82z6QdN1S3/6qXTrAKSFgA2gJtctjRjeeD433tF4HltvT/+HA5AGJp0lLO3vN2lMeMm+Wm34\nzm5p5IgGy/A5/9xo0P3tu9LIP6ydrujtlwcFaEMWTgHQuCjBunOBdN8P/PcFTRZrdBJZHD1+IEvo\nYScs7e83afy6z76wNqzVC47Scw4LzLXSfnSG9NMHhl6HijIK3H55UYA2pIcNoH61gvW37vffXm/P\n2e+4l/fXPo7z2SgKAjaAQTo7aqdZcWfy9ZCi/QCYMDb5egBpI2ADGOTo9vjyCuoBx9kz7nkqvryA\nVsVKZwAq/Nm1A6/DzlG77ujD365bOtUnjZknnXxGGj0qen02fSVafVYuk765JXq+QNbQwwZQ4Y4v\nec9Bwfjg0YHXc2cN3h/Ucy4F6aBgHXTc9Uu8518d9t9fquf61f77gbwgYAMYkmmLBl7v2lgZaMOG\nuT98tfc84bLgNNV5lb8/f/HQ6gnkDQEbwHsaPa/8+tHgfa+85j0fPxmcJmxfFMwYR54RsAEMyaK5\nwfumLgreF0VY73vxpY3lDWQdARuAr77d/tsf29DcepQ8st5/+zvPNrceQFoI2AAkSZMnVL4/Z4Q3\nxHxO2dKkUYacNz9SX/kP76ydprz8USO99yOrliidOK6+8oFWx9KkCUv7+00ayyJmX6kNw4LxmbNS\n+xwFpqueUV6dpvx4STr25ODAWiuP8jS9O6Sx7wuub3leRWm/PCtAG7I0KYB4tA1r7Pjhl1S+71zQ\nWH5hwRrIKwI2gCGJsljK0jWV72t1kD73tXjKBfIskYBtZq+a2b+Y2YtmxoUWQMHcP8SlTTdtS6Ye\nQJ4k2cP+hHPuwijj8gDSt2pd9LTN7u0OpbyhfA4gSxgSByBJWrcq3vy+cHu0dHHf9SvuzwG0iqQC\ntpO03cz2mNny6p1mttzMuhkuB7Jr8crw/d9+0Hveudd//7ZnvOeg+2qXXFW1Rvh1V9SuG5BHiVzW\nZWYfcM4dMrNJkn4o6YvOuWcC0uZ6vn4BLkdIuwqJK0ob1rrGesaV0oFDldtKxwQNWde6o1fY/qC8\no1wLzmVd+VKANkzvsi7n3KH+56OSHpJ0cRLlAGieH98zeNvCFeHHdIQsNSpJ4z8Rvn/l2vD9QJHE\nHrDN7FwzG116LemPJP007nIAxGviJ8P3T5k0eNvjNZYFPVHjZh69p8L3b6jj/tZh65EDWdaWQJ6T\nJT3UP0zTJum7zrnHEygHQIze/HV9xyU1Y/zqm+s7rtE7fgGtKvaA7ZzbL8nntvYAEN33d6RdA6C1\ncFkXgMgmd6Rb/pwL0i0fSBM3/0hY2t9v0pihmn3VbVhrFna9Q+Af+5AX8A8ckn5xsL486qlb0dov\njwrQhpFmiSdxDhtAjoVdirVobmP3y778Rmn7c8HlAkVGwAZQYfV6ae1N4Wl6d0jj5nuvj2yXJlUN\nlV9/q3Tvo9HLnDtL2rVReuLugW0HDnnXfkvS4Qhrk38x5hXTgFbDkHjC0v5+k8ZwXPb5tWHUxUlK\n6bZul5atCU8/FN/9urTs8sHl1KqPnyK2X94UoA0jDYkTsBOW9vebNP6zyD6/Npw4Tjr2ZIRjI57P\nXjJPumGJNH+2dOKU9JN90m2bpJ/tr31slGA94bLgy7mK2H55U4A25Bw2gPr09NZ/7LZ1XoAOMn6M\nNGOKdM3Cyu27XpQu/Xx9ZXLtNYqAHnbC0v5+k8av++wLa8OoQ9HtbdK7zw3eHlV1Oe1zpDNnGxsK\nfy/vArdfXhSgDelhA2hM1PPHpWBd7yVf5cedfUE6/Xy0vJp9X24gTSycAiDU0ltqp7Gu4OB563Lp\nxNNe4C89+nZ72/0MuzhaIP7jL9dOA+QJQ+IJS/v7TRrDcdkXpQ2DetnVgfWq+dJDd9Vfl2VrvBnn\n9ZQdhPbLvgK0IbPEW0Ha32/S+M8i+6K24du7pFEjq47tknqekiaMrdw+ep70Vl/0OnSMkd78UeW2\nb2yWbrl7cMBeeot0/w+j5037ZV8B2pBz2ADic+7HvefqANo2TJp+pfTqofrzPn6yssf8y0cH97Ql\nzlmj2DiHDWBIyoOm65Ye3tlYsPZz/mLvuu3yHwcEaxQdQ+IJS/v7TRrDcdlXbxuOHy0dfzrmyvjo\nXNDYdeG0X/YVoA0jDYnTwwZQlxOnvF7vyrXJ5L/izv5z5A0EayBP6GEnLO3vN2n8us++ONswjjtq\nxT30TftlXwHakB42gOYqXY9tXQN38yq3ev3gbeddXnkcAH/0sBOW9vebNH7dZ1/e25D2y74CtCE9\nbAAA8oKADQBABhCwAQDIgNRXOps9e7a6u2OYWtqi8n5+Ke/nliTaMOtov+zLextGRQ8bAIAMIGAD\nAJABqQ+JAwBayJ4Yhp9n53+YPg30sAGg6I7c6QXqOIK1NJDXkYTWrS0oAjYAFNXpN73AevDLyeR/\n8GYv/9NHksm/YBgSB4Aiiqs3HcW+87xnhsobQg8bAIqmmcG6FcrNCQI2ABTF3hHpB809Jh3fmm4d\nMoqADQBFsMck927D2dx4Rwx1ObAs/R8OGcQ5bADIu70jG86i/Nanf/2A99zw/c/3jpAu+m2DmRQH\nPWwAyDtXOyh2LpDu+4H/vqD7lDd8//IYevxFQsAGgDyrMfRsXd6jp1f67F82HoRL+ZUeF/xJY/XD\nAAI2AORVjWD4rfv9t9cbtP2Oe3l/hAMJ2pEQsAEgj84crZlkxZ1NqIci/gA405N4PbKOgA0AefTS\n5NiyCppc1vCks3IvdcaYWT4xSxwA8uaNgWuv/Hq3pUDruqMPf7tu6VSfNGaedPIZafSo6NXZ9JWB\n12H10eH10nk3Rc+4YOhhA0DeHPpzScHB+GDZaPncWYP3B/WcS0E6KFgHHXf9Eu/5V4f9979Xz9dX\n+SeAJAI2ABTOtEUDr3dtrAy0YcPcH77ae55wWXCa6rzK35+/eGj1RCUCNgDkSYMzrl8Pmav2ymve\n8/GTwWnC9kXCjPFABGwAKJhFc4P3TV0UvC+KsN734ksby7voCNgAkFN9u/23P7ahufUoeWS9//Z3\nnm1uPbKKgA0AeXG6clbXOSO8c8jnjBjYFuVSrM2P1Ff8wztrpykvf9RI7/3I4VWJTh+rrwI5R8AG\ngLzY937fzX27pdPPe6+jXMZ1w1cHbztztvJ9T+/gNFetrp13qfzeHdLbuwIS7ZtUO6MCImADQAG0\nDWvs+OGXVL7vXNBYfmPf19jxRZRIwDazcWb292b2r2b2czP7gyTKAQAMXZRe9tI1le+dC0//ua/F\nUy6CJdXD3iDpcefc/yhplqSfJ1QOACAB928fWvpN25KpBwbEHrDNbIykeZI2SpJz7l3nnM/ZDgBA\nnFati5622b3doZQ3lM9RJEn0sGdIOiZpk5n9s5ndY2bnJlAOAKDMuphX9vzC7dHSxX3Xr7g/R14k\nEbDbJF0k6W+cc78n6W1Jf1GewMyWm1m3mXUfO8b0fQBIw+KV4fu//aD3vHOv//5tz3jPQffVLqme\nPX7dFbXrhsGSCNgHJR10zvVfRKC/lxfA3+Oc+45zrss519XZyS3VAKAZpn+g8v1jQZdVVZm/3H/7\nZyL2hKuvz77X57Ix1BZ7wHbOHZb0mpl9pH/TJyX9LO5yAABD8+N7Bm9buCL8mI6QpUYlafwnwvev\nXBu+H9EldT/sL0q6z8yGS9ov6YaEygEAlMw6Jr0UPGo5xWc9ksdrLAt6osbNPHpPhe/fsCV8v6+Z\nPXUclH+JBGzn3IuSuOIOAJqpbWJdhyU1Y/zqm+s8sH1CrPXIC1Y6AwAk4vs70q5BvhCwAaBAJnek\nW/6cC9ItP8sI2ACQJ7PD1xA9PMQVzMp97EPSgoul35lafx7Pba6RoEb9iyypSWcAgBbluoPPWy+a\n29j9si+/Udr+XHC5qB8BGwDyZupd0sHwGV+9O6Rx873XR7ZLk6qGyq+/Vbr30ehFzp0l7dooPXH3\nwLYDh6QZV3qvI/Xsp/1V9AILiCFxAMibybVvTF26vaXr9oL11u1er7v0GEqwlqTdL1Uev+UJb6GW\nUq860rnzSV8cWqEFY67WPdMS1tXV5bq78ztOYmZpVyFRaf/7aQbaMNsK236nj0n7fC68rhL1kq4l\n86QblkjzZ0snTkk/2Sfdtkn62f4IdYzyX/zMnsDLufLehpL2OOdqtgRD4gCQR+31L/u8bZ0XoIOM\nHyPNmCJds7By+64XpUs/X2ehXHtdEwEbAPJqtpP2hPdOSxPQ2tukd6smiw1lQRXXLX38woHedPsc\n6czZiL1rZoZHQsAGgDyLELSlgWBd76pn5cedfUE6/XzEvAjWkTHpDADybnrtBb1Lk8X83LpcOvG0\n11suPfp2e9v9DLs4YrCe/r0IiVDCpLOE5X2yRNr/fpqBNsw22q9fQC+7OrBeNV966K7667NsjTfj\nvFzgsHjE3nXe21BMOgMAvGe2k/aOktw7g3b1PCVNGFu5bfQ86a2+6Nl3jJHe/JG05TbvIUnf2Czd\ncrdP4ulbpI6l0TOHJAI2ABTHRf0RuKq33TZMmn6l9Oqh+rM+frKyt/7LRwf3tCVxzroBnMMGgKIp\nC5quW3p4Z2PB2s/5i73rtiuGwwnWDaGHDQBFNNtJp49L+ybouiuk665IsKyZRxu6LhweetgAUFTt\nHV7gnrY+mfynbfDyJ1jHgh42ABTdpJXeQ4p0zXZNDH0ngh42AGDAbDfwmHVi0O7Vfp3xmW9UHodE\n0MMGAPhrGzcoAK/9u5TqAnrYAABkAQEbAIAMIGADAJABqa8lbma5nqGQ9vebtAKs8UsbZhztl30F\naMNIa4nTwwYAIANyM0s80k3Sa6j3PrAAACQt0z3sm68duDdrHEp5rbomnvwAAIhLJs9hl27jlrTJ\nfyQdPd5YHml/v0nj/Fn25b0Nab/sK0Ab5vN+2HH1pqM40n9rOIbKAQBpy9SQeDODdSuUCwBASSYC\n9m+eTT9oum7pTz+Vbh0AAMXV8gHbdUsjhjeez413NJ7H1tvT/+EAACimlp509s5uaeSIBvP3Of/c\naND97bvSyD+Mljbt7zdpTHjJvry3Ie2XfQVow+wvnBIlWHcukO77gf++oMlijU4ii6PHDwDAULRs\nD7tWLzhKzzksMNdK+9EZ0k8fGHodBpWT/1+GaVchcbRhttF+2VeANsxuD7tWsP7W/f7b6+05+x33\n8v7ax3E+GwDQLC0XsDs7aqdZcWfy9ZCi/QCYMDb5egAA0HIB++j2+PIK6gHH2TPueSq+vAAACNJS\nK5392bUDr8POUbvu6MPfrls61SeNmSedfEYaPSp6fTZ9JVp9Vi6Tvrkler4AAAxVS/Ww7/iS9xwU\njA8eHXg9d9bg/UE951KQDgrWQcddv8R7/tVh//2leq5f7b8fAIC4tFTArmXaooHXuzZWBtqwYe4P\nX+09T7gsOE11XuXvz188tHoCABC3lgnYjZ5Xfv1o8L5XXvOej58MThO2LwpmjAMAktQyATuKRXOD\n901dFLwvirDe9+JLG8sbAIBGtWTA7tvtv/2xDc2tR8kj6/23v/Nsc+sBACiulgjYkydUvj9nhDfE\nfE7Z0qRRhpw3P1Jf+Q/vrJ2mvPxRI733I6uWKJ04rr7yAQCopSWWJg0LxmfOSu1zvNd+6apnlFen\nKT9eko49OTiw1sqjPE3vDmns+4LrOyiv/C+pl3YVEkcbZhvtl30FaMPsLk1arm1YY8cPv6TyfeeC\nxvILC9YAACSl5QN2uSiLpSxdU/m+1g+zz30tnnIBAEhS7AHbzD5iZi+WPU6a2cq4ywly/xCXNt20\nLZl6AAAQp9gDtnPu35xzFzrnLpQ0W1KfpIfCjlm1Lnr+ze7tDqW8oXwOAACGIukh8U9K+oVz7pdh\nidatirfQL9weLV3cd/2K+3MAAFCSdMBeKmnQbTHMbLmZdZtZXeuDLa4xwP7tB73nnXv99297xnsO\nuq92yVVVa4Rfd0XtugEAkITELusys+GSDkn6qHPuSEi60Mu6JGnGldKBQ5XbSscEDVnXuqNX2P6g\nvKNcC85lXflDG2Yb7Zd9BWjD1C/rWihpb1iwjurH9/hkviL8mI6QpUYlafwnwvevXBu+HwCAZkoy\nYC+Tz3C4n4mfDN8/ZdLgbY/XWBb0RI2befSeCt+/oY77W4etRw4AQCMSCdhmNkrSpyT9Q5T0b/66\nznISmjF+9c31HdfoHb8AAAjSlkSmzrk+SRNqJmxR39+Rdg0AAKiUmZXOJnekW/6cC9ItHwBQbC1x\n84/S61qzsOsdAv/Yh7yAf+CQ9IuD9eVRb93S/n6TxgzV7Mt7G9J+2VeANow0SzyRIfGkhF2KtWhu\nY/fLvvxGaftzweUCAJCmlgrYq9dLa28KT9O7Qxo333t9ZLs0qWqo/PpbpXsfjV7m3FnSro3SE3cP\nbDtwyLv2W5IOR1ib/Isxr5gGAEC1lhoSl6IvTlJKt3W7tGxNePqh+O7XpWWXDy6nVn2CpP39Jo3h\nuOzLexvSftlXgDaMNCTecgF74jjp2JMRjot4PnvJPOmGJdL82dKJU9JP9km3bZJ+tr/2sVGC9YTL\nwi/nSvv7TRr/WWRf3tuQ9su+ArRhNs9h9/TWf+y2dV6ADjJ+jDRjinTNwsrtu16ULv18fWVy7TUA\noBlaroddEnUour1Neve5wdujqi6nfY505mzjQ+Hv5Z//X4ZpVyFxtGG20X7ZV4A2zGYPuyTq+eNS\nsK73kq/y486+IJ1+Plpezb4vNwCg2Fp64ZSlt9ROY13BwfPW5dKJp73AX3r07fa2+xl2cbRA/Mdf\nrp0GAIA4teyQeElQL7s6sF41X3rorvrrsWyNN+O8nrLDpP39Jo3huOzLexvSftlXgDbM5ixxP2/v\nkkaNrDquS+p5SpowtnL76HnSW33Ry+8YI735o8pt39gs3XL34IC99Bbp/h9Gz1sqxD+0tKuQONow\n22i/7CtAG2b7HHa5cz/uPVcH0LZh0vQrpVcP1Z/38ZOVPeZfPjq4py1xzhoAkK6WPoddrTxoum7p\n4Z2NBWs/5y/2rtsu/3FAsAYApC0TQ+LVxo+Wjj+dRG0qdS5o7LpwqRBDOWlXIXG0YbbRftlXgDaM\nNCSeqR52yYlTXq935dpk8l9xZ/858gaDNQAAcclkD9tPHHfUSmLoO+3vN2n8us++vLch7Zd9BWjD\n/Paw/ZSux7augbt5lVu9fvC28y6vPA4AgFaVmx52q0r7+00av+6zL+9tSPtlXwHasFg9bAAA8oyA\nDQBABhCwAQDIgFZY6axH0i+bWN7E/jKbIqXzS039jCnIexvSfjGi/WLX9M9XgDY8P0qi1CedNZuZ\ndUc5uZ9lef+MfL5s4/NlW94/n9S6n5EhcQAAMoCADQBABhQxYH8n7Qo0Qd4/I58v2/h82Zb3zye1\n6Gcs3DlsAACyqIg9bAAAMoeADQBABhQqYJvZp83s38zsFTP7i7TrEycz+1szO2pmP027Lkkws2lm\n9rSZ/dzMXjazL6Vdp7iZ2Ugze8HMXur/jF9Nu05xM7NhZvbPZvZo2nVJgpm9amb/YmYvmlkM9xBs\nLWY2zsz+3sz+tf9v8Q/SrlNczOwj/e1Wepw0s5Vp16tcYc5hm9kwSf+fpE9JOijpnyQtc879LNWK\nxcTM5kl6S9J/dc5dkHZ94mZm75f0fufcXjMbLWmPpKvy0n6SZN7qEOc6594ys3ZJuyR9yTn3XMpV\ni42ZrZLUJWmMc25x2vWJm5m9KqnLOZfLhVPM7F5JP3bO3WNmwyWNcs71pl2vuPXHi9clzXHONXNh\nr1BF6mFfLOkV59x+59y7krZK+kzKdYqNc+4ZScfTrkdSnHNvOOf29r8+JennkqakW6t4Oc9b/W/b\n+x+5+UVtZlMlXSHpnn58C9IAAAJTSURBVLTrgqEzszGS5knaKEnOuXfzGKz7fVLSL1opWEvFCthT\nJL1W9v6gcvYfflGY2Qcl/Z6k59OtSfz6h4xflHRU0g+dc3n6jN+U9GVJ/z3tiiTISdpuZnvMbHna\nlYnZDEnHJG3qP61xj5mdm3alErJU0pa0K1GtSAHbbzHa3PReisLM3ifpQUkrnXMn065P3JxzZ51z\nF0qaKuliM8vF6Q0zWyzpqHNuT9p1Sdhc59xFkhZK+o/9p6ryok3SRZL+xjn3e5LelpSruUCS1D/U\nf6Wk76Vdl2pFCtgHJU0rez9V0qGU6oI69J/XfVDSfc65f0i7PknqH2rcIenTKVclLnMlXdl/jner\npMvM7O/SrVL8nHOH+p+PSnpI3qm4vDgo6WDZqM/fywvgebNQ0l7n3JG0K1KtSAH7nyR92Mym9/+C\nWippW8p1QkT9E7I2Svq5c25d2vVJgpl1mtm4/tfnSFog6V/TrVU8nHO3OOemOuc+KO9v70fOuc+m\nXK1Ymdm5/RMi1T9U/EeScnPVhnPusKTXzOwj/Zs+KSk3kz7LLFMLDodLrXF7zaZwzp0xsxslPSFp\nmKS/dc69nHK1YmNmWyTNlzTRzA5K+opzbmO6tYrVXEnXSvqX/nO8krTGOfePKdYpbu+XdG//DNV/\nJ+kB51wuL3/KqcmSHuq/FWSbpO865x5Pt0qx+6Kk+/o7Pfsl3ZByfWJlZqPkXUn0H9Kui5/CXNYF\nAECWFWlIHACAzCJgAwCQAQRsAAAygIANAEAGELABAMgAAjYAABlAwAYAIAP+fzFY3dTllVswAAAA\nAElFTkSuQmCC\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x2871fddf550>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "plot_NQueens(dfts)"
    "`breadth_first_tree_search`"
   "execution_count": 85,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "88.6 ms ± 2.01 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
    "%%timeit\n",
    "breadth_first_tree_search(nqp)"
   "execution_count": 86,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "bfts = breadth_first_tree_search(nqp).solution()"
   "execution_count": 87,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+4FNWd7/vPd9gbEMOvDRtMgGtg\nkifnTow4skecIXKJIWNAMHru3Bm4Ro/m5nJu7jEEwcmMPM88MXlONFcFQuLcycmRAc8ZA5pxjKgT\nJf4AA0adDaNMTGbuY8BERH5sgYBiInDW/aN2u7t7V1VXd1d1dVW9X8/TT3dXrVprdS82316rVq0y\n55wAAEB7+520KwAAAGojYAMAkAEEbAAAMoCADQBABhCwAQDIAAI2AAAZQMAGACADCNgAAGQAARto\nM2b2QTP7RzM7amYHzOwuM+sIST/GzP6mP+1JM/sXM/sPrawzgOQRsIH28/9KOiTp/ZIukPS/SPq/\n/RKa2VBJT0g6V9IfShot6c8l3W5mS1tSWwAtQcAG2s9USfc7537jnDsg6TFJHw1Ie42k/0nS/+ac\n2+ucO+Wce0zSUkn/2cxGSpKZOTP7UOkgM9tgZv+57P0CM3vRzI6Z2bNmdn7Zvg+Y2QNmdtjM9pb/\nEDCzW8zsfjP7b2Z2wsxeNrOesv1/YWav9+/7NzP7ZDxfEVA8BGyg/ayVtMjMRpjZJEnz5AVtP5+S\n9EPn3NtV2x+QNELSxbUKM7MLJf2tpP8oaZyk/yJps5kNM7PfkfSwpJckTZL0SUnLzOyysiyukLRJ\n0hhJmyXd1Z/vRyTdIOkPnHMjJV0m6dVa9QHgj4ANtJ9t8nrUxyXtk9Qr6QcBacdLeqN6o3PutKQ+\nSd0Ryvs/Jf0X59zzzrkzzrl7JP1WXrD/A0ndzrmvOefedc7tkfRfJS0qO367c+4fnXNnJP13SdP7\nt5+RNEzS75lZp3PuVefcLyLUB4APAjbQRvp7tI9L+gdJZ8sLyGMl/T8Bh/TJO9ddnU9H/7GHIxR7\nrqQV/cPhx8zsmKQpkj7Qv+8DVftWSppYdvyBstcnJQ03sw7n3CuSlkm6RdIhM9tkZh+IUB8APgjY\nQHvpkhcs73LO/dY596ak9ZLmB6R/QtI8Mzu7avv/KumUpBf635+UN0Reck7Z69ckfd05N6bsMcI5\nt7F/396qfSOdc0H1qeCc+55z7uPyAr9T8A8PADUQsIE24pzrk7RX0hfMrMPMxkj6D/LOIfv57/KG\nzb/ffzlYZ//55W9Jut059+v+dC9K+t/NbIiZfVrezPOS/yrp/zKzmeY528wu75+w9oKk4/2Tx87q\nP/48M/uDWp/FzD5iZpea2TBJv5H0jrxhcgANIGAD7effS/q0vOHsVySdlnSjX0Ln3G8lzZXXE35e\nXlB8TNI3JX21LOmXJC2UdEzS1So7J+6c65V3HvsuSUf7y7yuf9+Z/uMukPdDok/S3fIuH6tlmKRv\n9B9zQNIEecPpABpgzrm06wAgJmbWKemHkl6XdJ3jDxzIDXrYQI44507JO3/9C0kfSbk6AGJEDxsA\ngAyghw0AQAYE3lCgVcaPH+8++MEPpl2NxOzcuTPtKiRqxowZaVchcbRhttF+2Zf3NpTU55yruchR\n6kPiPT09rre3t/mMdlrzecyI/7swi6FebSztfz+tQBtmG+2XfXlvQ0k7nXM9tRJle0j84B1eoI4j\nWEsDeR1cFU9+AADEJJsB+9SbXmDd9+Vk8t93k5f/qYPJ5A8AQJ1SP4ddt7h601Hs7l+9MYGhcgAA\n6pGtHnYrg3U7lAsAQL9sBOxdw9IPmjtNOrIp3ToAAAqr/QP2TpPcu01nc8PtMdRl7+L0fzgAAAqp\nvc9h7xredBZWNlH+r+/3nl2zV5HtGiZd+NsmMwEAILr27mG72kGxe6507w/991nAVW1B2yOLoccP\nAEA92jdg1xh6th7v0XdM+uxfNR+ES/mVHuf9aXP1AwAgTu0ZsGsEw2/f57+90aDtd9zLeyIcSNAG\nALRI+wXs04dqJll6RwvqoYg/AE73JV4PAADaL2C/NDG2rIImlzU96azcSzXXawcAoGntNUv8jYFr\nr/x6t6VA63qjD3+7XunESWnUbOn4M9LIEdGrs/4rA6/D6qMDa6RzboyeMQAAdWqvHvb+v5AUHIz3\nlY2Wz5o+eH9Qz7kUpIOCddBx1y30nn91wH//e/V8fbl/AgAAYtJeAbuGKfMHXm9fVxlow4a5P3yV\n9zzu0uA01XmVvz93QX31BAAgbu0TsJuccf16yFy1V17zno8cD04Tti8SZowDABLUPgE7gvmzgvdN\nnh+8L4qw3veCS5rLGwCAZrVlwD65w3/7o2tbW4+Sh9f4b3/n2dbWAwBQXO0RsE9Vzuo6a5h3Dvms\nYQPbolyKteHhxop/aFvtNOXljxjuvR8+tCrRqcONVQAAgBraI2Dvfr/v5pM7pFPPe6+jXMZ1/VcH\nbzt9pvJ937HBaa5cUTvvUvnHtkpvbw9ItHtC7YwAAGhAewTsEB1Dmjt+6MWV77vnNpff6Pc1dzwA\nAI1o+4BdLkove9HKyvfOhaf/3NfiKRcAgCRlKmBHcd+W+tKv35xMPQAAiFMiAdvMPm1m/2Zmr5jZ\nX9ZKv3x1HXm3uLdbT3n1fA4AAOoRe8A2syGS/lrSPEm/J2mxmf1e2DGrY17Z8wu3RUsX912/4v4c\nAACUJNHDvkjSK865Pc65dyVtkvSZOAtYsCx8/3ce8J637fLfv/kZ7znovtol1bPHr728dt0AAEhC\nEgF7kqTXyt7v69/2HjNbYma9ZtZ7+HDta5enfqDy/aNBl1VVmbPEf/tnIvaEq6/PvsfnsjEAAFoh\niYDtt6h2xVxt59x3nXM9zrme7u7a95P+8d2Dt81bGn5MV8hSo5I09hPh+5etCt8PAEArJRGw90ma\nUvZ+sqT9oUdMD+9lT/JZj+SxGsuCHq1xM49jJ8L3r90Yvt/X+X0NHAQAQG1JBOx/kvRhM5tqZkMl\nLZIUfvFUx/iGCkpqxvhVNzV4YOe4WOsBAEBJR9wZOudOm9kNkh6XNETS3zrnXo67nCT9YGvaNQAA\noFLsAVuSnHP/KOkf48xzYpd08EicOdZn5nnplQ0AQPusdDYjfA3RA3WuYFbuYx+S5l4k/e7kxvN4\nbkONBDXqDwBAMxLpYSfF9Qaft54/q7n7ZV92g7TlueByAQBIU3sF7Ml3SvvCZ3wd2yqNmeO9PrhF\nmtBVuf+6W6R7Hole5Kzp0vZ10uN3DWzbu1+adoX3OlLPfsq3ohcIAEAD2mdIXJIm1r4xden2lq7X\nC9abtni97tKjnmAtSTteqjx+4+PeQi2lXvXErvDjJUkTvlhfoQAA1MlcrftPJqynp8f19paNOZ86\nLO32ufC6StRLuhbOlq5fKM2ZIR09If1kt3Treulne2ofG2ko/Py+0Mu5zPzWkcmPtP/9tAJtmG20\nX/blvQ0l7XTO1Yxq7TUkLkmdtVc+C7J5tRegg4wdJU2bJF09r3L79helSz7fYKFcew0AaIH2C9iS\nN+N6Z/gvqtIEtM4O6d2qyWL1LKjieqWPXzDQm+6cKZ0+E7F3zcxwAECLtGfAliIFbWkgWDe66ln5\ncWdekE49HzEvgjUAoIXaa9JZtam1F/QuTRbzc8sS6ejTXm+59Di5w9vuZ8hFEYP11O9HSAQAQHza\nb9JZtYBednVgvXKO9OCdjddj8Upvxnm5wGHxOnrXeZ8skfa/n1agDbON9su+vLehMjvprNoMJ+0a\nIbl3Bu3qe1IaN7py28jZ0lsno2ffNUp68ylp463eQ5K+sUG6+S6fxFM3Sl2LomcOAEBM2j9gS9KF\n/RG4qrfdMUSaeoX0avjNO0MdOV7ZW//lI4N72pI4Zw0ASFV7n8OuVhY0Xa/00LbmgrWfcxd4121X\nDIcTrAEAKctGD7vcDCedOiLtHqdrL5euvTzBss4/1NR14QAAxCVbPeySzi4vcE9Zk0z+U9Z6+ROs\nAQBtIns97HITlnkPKdI12zUx9A0AaFPZ7GH7meEGHtOPDtq9wq8zfv4blccBANCmst3DDtIxZlAA\nXvV3KdUFAIAY5KeHDQBAjhGwAQDIAAI2AAAZQMAGACADUr/5h5nlenp22t9v0gqwKD9tmHG0X/YV\noA0j3fyDHjYAwNeYkZW3J3a90vKrB287Z1zaNS0GetgJS/v7TRq/7rMv721I+9Un8LbCdai+/XGz\nCtCG9LABALXddM1AbzkO5b1xxIcedsLS/n6TlvfemUQbZh3tF6xrlPTmUzFWJsDEP5YOHWn8+AK0\nYaQedj5XOgMAhIqrNx3FwS3ec9xD5UXDkDgAFEwrg3U7lJsXBGwAKIjfPJt+0HS90p99Kt06ZBUB\nGwAKwPVKw4Y2n88Ntzefx6bb0v/hkEVMOktY2t9v0vI+YUmiDbOO9pPe2SENH9ZkOT7nn5sNur99\nVxr+R7XTFaANuawLABAtWHfPle79of++oMlizU4ii6PHXyT0sBOW9vebtLz3ziTaMOuK3n61esFR\nes5hgblW2o9Ok356f/11qCgj/21IDxsAiqxWsP72ff7bG+05+x338p7ax3E+OxoCNgDkUHdX7TRL\n70i+HlK0HwDjRidfj6wjYANADh3aEl9eQT3gOHvGfU/Gl1desdIZAOTMn18z8DrsHLXrjT787Xql\nEyelUbOl489II0dEr8/6r0Srz7LF0jc3Rs+3aOhhA0DO3P4l7zkoGO87NPB61vTB+4N6zqUgHRSs\ng467bqH3/KsD/vtL9Vyzwn8/PARsACiYKfMHXm9fVxlow4a5P3yV9zzu0uA01XmVvz93QX31RCUC\nNgDkSLPnlV8/FLzvlde85yPHg9OE7YuCGePBCNgAUDDzZwXvmzw/eF8UYb3vBZc0l3fREbABIKdO\n7vDf/uja1taj5OE1/tvfeba19cgqAjYA5MTEcZXvzxrmDTGfVbY0aZQh5w0PN1b+Q9tqpykvf8Rw\n7/3wqiVKx49prPy8Y2nShKX9/SYt78taSrRh1hWp/cKC8ekzUufM4HTVM8qr05QfL0mHnxgcWGvl\nUZ7m2FZp9PuC61ueVwHakKVJAQCejiHNHT/04sr33XObyy8sWMMfARsACibKYimLVla+r9XJ/dzX\n4ikXwWIP2Gb2t2Z2yMx+GnfeAIDWuK/OpU3Xb06mHhiQRA97g6RPJ5AvACDE8tXR07a6t1tPefV8\njiKJPWA7556RdCTufAEA4VYvjze/L9wWLV3cd/2K+3PkBeewAaCgFiwL3/+dB7znbbv8929+xnsO\nuq92yZVVa4Rfe3ntumGwVAK2mS0xs14zYxE6AGiRqR+ofP/o9mjHzVniv/0zEXvC1ddn3/PVaMeh\nUioB2zn3XedcT5TrzgAA8fjx3YO3zVsafkxXyFKjkjT2E+H7l60K34/oGBIHgJwY/8nw/ZMmDN72\nWI1lQY/WuJnHsRPh+9c2cH/rsPXIiyyJy7o2SvqJpI+Y2T4z+z/iLgMAMNibv27suKRmjF91U2PH\nNXvHr7zqiDtD59ziuPMEAGTPD7amXYN8YUgcAApkYle65c88L93ys4ybfyQs7e83aXm/cYREG2Zd\nEduv1h25Gh0C/9iHvIC/d7/0i32N5dFI3QrQhpFu/hH7kDgAoL253uCgPX9Wc/fLvuwGactzweWi\ncQRsAMiZFWukVTeGpzm2VRozx3t9cIs0oWqo/LpbpHseiV7mrOnS9nXS43cNbNu7X5p2hff6QIS1\nyb8Y84ppecOQeMLS/n6TlvfhVIk2zLqitl+U3qz1DKTbtEVavDI8fT2+93Vp8WWDy6lVHz8FaMNI\nQ+IE7ISl/f0mLe//2Uu0YdYVtf3Gj5EOPxHh+IjnsxfOlq5fKM2ZIR09If1kt3Treulne2ofGyVY\nj7s0+HKuArQh57ABoKj6jjV+7ObVXoAOMnaUNG2SdPW8yu3bX5Qu+XxjZXLtdW30sBOW9vebtLz3\nziTaMOuK3n5Rh6I7O6R3nxu8ParqcjpnSqfPNDcU/l7e+W9DetgAUHRRzx+XgnWjl3yVH3fmBenU\n89HyavV9ubOMhVMAIOcW3Vw7jfUEB89blkhHn/YCf+lxcoe33c+Qi6IF4j/5cu00GMCQeMLS/n6T\nlvfhVIk2zDrazxPUy64OrFfOkR68s/H6LF7pzThvpOwgBWhDZom3g7S/36Tl/T97iTbMOtpvwNvb\npRHDq47vkfqelMaNrtw+crb01sno9egaJb35VOW2b2yQbr5rcMBedLN034+i512ANuQcNgBgwNkf\n956rA2jHEGnqFdKr+xvP+8jxyh7zLx8Z3NOWOGfdDM5hA0DBlAdN1ys9tK25YO3n3AXeddvlPw4I\n1s1hSDxhaX+/Scv7cKpEG2Yd7Rds7EjpyNMxViZA99zmrgsvQBtGGhKnhw0ABXX0hNfrXbYqmfyX\n3tF/jryJYI0B9LATlvb3m7S8984k2jDraL/6xHFHrbiHvgvQhvSwAQD1KV2PbT0Dd/Mqt2LN4G3n\nXFZ5HJJBDzthaX+/Sct770yiDbOO9su+ArQhPWwAAPKCgA0AQAYQsAEAyIDUVzqbMWOGentjmJbY\npvJ+finv55Yk2jDraL/sy3sbRkUPGwCADEi9hw0gR3bG0BOakf8eI9AIetgAmnPwDi9QxxGspYG8\nDia0/BaQUQRsAI059aYXWPd9OZn8993k5X/qYDL5AxnDkDiA+sXVm45i9zneM0PlKDh62ADq08pg\n3Q7lAm2CgA0gml3D0g+aO006sindOgApIWADqG2nSe7dprO54fYY6rJ3cfo/HIAUcA4bQLhdw5vO\novwOTn99v/fc9G0cdw2TLvxtk5kA2UEPG0A4Vzsods+V7v2h/76g2y02fRvGGHr8QJYQsAEEqzH0\nXLr/cd8x6bN/1XwQLr+nsvVI5/1pc/UD8oSADcBfjWD47fv8tzcatP2Oe3lPhAMJ2igIAjaAwU4f\nqplk6R0tqIci/gA43Zd4PYC0EbABDPbSxNiyCppc1vSks3IvdceYGdCemCUOoNIbA9de+fVuS4HW\n9UYf/na90omT0qjZ0vFnpJEjoldn/VcGXofVRwfWSOfcGD1jIGPoYQOotP8vJAUH431lo+Wzpg/e\nH9RzLgXpoGAddNx1C73nXx3w3/9ePV9f7p8AyAkCNoC6TJk/8Hr7uspAGzbM/eGrvOdxlwanqc6r\n/P25C+qrJ5A3BGwAA5qccf16yFy1V17zno8cD04Tti8SZowjxwjYAOoyf1bwvsnzg/dFEdb7XnBJ\nc3kDWUfABuDr5A7/7Y+ubW09Sh5e47/9nWdbWw8gLQRsAJ5TlbO6zhrmnUM+a9jAtiiXYm14uLHi\nH9pWO015+SOGe++HD61KdOpwYxUA2hwBG4Bn9/t9N5/cIZ163nsd5TKu6786eNvpM5Xv+44NTnPl\nitp5l8o/tlV6e3tAot0TamcEZBABG0BNHUOaO37oxZXvu+c2l9/o9zV3PJBFBGwAdYnSy160svK9\nc+HpP/e1eMoF8oyADSB2922pL/36zcnUA8iT2AO2mU0xs6fN7Odm9rKZfSnuMgDEb/nq6Glb3dut\np7x6PgeQJUn0sE9LWuGc+58lXSzpP5nZ7yVQDoAYrY55Zc8v3BYtXdx3/Yr7cwDtIvaA7Zx7wzm3\nq//1CUk/lzQp7nIApGvBsvD933nAe962y3//5me856D7apdUzx6/9vLadQPyKNFz2Gb2QUm/L+n5\nqu1LzKzXzHoPH+aaSSALpn6g8v2jQZdVVZmzxH/7ZyL2hKuvz77H57IxoAgSC9hm9j5JD0ha5pyr\nWCHYOfdd51yPc66nu5v72AJZ8OO7B2+btzT8mK6QpUYlaewnwvcvWxW+HyiSRAK2mXXKC9b3Ouf+\nIYkyAMRsevho1ySf9Ugeq7Es6NEaN/M4diJ8/9qN4ft9nd/XwEFA+0tilrhJWifp58455msCWdEx\nvqHDkpoxftVNDR7YOS7WegDtIoke9ixJ10i61Mxe7H80eQ8fAEXzg61p1wBoLx1xZ+ic2y6Jm9IC\nOTSxSzp4JL3yZ56XXtlA2ljpDMCAGeFriB6ocwWzch/7kDT3Iul3Jzeex3MbaiSoUX8gy2LvYQPI\nN9cbfN56/qzm7pd92Q3SlueCywWKjIANoNLkO6V94TO+jm2VxszxXh/cIk3oqtx/3S3SPY9EL3LW\ndGn7Ounxuwa27d0vTbvCex2pZz/lW9ELBDKIIXEAlSbWvjF16faWrtcL1pu2eL3u0qOeYC1JO16q\nPH7j495CLaVe9cSu8OMlSRO+WF+hQMaYq3Xfu4T19PS43t78jnV5V7nlV9r/flqhkG146rC02+fC\n6ypRL+laOFu6fqE0Z4Z09IT0k93Sreuln+2JUL8o/z2c3xd4OVch2y9n8t6GknY652r+NTEkDmCw\nzsZXINy82gvQQcaOkqZNkq6eV7l9+4vSJZ9vsFCuvUYBELAB+JvhpJ3hPZvSBLTODundqsli9Syo\n4nqlj18w0JvunCmdPhOxd83McBQEARtAsAhBWxoI1o2uelZ+3JkXpFPPR8yLYI0CYdIZgHBTay/o\nXZos5ueWJdLRp73eculxcoe33c+QiyIG66nfj5AIyA8mnSUs75Ml0v730wq0oQJ72dWB9co50oN3\nNl6XxSu9GeflAofFI/auab/sy3sbiklnAGIzw0m7RkjunUG7+p6Uxo2u3DZytvTWyejZd42S3nxK\n2nir95Ckb2yQbr7LJ/HUjVLXouiZAzlBwAYQzYX9Ebiqt90xRJp6hfTq/sazPnK8srf+y0cG97Ql\ncc4ahcY5bAD1KQuarld6aFtzwdrPuQu867YrhsMJ1ig4etgA6jfDSaeOSLvH6drLpWsvT7Cs8w81\ndV04kBf0sAE0prPLC9xT1iST/5S1Xv4Ea0ASPWwAzZqwzHtIka7Zromhb8AXPWwA8ZnhBh7Tjw7a\nvcKvM37+G5XHAfBFDxtAMjrGDArAq/4upboAOUAPGwCADCBgAwCQAQRsAAAygIANAEAGpH7zDzPL\n9bTQtL/fpBVgUX7aMONov+wrQBty8w8AAAKdOSq92FWxacUaadWNVenO3y91vr919QpADzthaX+/\nSePXffblvQ1pv+yLtQ3bcHGfqD1szmEDAPLt4B1eoI4jWEsDeR1cFU9+EdHDTlja32/S+HWffXlv\nQ9ov+xpuw1NvSrvHx1sZP+cfkDonNnw457ABAMUVV286it3neM8JL63LkDgAIF9aGaxbWC4BGwCQ\nD7uGpResS3aadGRTIlkTsAEA2bfTJPdu09nccHsMddm7OJEfDkw6S1ja32/SmPCSfXlvQ9ov+2q2\n4a7hkvttU2WYz5Qv19tUlpINlS6sXS8u6wIAFEOEYN09V7r3h/77/IJ12PbIYujxl6OHnbC0v9+k\n8es++/LehrRf9oW2YY2h5yg957DAXCvtR6dJP70/tAo1Z4/TwwYA5FuNYP3t+/y3N9pz9jvu5T0R\nDozpfDYBGwCQPacP1Uyy9I4W1EMRfwCc7mu6HAI2ACB7Xmp8ZbFqQZPLmp50Vu6l7qazYKUzAEC2\nvDFw7VXYOWrXG3342/VKJ05Ko2ZLx5+RRo6IXp31Xxl4HXrO/MAa6ZzqW4FFRw8bAJAt+/9CUnAw\n3lc2Wj5r+uD9QT3nUpAOCtZBx1230Hv+1QH//e/V8/Xl/gkiImADAHJlyvyB19vXVQbasGHuD1/l\nPY+7NDhNdV7l789dUF8960XABgBkR5Mzrl8Pmav2ymve85HjwWnC9kXSRP0J2ACAXJk/K3jf5PnB\n+6II630vuKS5vGshYAMAMunkDv/tj65tbT1KHl7jv/2dZ+PJn4ANAMiGU5Wzus4a5p1DPmvYwLYo\nl2JteLix4h/aVjtNefkjhnvvhw+tSnTqcEPlszRpwtL+fpNW+GURcyDvbUj7Zd97bRhy/vf0Galz\nZn96n6BdPaO8Ok358ZJ0+Alp/Jj68ihPc2yrNPp9gdWtWK6UpUkBAIXRMaS544deXPm+e25z+YUG\n6wYRsAEAuRJlsZRFKyvf1xqI+dzX4im3GbEHbDMbbmYvmNlLZvaymX017jIAAGjGfVvqS79+czL1\nqEcSPezfSrrUOTdd0gWSPm1mF9c4BgCAUMtXR0+bdG+3mfLq+RzlYg/YzvNW/9vO/ke+Z30AABK3\nurmVPQf5wm3R0sV9169GP0ci57DNbIiZvSjpkKQfOeeer9q/xMx6zSzOe6EAAPCeBcvC93/nAe95\n2y7//Zuf8Z6D7qtdcuWKyvfXXl67bo1I9LIuMxsj6UFJX3TO/TQgTa5731xSkn20YbbRftkX5bIu\nSZp2hbR3f9Wx/d3CoCHrWnf0CtsflHek23K222VdzrljkrZK+nSS5QAA8OO7B2+btzT8mK6QpUYl\naewnwvcvWxW+P05JzBLv7u9Zy8zOkjRX0r/GXQ4AoGCmh68QNmnC4G2P1VgW9GiNm3kcOxG+f+3G\n8P2+zu9r4CCpo6Gjwr1f0j1mNkTeD4L7nXOPJFAOAKBIOsY3dFhSM8avuqnBAzvHNXRY7AHbObdb\n0u/HnS8AAO3kB1tbWx4rnQEAcmNiV7rlzzwvuby5+UfC0v5+k1aoGao5lfc2pP2yb1Ab1pgt3ugQ\n+Mc+5AX8vfulX+xrLI+aM8RnDP73GHWWeBLnsAEASE3YpVjzZzV3v+zLbpC2PBdcbpII2ACAbJl8\np7QvfMbXsa3SmDne64NbpAlVQ+XX3SLdU8d06FnTpe3rpMfvGti2d7937bckHYiyNvmUb0Uv0AdD\n4glL+/tNWiGH43Im721I+2WfbxvWGBaXvF52qde7aYu0eGV4+np87+vS4ssGlxPKZzhcij4kTsBO\nWNrfb9IK+59FjuS9DWm/7PNtw1OHpd0+F15XiXo+e+Fs6fqF0pwZ0tET0k92S7eul362J0L9ogTr\n8/sCL+fiHDYAIL86uxs+dPNqL0AHGTtKmjZJunpe5fbtL0qXfL7BQhu89rocPeyEpf39Jq2wv+5z\nJO9tSPtlX2gbRhwa7+yQ3n1u8PbIdajqRXfOlE6faW4o/L160MMGAOTeDBcpaJeCdaOXfJUfd+YF\n6dTzEfOqEazrwcIpAIBsm1pjBNUvAAAgAElEQVR7QW/rCQ6wtyyRjj7t9ZZLj5M7vO1+hlwUMVhP\n/X6ERNExJJ6wtL/fpBV+OC4H8t6GtF/2RWrDgF52dWC9co704J2N12XxSm/GebnAYfGIvWtmibeJ\ntL/fpPGfRfblvQ1pv+yL3Ia7RkjunYpN1iP1PSmNG12ZdORs6a2T0evQNUp686nKbd/YIN18l0/A\nnrpR6loUOW/OYQMAiuXC/ghc1dvuGCJNvUJ6dX/jWR85Xtlb/+Ujg3vakmI9Z12Nc9gAgHwpC5qu\nV3poW3PB2s+5C7zrtit61wkGa4kh8cSl/f0mjeG47Mt7G9J+2ddwG546Iu1u/vrnms4/1NR14VGH\nxOlhAwDyqbPL6/VOWZNM/lPWevk3EazrQQ87YWl/v0nj13325b0Nab/si7UNI1yzXVPMQ9/0sAEA\nqDbDDTymHx20e4VfZ/z8NyqPSwk97ISl/f0mjV/32Zf3NqT9sq8AbUgPGwCAvCBgAwCQAQRsAAAy\nIPWVzmbMmKHe3ij3J8umvJ9fyvu5JYk2zDraL/vy3oZR0cMGACADUu9hI7pIN0qvodF7wQIA0kUP\nu83ddM3A/VnjUMpr+dXx5AcAaA0CdpvqGuUF1ju+lEz+q2708p/QlUz+AIB4MSTehuLqTUdxsP/2\ncAyVA0B7o4fdZloZrNuhXABANATsNvGbZ9MPmq5X+rNPpVsHAIA/AnYbcL3SsKHN53PD7c3nsem2\n9H84AAAG4xx2yt7Z0Xwe5eef//p+77nZoPubZ6Xhf9RcHgCA+NDDTtnwYbXTdM+V7v2h/76gyWLN\nTiKLo8cPAIgPATtFtXrB1uM9+o5Jn/2r5oNwKb/S47w/ba5+AIDWIWCnpFYw/PZ9/tsbDdp+x728\np/ZxBG0AaA8E7BR0R1isZOkdyddDivYDYNzo5OsBAAhHwE7BoS3x5RXUA46zZ9z3ZHx5AQAawyzx\nFvvzawZe+/VuS4HW9UYf/na90omT0qjZ0vFnpJEjotdn/Vei1WfZYumbG6PnCwCIFz3sFru9f23w\noGC879DA61nTB+8P6jmXgnRQsA467rqF3vOvDvjvL9VzzQr//QCA1iBgt5kp8wdeb19XGWjDhrk/\nfJX3PO7S4DTVeZW/P3dBffUEALQWAbuFmj2v/Pqh4H2vvOY9HzkenCZsXxTMGAeA9BCw28z8WcH7\nJs8P3hdFWO97wSXN5Q0ASBYBOyUnA5YkfXRta+tR8vAa/+3vPNvaegAA/BGwW2TiuMr3Zw3zhpjP\nKluaNMqQ84aHGyv/oW2105SXP2K493541RKl48c0Vj4AoDkE7BY58Lj/9pM7pFPPe6+jXMZ1/VcH\nbzt9pvJ937HBaa6MMMu7VP6xrdLb2/3THH6idj4AgPgRsNtAx5Dmjh96ceX77rnN5Tf6fc0dDwCI\nHwG7zUTpZS9aWfneufD0n/taPOUCANKTSMA2syFm9s9m9kgS+RfdfXUubbp+czL1AAC0TlI97C9J\n+nlCeWfS8tXR07a6t1tPefV8DgBAfGIP2GY2WdLlku6OO+8sW7083vy+cFu0dHHf9SvuzwEAiCaJ\nHvY3JX1Z0v8ISmBmS8ys18x6Dx8+nEAVsm/BsvD933nAe962y3//5me856D7apdUzx6/9vLadQMA\ntF6sAdvMFkg65JzbGZbOOfdd51yPc66nu7s7zipk1tQPVL5/NOCyqmpzlvhv/0zEnnD19dn3+Fw2\nBgBIX9w97FmSrjCzVyVtknSpmf1dzGXk0o99TiDMWxp+TFfIUqOSNPYT4fuXrQrfDwBoH7EGbOfc\nzc65yc65D0paJOkp59xn4ywjq8Z/Mnz/pAmDtz1WY1nQozVu5nHsRPj+tQ3c3zpsPXIAQHK4DrtF\n3vx1Y8clNWP8qpsaO67ZO34BABrTkVTGzrmtkrYmlT+a84OtadcAAFAPethtZGJXuuXPPC/d8gEA\nwQjYLVRrePtAnSuYlfvYh6S5F0m/O7nxPJ7bEL6f5UsBID2JDYmjMa43ODDOn9Xc/bIvu0Ha8lxw\nuQCA9kXAbrEVa6RVN4anObZVGjPHe31wizShaqj8uluke+pYpX3WdGn7Ounxuwa27d0vTbvCex2l\nZ//FmFdMAwDUx1ytWz0lrKenx/X25rd7Z2aDtkXpzVrPQLpNW6TFK8PT1+N7X5cWXza4nFr18ZP2\nv59W8GvDPMl7G9J+2Zf3NpS00zlX86QjATthfv/Qxo+RDj8R4diI54wXzpauXyjNmSEdPSH9ZLd0\n63rpZ3tqHxslWI+7NPhyrrT//bRC3v+zyHsb0n7Zl/c2VMSAzZB4CvqONX7s5tVegA4ydpQ0bZJ0\n9bzK7dtflC75fGNlcu01AKSPgJ2SKEPRpQlonR3Su1WTxeqZse16pY9fMFBe50zp9JnmhsIBAK1F\nwE5R1PPHpWDdaPAsP+7MC9Kp56PlRbAGgPbBddgpW3Rz7TTWExw8b1kiHX3aC/ylx8kd3nY/Qy6K\nFoj/5Mu10wAAWodJZwmLMlkiqJddHVivnCM9eGfjdVm80ptx3kjZQdL+99MKeZ/wkvc2pP2yL+9t\nKCadZYf1SG9vl0YMH7yv70lp3OjKbSNnS2+djJ5/1yjpzaekjbd6D0n6xgbp5rsGp110s3Tfj6Ln\nDQBoDQJ2mzj7495zdY+3Y4g09Qrp1f2N533keGWP+ZePDO5pS5yzBoB2xjnsNlMeNF2v9NC25oK1\nn3MXeNdtl/84IFgDQHujh92GrEcaO1I68rR07eXeIyndc5u7LhwA0Br0sNvU0RNe4F62Kpn8l97h\n5U+wBoBsoIfd5tZu9B5SPHfUYugbALKJHnaGlK7Htp6Bu3mVW7Fm8LZzLqs8DgCQTfSwM+rXb/kH\n4NX3tr4uAIDk0cMGACADCNgAAGQAARsAgAxIfS1xM8v1Qrhpf79JK8Aav7RhxtF+2VeANoy0ljg9\nbAAAMoBZ4kCr7IyhJzQj3z0NAMHoYQNJOniHF6jjCNbSQF4HE1oCD0Db4hx2wtL+fpPG+bMAp96U\ndo+PvzLVzj8gdU5sKou8tyF/g9lXgDbkfthAKuLqTUex+xzvmaFyIPcYEgfi1Mpg3Q7lAmgZAjYQ\nh13D0g+aO006sindOgBIDAEbaNZOk9y7TWdzw+0x1GXv4vR/OABIBJPOEpb295u0wk942TVccr9t\nKn+/m7g0fStVGypdGK1eeW9D/gazrwBtyMIpQOIiBOvuudK9P/TfF3TL06ZvhRpDjx9Ae6GHnbC0\nv9+kFfrXfY2h5yg957DAXCvtR6dJP70/tAqRZo/nvQ35G8y+ArQhPWwgMTWC9bfv89/eaM/Z77iX\n90Q4kPPZQG4QsIF6nT5UM8nSO1pQD0X8AXC6L/F6AEgeARuo10vNrSxWLmhyWdOTzsq91B1jZgDS\nwkpnQD3eGLj2KuwcteuNPvzteqUTJ6VRs6Xjz0gjR0SvzvqvDLwOPWd+YI10zo3RMwbQduhhA/XY\n/xeSgoPxvrLR8lnTB+8P6jmXgnRQsA467rqF3vOvDvjvf6+ery/3TwAgMwjYQIymzB94vX1dZaAN\nG+b+8FXe87hLg9NU51X+/twF9dUTQPYQsIGompxx/XrIXLVXXvOejxwPThO2LxJmjAOZRsAGYjR/\nVvC+yfOD90UR1vtecElzeQNofwRsoAEnd/hvf3Rta+tR8vAa/+3vPNvaegBIDgEbiOJU5ayus4Z5\n55DPGjawLcqlWBsebqz4h7bVTlNe/ojh3vvhQ6sSnTrcWAUApI6lSROW9vebtMIsixhy/vf0Galz\nZn9an6BdPaO8Ok358ZJ0+Alp/Jj68ihPc2yrNPp9gdUdtFxp3tuQv8HsK0AbsjQp0AodQ5o7fujF\nle+75zaXX2iwBpBZBGwgRlEWS1m0svJ9rc7D574WT7kAsi2RgG1mr5rZv5jZi2YW5yKLQObdt6W+\n9Os3J1MPANmSZA/7E865C6KMywPtbvnq6Glb3dutp7x6PgeA9sKQOBDB6phX9vzCbdHSxX3Xr7g/\nB4DWSSpgO0lbzGynmS2p3mlmS8ysl+Fy5NWCZeH7v/OA97xtl//+zc94z0H31S65ckXl+2svr103\nANmUyGVdZvYB59x+M5sg6UeSvuiceyYgba7n6xfgcoS0q5C4Wpd1SdK0K6S9+6uO6/85GjRkXeuO\nXmH7g/KOdFtOLuvKlby3n1SINkzvsi7n3P7+50OSHpR0URLlAO3ix3cP3jZvafgxXSFLjUrS2E+E\n71+2Knw/gHyJPWCb2dlmNrL0WtIfS/pp3OUALTU9fIWwSRMGb3usxrKgR2vczOPYifD9azeG7/d1\nfl8DBwFoBx0J5DlR0oP9wzQdkr7nnHssgXKA1ukY39BhSc0Yv+qmBg/sHBdrPQC0TuwB2zm3R9L0\nuPMFMOAHW9OuAYBW47IuICYTu9Itf+Z56ZYPIFnc/CNhaX+/SSvcDNUas8UbHQL/2Ie8gL93v/SL\nfY3lUXOG+Az/f4t5b0P+BrOvAG0YaZZ4EuewgcIKuxRr/qzm7pd92Q3SlueCywWQbwRsoB6T75T2\nhc/4OrZVGjPHe31wizShaqj8ulukex6JXuSs6dL2ddLjdw1s27vfu/Zbkg5EWZt8yreiFwigLTEk\nnrC0v9+kFXI4rsawuOT1sku93k1bpMUrw9PX43tflxZfNricUAHD4VL+25C/wewrQBtGGhInYCcs\n7e83aYX8z+LUYWm3z4XXVaKez144W7p+oTRnhnT0hPST3dKt66Wf7YlQtyjB+vy+0Mu58t6G/A1m\nXwHakHPYQCI6uxs+dPNqL0AHGTtKmjZJunpe5fbtL0qXfL7BQrn2GsgFetgJS/v7TVqhf91HHBrv\n7JDefW7w9sjlV/WiO2dKp880PxT+Xl1y3ob8DWZfAdqQHjaQqBm1bwoiDQTrRi/5Kj/uzAvSqecj\n5hUhWAPIDhZOAZoxtfaC3tYTHGBvWSIdfdrrLZceJ3d42/0MuShisJ76/QiJAGQJQ+IJS/v7TRrD\ncQrsZVcH1ivnSA/e2Xg9Fq/0ZpxX1C1oWLyO3nXe25C/wewrQBsyS7wdpP39Jo3/LPrtGiG5dyo2\nWY/U96Q0bnRl0pGzpbdORi+/a5T05lOV276xQbr5Lp+APXWj1LUoeubKfxvyN5h9BWhDzmEDLXNh\nfwSu6m13DJGmXiG9ur/xrI8cr+yt//KRwT1tSZyzBnKOc9hAnMqCpuuVHtrWXLD2c+4C77rtit41\nwRrIPYbEE5b295s0huMCnDoi7W7B9c/nH2rqunAp/23I32D2FaANIw2J08MGktDZ5fV6p6xJJv8p\na738mwzWALKDHnbC0v5+k8av+zpEuGa7pgSGvvPehvwNZl8B2pAeNtBWZriBx/Sjg3av8OuMn/9G\n5XEACosedsLS/n6Txq/77Mt7G9J+2VeANqSHDQBAXhCwAQDIAAI2AAAZkPpKZzNmzFBvb5T7BGZT\n3s8v5f3ckkQbZh3tl315b8Oo6GEDAJABBGwAADIg9SFxAMiKwNuZ1iHS/cwBH/SwASDETdd4gTqO\nYC0N5LX86njyQ3EQsAHAR9coL7De8aVk8l91o5f/hK5k8kf+MCQOAFXi6k1HcbD/3uYMlaMWetgA\nUKaVwbodykV2ELABQNJvnk0/aLpe6c8+lW4d0L4I2AAKz/VKw4Y2n88Ntzefx6bb0v/hgPbEOWwA\nhfbOjubzKD///Nf3e8/NBt3fPCsN/6Pm8kC+0MMGUGjDh9VO0z1XuveH/vuCJos1O4ksjh4/8oWA\nDaCwavWCrcd79B2TPvtXzQfhUn6lx3l/2lz9UCwEbACFVCsYfvs+/+2NBm2/417eU/s4gjZKCNgA\nCqc7wmIlS+9Ivh5StB8A40YnXw+0PwI2gMI5tCW+vIJ6wHH2jPuejC8vZBezxAEUyp9fM/Dar3db\nCrSuN/rwt+uVTpyURs2Wjj8jjRwRvT7rvxKtPssWS9/cGD1f5A89bACFcnv/2uBBwXjfoYHXs6YP\n3h/Ucy4F6aBgHXTcdQu9518d8N9fqueaFf77URwEbAAoM2X+wOvt6yoDbdgw94ev8p7HXRqcpjqv\n8vfnLqivnigeAjaAwmj2vPLrh4L3vfKa93zkeHCasH1RMGO82AjYAFBm/qzgfZPnB++LIqz3veCS\n5vJG/hGwARTSyYAlSR9d29p6lDy8xn/7O8+2th5oXwRsAIUwcVzl+7OGeUPMZ5UtTRplyHnDw42V\n/9C22mnKyx8x3Hs/vGqJ0vFjGisf2UfABlAIBx73335yh3Tqee91lMu4rv/q4G2nz1S+7zs2OM2V\nEWZ5l8o/tlV6e7t/msNP1M4H+UTABlB4HUOaO37oxZXvu+c2l9/o9zV3PPIpkYBtZmPM7O/N7F/N\n7Odm9odJlAMAcYvSy160svK9c+HpP/e1eMpFsSXVw14r6THn3L+TNF3SzxMqBwBa7r46lzZdvzmZ\neqBYYg/YZjZK0mxJ6yTJOfeuc87njA4AtM7y1dHTtrq3W0959XwO5EsSPexpkg5LWm9m/2xmd5vZ\n2QmUAwCRrV4eb35fuC1aurjv+hX350B2JBGwOyRdKOlvnHO/L+ltSX9ZnsDMlphZr5n1Hj58OIEq\nAEBzFiwL3/+dB7znbbv8929+xnsOuq92SfXs8Wsvr103FFMSAXufpH3Ouf4LJfT38gL4e5xz33XO\n9Tjnerq7uxOoAgDUZ+oHKt8/GnBZVbU5S/y3fyZiT7j6+ux7fC4bA6QEArZz7oCk18zsI/2bPinp\nZ3GXAwBx+vHdg7fNWxp+TFfIUqOSNPYT4fuXrQrfD5RLapb4FyXda2a7JV0g6daEygGASMZ/Mnz/\npAmDtz1WY1nQozVu5nHsRPj+tQ3c3zpsPXLkW0cSmTrnXpTEVYUA2sabv27suKRmjF91U2PHNXvH\nL2QXK50BQAp+sDXtGiBrCNgA0G9iV7rlzzwv3fLR3gjYAAqj1vD2gTpXMCv3sQ9Jcy+Sfndy43k8\ntyF8P8uXFlsi57ABIKtcb3BgnD+ruftlX3aDtOW54HKBMARsAIWyYo206sbwNMe2SmPmeK8PbpEm\nVA2VX3eLdM8j0cucNV3avk56/K6BbXv3S9Ou8F5H6dl/MeYV05A95mrdZiZhPT09rrc3vz8tzSzt\nKiQq7X8/rUAbZptf+0XpzVrPQLpNW6TFK8PT1+N7X5cWXza4nFr18ZP39pPy/zcoaadzruYJDwJ2\nwvL+Dy3tfz+tQBtmm1/7jR8jHX4iwrERzxkvnC1dv1CaM0M6ekL6yW7p1vXSz/bUPjZKsB53afDl\nXHlvPyn/f4OKGLAZEgdQOH1N3D9w82ovQAcZO0qaNkm6el7l9u0vSpd8vrEyufYaEgEbQEFFGYou\nTUDr7JDerZosVs+MbdcrffyCgfI6Z0qnzzQ3FI7iIWADKKyo549LwbrR4Fl+3JkXpFPPR8uLYI1y\nXIcNoNAW3Vw7jfUEB89blkhHn/YCf+lxcoe33c+Qi6IF4j/5cu00KBYmnSUs75Ml0v730wq0YbZF\nab+gXnZ1YL1yjvTgnY3XZfFKb8Z5I2UHyXv7Sfn/GxSTzgAgGuuR3t4ujRg+eF/fk9K40ZXbRs6W\n3joZPf+uUdKbT0kbb/UekvSNDdLNdw1Ou+hm6b4fRc8bxUHABgBJZ3/ce67u8XYMkaZeIb26v/G8\njxyv7DH/8pHBPW2Jc9YIxzlsAChTHjRdr/TQtuaCtZ9zF3jXbZf/OCBYoxZ62ABQxXqksSOlI09L\n117uPZLSPbe568JRHPSwAcDH0RNe4F62Kpn8l97h5U+wRlT0sAEgxNqN3kOK545aDH2jUfSwASCi\n0vXY1jNwN69yK9YM3nbOZZXHAY2ihw0ADfj1W/4BePW9ra8LioEeNgAAGUDABgAgAwjYAABkQOpr\niZtZrhfCTfv7TVoB1vilDTOO9su+ArRhpLXE6WEDAJABzBJH2+AaVwAIRg8bqbrpmoF7CMehlNfy\nq+PJDwDaBeewE5b295u0Rs+flW43mLSJfywdOtJcHrRhttF+2VeANuR+2GhPcfWmozjYfwtDhsoB\nZB1D4mipVgbrdigXAOJCwEZL/ObZ9IOm65X+7FPp1gEAGkXARuJcrzRsaPP53HB783lsui39Hw4A\n0AgmnSUs7e83abUmvLyzQxo+rMkyfM4/Nxt0f/uuNPyPoqUtehtmHe2XfQVoQxZOQfqiBOvuudK9\nP/TfFzRZrNlJZHH0+AGglehhJyzt7zdpYb/ua/WCo/ScwwJzrbQfnSb99P766zConAK3YR7QftlX\ngDakh4301ArW377Pf3ujPWe/417eU/s4zmcDyAoCNmLX3VU7zdI7kq+HFO0HwLjRydcDAJpFwEbs\nDm2JL6+gHnCcPeO+J+PLCwCSwkpniNWfXzPwOuwcteuNPvzteqUTJ6VRs6Xjz0gjR0Svz/qvRKvP\nssXSNzdGzxcAWo0eNmJ1+5e856BgvO/QwOtZ0wfvD+o5l4J0ULAOOu66hd7zrw747y/Vc80K//0A\n0C4I2GipKfMHXm9fVxlow4a5P3yV9zzu0uA01XmVvz93QX31BIB2Q8BGbJo9r/z6oeB9r7zmPR85\nHpwmbF8UzBgH0M4I2Gip+bOC902eH7wvirDe94JLmssbANJGwEYiTu7w3/7o2tbWo+ThNf7b33m2\ntfUAgEYRsBGLieMq3581zBtiPqtsadIoQ84bHm6s/Ie21U5TXv6I4d774VVLlI4f01j5AJA0liZN\nWNrfb9JKyyKGBePTZ6TOmQpMVz2jvDpN+fGSdPiJwYG1Vh7laY5tlUa/L7i+g/IqSBvmFe2XfQVo\nQ5YmRXvoGNLc8UMvrnzfPbe5/MKCNQC0KwI2WirKYimLVla+r/Xj+nNfi6dcAGhnsQdsM/uImb1Y\n9jhuZsviLgf5dV+dS5uu35xMPQCgncQesJ1z/+acu8A5d4GkGZJOSnow7nLQXpavjp621b3desqr\n53MAQCslPST+SUm/cM79MuFykLLVy+PN7wu3RUsX912/4v4cABCXpAP2IkmDbqlgZkvMrNfMWFuq\noBbUOEnynQe85227/PdvfsZ7DrqvdsmVVWuEX3t57boBQDtK7LIuMxsqab+kjzrnDoaky/V8/QJc\njiCp9jXW066Q9u6v3FY6JmjIutYdvcL2B+Ud5VpwLuvKF9ov+wrQhqlf1jVP0q6wYI3i+PHdg7fN\nWxp+TFfIUqOSNPYT4fuXrQrfDwBZkmTAXiyf4XDk0/hPhu+fNGHwtsdqLAt6tMbNPI6dCN+/toF/\nfWHrkQNAmhIJ2GY2QtKnJP1DEvmj/bz568aOS2rG+FU3NXZcs3f8AoCkdCSRqXPupKRxNRMCCfnB\n1rRrAADxYqUztMzErnTLn3leuuUDQDO4+UfC0v5+k1Y9Q7XWLOxGh8A/9iEv4O/dL/1iX2N5NFq3\norVh3tB+2VeANow0SzyRIXEgSNilWPNnNXe/7MtukLY8F1wuAGQZARuxWrFGWnVjeJpjW6Uxc7zX\nB7dIE6qGyq+7RbrnkehlzpoubV8nPX7XwLa9+71rvyXpQIS1yb8Y84ppABA3hsQTlvb3mzS/4bio\ni5OU0m3aIi1eGZ6+Ht/7urT4ssHl1KpPkCK2YZ7QftlXgDaMNCROwE5Y2t9v0vz+sxg/Rjr8RIRj\nI57PXjhbun6hNGeGdPSE9JPd0q3rpZ/tqX1slGA97tLwy7mK2IZ5QvtlXwHakHPYSEffscaP3bza\nC9BBxo6Spk2Srp5XuX37i9Iln2+sTK69BpAF9LATlvb3m7SwX/dRh6I7O6R3nxu8ParqcjpnSqfP\nND8U/l7+BW7DPKD9sq8AbUgPG+mKev64FKwbveSr/LgzL0inno+WV6vvyw0AzWDhFCRq0c2101hP\ncPC8ZYl09Gkv8JceJ3d42/0MuShaIP6TL9dOAwDthCHxhKX9/SYtynBcUC+7OrBeOUd68M7G67J4\npTfjvJGyw9CG2Ub7ZV8B2pBZ4u0g7e83aVH/s3h7uzRieNWxPVLfk9K40ZXbR86W3joZvQ5do6Q3\nn6rc9o0N0s13DQ7Yi26W7vtR9Lwl2jDraL/sK0Abcg4b7ePsj3vP1QG0Y4g09Qrp1f2N533keGWP\n+ZePDO5pS5yzBpBtnMNGS5UHTdcrPbStuWDt59wF3nXb5T8OCNYAso4h8YSl/f0mrdHhuLEjpSNP\nx1wZH91zm7suXKINs472y74CtGGkIXF62EjF0RNer3fZqmTyX3pH/znyJoM1ALQLetgJS/v7TVqc\nv+7juKNWEkPftGG20X7ZV4A2pIeNbCldj209A3fzKrdizeBt51xWeRwA5BU97ISl/f0mjV/32Zf3\nNqT9sq8AbUgPGwCAvCBgAwCQAQRsAAAyoB1WOuuT9MsWlje+v8yWSOn8Uks/Ywry3oa0X4xov9i1\n/PMVoA3PjZIo9UlnrWZmvVFO7mdZ3j8jny/b+HzZlvfPJ7XvZ2RIHACADCBgAwCQAUUM2N9NuwIt\nkPfPyOfLNj5ftuX980lt+hkLdw4bAIAsKmIPGwCAzCFgAwCQAYUK2Gb2aTP7NzN7xcz+Mu36xMnM\n/tbMDpnZT9OuSxLMbIqZPW1mPzezl83sS2nXKW5mNtzMXjCzl/o/41fTrlPczGyImf2zmT2Sdl2S\nYGavmtm/mNmLZhbD/efai5mNMbO/N7N/7f9b/MO06xQXM/tIf7uVHsfNbFna9SpXmHPYZjZE0v8n\n6VOS9kn6J0mLnXM/S7ViMTGz2ZLekvTfnHPnpV2fuJnZ+yW93zm3y8xGStop6cq8tJ8kmbc6xNnO\nubfMrFPSdklfcs49l3LVYmNmyyX1SBrlnFuQdn3iZmavSupxzuVy4RQzu0fSj51zd5vZUEkjnHO5\nu+t8f7x4XdJM51wrF/YKVaQe9kWSXnHO7XHOvStpk6TPpFyn2DjnnpF0JO16JMU594Zzblf/6xOS\nfi5pUrq1ipfzvNX/tl2ok/MAAAJgSURBVLP/kZtf1GY2WdLlku5Ouy6on5mNkjRb0jpJcs69m8dg\n3e+Tkn7RTsFaKlbAniTptbL3+5Sz//CLwsw+KOn3JT2fbk3i1z9k/KKkQ5J+5JzL02f8pqQvS/of\naVckQU7SFjPbaWZL0q5MzKZJOixpff9pjbvN7Oy0K5WQRZI2pl2JakUK2H6L0eam91IUZvY+SQ9I\nWuacO552feLmnDvjnLtA0mRJF5lZLk5vmNkCSYecczvTrkvCZjnnLpQ0T9J/6j9VlRcdki6U9DfO\nud+X9LakXM0FkqT+of4rJH0/7bpUK1LA3idpStn7yZL2p1QXNKD/vO4Dku51zv1D2vVJUv9Q41ZJ\nn065KnGZJemK/nO8myRdamZ/l26V4uec29//fEjSg/JOxeXFPkn7ykZ9/l5eAM+beZJ2OecOpl2R\nakUK2P8k6cNmNrX/F9QiSZtTrhMi6p+QtU7Sz51zq9OuTxLMrNvMxvS/PkvSXEn/mm6t4uGcu9k5\nN9k590F5f3tPOec+m3K1YmVmZ/dPiFT/UPEfS8rNVRvOuQOSXjOzj/Rv+qSk3Ez6LLNYbTgcLrXH\n7TVbwjl32sxukPS4pCGS/tY593LK1YqNmW2UNEfSeDPbJ+krzrl16dYqVrMkXSPpX/rP8UrSSufc\nP6ZYp7i9X9I9/TNUf0fS/c65XF7+lFMTJT3YfyvIDknfc849lm6VYvdFSff2d3r2SLo+5frEysxG\nyLuS6D+mXRc/hbmsCwCALCvSkDgAAJlFwAYAIAMI2AAAZAABGwCADCBgAwCQAQRsAAAygIANAEAG\n/P+uMuaa/akHvAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x2871fde6898>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    "plot_NQueens(bfts)"
   ]
  },
  {
   "cell_type": "markdown",
    "`uniform_cost_search`"
   "execution_count": 88,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "1.08 s ± 154 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n"
    "%%timeit\n",
    "uniform_cost_search(nqp)"
   "cell_type": "code",
   "execution_count": 89,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
    "ucs = uniform_cost_search(nqp).solution()"
   "execution_count": 90,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+4FNWd7/vPd9gbEMOvDRtMgGtg\nkifnTow4skecIXKJIWNAMHru3Bm4Ro/m5nJu7jEEwcmMPM88MXlONFcFQuLcycmRAc8ZA5pxjKgT\nJf4AA0adDaNMTGbuY8BERH5sgYBiInDW/aN2u7t7V1VXd1d1dVW9X8/TT3dXrVprdS82316rVq0y\n55wAAEB7+520KwAAAGojYAMAkAEEbAAAMoCADQBABhCwAQDIAAI2AAAZQMAGACADCNgAAGQAARto\nM2b2QTP7RzM7amYHzOwuM+sIST/GzP6mP+1JM/sXM/sPrawzgOQRsIH28/9KOiTp/ZIukPS/SPq/\n/RKa2VBJT0g6V9IfShot6c8l3W5mS1tSWwAtQcAG2s9USfc7537jnDsg6TFJHw1Ie42k/0nS/+ac\n2+ucO+Wce0zSUkn/2cxGSpKZOTP7UOkgM9tgZv+57P0CM3vRzI6Z2bNmdn7Zvg+Y2QNmdtjM9pb/\nEDCzW8zsfjP7b2Z2wsxeNrOesv1/YWav9+/7NzP7ZDxfEVA8BGyg/ayVtMjMRpjZJEnz5AVtP5+S\n9EPn3NtV2x+QNELSxbUKM7MLJf2tpP8oaZyk/yJps5kNM7PfkfSwpJckTZL0SUnLzOyysiyukLRJ\n0hhJmyXd1Z/vRyTdIOkPnHMjJV0m6dVa9QHgj4ANtJ9t8nrUxyXtk9Qr6QcBacdLeqN6o3PutKQ+\nSd0Ryvs/Jf0X59zzzrkzzrl7JP1WXrD/A0ndzrmvOefedc7tkfRfJS0qO367c+4fnXNnJP13SdP7\nt5+RNEzS75lZp3PuVefcLyLUB4APAjbQRvp7tI9L+gdJZ8sLyGMl/T8Bh/TJO9ddnU9H/7GHIxR7\nrqQV/cPhx8zsmKQpkj7Qv+8DVftWSppYdvyBstcnJQ03sw7n3CuSlkm6RdIhM9tkZh+IUB8APgjY\nQHvpkhcs73LO/dY596ak9ZLmB6R/QtI8Mzu7avv/KumUpBf635+UN0Reck7Z69ckfd05N6bsMcI5\nt7F/396qfSOdc0H1qeCc+55z7uPyAr9T8A8PADUQsIE24pzrk7RX0hfMrMPMxkj6D/LOIfv57/KG\nzb/ffzlYZ//55W9Jut059+v+dC9K+t/NbIiZfVrezPOS/yrp/zKzmeY528wu75+w9oKk4/2Tx87q\nP/48M/uDWp/FzD5iZpea2TBJv5H0jrxhcgANIGAD7effS/q0vOHsVySdlnSjX0Ln3G8lzZXXE35e\nXlB8TNI3JX21LOmXJC2UdEzS1So7J+6c65V3HvsuSUf7y7yuf9+Z/uMukPdDok/S3fIuH6tlmKRv\n9B9zQNIEecPpABpgzrm06wAgJmbWKemHkl6XdJ3jDxzIDXrYQI44507JO3/9C0kfSbk6AGJEDxsA\ngAyghw0AQAYE3lCgVcaPH+8++MEPpl2NxOzcuTPtKiRqxowZaVchcbRhttF+2Zf3NpTU55yruchR\n6kPiPT09rre3t/mMdlrzecyI/7swi6FebSztfz+tQBtmG+2XfXlvQ0k7nXM9tRJle0j84B1eoI4j\nWEsDeR1cFU9+AADEJJsB+9SbXmDd9+Vk8t93k5f/qYPJ5A8AQJ1SP4ddt7h601Hs7l+9MYGhcgAA\n6pGtHnYrg3U7lAsAQL9sBOxdw9IPmjtNOrIp3ToAAAqr/QP2TpPcu01nc8PtMdRl7+L0fzgAAAqp\nvc9h7xredBZWNlH+r+/3nl2zV5HtGiZd+NsmMwEAILr27mG72kGxe6507w/991nAVW1B2yOLoccP\nAEA92jdg1xh6th7v0XdM+uxfNR+ES/mVHuf9aXP1AwAgTu0ZsGsEw2/f57+90aDtd9zLeyIcSNAG\nALRI+wXs04dqJll6RwvqoYg/AE73JV4PAADaL2C/NDG2rIImlzU96azcSzXXawcAoGntNUv8jYFr\nr/x6t6VA63qjD3+7XunESWnUbOn4M9LIEdGrs/4rA6/D6qMDa6RzboyeMQAAdWqvHvb+v5AUHIz3\nlY2Wz5o+eH9Qz7kUpIOCddBx1y30nn91wH//e/V8fbl/AgAAYtJeAbuGKfMHXm9fVxlow4a5P3yV\n9zzu0uA01XmVvz93QX31BAAgbu0TsJuccf16yFy1V17zno8cD04Tti8SZowDABLUPgE7gvmzgvdN\nnh+8L4qw3veCS5rLGwCAZrVlwD65w3/7o2tbW4+Sh9f4b3/n2dbWAwBQXO0RsE9Vzuo6a5h3Dvms\nYQPbolyKteHhxop/aFvtNOXljxjuvR8+tCrRqcONVQAAgBraI2Dvfr/v5pM7pFPPe6+jXMZ1/VcH\nbzt9pvJ937HBaa5cUTvvUvnHtkpvbw9ItHtC7YwAAGhAewTsEB1Dmjt+6MWV77vnNpff6Pc1dzwA\nAI1o+4BdLkove9HKyvfOhaf/3NfiKRcAgCRlKmBHcd+W+tKv35xMPQAAiFMiAdvMPm1m/2Zmr5jZ\nX9ZKv3x1HXm3uLdbT3n1fA4AAOoRe8A2syGS/lrSPEm/J2mxmf1e2DGrY17Z8wu3RUsX912/4v4c\nAACUJNHDvkjSK865Pc65dyVtkvSZOAtYsCx8/3ce8J637fLfv/kZ7znovtol1bPHr728dt0AAEhC\nEgF7kqTXyt7v69/2HjNbYma9ZtZ7+HDta5enfqDy/aNBl1VVmbPEf/tnIvaEq6/PvsfnsjEAAFoh\niYDtt6h2xVxt59x3nXM9zrme7u7a95P+8d2Dt81bGn5MV8hSo5I09hPh+5etCt8PAEArJRGw90ma\nUvZ+sqT9oUdMD+9lT/JZj+SxGsuCHq1xM49jJ8L3r90Yvt/X+X0NHAQAQG1JBOx/kvRhM5tqZkMl\nLZIUfvFUx/iGCkpqxvhVNzV4YOe4WOsBAEBJR9wZOudOm9kNkh6XNETS3zrnXo67nCT9YGvaNQAA\noFLsAVuSnHP/KOkf48xzYpd08EicOdZn5nnplQ0AQPusdDYjfA3RA3WuYFbuYx+S5l4k/e7kxvN4\nbkONBDXqDwBAMxLpYSfF9Qaft54/q7n7ZV92g7TlueByAQBIU3sF7Ml3SvvCZ3wd2yqNmeO9PrhF\nmtBVuf+6W6R7Hole5Kzp0vZ10uN3DWzbu1+adoX3OlLPfsq3ohcIAEAD2mdIXJIm1r4xden2lq7X\nC9abtni97tKjnmAtSTteqjx+4+PeQi2lXvXErvDjJUkTvlhfoQAA1MlcrftPJqynp8f19paNOZ86\nLO32ufC6StRLuhbOlq5fKM2ZIR09If1kt3Treulne2ofG2ko/Py+0Mu5zPzWkcmPtP/9tAJtmG20\nX/blvQ0l7XTO1Yxq7TUkLkmdtVc+C7J5tRegg4wdJU2bJF09r3L79helSz7fYKFcew0AaIH2C9iS\nN+N6Z/gvqtIEtM4O6d2qyWL1LKjieqWPXzDQm+6cKZ0+E7F3zcxwAECLtGfAliIFbWkgWDe66ln5\ncWdekE49HzEvgjUAoIXaa9JZtam1F/QuTRbzc8sS6ejTXm+59Di5w9vuZ8hFEYP11O9HSAQAQHza\nb9JZtYBednVgvXKO9OCdjddj8Upvxnm5wGHxOnrXeZ8skfa/n1agDbON9su+vLehMjvprNoMJ+0a\nIbl3Bu3qe1IaN7py28jZ0lsno2ffNUp68ylp463eQ5K+sUG6+S6fxFM3Sl2LomcOAEBM2j9gS9KF\n/RG4qrfdMUSaeoX0avjNO0MdOV7ZW//lI4N72pI4Zw0ASFV7n8OuVhY0Xa/00LbmgrWfcxd4121X\nDIcTrAEAKctGD7vcDCedOiLtHqdrL5euvTzBss4/1NR14QAAxCVbPeySzi4vcE9Zk0z+U9Z6+ROs\nAQBtIns97HITlnkPKdI12zUx9A0AaFPZ7GH7meEGHtOPDtq9wq8zfv4blccBANCmst3DDtIxZlAA\nXvV3KdUFAIAY5KeHDQBAjhGwAQDIAAI2AAAZQMAGACADUr/5h5nlenp22t9v0gqwKD9tmHG0X/YV\noA0j3fyDHjYAwNeYkZW3J3a90vKrB287Z1zaNS0GetgJS/v7TRq/7rMv721I+9Un8LbCdai+/XGz\nCtCG9LABALXddM1AbzkO5b1xxIcedsLS/n6TlvfemUQbZh3tF6xrlPTmUzFWJsDEP5YOHWn8+AK0\nYaQedj5XOgMAhIqrNx3FwS3ec9xD5UXDkDgAFEwrg3U7lJsXBGwAKIjfPJt+0HS90p99Kt06ZBUB\nGwAKwPVKw4Y2n88Ntzefx6bb0v/hkEVMOktY2t9v0vI+YUmiDbOO9pPe2SENH9ZkOT7nn5sNur99\nVxr+R7XTFaANuawLABAtWHfPle79of++oMlizU4ii6PHXyT0sBOW9vebtLz3ziTaMOuK3n61esFR\nes5hgblW2o9Ok356f/11qCgj/21IDxsAiqxWsP72ff7bG+05+x338p7ax3E+OxoCNgDkUHdX7TRL\n70i+HlK0HwDjRidfj6wjYANADh3aEl9eQT3gOHvGfU/Gl1desdIZAOTMn18z8DrsHLXrjT787Xql\nEyelUbOl489II0dEr8/6r0Srz7LF0jc3Rs+3aOhhA0DO3P4l7zkoGO87NPB61vTB+4N6zqUgHRSs\ng467bqH3/KsD/vtL9Vyzwn8/PARsACiYKfMHXm9fVxlow4a5P3yV9zzu0uA01XmVvz93QX31RCUC\nNgDkSLPnlV8/FLzvlde85yPHg9OE7YuCGePBCNgAUDDzZwXvmzw/eF8UYb3vBZc0l3fREbABIKdO\n7vDf/uja1taj5OE1/tvfeba19cgqAjYA5MTEcZXvzxrmDTGfVbY0aZQh5w0PN1b+Q9tqpykvf8Rw\n7/3wqiVKx49prPy8Y2nShKX9/SYt78taSrRh1hWp/cKC8ekzUufM4HTVM8qr05QfL0mHnxgcWGvl\nUZ7m2FZp9PuC61ueVwHakKVJAQCejiHNHT/04sr33XObyy8sWMMfARsACibKYimLVla+r9XJ/dzX\n4ikXwWIP2Gb2t2Z2yMx+GnfeAIDWuK/OpU3Xb06mHhiQRA97g6RPJ5AvACDE8tXR07a6t1tPefV8\njiKJPWA7556RdCTufAEA4VYvjze/L9wWLV3cd/2K+3PkBeewAaCgFiwL3/+dB7znbbv8929+xnsO\nuq92yZVVa4Rfe3ntumGwVAK2mS0xs14zYxE6AGiRqR+ofP/o9mjHzVniv/0zEXvC1ddn3/PVaMeh\nUioB2zn3XedcT5TrzgAA8fjx3YO3zVsafkxXyFKjkjT2E+H7l60K34/oGBIHgJwY/8nw/ZMmDN72\nWI1lQY/WuJnHsRPh+9c2cH/rsPXIiyyJy7o2SvqJpI+Y2T4z+z/iLgMAMNibv27suKRmjF91U2PH\nNXvHr7zqiDtD59ziuPMEAGTPD7amXYN8YUgcAApkYle65c88L93ys4ybfyQs7e83aXm/cYREG2Zd\nEduv1h25Gh0C/9iHvIC/d7/0i32N5dFI3QrQhpFu/hH7kDgAoL253uCgPX9Wc/fLvuwGactzweWi\ncQRsAMiZFWukVTeGpzm2VRozx3t9cIs0oWqo/LpbpHseiV7mrOnS9nXS43cNbNu7X5p2hff6QIS1\nyb8Y84ppecOQeMLS/n6TlvfhVIk2zLqitl+U3qz1DKTbtEVavDI8fT2+93Vp8WWDy6lVHz8FaMNI\nQ+IE7ISl/f0mLe//2Uu0YdYVtf3Gj5EOPxHh+IjnsxfOlq5fKM2ZIR09If1kt3Treulne2ofGyVY\nj7s0+HKuArQh57ABoKj6jjV+7ObVXoAOMnaUNG2SdPW8yu3bX5Qu+XxjZXLtdW30sBOW9vebtLz3\nziTaMOuK3n5Rh6I7O6R3nxu8ParqcjpnSqfPNDcU/l7e+W9DetgAUHRRzx+XgnWjl3yVH3fmBenU\n89HyavV9ubOMhVMAIOcW3Vw7jfUEB89blkhHn/YCf+lxcoe33c+Qi6IF4j/5cu00GMCQeMLS/n6T\nlvfhVIk2zDrazxPUy64OrFfOkR68s/H6LF7pzThvpOwgBWhDZom3g7S/36Tl/T97iTbMOtpvwNvb\npRHDq47vkfqelMaNrtw+crb01sno9egaJb35VOW2b2yQbr5rcMBedLN034+i512ANuQcNgBgwNkf\n956rA2jHEGnqFdKr+xvP+8jxyh7zLx8Z3NOWOGfdDM5hA0DBlAdN1ys9tK25YO3n3AXeddvlPw4I\n1s1hSDxhaX+/Scv7cKpEG2Yd7Rds7EjpyNMxViZA99zmrgsvQBtGGhKnhw0ABXX0hNfrXbYqmfyX\n3tF/jryJYI0B9LATlvb3m7S8984k2jDraL/6xHFHrbiHvgvQhvSwAQD1KV2PbT0Dd/Mqt2LN4G3n\nXFZ5HJJBDzthaX+/Sct770yiDbOO9su+ArQhPWwAAPKCgA0AQAYQsAEAyIDUVzqbMWOGentjmJbY\npvJ+finv55Yk2jDraL/sy3sbRkUPGwCADEi9hw0gR3bG0BOakf8eI9AIetgAmnPwDi9QxxGspYG8\nDia0/BaQUQRsAI059aYXWPd9OZn8993k5X/qYDL5AxnDkDiA+sXVm45i9zneM0PlKDh62ADq08pg\n3Q7lAm2CgA0gml3D0g+aO006sindOgApIWADqG2nSe7dprO54fYY6rJ3cfo/HIAUcA4bQLhdw5vO\novwOTn99v/fc9G0cdw2TLvxtk5kA2UEPG0A4Vzsods+V7v2h/76g2y02fRvGGHr8QJYQsAEEqzH0\nXLr/cd8x6bN/1XwQLr+nsvVI5/1pc/UD8oSADcBfjWD47fv8tzcatP2Oe3lPhAMJ2igIAjaAwU4f\nqplk6R0tqIci/gA43Zd4PYC0EbABDPbSxNiyCppc1vSks3IvdceYGdCemCUOoNIbA9de+fVuS4HW\n9UYf/na90omT0qjZ0vFnpJEjoldn/VcGXofVRwfWSOfcGD1jIGPoYQOotP8vJAUH431lo+Wzpg/e\nH9RzLgXpoGAddNx1C73nXx3w3/9ePV9f7p8AyAkCNoC6TJk/8Hr7uspAGzbM/eGrvOdxlwanqc6r\n/P25C+qrJ5A3BGwAA5qccf16yFy1V17zno8cD04Tti8SZowjxwjYAOoyf1bwvsnzg/dFEdb7XnBJ\nc3kDWUfABuDr5A7/7Y+ubW09Sh5e47/9nWdbWw8gLQRsAJ5TlbO6zhrmnUM+a9jAtiiXYm14uLHi\nH9pWO015+SOGe++HD61KdOpwYxUA2hwBG4Bn9/t9N5/cIZ163nsd5TKu6786eNvpM5Xv+44NTnPl\nitp5l8o/tlV6e3tAot0TamcEZBABG0BNHUOaO37oxZXvu+c2l9/o9zV3PJBFBGwAdYnSy160svK9\nc+HpP/e1eMoF8oyADSB2922pL/36zcnUA8iT2AO2mU0xs6fN7Odm9rKZfSnuMgDEb/nq6Glb3dut\np7x6PgeQJUn0sE9LWuGc+58lXSzpP5nZ7yVQDoAYrY55Zc8v3BYtXdx3/Yr7cwDtIvaA7Zx7wzm3\nq//1CUk/lzQp7nIApGvBsvD933nAe962y3//5me856D7apdUzx6/9vLadQPyKNFz2Gb2QUm/L+n5\nqu1LzKzXzHoPH+aaSSALpn6g8v2jQZdVVZmzxH/7ZyL2hKuvz77H57IxoAgSC9hm9j5JD0ha5pyr\nWCHYOfdd51yPc66nu5v72AJZ8OO7B2+btzT8mK6QpUYlaewnwvcvWxW+HyiSRAK2mXXKC9b3Ouf+\nIYkyAMRsevho1ySf9Ugeq7Es6NEaN/M4diJ8/9qN4ft9nd/XwEFA+0tilrhJWifp58455msCWdEx\nvqHDkpoxftVNDR7YOS7WegDtIoke9ixJ10i61Mxe7H80eQ8fAEXzg61p1wBoLx1xZ+ic2y6Jm9IC\nOTSxSzp4JL3yZ56XXtlA2ljpDMCAGeFriB6ocwWzch/7kDT3Iul3Jzeex3MbaiSoUX8gy2LvYQPI\nN9cbfN56/qzm7pd92Q3SlueCywWKjIANoNLkO6V94TO+jm2VxszxXh/cIk3oqtx/3S3SPY9EL3LW\ndGn7Ounxuwa27d0vTbvCex2pZz/lW9ELBDKIIXEAlSbWvjF16faWrtcL1pu2eL3u0qOeYC1JO16q\nPH7j495CLaVe9cSu8OMlSRO+WF+hQMaYq3Xfu4T19PS43t78jnV5V7nlV9r/flqhkG146rC02+fC\n6ypRL+laOFu6fqE0Z4Z09IT0k93Sreuln+2JUL8o/z2c3xd4OVch2y9n8t6GknY652r+NTEkDmCw\nzsZXINy82gvQQcaOkqZNkq6eV7l9+4vSJZ9vsFCuvUYBELAB+JvhpJ3hPZvSBLTODundqsli9Syo\n4nqlj18w0JvunCmdPhOxd83McBQEARtAsAhBWxoI1o2uelZ+3JkXpFPPR8yLYI0CYdIZgHBTay/o\nXZos5ueWJdLRp73eculxcoe33c+QiyIG66nfj5AIyA8mnSUs75Ml0v730wq0oQJ72dWB9co50oN3\nNl6XxSu9GeflAofFI/auab/sy3sbiklnAGIzw0m7RkjunUG7+p6Uxo2u3DZytvTWyejZd42S3nxK\n2nir95Ckb2yQbr7LJ/HUjVLXouiZAzlBwAYQzYX9Ebiqt90xRJp6hfTq/sazPnK8srf+y0cG97Ql\ncc4ahcY5bAD1KQuarld6aFtzwdrPuQu867YrhsMJ1ig4etgA6jfDSaeOSLvH6drLpWsvT7Cs8w81\ndV04kBf0sAE0prPLC9xT1iST/5S1Xv4Ea0ASPWwAzZqwzHtIka7Zromhb8AXPWwA8ZnhBh7Tjw7a\nvcKvM37+G5XHAfBFDxtAMjrGDArAq/4upboAOUAPGwCADCBgAwCQAQRsAAAygIANAEAGpH7zDzPL\n9bTQtL/fpBVgUX7aMONov+wrQBty8w8AAAKdOSq92FWxacUaadWNVenO3y91vr919QpADzthaX+/\nSePXffblvQ1pv+yLtQ3bcHGfqD1szmEDAPLt4B1eoI4jWEsDeR1cFU9+EdHDTlja32/S+HWffXlv\nQ9ov+xpuw1NvSrvHx1sZP+cfkDonNnw457ABAMUVV286it3neM8JL63LkDgAIF9aGaxbWC4BGwCQ\nD7uGpResS3aadGRTIlkTsAEA2bfTJPdu09nccHsMddm7OJEfDkw6S1ja32/SmPCSfXlvQ9ov+2q2\n4a7hkvttU2WYz5Qv19tUlpINlS6sXS8u6wIAFEOEYN09V7r3h/77/IJ12PbIYujxl6OHnbC0v9+k\n8es++/LehrRf9oW2YY2h5yg957DAXCvtR6dJP70/tAo1Z4/TwwYA5FuNYP3t+/y3N9pz9jvu5T0R\nDozpfDYBGwCQPacP1Uyy9I4W1EMRfwCc7mu6HAI2ACB7Xmp8ZbFqQZPLmp50Vu6l7qazYKUzAEC2\nvDFw7VXYOWrXG3342/VKJ05Ko2ZLx5+RRo6IXp31Xxl4HXrO/MAa6ZzqW4FFRw8bAJAt+/9CUnAw\n3lc2Wj5r+uD9QT3nUpAOCtZBx1230Hv+1QH//e/V8/Xl/gkiImADAHJlyvyB19vXVQbasGHuD1/l\nPY+7NDhNdV7l789dUF8960XABgBkR5Mzrl8Pmav2ymve85HjwWnC9kXSRP0J2ACAXJk/K3jf5PnB\n+6II630vuKS5vGshYAMAMunkDv/tj65tbT1KHl7jv/2dZ+PJn4ANAMiGU5Wzus4a5p1DPmvYwLYo\nl2JteLix4h/aVjtNefkjhnvvhw+tSnTqcEPlszRpwtL+fpNW+GURcyDvbUj7Zd97bRhy/vf0Galz\nZn96n6BdPaO8Ok358ZJ0+Alp/Jj68ihPc2yrNPp9gdWtWK6UpUkBAIXRMaS544deXPm+e25z+YUG\n6wYRsAEAuRJlsZRFKyvf1xqI+dzX4im3GbEHbDMbbmYvmNlLZvaymX017jIAAGjGfVvqS79+czL1\nqEcSPezfSrrUOTdd0gWSPm1mF9c4BgCAUMtXR0+bdG+3mfLq+RzlYg/YzvNW/9vO/ke+Z30AABK3\nurmVPQf5wm3R0sV9169GP0ci57DNbIiZvSjpkKQfOeeer9q/xMx6zSzOe6EAAPCeBcvC93/nAe95\n2y7//Zuf8Z6D7qtdcuWKyvfXXl67bo1I9LIuMxsj6UFJX3TO/TQgTa5731xSkn20YbbRftkX5bIu\nSZp2hbR3f9Wx/d3CoCHrWnf0CtsflHek23K222VdzrljkrZK+nSS5QAA8OO7B2+btzT8mK6QpUYl\naewnwvcvWxW+P05JzBLv7u9Zy8zOkjRX0r/GXQ4AoGCmh68QNmnC4G2P1VgW9GiNm3kcOxG+f+3G\n8P2+zu9r4CCpo6Gjwr1f0j1mNkTeD4L7nXOPJFAOAKBIOsY3dFhSM8avuqnBAzvHNXRY7AHbObdb\n0u/HnS8AAO3kB1tbWx4rnQEAcmNiV7rlzzwvuby5+UfC0v5+k1aoGao5lfc2pP2yb1Ab1pgt3ugQ\n+Mc+5AX8vfulX+xrLI+aM8RnDP73GHWWeBLnsAEASE3YpVjzZzV3v+zLbpC2PBdcbpII2ACAbJl8\np7QvfMbXsa3SmDne64NbpAlVQ+XX3SLdU8d06FnTpe3rpMfvGti2d7937bckHYiyNvmUb0Uv0AdD\n4glL+/tNWiGH43Im721I+2WfbxvWGBaXvF52qde7aYu0eGV4+np87+vS4ssGlxPKZzhcij4kTsBO\nWNrfb9IK+59FjuS9DWm/7PNtw1OHpd0+F15XiXo+e+Fs6fqF0pwZ0tET0k92S7eul362J0L9ogTr\n8/sCL+fiHDYAIL86uxs+dPNqL0AHGTtKmjZJunpe5fbtL0qXfL7BQhu89rocPeyEpf39Jq2wv+5z\nJO9tSPtlX2gbRhwa7+yQ3n1u8PbIdajqRXfOlE6faW4o/L160MMGAOTeDBcpaJeCdaOXfJUfd+YF\n6dTzEfOqEazrwcIpAIBsm1pjBNUvAAAgAElEQVR7QW/rCQ6wtyyRjj7t9ZZLj5M7vO1+hlwUMVhP\n/X6ERNExJJ6wtL/fpBV+OC4H8t6GtF/2RWrDgF52dWC9co704J2N12XxSm/GebnAYfGIvWtmibeJ\ntL/fpPGfRfblvQ1pv+yL3Ia7RkjunYpN1iP1PSmNG12ZdORs6a2T0evQNUp686nKbd/YIN18l0/A\nnrpR6loUOW/OYQMAiuXC/ghc1dvuGCJNvUJ6dX/jWR85Xtlb/+Ujg3vakmI9Z12Nc9gAgHwpC5qu\nV3poW3PB2s+5C7zrtit61wkGa4kh8cSl/f0mjeG47Mt7G9J+2ddwG546Iu1u/vrnms4/1NR14VGH\nxOlhAwDyqbPL6/VOWZNM/lPWevk3EazrQQ87YWl/v0nj13325b0Nab/si7UNI1yzXVPMQ9/0sAEA\nqDbDDTymHx20e4VfZ/z8NyqPSwk97ISl/f0mjV/32Zf3NqT9sq8AbUgPGwCAvCBgAwCQAQRsAAAy\nIPWVzmbMmKHe3ij3J8umvJ9fyvu5JYk2zDraL/vy3oZR0cMGACADUu9hI7pIN0qvodF7wQIA0kUP\nu83ddM3A/VnjUMpr+dXx5AcAaA0CdpvqGuUF1ju+lEz+q2708p/QlUz+AIB4MSTehuLqTUdxsP/2\ncAyVA0B7o4fdZloZrNuhXABANATsNvGbZ9MPmq5X+rNPpVsHAIA/AnYbcL3SsKHN53PD7c3nsem2\n9H84AAAG4xx2yt7Z0Xwe5eef//p+77nZoPubZ6Xhf9RcHgCA+NDDTtnwYbXTdM+V7v2h/76gyWLN\nTiKLo8cPAIgPATtFtXrB1uM9+o5Jn/2r5oNwKb/S47w/ba5+AIDWIWCnpFYw/PZ9/tsbDdp+x728\np/ZxBG0AaA8E7BR0R1isZOkdyddDivYDYNzo5OsBAAhHwE7BoS3x5RXUA46zZ9z3ZHx5AQAawyzx\nFvvzawZe+/VuS4HW9UYf/na90omT0qjZ0vFnpJEjotdn/Vei1WfZYumbG6PnCwCIFz3sFru9f23w\noGC879DA61nTB+8P6jmXgnRQsA467rqF3vOvDvjvL9VzzQr//QCA1iBgt5kp8wdeb19XGWjDhrk/\nfJX3PO7S4DTVeZW/P3dBffUEALQWAbuFmj2v/Pqh4H2vvOY9HzkenCZsXxTMGAeA9BCw28z8WcH7\nJs8P3hdFWO97wSXN5Q0ASBYBOyUnA5YkfXRta+tR8vAa/+3vPNvaegAA/BGwW2TiuMr3Zw3zhpjP\nKluaNMqQ84aHGyv/oW2105SXP2K493541RKl48c0Vj4AoDkE7BY58Lj/9pM7pFPPe6+jXMZ1/VcH\nbzt9pvJ937HBaa6MMMu7VP6xrdLb2/3THH6idj4AgPgRsNtAx5Dmjh96ceX77rnN5Tf6fc0dDwCI\nHwG7zUTpZS9aWfneufD0n/taPOUCANKTSMA2syFm9s9m9kgS+RfdfXUubbp+czL1AAC0TlI97C9J\n+nlCeWfS8tXR07a6t1tPefV8DgBAfGIP2GY2WdLlku6OO+8sW7083vy+cFu0dHHf9SvuzwEAiCaJ\nHvY3JX1Z0v8ISmBmS8ys18x6Dx8+nEAVsm/BsvD933nAe962y3//5me856D7apdUzx6/9vLadQMA\ntF6sAdvMFkg65JzbGZbOOfdd51yPc66nu7s7zipk1tQPVL5/NOCyqmpzlvhv/0zEnnD19dn3+Fw2\nBgBIX9w97FmSrjCzVyVtknSpmf1dzGXk0o99TiDMWxp+TFfIUqOSNPYT4fuXrQrfDwBoH7EGbOfc\nzc65yc65D0paJOkp59xn4ywjq8Z/Mnz/pAmDtz1WY1nQozVu5nHsRPj+tQ3c3zpsPXIAQHK4DrtF\n3vx1Y8clNWP8qpsaO67ZO34BABrTkVTGzrmtkrYmlT+a84OtadcAAFAPethtZGJXuuXPPC/d8gEA\nwQjYLVRrePtAnSuYlfvYh6S5F0m/O7nxPJ7bEL6f5UsBID2JDYmjMa43ODDOn9Xc/bIvu0Ha8lxw\nuQCA9kXAbrEVa6RVN4anObZVGjPHe31wizShaqj8uluke+pYpX3WdGn7Ounxuwa27d0vTbvCex2l\nZ//FmFdMAwDUx1ytWz0lrKenx/X25rd7Z2aDtkXpzVrPQLpNW6TFK8PT1+N7X5cWXza4nFr18ZP2\nv59W8GvDPMl7G9J+2Zf3NpS00zlX86QjATthfv/Qxo+RDj8R4diI54wXzpauXyjNmSEdPSH9ZLd0\n63rpZ3tqHxslWI+7NPhyrrT//bRC3v+zyHsb0n7Zl/c2VMSAzZB4CvqONX7s5tVegA4ydpQ0bZJ0\n9bzK7dtflC75fGNlcu01AKSPgJ2SKEPRpQlonR3Su1WTxeqZse16pY9fMFBe50zp9JnmhsIBAK1F\nwE5R1PPHpWDdaPAsP+7MC9Kp56PlRbAGgPbBddgpW3Rz7TTWExw8b1kiHX3aC/ylx8kd3nY/Qy6K\nFoj/5Mu10wAAWodJZwmLMlkiqJddHVivnCM9eGfjdVm80ptx3kjZQdL+99MKeZ/wkvc2pP2yL+9t\nKCadZYf1SG9vl0YMH7yv70lp3OjKbSNnS2+djJ5/1yjpzaekjbd6D0n6xgbp5rsGp110s3Tfj6Ln\nDQBoDQJ2mzj7495zdY+3Y4g09Qrp1f2N533keGWP+ZePDO5pS5yzBoB2xjnsNlMeNF2v9NC25oK1\nn3MXeNdtl/84IFgDQHujh92GrEcaO1I68rR07eXeIyndc5u7LhwA0Br0sNvU0RNe4F62Kpn8l97h\n5U+wBoBsoIfd5tZu9B5SPHfUYugbALKJHnaGlK7Htp6Bu3mVW7Fm8LZzLqs8DgCQTfSwM+rXb/kH\n4NX3tr4uAIDk0cMGACADCNgAAGQAARsAgAxIfS1xM8v1Qrhpf79JK8Aav7RhxtF+2VeANoy0ljg9\nbAAAMoBZ4kCr7IyhJzQj3z0NAMHoYQNJOniHF6jjCNbSQF4HE1oCD0Db4hx2wtL+fpPG+bMAp96U\ndo+PvzLVzj8gdU5sKou8tyF/g9lXgDbkfthAKuLqTUex+xzvmaFyIPcYEgfi1Mpg3Q7lAmgZAjYQ\nh13D0g+aO006sindOgBIDAEbaNZOk9y7TWdzw+0x1GXv4vR/OABIBJPOEpb295u0wk942TVccr9t\nKn+/m7g0fStVGypdGK1eeW9D/gazrwBtyMIpQOIiBOvuudK9P/TfF3TL06ZvhRpDjx9Ae6GHnbC0\nv9+kFfrXfY2h5yg957DAXCvtR6dJP70/tAqRZo/nvQ35G8y+ArQhPWwgMTWC9bfv89/eaM/Z77iX\n90Q4kPPZQG4QsIF6nT5UM8nSO1pQD0X8AXC6L/F6AEgeARuo10vNrSxWLmhyWdOTzsq91B1jZgDS\nwkpnQD3eGLj2KuwcteuNPvzteqUTJ6VRs6Xjz0gjR0SvzvqvDLwOPWd+YI10zo3RMwbQduhhA/XY\n/xeSgoPxvrLR8lnTB+8P6jmXgnRQsA467rqF3vOvDvjvf6+ery/3TwAgMwjYQIymzB94vX1dZaAN\nG+b+8FXe87hLg9NU51X+/twF9dUTQPYQsIGompxx/XrIXLVXXvOejxwPThO2LxJmjAOZRsAGYjR/\nVvC+yfOD90UR1vtecElzeQNofwRsoAEnd/hvf3Rta+tR8vAa/+3vPNvaegBIDgEbiOJU5ayus4Z5\n55DPGjawLcqlWBsebqz4h7bVTlNe/ojh3vvhQ6sSnTrcWAUApI6lSROW9vebtMIsixhy/vf0Galz\nZn9an6BdPaO8Ok358ZJ0+Alp/Jj68ihPc2yrNPp9gdUdtFxp3tuQv8HsK0AbsjQp0AodQ5o7fujF\nle+75zaXX2iwBpBZBGwgRlEWS1m0svJ9rc7D574WT7kAsi2RgG1mr5rZv5jZi2YW5yKLQObdt6W+\n9Os3J1MPANmSZA/7E865C6KMywPtbvnq6Glb3dutp7x6PgeA9sKQOBDB6phX9vzCbdHSxX3Xr7g/\nB4DWSSpgO0lbzGynmS2p3mlmS8ysl+Fy5NWCZeH7v/OA97xtl//+zc94z0H31S65ckXl+2svr103\nANmUyGVdZvYB59x+M5sg6UeSvuiceyYgba7n6xfgcoS0q5C4Wpd1SdK0K6S9+6uO6/85GjRkXeuO\nXmH7g/KOdFtOLuvKlby3n1SINkzvsi7n3P7+50OSHpR0URLlAO3ix3cP3jZvafgxXSFLjUrS2E+E\n71+2Knw/gHyJPWCb2dlmNrL0WtIfS/pp3OUALTU9fIWwSRMGb3usxrKgR2vczOPYifD9azeG7/d1\nfl8DBwFoBx0J5DlR0oP9wzQdkr7nnHssgXKA1ukY39BhSc0Yv+qmBg/sHBdrPQC0TuwB2zm3R9L0\nuPMFMOAHW9OuAYBW47IuICYTu9Itf+Z56ZYPIFnc/CNhaX+/SSvcDNUas8UbHQL/2Ie8gL93v/SL\nfY3lUXOG+Az/f4t5b0P+BrOvAG0YaZZ4EuewgcIKuxRr/qzm7pd92Q3SlueCywWQbwRsoB6T75T2\nhc/4OrZVGjPHe31wizShaqj8ulukex6JXuSs6dL2ddLjdw1s27vfu/Zbkg5EWZt8yreiFwigLTEk\nnrC0v9+kFXI4rsawuOT1sku93k1bpMUrw9PX43tflxZfNricUAHD4VL+25C/wewrQBtGGhInYCcs\n7e83aYX8z+LUYWm3z4XXVaKez144W7p+oTRnhnT0hPST3dKt66Wf7YlQtyjB+vy+0Mu58t6G/A1m\nXwHakHPYQCI6uxs+dPNqL0AHGTtKmjZJunpe5fbtL0qXfL7BQrn2GsgFetgJS/v7TVqhf91HHBrv\n7JDefW7w9sjlV/WiO2dKp880PxT+Xl1y3ob8DWZfAdqQHjaQqBm1bwoiDQTrRi/5Kj/uzAvSqecj\n5hUhWAPIDhZOAZoxtfaC3tYTHGBvWSIdfdrrLZceJ3d42/0MuShisJ76/QiJAGQJQ+IJS/v7TRrD\ncQrsZVcH1ivnSA/e2Xg9Fq/0ZpxX1C1oWLyO3nXe25C/wewrQBsyS7wdpP39Jo3/LPrtGiG5dyo2\nWY/U96Q0bnRl0pGzpbdORi+/a5T05lOV276xQbr5Lp+APXWj1LUoeubKfxvyN5h9BWhDzmEDLXNh\nfwSu6m13DJGmXiG9ur/xrI8cr+yt//KRwT1tSZyzBnKOc9hAnMqCpuuVHtrWXLD2c+4C77rtit41\nwRrIPYbEE5b295s0huMCnDoi7W7B9c/nH2rqunAp/23I32D2FaANIw2J08MGktDZ5fV6p6xJJv8p\na738mwzWALKDHnbC0v5+k8av+zpEuGa7pgSGvvPehvwNZl8B2pAeNtBWZriBx/Sjg3av8OuMn/9G\n5XEACosedsLS/n6Txq/77Mt7G9J+2VeANqSHDQBAXhCwAQDIAAI2AAAZkPpKZzNmzFBvb5T7BGZT\n3s8v5f3ckkQbZh3tl315b8Oo6GEDAJABBGwAADIg9SFxAMiKwNuZ1iHS/cwBH/SwASDETdd4gTqO\nYC0N5LX86njyQ3EQsAHAR9coL7De8aVk8l91o5f/hK5k8kf+MCQOAFXi6k1HcbD/3uYMlaMWetgA\nUKaVwbodykV2ELABQNJvnk0/aLpe6c8+lW4d0L4I2AAKz/VKw4Y2n88Ntzefx6bb0v/hgPbEOWwA\nhfbOjubzKD///Nf3e8/NBt3fPCsN/6Pm8kC+0MMGUGjDh9VO0z1XuveH/vuCJos1O4ksjh4/8oWA\nDaCwavWCrcd79B2TPvtXzQfhUn6lx3l/2lz9UCwEbACFVCsYfvs+/+2NBm2/417eU/s4gjZKCNgA\nCqc7wmIlS+9Ivh5StB8A40YnXw+0PwI2gMI5tCW+vIJ6wHH2jPuejC8vZBezxAEUyp9fM/Dar3db\nCrSuN/rwt+uVTpyURs2Wjj8jjRwRvT7rvxKtPssWS9/cGD1f5A89bACFcnv/2uBBwXjfoYHXs6YP\n3h/Ucy4F6aBgHXTcdQu9518d8N9fqueaFf77URwEbAAoM2X+wOvt6yoDbdgw94ev8p7HXRqcpjqv\n8vfnLqivnigeAjaAwmj2vPLrh4L3vfKa93zkeHCasH1RMGO82AjYAFBm/qzgfZPnB++LIqz3veCS\n5vJG/hGwARTSyYAlSR9d29p6lDy8xn/7O8+2th5oXwRsAIUwcVzl+7OGeUPMZ5UtTRplyHnDw42V\n/9C22mnKyx8x3Hs/vGqJ0vFjGisf2UfABlAIBx73335yh3Tqee91lMu4rv/q4G2nz1S+7zs2OM2V\nEWZ5l8o/tlV6e7t/msNP1M4H+UTABlB4HUOaO37oxZXvu+c2l9/o9zV3PPIpkYBtZmPM7O/N7F/N\n7Odm9odJlAMAcYvSy160svK9c+HpP/e1eMpFsSXVw14r6THn3L+TNF3SzxMqBwBa7r46lzZdvzmZ\neqBYYg/YZjZK0mxJ6yTJOfeuc87njA4AtM7y1dHTtrq3W0959XwO5EsSPexpkg5LWm9m/2xmd5vZ\n2QmUAwCRrV4eb35fuC1aurjv+hX350B2JBGwOyRdKOlvnHO/L+ltSX9ZnsDMlphZr5n1Hj58OIEq\nAEBzFiwL3/+dB7znbbv8929+xnsOuq92SfXs8Wsvr103FFMSAXufpH3Ouf4LJfT38gL4e5xz33XO\n9Tjnerq7uxOoAgDUZ+oHKt8/GnBZVbU5S/y3fyZiT7j6+ux7fC4bA6QEArZz7oCk18zsI/2bPinp\nZ3GXAwBx+vHdg7fNWxp+TFfIUqOSNPYT4fuXrQrfD5RLapb4FyXda2a7JV0g6daEygGASMZ/Mnz/\npAmDtz1WY1nQozVu5nHsRPj+tQ3c3zpsPXLkW0cSmTrnXpTEVYUA2sabv27suKRmjF91U2PHNXvH\nL2QXK50BQAp+sDXtGiBrCNgA0G9iV7rlzzwv3fLR3gjYAAqj1vD2gTpXMCv3sQ9Jcy+Sfndy43k8\ntyF8P8uXFlsi57ABIKtcb3BgnD+ruftlX3aDtOW54HKBMARsAIWyYo206sbwNMe2SmPmeK8PbpEm\nVA2VX3eLdM8j0cucNV3avk56/K6BbXv3S9Ou8F5H6dl/MeYV05A95mrdZiZhPT09rrc3vz8tzSzt\nKiQq7X8/rUAbZptf+0XpzVrPQLpNW6TFK8PT1+N7X5cWXza4nFr18ZP39pPy/zcoaadzruYJDwJ2\nwvL+Dy3tfz+tQBtmm1/7jR8jHX4iwrERzxkvnC1dv1CaM0M6ekL6yW7p1vXSz/bUPjZKsB53afDl\nXHlvPyn/f4OKGLAZEgdQOH1N3D9w82ovQAcZO0qaNkm6el7l9u0vSpd8vrEyufYaEgEbQEFFGYou\nTUDr7JDerZosVs+MbdcrffyCgfI6Z0qnzzQ3FI7iIWADKKyo549LwbrR4Fl+3JkXpFPPR8uLYI1y\nXIcNoNAW3Vw7jfUEB89blkhHn/YCf+lxcoe33c+Qi6IF4j/5cu00KBYmnSUs75Ml0v730wq0YbZF\nab+gXnZ1YL1yjvTgnY3XZfFKb8Z5I2UHyXv7Sfn/GxSTzgAgGuuR3t4ujRg+eF/fk9K40ZXbRs6W\n3joZPf+uUdKbT0kbb/UekvSNDdLNdw1Ou+hm6b4fRc8bxUHABgBJZ3/ce67u8XYMkaZeIb26v/G8\njxyv7DH/8pHBPW2Jc9YIxzlsAChTHjRdr/TQtuaCtZ9zF3jXbZf/OCBYoxZ62ABQxXqksSOlI09L\n117uPZLSPbe568JRHPSwAcDH0RNe4F62Kpn8l97h5U+wRlT0sAEgxNqN3kOK545aDH2jUfSwASCi\n0vXY1jNwN69yK9YM3nbOZZXHAY2ihw0ADfj1W/4BePW9ra8LioEeNgAAGUDABgAgAwjYAABkQOpr\niZtZrhfCTfv7TVoB1vilDTOO9su+ArRhpLXE6WEDAJABzBJH2+AaVwAIRg8bqbrpmoF7CMehlNfy\nq+PJDwDaBeewE5b295u0Rs+flW43mLSJfywdOtJcHrRhttF+2VeANuR+2GhPcfWmozjYfwtDhsoB\nZB1D4mipVgbrdigXAOJCwEZL/ObZ9IOm65X+7FPp1gEAGkXARuJcrzRsaPP53HB783lsui39Hw4A\n0AgmnSUs7e83abUmvLyzQxo+rMkyfM4/Nxt0f/uuNPyPoqUtehtmHe2XfQVoQxZOQfqiBOvuudK9\nP/TfFzRZrNlJZHH0+AGglehhJyzt7zdpYb/ua/WCo/ScwwJzrbQfnSb99P766zConAK3YR7QftlX\ngDakh4301ArW377Pf3ujPWe/417eU/s4zmcDyAoCNmLX3VU7zdI7kq+HFO0HwLjRydcDAJpFwEbs\nDm2JL6+gHnCcPeO+J+PLCwCSwkpniNWfXzPwOuwcteuNPvzteqUTJ6VRs6Xjz0gjR0Svz/qvRKvP\nssXSNzdGzxcAWo0eNmJ1+5e856BgvO/QwOtZ0wfvD+o5l4J0ULAOOu66hd7zrw747y/Vc80K//0A\n0C4I2GipKfMHXm9fVxlow4a5P3yV9zzu0uA01XmVvz93QX31BIB2Q8BGbJo9r/z6oeB9r7zmPR85\nHpwmbF8UzBgH0M4I2Gip+bOC902eH7wvirDe94JLmssbANJGwEYiTu7w3/7o2tbWo+ThNf7b33m2\ntfUAgEYRsBGLieMq3581zBtiPqtsadIoQ84bHm6s/Ie21U5TXv6I4d774VVLlI4f01j5AJA0liZN\nWNrfb9JKyyKGBePTZ6TOmQpMVz2jvDpN+fGSdPiJwYG1Vh7laY5tlUa/L7i+g/IqSBvmFe2XfQVo\nQ5YmRXvoGNLc8UMvrnzfPbe5/MKCNQC0KwI2WirKYimLVla+r/Xj+nNfi6dcAGhnsQdsM/uImb1Y\n9jhuZsviLgf5dV+dS5uu35xMPQCgncQesJ1z/+acu8A5d4GkGZJOSnow7nLQXpavjp621b3desqr\n53MAQCslPST+SUm/cM79MuFykLLVy+PN7wu3RUsX912/4v4cABCXpAP2IkmDbqlgZkvMrNfMWFuq\noBbUOEnynQe85227/PdvfsZ7DrqvdsmVVWuEX3t57boBQDtK7LIuMxsqab+kjzrnDoaky/V8/QJc\njiCp9jXW066Q9u6v3FY6JmjIutYdvcL2B+Ud5VpwLuvKF9ov+wrQhqlf1jVP0q6wYI3i+PHdg7fN\nWxp+TFfIUqOSNPYT4fuXrQrfDwBZkmTAXiyf4XDk0/hPhu+fNGHwtsdqLAt6tMbNPI6dCN+/toF/\nfWHrkQNAmhIJ2GY2QtKnJP1DEvmj/bz568aOS2rG+FU3NXZcs3f8AoCkdCSRqXPupKRxNRMCCfnB\n1rRrAADxYqUztMzErnTLn3leuuUDQDO4+UfC0v5+k1Y9Q7XWLOxGh8A/9iEv4O/dL/1iX2N5NFq3\norVh3tB+2VeANow0SzyRIXEgSNilWPNnNXe/7MtukLY8F1wuAGQZARuxWrFGWnVjeJpjW6Uxc7zX\nB7dIE6qGyq+7RbrnkehlzpoubV8nPX7XwLa9+71rvyXpQIS1yb8Y84ppABA3hsQTlvb3mzS/4bio\ni5OU0m3aIi1eGZ6+Ht/7urT4ssHl1KpPkCK2YZ7QftlXgDaMNCROwE5Y2t9v0vz+sxg/Rjr8RIRj\nI57PXjhbun6hNGeGdPSE9JPd0q3rpZ/tqX1slGA97tLwy7mK2IZ5QvtlXwHakHPYSEffscaP3bza\nC9BBxo6Spk2Srp5XuX37i9Iln2+sTK69BpAF9LATlvb3m7SwX/dRh6I7O6R3nxu8ParqcjpnSqfP\nND8U/l7+BW7DPKD9sq8AbUgPG+mKev64FKwbveSr/LgzL0inno+WV6vvyw0AzWDhFCRq0c2101hP\ncPC8ZYl09Gkv8JceJ3d42/0MuShaIP6TL9dOAwDthCHxhKX9/SYtynBcUC+7OrBeOUd68M7G67J4\npTfjvJGyw9CG2Ub7ZV8B2pBZ4u0g7e83aVH/s3h7uzRieNWxPVLfk9K40ZXbR86W3joZvQ5do6Q3\nn6rc9o0N0s13DQ7Yi26W7vtR9Lwl2jDraL/sK0Abcg4b7ePsj3vP1QG0Y4g09Qrp1f2N533keGWP\n+ZePDO5pS5yzBpBtnMNGS5UHTdcrPbStuWDt59wF3nXb5T8OCNYAso4h8YSl/f0mrdHhuLEjpSNP\nx1wZH91zm7suXKINs472y74CtGGkIXF62EjF0RNer3fZqmTyX3pH/znyJoM1ALQLetgJS/v7TVqc\nv+7juKNWEkPftGG20X7ZV4A2pIeNbCldj209A3fzKrdizeBt51xWeRwA5BU97ISl/f0mjV/32Zf3\nNqT9sq8AbUgPGwCAvCBgAwCQAQRsAAAyoB1WOuuT9MsWlje+v8yWSOn8Uks/Ywry3oa0X4xov9i1\n/PMVoA3PjZIo9UlnrWZmvVFO7mdZ3j8jny/b+HzZlvfPJ7XvZ2RIHACADCBgAwCQAUUM2N9NuwIt\nkPfPyOfLNj5ftuX980lt+hkLdw4bAIAsKmIPGwCAzCFgAwCQAYUK2Gb2aTP7NzN7xcz+Mu36xMnM\n/tbMDpnZT9OuSxLMbIqZPW1mPzezl83sS2nXKW5mNtzMXjCzl/o/41fTrlPczGyImf2zmT2Sdl2S\nYGavmtm/mNmLZhbD/efai5mNMbO/N7N/7f9b/MO06xQXM/tIf7uVHsfNbFna9SpXmHPYZjZE0v8n\n6VOS9kn6J0mLnXM/S7ViMTGz2ZLekvTfnHPnpV2fuJnZ+yW93zm3y8xGStop6cq8tJ8kmbc6xNnO\nubfMrFPSdklfcs49l3LVYmNmyyX1SBrlnFuQdn3iZmavSupxzuVy4RQzu0fSj51zd5vZUEkjnHO5\nu+t8f7x4XdJM51wrF/YKVaQe9kWSXnHO7XHOvStpk6TPpFyn2DjnnpF0JO16JMU594Zzblf/6xOS\nfi5pUrq1ipfzvNX/tl2ok/MAAAJgSURBVLP/kZtf1GY2WdLlku5Ouy6on5mNkjRb0jpJcs69m8dg\n3e+Tkn7RTsFaKlbAniTptbL3+5Sz//CLwsw+KOn3JT2fbk3i1z9k/KKkQ5J+5JzL02f8pqQvS/of\naVckQU7SFjPbaWZL0q5MzKZJOixpff9pjbvN7Oy0K5WQRZI2pl2JakUK2H6L0eam91IUZvY+SQ9I\nWuacO552feLmnDvjnLtA0mRJF5lZLk5vmNkCSYecczvTrkvCZjnnLpQ0T9J/6j9VlRcdki6U9DfO\nud+X9LakXM0FkqT+of4rJH0/7bpUK1LA3idpStn7yZL2p1QXNKD/vO4Dku51zv1D2vVJUv9Q41ZJ\nn065KnGZJemK/nO8myRdamZ/l26V4uec29//fEjSg/JOxeXFPkn7ykZ9/l5eAM+beZJ2OecOpl2R\nakUK2P8k6cNmNrX/F9QiSZtTrhMi6p+QtU7Sz51zq9OuTxLMrNvMxvS/PkvSXEn/mm6t4uGcu9k5\nN9k590F5f3tPOec+m3K1YmVmZ/dPiFT/UPEfS8rNVRvOuQOSXjOzj/Rv+qSk3Ez6LLNYbTgcLrXH\n7TVbwjl32sxukPS4pCGS/tY593LK1YqNmW2UNEfSeDPbJ+krzrl16dYqVrMkXSPpX/rP8UrSSufc\nP6ZYp7i9X9I9/TNUf0fS/c65XF7+lFMTJT3YfyvIDknfc849lm6VYvdFSff2d3r2SLo+5frEysxG\nyLuS6D+mXRc/hbmsCwCALCvSkDgAAJlFwAYAIAMI2AAAZAABGwCADCBgAwCQAQRsAAAygIANAEAG\n/P+uMuaa/akHvAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x2871f6c04e0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    "plot_NQueens(ucs)"
    "`depth_first_tree_search` is almost 20 times faster than `breadth_first_tree_search` and more than 200 times faster than `uniform_cost_search`."
   "cell_type": "markdown",
   "metadata": {},
    "We can also solve this problem using `astar_search` with a suitable heuristic function. \n",
    "<br>\n",
    "The best heuristic function for this scenario will be one that returns the number of conflicts in the current state."
   "cell_type": "code",
   "execution_count": 91,
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span>    <span class=\"k\">def</span> <span class=\"nf\">h</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">node</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Return number of conflicting queens for a given node&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">num_conflicts</span> <span class=\"o\">=</span> <span class=\"mi\">0</span>\n",
       "        <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">r1</span><span class=\"p\">,</span> <span class=\"n\">c1</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"nb\">enumerate</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "            <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">r2</span><span class=\"p\">,</span> <span class=\"n\">c2</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"nb\">enumerate</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "                <span class=\"k\">if</span> <span class=\"p\">(</span><span class=\"n\">r1</span><span class=\"p\">,</span> <span class=\"n\">c1</span><span class=\"p\">)</span> <span class=\"o\">!=</span> <span class=\"p\">(</span><span class=\"n\">r2</span><span class=\"p\">,</span> <span class=\"n\">c2</span><span class=\"p\">):</span>\n",
       "                    <span class=\"n\">num_conflicts</span> <span class=\"o\">+=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">conflict</span><span class=\"p\">(</span><span class=\"n\">r1</span><span class=\"p\">,</span> <span class=\"n\">c1</span><span class=\"p\">,</span> <span class=\"n\">r2</span><span class=\"p\">,</span> <span class=\"n\">c2</span><span class=\"p\">)</span>\n",
       "\n",
       "        <span class=\"k\">return</span> <span class=\"n\">num_conflicts</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "psource(NQueensProblem.h)"
  {
   "cell_type": "code",
   "execution_count": 92,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "8.85 ms ± 424 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
    "%%timeit\n",
    "astar_search(nqp)"
    "`astar_search` is faster than both `uniform_cost_search` and `breadth_first_tree_search`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "astar = astar_search(nqp).solution()"
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+4FdWd7/nP93IOIIZfBw6YAGOg\nkyczHSO2nBa7iQwxpA0IRmd6umGMXs1kuJO5hqDY6Zbn6Scmz41mVCB07OncXGnw3jagaduI2lGi\nEQwYtQ+00jHpnseAiYj8OMIJKCYCd80fdbZn/6iqXWfvql27qt6v59nP3rtq1Vpr73Xgu9eqVavM\nOScAANDe/l3aFQAAAPURsAEAyAACNgAAGUDABgAgAwjYAABkAAEbAIAMIGADAJABBGwAADKAgA20\nGTP7oJn9o5kdM7ODZna3mXWEpB9nZn8zkPakmf2Lmf37VtYZQPII2ED7+X8lHZb0fkkXSPqfJf3f\nfgnNbLikJyWdK+kPJI2V9GeS7jCz5S2pLYCWIGAD7We6pAecc79xzh2U9LikjwakvUbS/yDpf3PO\n7XPOnXLOPS5puaT/ZGajJcnMnJl9qHSQmW00s/9U9n6Rmb1oZv1m9qyZnV+27wNm9qCZHTGzfeU/\nBMzsVjN7wMz+q5mdMLOXzaynbP+fm9nrA/v+zcw+Gc9XBBQPARtoP+skLTGzUWY2RdICeUHbz6ck\n/cA593bV9gcljZJ0cb3CzOxCSX8r6T9ImiDpP0vaYmYjzOzfSXpE0kuSpkj6pKQVZnZZWRZXSNos\naZykLZLuHsj3I5JukPT7zrnRki6T9Gq9+gDwR8AG2s92eT3q45L2S+qV9P2AtBMlvVG90Tl3WlKf\npO4I5f2fkv6zc+5559wZ59y9kn4rL9j/vqRu59zXnHPvOuf2SvovkpaUHb/DOfePzrkzkv6bpJkD\n289IGiHpd82s0zn3qnPuFxHqA8AHARtoIwM92ick/YOks+UF5PGS/p+AQ/rkneuuzqdj4NgjEYo9\nV9LKgeHwfjPrlzRN0gcG9n2gat8qSZPLjj9Y9vqkpJFm1uGce0XSCkm3SjpsZpvN7AMR6gPABwEb\naC9d8oLl3c653zrn3pS0QdLCgPRPSlpgZmdXbf9fJZ2S9MLA+5PyhshLzil7/ZqkrzvnxpU9Rjnn\nNg3s21e1b7RzLqg+FZxz33XOfVxe4HcK/uEBoA4CNtBGnHN9kvZJ+oKZdZjZOEn/Xt45ZD//Td6w\n+fcGLgfrHDi//FeS7nDO/Xog3YuS/nczG2Zmn5Y387zkv0j6v8xstnnONrPLByasvSDp+MDksbMG\njj/PzH6/3mcxs4+Y2aVmNkLSbyS9I2+YHEADCNhA+/lfJH1a3nD2K5JOS7rRL6Fz7reS5svrCT8v\nLyg+Lumbkr5alvRLkhZL6pd0tcrOiTvneuWdx75b0rGBMq8b2Hdm4LgL5P2Q6JN0j7zLx+oZIekb\nA8cclDRJ3nA6gAaYcy7tOgCIiZl1SvqBpNclXef4Bw7kBj1sIEecc6fknb/+haSPpFwdADGihw0A\nQAbQwwYAIAMCbyjQKhMnTnQf/OAH065GYnbt2pV2FRI1a9astKuQONow22i/7Mt7G0rqc87VXeQo\n9SHxnp4e19vbm2odkmRmaVchUWn//bRCXG3oYvgzH1ylOz55b0P+DWZf3ttQ0i7nXN1/3QyJAwm6\n+RovUMcRrKXBvG66Op78AGQHARtIQNcYL7De+aVk8l99o5f/pK5k8gfQflI/hw3kTVy96SgObfWe\nkxgqB9Be6GEDMWplsG6HcgG0DgEbiMFvnk0/aLpe6U8/lW4dACSHgA00yfVKI4Y3n88NdzSfx+bb\n0//hACAZnMMGmvDOzubzKD///NcPeM/NBt3fPCuN/MPm8gDQXuhhA00YOaJ+mu750n0/8N8XNFms\n2UlkcfT4AbQXAjbQoHq9YOvxHn390mf/svkgXMqv9DjvT5qrH4BsIWADDagXDL91v//2RoO233Ev\n761/HEEbyA8CNjBE3REWK1l+Z/L1kKL9AJgwNvl6AEgeARsYosNb48srqAccZ8+476n48gKQHmaJ\nA0PwZ9cMvvbr3ZYCreuNPvzteqUTJ6Uxc6Xjz0ijR0Wvz4avRKvPiqXSNzdFzxdA+6GHDQzBHQNr\ngwcF4/2HB1/PmVm7P6jnXArSQcE66LjrFnvPvzrov79Uz7Ur/fcDyA4CNhCjaQsHX+9YXxlow4a5\nP3yV9zzh0uA01XmVvz930dDqCSB7CNhARM2eV379cPC+V17zno8eD04Tti8KZowD2UbABmK0cE7w\nvqkLg/dFEdb7XnRJc3kDaH8EbKABJwOWJH1sXWvrUfLIWv/t7zzb2noASA4BG4hg8oTK92eN8IaY\nzypbmjTKkPPGRxor/+Ht9dOUlz9qpPd+ZNUSpRPHNVY+gPQRsIEIDj7hv/3kTunU897rKJdxXf/V\n2m2nz1S+7+uvTXNlhFnepfL7t0lv7/BPc+TJ+vkAaE8EbKBJHcOaO374xZXvu+c3l9/Y9zV3PID2\nRMAGYhSll71kVeV758LTf+5r8ZQLINsI2ECL3T/EpU03bEmmHgCyJZGAbWafNrN/M7NXzOwvkigD\naKWb1kRP2+re7lDKG8rnANBeYg/YZjZM0l9LWiDpdyUtNbPfjbscoJXW3BRvfl+4PVq6uO/6Fffn\nANA6SfSwL5L0inNur3PuXUmbJX0mgXKAtrVoRfj+bz/oPW/f7b9/yzPec9B9tUuqZ49fe3n9ugHI\npiQC9hRJr5W93z+w7T1mtszMes2s98iRIwlUAWit6R+ofP9YwGVV1eYt89/+mYg94errs+/1uWwM\nQD4kEbDNZ1vFPFjn3Heccz3OuZ7u7u4EqgC01o/vqd22YHn4MV0hS41K0vhPhO9fsTp8P4B8SSJg\n75c0rez9VEkHEigHaJmJnwzfP2VS7bbH6ywLeqzOzTz6T4TvX9fA/a3D1iMH0N6SCNj/JOnDZjbd\nzIZLWiKJC1OQaW/+urHjkpoxftXNjR3X7B2/AKSnI+4MnXOnzewGSU9IGibpb51zL8ddDlBk39+W\ndg0AtFrsAVuSnHP/KOkfk8gbaFeTu6RDR9Mrf/Z56ZUNIHmsdAZEVG94++AQVzAr97EPSfMvkn5n\nauN5PLcxfD/LlwLZlkgPGygq1xscGBfOae5+2ZfdIG19LrhcAPlGwAaGYOVaafWN4Wn6t0nj5nmv\nD22VJnVV7r/uVuneR6OXOWemtGO99MTdg9v2HZBmXOG9jtKz/2LMK6YBaD1z9W4VlLCenh7X25vf\n7oGZ32Xp+ZH2308rVLdhlN6s9Qym27xVWroqPP1QfPfr0tLLasupV58geW9D/g1mX97bUNIu51zd\nk1YE7ITl/Q8t7b+fVqhuw4njpCNPRjgu4jnjxXOl6xdL82ZJx05IP9kj3bZB+tne+sdGCdYTLg2/\nnCvvbci/wezLexsqYsBmSBwYor7+xo/dssYL0EHGj5FmTJGuXlC5fceL0iWfb6xMrr0G8oGADTQg\nylB0aQJaZ4f0btVksaHM2Ha90scvGCyvc7Z0+kzzQ+EAsoWADTQo6vnjUrBuNHiWH3fmBenU89Hy\nIlgD+cJ12EATltxSP431BAfPW5dJx572An/pcXKnt93PsIuiBeI//nL9NACyhUlnCcv7ZIm0/35a\noV4bBvWyqwPrlfOkh+5qvB5LV3kzzhspO0ze25B/g9mX9zYUk86A1rAe6e0d0qiRtfv6npImjK3c\nNnqu9NbJ6Pl3jZHe/JG06TbvIUnf2Cjdcndt2iW3SPf/MHreALKDgA3E4OyPe8/VPd6OYdL0K6RX\nm7jB7NHjlT3mXz5a29OWOGcN5B3nsIEYlQdN1ys9vL25YO3n3EXeddvlPw4I1kD+0cMGYmY90vjR\n0tGnpWsv9x5J6Z7f3HXhALKDHjaQgGMnvMC9YnUy+S+/08ufYA0UBz1sIEHrNnkPKZ47ajH0DRQX\nPWygRUrXY1vP4N28yq1cW7vtnMsqjwNQXPSwgRT8+i3/ALzmvtbXBUA20MMGACADCNgAAGQAARsA\ngAwgYAMAkAGp3/zDzHK9cn3a32/SCrAoP22YcbRf9hWgDbn5R66dOSa92FWxaeVaafWNVenOPyB1\nvr919QIAJIIedsJi/X53xfBLela8Xze/7rMv721I+2VfAdowUg+bc9jt7tCdXqCOI1hLg3kdSmjN\nTABAIuhhJ6zh7/fUm9KeifFWxs/5B6XOyQ0fzq/77Mt7G9J+2VeANuQcdmbF1ZuOYs853nPMQ+UA\ngHgxJN5uWhms26FcAEAkBOx2sXtE+kFzl0lHN6dbBwCALwJ2O9hlknu36WxuuCOGuuxbmv4PBwBA\nDSadJazu97t7pOR+21QZfnd9avreyzZcurB+vZjwkn15b0PaL/sK0IZc1pUJEYJ193zpvh/47wu6\nR3LT906OoccPAIgPPeyEhX6/dYaeo/ScwwJzvbQfnSH99IHQKtSdPc6v++zLexvSftlXgDakh93W\n6gTrb93vv73RnrPfcS/vjXAg57MBoC0QsNNw+nDdJMvvbEE9FPEHwOm+xOsBAAhHwE7DS42vLFYt\naHJZ05POyr3UHWNmAIBGsNJZq70xeO1V2Dlq1xt9+Nv1SidOSmPmSsefkUaPil6dDV8ZfB16zvzg\nWumc6luBAQBahR52qx34c0nBwXh/2Wj5nJm1+4N6zqUgHRSsg467brH3/KuD/vvfq+frN/knAAC0\nBAG7zUxbOPh6x/rKQBs2zP3hq7znCZcGp6nOq/z9uYuGVk8AQGsRsFupyRnXr4fMVXvlNe/56PHg\nNGH7ImHGOACkhoDdZhbOCd43dWHwvijCet+LLmkubwBAsgjYKTm503/7Y+taW4+SR9b6b3/n2dbW\nAwDgj4DdKqcqZ3WdNcI7h3zWiMFtUS7F2vhIY8U/vL1+mvLyR4303o8cXpXo1JHGKgAAaApLkybs\nve835Pzv6TNS5+yB9D5Bu3pGeXWa8uMl6ciT0sRxQ8ujPE3/Nmns+wKrW7FcKcsiZl/e25D2y74C\ntCFLk2ZFx7Dmjh9+ceX77vnN5RcarAEAqSBgt5koi6UsWVX5vt6Pz899LZ5yAQDpiT1gm9nfmtlh\nM/tp3HnDc//WoaXfsCWZegAAWieJHvZGSZ9OIN9Mu2lN9LSt7u0OpbyhfA4AQHxiD9jOuWckHY07\n36xbE/PKnl+4PVq6uO/6FffnAABEwznsNrVoRfj+bz/oPW/f7b9/yzPec9B9tUuuXFn5/trL69cN\nANB6qQRsM1tmZr1mFudNIDNt+gcq3z+2I9px85b5b/9MxJ5w9fXZ93412nEAgNZKJWA7577jnOuJ\nct1ZUfz4ntptC5aHH9MVstSoJI3/RPj+FavD9wMA2gdD4q0yM3yFsCmTarc9XmdZ0GN1bubRfyJ8\n/7pN4ft9nd/XwEEAgGYlcVnXJkk/kfQRM9tvZv9H3GVkUsfEhg5Lasb4VTc3eGDnhFjrAQCIpiPu\nDJ1zS+POE/H7/ra0awAAGAqGxNvI5K50y599XrrlAwCCcfOPhNV8vyE3AZEaHwL/2Ie8gL/vgPSL\n/Y3lUfduYbNqm4obD2Rf3tuQ9su+ArRhpJt/xD4kjua43uCgvXBOc/fLvuwGaetzweUCANoXAbvV\npt4l7Q+f8dW/TRo3z3t9aKs0qWqo/LpbpXsfjV7knJnSjvXSE3cPbtt3QJpxhff6YJS1yaf9VfQC\nAQCxY0g8Yb7fb51hccnrZZd6vZu3SktXhacfiu9+XVp6WW05oXyGwyWG4/Ig721I+2VfAdow0pA4\nATthvt/vqSPSHp8Lr6tEPZ+9eK50/WJp3izp2AnpJ3uk2zZIP9sboX5RgvX5fYGXc/GfRfblvQ1p\nv+wrQBtyDrttdXY3fOiWNV6ADjJ+jDRjinT1gsrtO16ULvl8g4Vy7TUApI4edsJCv9+IQ+OdHdK7\nz9Vuj1yHql5052zp9JnmhsLfqwe/7jMv721I+2VfAdqQHnbbm+UiBe1SsG70kq/y4868IJ16PmJe\ndYI1AKB1WDglbdPrL+htPcEB9tZl0rGnvd5y6XFyp7fdz7CLIgbr6d+LkAgA0CoMiScs0vcb0Muu\nDqxXzpMeuqvxuixd5c04Lxc4LB6xd81wXPblvQ1pv+wrQBsyS7wdRP5+d4+S3DsVm6xH6ntKmjC2\nMunoudJbJ6PXoWuM9OaPKrd9Y6N0y90+AXv6JqlrSeS8+c8i+/LehrRf9hWgDTmHnSkXDkTgqt52\nxzBp+hXSqwcaz/ro8cre+i8fre1pS+KcNQC0Mc5ht5uyoOl6pYe3Nxes/Zy7yLtuu6J3TbAGgLbG\nkHjCGv5+Tx2V9rTg+ufzDzd1XTjDcdmX9zak/bKvAG0YaUicHna76uzyer3T1iaT/7R1Xv5NBGsA\nQOvQw05YrN9vhGu264p56Jtf99mX9zak/bKvAG1IDzt3ZrnBx8xjNbtX+nXGz3+j8jgAQCbRw05Y\n2t9v0vh1n315b0PaL/sK0Ib0sAEAyAsCNgAAGUDABgAgA1Jf6WzWrFnq7Y1yn8dsyvv5pbyfW5Jo\nw6yj/bIv720YFT1sAAAyIPUeNgCgjbTheg/w0MMGgKI7dKcXqOMI1tJgXodWx5MfJBGwAaC4Tr3p\nBdb9X04m//03e/mfOpRM/gXDkDgAFFFcveko9pzjPTNU3hR62ABQNK0M1u1Qbk4QsAGgKHaPSD9o\n7jLp6OZ065BRBGwAKIJdJrl3m87mhjtiqMu+pen/cMggzmEDQN7tHtl0FlZ2a4q/fsB7ds2uebV7\nhHThb5vMpDjoYQNA3rn6QbF7vnTfD/z3WcB9pIK2RxZDj79ICNgAkGd1hp6tx3v09Uuf/cvmg3Ap\nv9LjvD9prn4YRMAGgLyqEwy/db//9kaDtt9xL++NcCBBOxICNgDk0enDdZMsv7MF9VDEHwCn+xKv\nR9YRsAEgj16aHFtWQZPLmp50Vu6l7hgzyydmiQNA3rwxeO2VX++2FGhdb/Thb9crnTgpjZkrHX9G\nGj0qenU2fGXwdVh9dHCtdM6N0TMuGHrYAJA3B/5cUnAw3l82Wj5nZu3+oJ5zKUgHBeug465b7D3/\n6qD//vfq+fpN/gkgiYANAIUzbeHg6x3rKwNt2DD3h6/ynidcGpymOq/y9+cuGlo9UYmADQB50uSM\n69dD5qq98pr3fPR4cJqwfZEwYzwQARsACmbhnOB9UxcG74sirPe96JLm8i46AjYA5NTJnf7bH1vX\n2nqUPLLWf/s7z7a2HllFwAaAvDhVOavrrBHeOeSzRgxui3Ip1sZHGiv+4e3105SXP2qk937k8KpE\np440VoGcI2ADQF7seb/v5pM7pVPPe6+jXMZ1/Vdrt50+U/m+r782zZUr6+ddKr9/m/T2joBEeybV\nz6iACNgAUAAdw5o7fvjFle+75zeX39j3NXd8ERGwAaBgovSyl6yqfO9cePrPfS2echGMgA0AqHH/\n1qGl37AlmXpgUOwB28ymmdnTZvZzM3vZzL4UdxkAgFo3rYmettW93aGUN5TPUSRJ9LBPS1rpnPuf\nJF0s6T+a2e8mUA4AoMyamFf2/MLt0dLFfdevuD9HXsQesJ1zbzjndg+8PiHp55KmxF0OAKA5i1aE\n7//2g97z9t3++7c84z0H3Ve7pHr2+LWX168baiV6DtvMPijp9yQ9X7V9mZn1mlnvkSNcbwcArTD9\nA5XvHwu6rKrKvGX+2z8TsSdcfX32vT6XjaG+xAK2mb1P0oOSVjjnKlaXdc59xznX45zr6e7mHqgA\n0Ao/vqd224Ll4cd0hSw1KknjPxG+f8Xq8P2ILpGAbWad8oL1fc65f0iiDABAlZnhI5ZTfNYjebzO\nsqDH6tzMo/9E+P51m8L3+zq/r4GD8i+JWeImab2knzvnmOsHAK3SMbGhw5KaMX7VzQ0e2Dkh1nrk\nRRI97DmSrpF0qZm9OPBo8v4vAICs+f62tGuQLx1xZ+ic2yGJG5oCQBua3CUdOppe+bPPS6/srGOl\nMwDIk1nha4geHOIKZuU+9iFp/kXS70xtPI/nNtZJUKf+RRZ7DxsA0N5cb/B564Vzmrtf9mU3SFuf\nCy4XjSNgA0DeTL1L2h8+46t/mzRunvf60FZpUlfl/utule59NHqRc2ZKO9ZLT9w9uG3fAWnGFd7r\nSD37aX8VvcACYkgcAPJmcv0bU5dub+l6vWC9eavX6y49hhKsJWnnS5XHb3rCW6il1Kue3BV+vCRp\n0heHVmjBmKt3z7SE9fT0uN7e/I6TeFe55Vfafz+tQBtmW2Hb79QRaY/PhddVol7StXiudP1iad4s\n6dgJ6Sd7pNs2SD/bG6GOUf6LP78v8HKuvLehpF3OubotwZA4AORRZ+OrSG5Z4wXoIOPHSDOmSFcv\nqNy+40Xpks83WCjXXtdFwAaAvJrlpF3hvdPSBLTODundqsliQ1lQxfVKH79gsDfdOVs6fSZi75qZ\n4ZEQsAEgzyIEbWkwWDe66ln5cWdekE49HzEvgnVkTDoDgLybXn9B79JkMT+3LpOOPe31lkuPkzu9\n7X6GXRQxWE//XoREKGHSWcLyPlki7b+fVqANs432GxDQy64OrFfOkx66q/H6LF3lzTgvFzgsHrF3\nnfc2FJPOAADvmeWk3aMk907Nrr6npAljK7eNniu9dTJ69l1jpDd/JG26zXtI0jc2Srfc7ZN4+iap\na0n0zCGJgA0AxXHhQASu6m13DJOmXyG9eqDxrI8er+yt//LR2p62JM5ZN4Fz2ABQNGVB0/VKD29v\nLlj7OXeRd912xXA4wbop9LABoIhmOenUUWnPBF17uXTt5QmWdf7hpq4Lh4ceNgAUVWeXF7inrU0m\n/2nrvPwJ1rGghw0ARTdphfeQIl2zXRdD34mghw0AGDTLDT5mHqvZvdKvM37+G5XHIRH0sAEA/jrG\n1QTg1X+XUl1ADxsAgCwgYAMAkAEEbAAAMoCADQBABqR+8w8zy/WUwrS/36QVYFF+2jDjaL/sK0Ab\nRrr5Bz1stKVxoytv5ed6pZuurt12zoS0awoArUEPO2Fpf79Ji/PXfeAt+IYg0j14h4g2zDbaL/sK\n0Ib0sNH+br5msLcch/LeOADkCT3shKX9/Sat0V/3pXvnJm3yH0mHjzaXB22YbbRf9hWgDSP1sFnp\nDC0XV286ikMD9+NNYqgcAFqJIXG0VCuDdTuUCwBxIWCjJX7zbPpB0/VKf/qpdOsAAI0iYCNxrlca\nMbz5fG64o/k8Nt+e/g8HAGgEk84Slvb3m7R6E17e2SmNHNFkGT7nn5sNur99Vxr5h9HSFr0Ns472\ny74CtCGXdSF9UYJ193zpvh/47wuaLNbsJLI4evwA0Er0sBOW9vebtLBf9/V6wVF6zmGBuV7aj86Q\nfvrA0OtQU06B2zAPaL/sK0Ab0sNGeuoF62/d77+90Z6z33Ev761/HOezAWQFARux6+6qn2b5ncnX\nQ4r2A2DC2OTrAQDNImAjdoe3xpdXUA84zp5x31Px5QUASWGlM8Tqz64ZfB12jtr1Rh/+dr3SiZPS\nmLnS8Wek0aOi12fDV6LVZ8VS6ZuboucLAK1GDxuxuuNL3nNQMN5/ePD1nJm1+4N6zqUgHRSsg467\nbrH3/KuD/vtL9Vy70n8/ALQLAjZaatrCwdc71lcG2rBh7g9f5T1PuDQ4TXVe5e/PXTS0egJAuyFg\nIzbNnld+/XDwvlde856PHg9OE7YvCmaMA2hnBGy01MI5wfumLgzeF0VY73vRJc3lDQBpI2AjESd3\n+m9/bF1r61HyyFr/7e8829p6AECjCNiIxeQJle/PGuENMZ9VtjRplCHnjY80Vv7D2+unKS9/1Ejv\n/ciqJUonjmusfABIGkuTJizt7zdppWURw4Lx6TNS52wFpqueUV6dpvx4STryZG1grZdHeZr+bdLY\n9wXXtyavgrRhXtF+2VeANmRpUrSHjmHNHT/84sr33fObyy8sWANAuyJgo6WiLJayZFXl+3o/rj/3\ntXjKBYB2FnvANrORZvaCmb1kZi+b2VfjLgP5dv8QlzbdsCWZegBAO0mih/1bSZc652ZKukDSp83s\n4jrHIONuWhM9bat7u0MpbyifAwBaKfaA7TxvDbztHHjke8YAtOamePP7wu3R0sV916+4PwcAxCWR\nc9hmNszMXpR0WNIPnXPPV+1fZma9ZsbaUgW1aEX4/m8/6D1v3+2/f8sz3nPQfbVLrqxaI/zay+vX\nDQDaUaKXdZnZOEkPSfqic+6nAWly3fsuwOUIkupfYz3jCmnfgcptpWOChqzr3dErbH9Q3lGuBeey\nrnyh/bKvAG2Y/mVdzrl+SdskfTrJctD+fnxP7bYFy8OP6QpZalSSxn8ifP+K1eH7ASBLkpgl3j3Q\ns5aZnSVpvqR/jbsctJeJnwzfP2VS7bbH6ywLeqzOzTz6T4TvX9fA/a3D1iMHgDR1JJDn+yXda2bD\n5P0geMA592gC5aCNvPnrxo5Lasb4VTc3dlyzd/wCgKTEHrCdc3sk/V7c+QJD8f1tadcAAOLFSmdo\nmcld6ZY/+7x0yweAZnDzj4Sl/f0mrXqGar1Z2I0OgX/sQ17A33dA+sX+xvJotG5Fa8O8of2yrwBt\nGGmWeBLnsIFAYZdiLZzT3P2yL7tB2vpccLkAkGUEbMRq5Vpp9Y3hafq3SePmea8PbZUmVQ2VX3er\ndO8QpinOmSntWC89cffgtn0HvGu/JelghLXJvxjzimkAEDeGxBOW9vebNL/huKiLk5TSbd4qLV0V\nnn4ovvt1aellteXUq0+QIrZhntB+2VeANow0JE7ATlja32/S/P6zmDhOOvJkhGMjns9ePFe6frE0\nb5Z07IT0kz3SbRukn+2tf2yUYD3h0vDLuYrYhnlC+2VfAdqQc9hIR19/48duWeMF6CDjx0gzpkhX\nL6jcvuNF6ZLPN1Ym114DyAJ62AlL+/tNWtiv+6hD0Z0d0rvP1W6PqrqcztnS6TPND4W/l3+B2zAP\naL/sK0Ab0sNGuqKePy4F60Yv+So/7swL0qnno+XV6vtyA0AzWDgFiVpyS/001hMcPG9dJh172gv8\npcfJnd52P8MuihaI//jL9dOjhkQyAAAgAElEQVQAQDthSDxhaX+/SYsyHBfUy64OrFfOkx66q/G6\nLF3lzThvpOwwtGG20X7ZV4A2ZJZ4O0j7+01a1P8s3t4hjRpZdWyP1PeUNGFs5fbRc6W3TkavQ9cY\n6c0fVW77xkbplrtrA/aSW6T7fxg9b4k2zDraL/sK0Iacw0b7OPvj3nN1AO0YJk2/Qnr1QON5Hz1e\n2WP+5aO1PW2Jc9YAso1z2Gip8qDpeqWHtzcXrP2cu8i7brv8xwHBGkDWMSSesLS/36Q1Ohw3frR0\n9OmYK+Oje35z14VLtGHW0X7ZV4A2jDQkTg8bqTh2wuv1rlidTP7L7xw4R95ksAaAdkEPO2Fpf79J\ni/PXfRx31Epi6Js2zDbaL/sK0Ib0sJEtpeuxrWfwbl7lVq6t3XbOZZXHAUBe0cNOWNrfb9L4dZ99\neW9D2i/7CtCG9LABAMgLAjYAABlAwAYAIANSX+ls1qxZ6u2NYXpwm8r7+aW8n1uSaMOso/2yL+9t\nGBU9bAAAMiD1HjYAZEW7rhWAYqCHDQAhbr5m8F7scSjlddPV8eSH4iBgA4CPrjFeYL3zS8nkv/pG\nL/9JXcnkj/xhSBwAqsTVm47i0MCtYBkqRz30sAGgTCuDdTuUi+wgYAOApN88m37QdL3Sn34q3Tqg\nfRGwARSe65VGDG8+nxvuaD6Pzben/8MB7Ylz2AAK7Z2dzedRfv75rx/wnpsNur95Vhr5h83lgXyh\nhw2g0EaOqJ+me7503w/89wVNFmt2ElkcPX7kCwEbQGHV6wWX7rPe1y999i+bD8Ll9263Hum8P2mu\nfigWAjaAQqoXDL91v//2RoO233Ev761/HEEbJQRsAIXTHWGxkuV3Jl8PKdoPgAljk68H2h8BG0Dh\nHN4aX15BPeA4e8Z9T8WXF7KLWeIACuXPrhl87de7LQVa1xt9+Nv1SidOSmPmSsefkUaPil6fDV+J\nVp8VS6VvboqeL/KHHjaAQrljYG3woGC8//Dg6zkza/cH9ZxLQTooWAcdd91i7/lXB/33l+q5dqX/\nfhQHARsAykxbOPh6x/rKQBs2zP3hq7znCZcGp6nOq/z9uYuGVk8UDwEbQGE0e1759cPB+155zXs+\nejw4Tdi+KJgxXmwEbAAos3BO8L6pC4P3RRHW+150SXN5I/8I2AAK6WTAkqSPrWttPUoeWeu//Z1n\nW1sPtC8CNoBCmDyh8v1ZI7wh5rPKliaNMuS88ZHGyn94e/005eWPGum9H1m1ROnEcY2Vj+wjYAMo\nhINP+G8/uVM69bz3OsplXNd/tXbb6TOV7/v6a9NcGWGWd6n8/m3S2zv80xx5sn4+yCcCNoDC6xjW\n3PHDL6583z2/ufzGvq+545FPBGwAKBOll71kVeV758LTf+5r8ZSLYkskYJvZMDP7ZzN7NIn8ASBN\n9w9xadMNW5KpB4olqR72lyT9PKG8AWDIbloTPW2re7tDKW8onwP5EnvANrOpki6XdE/ceQNAo9bc\nFG9+X7g9Wrq47/oV9+dAdiTRw/6mpC9L+u9BCcxsmZn1mlnvkSNHEqgCADRn0Yrw/d9+0Hvevtt/\n/5ZnvOeg+2qXVM8ev/by+nVDMcUasM1skaTDzrldYemcc99xzvU453q6u7vjrAIANGT6ByrfPxZw\nWVW1ecv8t38mYk+4+vrse30uGwOk+HvYcyRdYWavStos6VIz+7uYywCA2P3Y5yTeguXhx3SFLDUq\nSeM/Eb5/xerw/UC5WAO2c+4W59xU59wHJS2R9CPn3GfjLAMAGjHxk+H7p0yq3fZ4nWVBj9W5mUf/\nifD96xq4v3XYeuTIN67DBlAIb/66seOSmjF+1c2NHdfsHb+QXR1JZeyc2yZpW1L5A0CWfX9b2jVA\n1tDDBoABk7vSLX/2eemWj/ZGwAZQGPWGtw8OcQWzch/7kDT/Iul3pjaex3Mbw/ezfGmxJTYkDgBZ\n5HqDA+PCOc3dL/uyG6StzwWXC4QhYAMolJVrpdU3hqfp3yaNm+e9PrRVmlQ1VH7drdK9Q7hTwpyZ\n0o710hN3D27bd0CacYX3OkrP/osxr5iG7DFX7zYzCevp6XG9vfn9aWlmaVchUWn//bQCbZhtfu0X\npTdrPYPpNm+Vlq4KTz8U3/26tPSy2nLq1cdP3ttPyv+/QUm7nHN1T3gQsBOW9z+0tP9+WoE2zDa/\n9ps4TjryZIRjI54zXjxXun6xNG+WdOyE9JM90m0bpJ/trX9slGA94dLgy7ny3n5S/v8NKmLAZkgc\nQOH09Td+7JY1XoAOMn6MNGOKdPWCyu07XpQu+XxjZXLtNSQCNoCCijIUXZqA1tkhvVs1WWwoM7Zd\nr/TxCwbL65wtnT7T3FA4ioeADaCwop4/LgXrRoNn+XFnXpBOPR8tL4I1ynEdNoBCW3JL/TTWExw8\nb10mHXvaC/ylx8md3nY/wy6KFoj/+Mv106BYmHSWsLxPlkj776cVaMNsi9J+Qb3s6sB65Tzpobsa\nr8vSVd6M80bKDpL39pPy/29QTDoDgGisR3p7hzRqZO2+vqekCWMrt42eK711Mnr+XWOkN38kbbrN\ne0jSNzZKt9xdm3bJLdL9P4yeN4qDgA0Aks7+uPdc3ePtGCZNv0J69UDjeR89Xtlj/uWjtT1tiXPW\nCMc5bAAoUx40Xa/08PbmgrWfcxd5122X/zggWKMeetgAUMV6pPGjpaNPS9de7j2S0j2/uevCURz0\nsAHAx7ETXuBesTqZ/Jff6eVPsEZU9LABIMS6Td5DiueOWgx9o1H0sAEgotL12NYzeDevcivX1m47\n57LK44BG0cMGgAb8+i3/ALzmvtbXBcVADxsAgAwgYAMAkAEEbAAAMiD1tcTNLNcL4ab9/SatAGv8\n0oYZR/tlXwHaMNJa4vSwAQDIAGaJAwCKY1cMIxKz0unx08MGAOTboTu9QB1HsJYG8zqU0DJ4ATiH\nnbC0v9+kcf4s+/LehrRf9jXchqfelPZMjLcyfs4/KHVObvjwqOewGRIHAORPXL3pKPac4z0nPFTO\nkDgAIF9aGaxbWC4BGwCQD7tHpBesS3aZdHRzIlkTsAEA2bfLJPdu09nccEcMddm3NJEfDkw6S1ja\n32/SmPCSfXlvQ9ov++q24e6RkvttU2X43cil6dup2nDpwvr1YuEUAEAxRAjW3fOl+37gvy/otqdN\n3w41hh5/OXrYCUv7+00av+6zL+9tSPtlX2gb1hl6jtJzDgvM9dJ+dIb00wdCq1B39jg9bABAvtUJ\n1t+63397oz1nv+Ne3hvhwJjOZxOwAQDZc/pw3STL72xBPRTxB8DpvqbLIWADALLnpcZXFqsWNLms\n6Uln5V7qbjoLVjoDAGTLG4PXXoWdo3a90Ye/Xa904qQ0Zq50/Blp9Kjo1dnwlcHXoefMD66Vzrkx\nesZV6GEDALLlwJ9LCg7G+8tGy+fMrN0f1HMuBemgYB103HWLvedfHfTf/149X7/JP0FEBGwAQK5M\nWzj4esf6ykAbNsz94au85wmXBqepzqv8/bmLhlbPoSJgAwCyo8kZ16+HzFV75TXv+ejx4DRh+yJp\nov4EbABAriycE7xv6sLgfVGE9b4XXdJc3vUQsAEAmXRyp//2x9a1th4lj6z13/7Os/HkT8AGAGTD\nqcpZXWeN8M4hnzVicFuUS7E2PtJY8Q9vr5+mvPxRI733I4dXJTp1pKHyWZo0YWl/v0kr/LKIOZD3\nNqT9su+9Ngw5/3v6jNQ5eyC9T9CunlFenab8eEk68qQ0cdzQ8ihP079NGvu+wOpWLFfK0qQAgMLo\nGNbc8cMvrnzfPb+5/EKDdYMI2ACAXImyWMqSVZXv6w3EfO5r8ZTbjEQCtpm9amb/YmYvmlmci7sB\nANC0+7cOLf2GLcnUYyiS7GF/wjl3QZRxeQAA6rlpTfS0Sfd2mylvKJ+jHEPiAIBMWNPcyp41vnB7\ntHRx3/Wr0c+RVMB2kraa2S4zW1a908yWmVkvw+UAgKQsWhG+/9sPes/bd/vv3/KM9xx0X+2SK1dW\nvr/28vp1a0Qil3WZ2QeccwfMbJKkH0r6onPumYC0ub7mgktKso82zDbaL/uiXNYlSTOukPYdqDp2\noFsYNGRd745eYfuD8o50W852uazLOXdg4PmwpIckXZREOQAAlPz4ntptC5aHH9MVstSoJI3/RPj+\nFavD98cp9oBtZmeb2ejSa0l/JOmncZcDACiYmeErhE2ZVLvt8TrLgh6rczOP/hPh+9dtCt/v6/y+\nBg6SOho6KtxkSQ8NDNN0SPquc+7xBMoBABRJx8SGDktqxvhVNzd4YOeEhg6LPWA75/ZK8rllOAAA\n+fH9ba0tj8u6AAC5Mbkr3fJnn5dc3tz8I2Fpf79JK9QM1ZzKexvSftlX04Z1Zos3OgT+sQ95AX/f\nAekX+xvLo+4M8Vm1f49RZ4kncQ4bAIDUhF2KtXBOc/fLvuwGaetzweUmiYANAMiWqXdJ+8NnfPVv\nk8bN814f2ipNqhoqv+5W6d5Hoxc5Z6a0Y730xN2D2/Yd8K79lqSDUdYmn/ZX0Qv0wZB4wtL+fpNW\nyOG4nMl7G9J+2efbhnWGxSWvl13q9W7eKi1dFZ5+KL77dWnpZbXlhPIZDpeiD4kTsBOW9vebtML+\nZ5EjeW9D2i/7fNvw1BFpj8+F11Wins9ePFe6frE0b5Z07IT0kz3SbRukn+2NUL8owfr8vsDLuTiH\nDQDIr87uhg/dssYL0EHGj5FmTJGuXlC5fceL0iWfb7DQBq+9LkcPO2Fpf79JK+yv+xzJexvSftkX\n2oYRh8Y7O6R3n6vdHrkOVb3oztnS6TPNDYW/Vw962ACA3JvlIgXtUrBu9JKv8uPOvCCdej5iXnWC\n9VCwcAoAINum11/Q23qCA+yty6RjT3u95dLj5E5vu59hF0UM1tO/FyFRdAyJJyzt7zdphR+Oy4G8\ntyHtl32R2jCgl10dWK+cJz10V+N1WbrKm3FeLnBYPGLvmlnibSLt7zdp/GeRfXlvQ9ov+yK34e5R\nknunYpP1SH1PSRPGViYdPVd662T0OnSNkd78UeW2b2yUbrnbJ2BP3yR1LYmcN+ewAQDFcuFABK7q\nbXcMk6ZfIb16oPGsjx6v7K3/8tHanrakWM9ZV+McNgAgX8qCpuuVHt7eXLD2c+4i77rtit51gsFa\nYkg8cWl/v0ljOC778t6GtF/2NdyGp45Ke5q//rmu8w83dV141CFxetgAgHzq7PJ6vdPWJpP/tHVe\n/k0E66Ggh52wtL/fpPHrPvvy3oa0X/bF2oYRrtmuK+ahb3rYAABUm+UGHzOP1exe6dcZP/+NyuNS\nQg87YWl/v0nj13325b0Nab/sK0Ab0sMGACAvCNgAAGQAARsAgAxIfaWzWbNmqbc3yv3Jsinv55fy\nfm5Jog2zjvbLvry3YVT0sAEAyAACNgAAGZD6kDiAHGnDRSmAvKCHDaA5h+70AnUcwVoazOvQ6njy\nA3KCgA2gMafe9ALr/i8nk//+m738Tx1KJn8gYxgSBzB0cfWmo9hzjvfMUDkKjh42gKFpZbBuh3KB\nNkHABhDN7hHpB81dJh3dnG4dgJQQsAHUt8sk927T2dxwRwx12bc0/R8OQAo4hw0g3O6RTWdhZfch\n+usHvGfX7AKHu0dIF/62yUyA7KCHDSCcqx8Uu+dL9/3Af58F3DQwaHtkMfT4gSwhYAMIVmfo2Xq8\nR1+/9Nm/bD4Il/IrPc77k+bqB+QJARuAvzrB8Fv3+29vNGj7Hffy3ggHErRREARsALVOH66bZPmd\nLaiHIv4AON2XeD2AtBGwAdR6aXJsWQVNLmt60lm5l7pjzAxoT8wSB1DpjcFrr/x6t6VA63qjD3+7\nXunESWnMXOn4M9LoUdGrs+Erg6/D6qODa6VzboyeMZAx9LABVDrw55KCg/H+stHyOTNr9wf1nEtB\nOihYBx133WLv+VcH/fe/V8/Xb/JPAOQEARvAkExbOPh6x/rKQBs2zP3hq7znCZcGp6nOq/z9uYuG\nVk8gbwjYAAY1OeP69ZC5aq+85j0fPR6cJmxfJMwYR44RsAEMycI5wfumLgzeF0VY73vRJc3lDWQd\nARuAr5M7/bc/tq619Sh5ZK3/9neebW09gLQQsAF4TlXO6jprhHcO+awRg9uiXIq18ZHGin94e/00\n5eWPGum9Hzm8KtGpI41VAGhzBGwAnj3v9918cqd06nnvdZTLuK7/au2202cq3/f116a5cmX9vEvl\n92+T3t4RkGjPpPoZARlEwAZQV8ew5o4ffnHl++75zeU39n3NHQ9kUSIB28zGmdnfm9m/mtnPzewP\nkigHQOtF6WUvWVX53rnw9J/7WjzlAnmWVA97naTHnXP/o6SZkn6eUDkA2tD9W4eWfsOWZOoB5Ens\nAdvMxkiaK2m9JDnn3nXO+ZyxAtBObloTPW2re7tDKW8onwPIkiR62DMkHZG0wcz+2czuMbOzEygH\nQIzWxLyy5xduj5Yu7rt+xf05gHaRRMDukHShpL9xzv2epLcl/UV5AjNbZma9ZtZ75AiXYABZtGhF\n+P5vP+g9b9/tv3/LM95z0H21S6pnj197ef26AXmURMDeL2m/c27gQhD9vbwA/h7n3Heccz3OuZ7u\nbm6LB2TB9A9Uvn8s6LKqKvOW+W//TMSecPX12ff6XDYGFEHsAds5d1DSa2b2kYFNn5T0s7jLAdBa\nP76ndtuC5eHHdIUsNSpJ4z8Rvn/F6vD9QJEkdT/sL0q6z8yGS9or6fqEygEQl5lHpJeCR7ym+KxH\n8nidZUGP1bmZR/+J8P3rNoXv93V+XwMHAe0vkYDtnHtREldNAlnSMbGhw5KaMX7VzQ0e2Dkh1noA\n7YKVzgC0pe9vS7sGQHshYAOIbHJXuuXPPi/d8oE0EbABDJoVvobowSGuYFbuYx+S5l8k/c7UxvN4\nbmOdBHXqD2RZUpPOAOSU6w0+b71wTnP3y77sBmnrc8HlAkVGwAZQaepd0v7wGV/926Rx87zXh7ZK\nk6qGyq+7Vbr30ehFzpkp7VgvPXH34LZ9B6QZV3ivI/Xsp/1V9AKBDGJIHEClyfVvTF26vaXr9YL1\n5q1er7v0GEqwlqSdL1Uev+kJb6GWUq860rnzSV8cWqFAxpird9+7hPX09Lje3vyOdZlZ2lVIVNp/\nP61QyDY8dUTa43PhdZWol3Qtnitdv1iaN0s6dkL6yR7ptg3Sz/ZGqF+U/x7O7wu8nKuQ7ZczeW9D\nSbucc3X/NTEkDqBWZ+NLBm9Z4wXoIOPHSDOmSFcvqNy+40Xpks83WCjXXqMACNgA/M1y0q7wnk1p\nAlpnh/Ru1WSxoSyo4nqlj18w2JvunC2dPhOxd83McBQEARtAsAhBWxoM1o2uelZ+3JkXpFPPR8yL\nYI0CYdIZgHDT6y/oXZos5ufWZdKxp73eculxcqe33c+wiyIG6+nfi5AIyA8mnSUs75Ml0v77aQXa\nUIG97OrAeuU86aG7Gq/L0lXejPNygcPiEXvXtF/25b0NxaQzALGZ5aTdoyT3Ts2uvqekCWMrt42e\nK711Mnr2XWOkN38kbbrNe0jSNzZKt9ztk3j6JqlrSfTMgZwgYAOI5sKBCFzV2+4YJk2/Qnr1QONZ\nHz1e2Vv/5aO1PW1JnLNGoXEOG8DQlAVN1ys9vL25YO3n3EXeddsVw+EEaxQcPWwAQzfLSaeOSnsm\n6NrLpWsvT7Cs8w83dV04kBf0sAE0prPLC9zT1iaT/7R1Xv4Ea0ASPWwAzZq0wntIka7Zrouhb8AX\nPWwA8ZnlBh8zj9XsXunXGT//jcrjAPiihw0gGR3jagLw6r9LqS5ADtDDBgAgAwjYAABkAAEbAIAM\nSH0tcTPL9SyTtL/fpBVgjV/aMONov+wrQBtGWkucHjYAABmQm1nikW50X0ej9/IFACBpme5h33zN\n4P1141DK66ar48kPAIC4ZPIcdulWfEmb/EfS4aPN5ZH295s0zp9lX97bkPbLvgK0YT7vhx1XbzqK\nQwO392OoHACQtkwNibcyWLdDuQAAlGQiYP/m2fSDpuuV/vRT6dYBAFBcbR+wXa80Ynjz+dxwR/N5\nbL49/R8OAIBiautJZ+/slEaOaDJ/n/PPzQbd374rjfzDaGnT/n6TxoSX7Mt7G9J+2VeANsz+wilR\ngnX3fOm+H/jvC5os1uwksjh6/AAADEXb9rDr9YKj9JzDAnO9tB+dIf30gaHXoaac/P8yTLsKiaMN\ns432y74CtGF2e9j1gvW37vff3mjP2e+4l/fWP47z2QCAVmm7gN3dVT/N8juTr4cU7QfAhLHJ1wMA\ngLYL2Ie3xpdXUA84zp5x31Px5QUAQJC2Wunsz64ZfB12jtr1Rh/+dr3SiZPSmLnS8Wek0aOi12fD\nV6LVZ8VS6ZuboucLAMBQtVUP+44vec9BwXj/4cHXc2bW7g/qOZeCdFCwDjruusXe868O+u8v1XPt\nSv/9AADEpa0Cdj3TFg6+3rG+MtCGDXN/+CrvecKlwWmq8yp/f+6iodUTAIC4tU3Abva88uuHg/e9\n8pr3fPR4cJqwfVEwYxwAkKS2CdhRLJwTvG/qwuB9UYT1vhdd0lzeAAA0qy0D9smd/tsfW9faepQ8\nstZ/+zvPtrYeAIDiaouAPXlC5fuzRnhDzGeVLU0aZch54yONlf/w9vppyssfNdJ7P7JqidKJ4xor\nHwCAetpiadKwYHz6jNQ523vtl656Rnl1mvLjJenIk7WBtV4e5Wn6t0lj3xdc35q88r+kXtpVSBxt\nmG20X/YVoA2zuzRpuY5hzR0//OLK993zm8svLFgDAJCUtg/Y5aIslrJkVeX7ej/MPve1eMoFACBJ\nsQdsM/uImb1Y9jhuZiviLifI/UNc2nTDlmTqAQBAnGIP2M65f3POXeCcu0DSLEknJT0UdsxNa6Ln\n3+re7lDKG8rnAABgKJIeEv+kpF84534ZlmjNTfEW+oXbo6WL+65fcX8OAABKkg7YSyTV3BbDzJaZ\nWa+ZNbQ+2KI6A+zfftB73r7bf/+WZ7znoPtql1xZtUb4tZfXrxsAAElI7LIuMxsu6YCkjzrnDoWk\nC72sS5JmXCHtO1C5rXRM0JB1vTt6he0PyjvKteBc1pU/tGG20X7ZV4A2TP2yrgWSdocF66h+fI9P\n5svDj+kKWWpUksZ/Inz/itXh+wEAaKUkA/ZS+QyH+5n4yfD9UybVbnu8zrKgx+rczKP/RPj+dQ3c\n3zpsPXIAAJqRSMA2s1GSPiXpH6Kkf/PXDZaT0Izxq25u7Lhm7/gFAECQjiQydc6dlDShbsI29f1t\nadcAAIBKmVnpbHJXuuXPPi/d8gEAxdYWN/8ova43C7vRIfCPfcgL+PsOSL/Y31gejdYt7e83acxQ\nzb68tyHtl30FaMNIs8QTGRJPStilWAvnNHe/7MtukLY+F1wuAABpaquAvXKttPrG8DT926Rx87zX\nh7ZKk6qGyq+7Vbr30ehlzpkp7VgvPXH34LZ9B7xrvyXpYIS1yb8Y84ppAABUa6shcSn64iSldJu3\nSktXhacfiu9+XVp6WW059eoTJO3vN2kMx2Vf3tuQ9su+ArRhpCHxtgvYE8dJR56McFzE89mL50rX\nL5bmzZKOnZB+ske6bYP0s731j40SrCdcGn45V9rfb9L4zyL78t6GtF/2FaANs3kOu6+/8WO3rPEC\ndJDxY6QZU6SrF1Ru3/GidMnnGyuTa68BAK3Qdj3skqhD0Z0d0rvP1W6PqrqcztnS6TPND4W/l3/+\nfxmmXYXE0YbZRvtlXwHaMJs97JKo549LwbrRS77KjzvzgnTq+Wh5tfq+3ACAYmvrhVOW3FI/jfUE\nB89bl0nHnvYCf+lxcqe33c+wi6IF4j/+cv00AADEqW2HxEuCetnVgfXKedJDdzVej6WrvBnnjZQd\nJu3vN2kMx2Vf3tuQ9su+ArRhNmeJ+3l7hzRqZNVxPVLfU9KEsZXbR8+V3joZvfyuMdKbP6rc9o2N\n0i131wbsJbdI9/8wet5SIf7Q0q5C4mjDbKP9sq8AbZjtc9jlzv6491wdQDuGSdOvkF490HjeR49X\n9ph/+WhtT1vinDUAIF1tfQ67WnnQdL3Sw9ubC9Z+zl3kXbdd/uOAYA0ASFsmhsSrjR8tHX06idpU\n6p7f3HXhUiGGctKuQuJow2yj/bKvAG0YaUg8Uz3skmMnvF7vitXJ5L/8zoFz5E0GawAA4pLJHraf\nOO6olcTQd9rfb9L4dZ99eW9D2i/7CtCG+e1h+yldj209g3fzKrdybe22cy6rPA4AgHaVmx52u0r7\n+00av+6zL+9tSPtlXwHasFg9bAAA8oyADQBABhCwAQDIgHZY6axP0i9bWN7EgTJbIqXzSy39jCnI\nexvSfjGi/WLX8s9XgDY8N0qi1CedtZqZ9UY5uZ9lef+MfL5s4/NlW94/n9S+n5EhcQAAMoCADQBA\nBhQxYH8n7Qq0QN4/I58v2/h82Zb3zye16Wcs3DlsAACyqIg9bAAAMoeADQBABhQqYJvZp83s38zs\nFTP7i7TrEycz+1szO2xmP027Lkkws2lm9rSZ/dzMXjazL6Vdp7iZ2Ugze8HMXhr4jF9Nu05xM7Nh\nZvbPZvZo2nVJgpm9amb/YmYvmlkM9xBsL2Y2zsz+3sz+deDf4h+kXae4mNlHBtqt9DhuZivSrle5\nwpzDNrNhkv4/SZ+StF/SP0la6pz7WaoVi4mZzZX0lqT/6pw7L+36xM3M3i/p/c653WY2WtIuSVfm\npf0kybzVIc52zr1lZp2Sdkj6knPuuZSrFhszu0lSj6QxzrlFadcnbmb2qqQe51wuF04xs3sl/dg5\nd4+ZDZc0yjnXn3a94jYQL16XNNs518qFvUIVqYd9kaRXnHN7nXPvStos6TMp1yk2zrlnJB1Nux5J\ncc694ZzbPfD6hKSfS5qSbq3i5TxvDbztHHjk5he1mU2VdLmke9KuC4bOzMZImitpvSQ5597NY7Ae\n8ElJv2inYC0VK2BPkRolYLIAAAIzSURBVPRa2fv9ytl/+EVhZh+U9HuSnk+3JvEbGDJ+UdJhST90\nzuXpM35T0pcl/fe0K5IgJ2mrme0ys2VpVyZmMyQdkbRh4LTGPWZ2dtqVSsgSSZvSrkS1IgVsv8Vo\nc9N7KQoze5+kByWtcM4dT7s+cXPOnXHOXSBpqqSLzCwXpzfMbJGkw865XWnXJWFznHMXSlog6T8O\nnKrKiw5JF0r6G+fc70l6W1Ku5gJJ0sBQ/xWSvpd2XaoVKWDvlzSt7P1USQdSqgsaMHBe90FJ9znn\n/iHt+iRpYKhxm6RPp1yVuMyRdMXAOd7Nki41s79Lt0rxc84dGHg+LOkheafi8mK/pP1loz5/Ly+A\n580CSbudc4fSrki1IgXsf5L0YTObPvALaomkLSnXCRENTMhaL+nnzrk1adcnCWbWbWbjBl6fJWm+\npH9Nt1bxcM7d4pyb6pz7oLx/ez9yzn025WrFyszOHpgQqYGh4j+SlJurNpxzByW9ZmYfGdj0SUm5\nmfRZZqnacDhcao/ba7aEc+60md0g6QlJwyT9rXPu5ZSrFRsz2yRpnqSJZrZf0lecc+vTrVWs5ki6\nRtK/DJzjlaRVzrl/TLFOcXu/pHsHZqj+O0kPOOdyeflTTk2W9NDArSA7JH3XOfd4ulWK3Rcl3TfQ\n6dkr6fqU6xMrMxsl70qi/5B2XfwU5rIuAACyrEhD4gAAZBYBGwCADCBgAwCQAQRsAAAygIANAEAG\nELABAMgAAjYAABnw/wPRIOc/pYUmbAAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x2871ff9f518>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
    "plot_NQueens(astar)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## AND-OR GRAPH SEARCH\n",
    "An _AND-OR_ graph is a graphical representation of the reduction of goals to _conjunctions_ and _disjunctions_ of subgoals.\n",
    "An _AND-OR_ graph can be seen as a generalization of a directed graph.\n",
    "It contains a number of vertices and generalized edges that connect the vertices.\n",
    "Each connector in an _AND-OR_ graph connects a set of vertices $V$ to a single vertex, $v_0$.\n",
    "A connector can be an _AND_ connector or an _OR_ connector.\n",
    "An __AND__ connector connects two edges having a logical _AND_ relationship,\n",
    "while and __OR__ connector connects two edges having a logical _OR_ relationship.\n",
    "<br>\n",
    "A vertex can have more than one _AND_ or _OR_ connector.\n",
    "This is why _AND-OR_ graphs can be expressed as logical statements.\n",
    "<br>\n",
    "<br>\n",
    "_AND-OR_ graphs also provide a computational model for executing logic programs and you will come across this data-structure in the `logic` module as well.\n",
    "_AND-OR_ graphs can be searched in depth-first, breadth-first or best-first ways searching the state sapce linearly or parallely.\n",
    "<br>\n",
    "Our implementation of _AND-OR_ search searches over graphs generated by non-deterministic environments and returns a conditional plan that reaches a goal state in all circumstances.\n",
    "Let's have a look at the implementation of `and_or_graph_search`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">and_or_graph_search</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;[Figure 4.11]Used when the environment is nondeterministic and completely observable.</span>\n",
       "<span class=\"sd\">    Contains OR nodes where the agent is free to choose any action.</span>\n",
       "<span class=\"sd\">    After every action there is an AND node which contains all possible states</span>\n",
       "<span class=\"sd\">    the agent may reach due to stochastic nature of environment.</span>\n",
       "<span class=\"sd\">    The agent must be able to handle all possible states of the AND node (as it</span>\n",
       "<span class=\"sd\">    may end up in any of them).</span>\n",
       "<span class=\"sd\">    Returns a conditional plan to reach goal state,</span>\n",
       "<span class=\"sd\">    or failure if the former is not possible.&quot;&quot;&quot;</span>\n",
       "    <span class=\"c1\"># functions used by and_or_search</span>\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">or_search</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">path</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;returns a plan as a list of actions&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">goal_test</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "            <span class=\"k\">return</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">state</span> <span class=\"ow\">in</span> <span class=\"n\">path</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">action</span> <span class=\"ow\">in</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
       "            <span class=\"n\">plan</span> <span class=\"o\">=</span> <span class=\"n\">and_search</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">result</span><span class=\"p\">(</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"n\">action</span><span class=\"p\">),</span>\n",
       "                              <span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">path</span> <span class=\"o\">+</span> <span class=\"p\">[</span><span class=\"n\">state</span><span class=\"p\">,</span> <span class=\"p\">])</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">plan</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"p\">[</span><span class=\"n\">action</span><span class=\"p\">,</span> <span class=\"n\">plan</span><span class=\"p\">]</span>\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">and_search</span><span class=\"p\">(</span><span class=\"n\">states</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">path</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Returns plan in form of dictionary where we take action plan[s] if we reach state s.&quot;&quot;&quot;</span>\n",
       "        <span class=\"n\">plan</span> <span class=\"o\">=</span> <span class=\"p\">{}</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">states</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">plan</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"n\">or_search</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">path</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">plan</span><span class=\"p\">[</span><span class=\"n\">s</span><span class=\"p\">]</span> <span class=\"ow\">is</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">plan</span>\n",
       "    <span class=\"c1\"># body of and or search</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">or_search</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">initial</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"p\">[])</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(and_or_graph_search)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The search is carried out by two functions `and_search` and `or_search` that recursively call each other, traversing nodes sequentially.\n",
    "It is a recursive depth-first algorithm for searching an _AND-OR_ graph.\n",
    "A very similar algorithm `fol_bc_ask` can be found in the `logic` module, which carries out inference on first-order logic knowledge bases using _AND-OR_ graph-derived data-structures.\n",
    "<br>\n",
    "_AND-OR_ trees can also be used to represent the search spaces for two-player games, where a vertex of the tree represents the problem of one of the players winning the game, starting from the initial state of the game.\n",
    "<br>\n",
    "Problems involving _MIN-MAX_ trees can be reformulated as _AND-OR_ trees by representing _MAX_ nodes as _OR_ nodes and _MIN_ nodes as _AND_ nodes.\n",
    "`and_or_graph_search` can then be used to find the optimal solution.\n",
    "Standard algorithms like `minimax` and `expectiminimax` (for belief states) can also be applied on it with a few modifications."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Here's how `and_or_graph_search` can be applied to a simple vacuum-world example."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {},
   "outputs": [],
   "source": [
    "vacuum_world = GraphProblemStochastic('State_1', ['State_7', 'State_8'], vacuum_world)\n",
    "plan = and_or_graph_search(vacuum_world)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Suck',\n",
       " {'State_5': ['Right', {'State_6': ['Suck', {'State_8': []}]}], 'State_7': []}]"
     "execution_count": 78,
     "metadata": {},
     "output_type": "execute_result"
    "plan"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "metadata": {},
   "outputs": [],
   "source": [
    "def run_plan(state, problem, plan):\n",
    "    if problem.goal_test(state):\n",
    "        return True\n",
    "    if len(plan) is not 2:\n",
    "        return False\n",
    "    predicate = lambda x: run_plan(x, problem, plan[1][x])\n",
    "    return all(predicate(r) for r in problem.result(state, plan[0]))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "metadata": {
    "scrolled": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
     "execution_count": 80,
     "metadata": {},
     "output_type": "execute_result"
    "run_plan('State_1', vacuum_world, plan)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## ONLINE DFS AGENT\n",
    "So far, we have seen agents that use __offline search__ algorithms,\n",
    "which is a class of algorithms that compute a complete solution before executing it.\n",
    "In contrast, an __online search__ agent interleaves computation and action.\n",
    "Online search is better for most dynamic environments and necessary for unknown environments.\n",
    "<br>\n",
    "Online search problems are solved by an agent executing actions, rather than just by pure computation.\n",
    "For a fully observable environment, an online agent cycles through three steps: taking an action, computing the step cost and checking if the goal has been reached.\n",
    "<br>\n",
    "For online algorithms in partially-observable environments, there is usually a tradeoff between exploration and exploitation to be taken care of.\n",
    "<br>\n",
    "<br>\n",
    "Whenever an online agent takes an action, it receives a _percept_ or an observation that tells it something about its immediate environment.\n",
    "Using this percept, the agent can augment its map of the current environment.\n",
    "For a partially observable environment, this is called the belief state.\n",
    "<br>\n",
    "Online algorithms expand nodes in a _local_ order, just like _depth-first search_ as it does not have the option of observing farther nodes like _A* search_.\n",
    "Whenever an action from the current state has not been explored, the agent tries that action.\n",
    "<br>\n",
    "Difficulty arises when the agent has tried all actions in a particular state.\n",
    "An offline search algorithm would simply drop the state from the queue in this scenario whereas an online search agent has to physically move back to the previous state.\n",
    "To do this, the agent needs to maintain a table where it stores the order of nodes it has been to.\n",
    "This is how our implementation of _Online DFS-Agent_ works.\n",
    "This agent works only in state spaces where the action is reversible, because of the use of backtracking.\n",
    "<br>\n",
    "Let's have a look at the `OnlineDFSAgent` class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">OnlineDFSAgent</span><span class=\"p\">:</span>\n",
       "\n",
       "    <span class=\"sd\">&quot;&quot;&quot;[Figure 4.21] The abstract class for an OnlineDFSAgent. Override</span>\n",
       "<span class=\"sd\">    update_state method to convert percept to state. While initializing</span>\n",
       "<span class=\"sd\">    the subclass a problem needs to be provided which is an instance of</span>\n",
       "<span class=\"sd\">    a subclass of the Problem class.&quot;&quot;&quot;</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">):</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span> <span class=\"o\">=</span> <span class=\"n\">problem</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"bp\">None</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"bp\">None</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">untried</span> <span class=\"o\">=</span> <span class=\"nb\">dict</span><span class=\"p\">()</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">unbacktracked</span> <span class=\"o\">=</span> <span class=\"nb\">dict</span><span class=\"p\">()</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">result</span> <span class=\"o\">=</span> <span class=\"p\">{}</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__call__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">percept</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">s1</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">update_state</span><span class=\"p\">(</span><span class=\"n\">percept</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">goal_test</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">):</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"bp\">None</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">s1</span> <span class=\"ow\">not</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">untried</span><span class=\"o\">.</span><span class=\"n\">keys</span><span class=\"p\">():</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">untried</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">if</span> <span class=\"n\">s1</span> <span class=\"o\">!=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">result</span><span class=\"p\">[(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span><span class=\"p\">)]:</span>\n",
       "                    <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">result</span><span class=\"p\">[(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span><span class=\"p\">)]</span> <span class=\"o\">=</span> <span class=\"n\">s1</span>\n",
       "                    <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">unbacktracked</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">]</span><span class=\"o\">.</span><span class=\"n\">insert</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">untried</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">])</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">if</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">unbacktracked</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">])</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
       "                    <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"bp\">None</span>\n",
       "                <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                    <span class=\"c1\"># else a &lt;- an action b such that result[s&#39;, b] = POP(unbacktracked[s&#39;])</span>\n",
       "                    <span class=\"n\">unbacktracked_pop</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">unbacktracked</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">)</span>\n",
       "                    <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">b</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">result</span><span class=\"o\">.</span><span class=\"n\">keys</span><span class=\"p\">():</span>\n",
       "                        <span class=\"k\">if</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">result</span><span class=\"p\">[(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">b</span><span class=\"p\">)]</span> <span class=\"o\">==</span> <span class=\"n\">unbacktracked_pop</span><span class=\"p\">:</span>\n",
       "                            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"n\">b</span>\n",
       "                            <span class=\"k\">break</span>\n",
       "            <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">untried</span><span class=\"o\">.</span><span class=\"n\">pop</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">)</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">s1</span>\n",
       "        <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">update_state</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">percept</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;To be overridden in most cases. The default case</span>\n",
       "<span class=\"sd\">        assumes the percept to be of type state.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">percept</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(OnlineDFSAgent)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It maintains two dictionaries `untried` and `unbacktracked`.\n",
    "`untried` contains nodes that have not been visited yet.\n",
    "`unbacktracked` contains the sequence of nodes that the agent has visited so it can backtrack to it later, if required.\n",
    "`s` and `a` store the state and the action respectively and `result` stores the final path or solution of the problem.\n",
    "<br>\n",
    "Let's look at another online search algorithm."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## LRTA* AGENT\n",
    "We can infer now that hill-climbing is an online search algorithm, but it is not very useful natively because for complicated search spaces, it might converge to the local minima and indefinitely stay there.\n",
    "In such a case, we can choose to randomly restart it a few times with different starting conditions and return the result with the lowest total cost.\n",
    "Sometimes, it is better to use random walks instead of random restarts depending on the problem, but progress can still be very slow.\n",
    "A better improvement would be to give hill-climbing a memory element.\n",
    "We store the current best heuristic estimate and it is updated as the agent gains experience in the state space.\n",
    "The estimated optimal cost is made more and more accurate as time passes and each time the the local minima is \"flattened out\" until we escape it.\n",
    "<br>\n",
    "This learning scheme is a simple improvement upon traditional hill-climbing and is called _learning real-time A*_ or __LRTA*__.\n",
    "Similar to _Online DFS-Agent_, it builds a map of the environment and chooses the best possible move according to its current heuristic estimates.\n",
    "<br>\n",
    "Actions that haven't been tried yet are assumed to lead immediately to the goal with the least possible cost.\n",
    "This is called __optimism under uncertainty__ and encourages the agent to explore new promising paths.\n",
    "This algorithm might not terminate if the state space is infinite, unlike A* search.\n",
    "<br>\n",
    "Let's have a look at the `LRTAStarAgent` class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">class</span> <span class=\"nc\">LRTAStarAgent</span><span class=\"p\">:</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot; [Figure 4.24]</span>\n",
       "<span class=\"sd\">    Abstract class for LRTA*-Agent. A problem needs to be</span>\n",
       "<span class=\"sd\">    provided which is an instance of a subclass of Problem Class.</span>\n",
       "\n",
       "<span class=\"sd\">    Takes a OnlineSearchProblem [Figure 4.23] as a problem.</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__init__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">problem</span><span class=\"p\">):</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span> <span class=\"o\">=</span> <span class=\"n\">problem</span>\n",
       "        <span class=\"c1\"># self.result = {}      # no need as we are using problem.result</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">H</span> <span class=\"o\">=</span> <span class=\"p\">{}</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"bp\">None</span>\n",
       "        <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"bp\">None</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"fm\">__call__</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">s1</span><span class=\"p\">):</span>     <span class=\"c1\"># as of now s1 is a state rather than a percept</span>\n",
       "        <span class=\"k\">if</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">goal_test</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">):</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"bp\">None</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">s1</span> <span class=\"ow\">not</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">H</span><span class=\"p\">:</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">H</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">h</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "                <span class=\"c1\"># self.result[(self.s, self.a)] = s1    # no need as we are using problem.output</span>\n",
       "\n",
       "                <span class=\"c1\"># minimum cost for action b in problem.actions(s)</span>\n",
       "                <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">H</span><span class=\"p\">[</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"nb\">min</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">LRTA_cost</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">b</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">output</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">b</span><span class=\"p\">),</span>\n",
       "                                     <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">H</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">b</span> <span class=\"ow\">in</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span><span class=\"p\">))</span>\n",
       "\n",
       "            <span class=\"c1\"># an action b in problem.actions(s1) that minimizes costs</span>\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span> <span class=\"o\">=</span> <span class=\"n\">argmin</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">actions</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">),</span>\n",
       "                            <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"k\">lambda</span> <span class=\"n\">b</span><span class=\"p\">:</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">LRTA_cost</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">,</span> <span class=\"n\">b</span><span class=\"p\">,</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">output</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">,</span> <span class=\"n\">b</span><span class=\"p\">),</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">H</span><span class=\"p\">))</span>\n",
       "\n",
       "            <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">s1</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">a</span>\n",
       "\n",
       "    <span class=\"k\">def</span> <span class=\"nf\">LRTA_cost</span><span class=\"p\">(</span><span class=\"bp\">self</span><span class=\"p\">,</span> <span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">,</span> <span class=\"n\">s1</span><span class=\"p\">,</span> <span class=\"n\">H</span><span class=\"p\">):</span>\n",
       "        <span class=\"sd\">&quot;&quot;&quot;Returns cost to move from state &#39;s&#39; to state &#39;s1&#39; plus</span>\n",
       "<span class=\"sd\">        estimated cost to get to goal from s1.&quot;&quot;&quot;</span>\n",
       "        <span class=\"k\">print</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">,</span> <span class=\"n\">s1</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">s1</span> <span class=\"ow\">is</span> <span class=\"bp\">None</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">h</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"c1\"># sometimes we need to get H[s1] which we haven&#39;t yet added to H</span>\n",
       "            <span class=\"c1\"># to replace this try, except: we can initialize H with values from problem.h</span>\n",
       "            <span class=\"k\">try</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">c</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">,</span> <span class=\"n\">s1</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">H</span><span class=\"p\">[</span><span class=\"n\">s1</span><span class=\"p\">]</span>\n",
       "            <span class=\"k\">except</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">c</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"n\">a</span><span class=\"p\">,</span> <span class=\"n\">s1</span><span class=\"p\">)</span> <span class=\"o\">+</span> <span class=\"bp\">self</span><span class=\"o\">.</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">h</span><span class=\"p\">(</span><span class=\"n\">s1</span><span class=\"p\">)</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(LRTAStarAgent)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`H` stores the heuristic cost of the paths the agent may travel to.\n",
    "<br>\n",
    "`s` and `a` store the state and the action respectively.\n",
    "<br>\n",
    "`problem` stores the problem definition and the current map of the environment is stored in `problem.result`.\n",
    "<br>\n",
    "The `LRTA_cost` method computes the cost of a new path given the current state `s`, the action `a`, the next state `s1` and the estimated cost to get from `s` to `s1` is extracted from `H`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's use `LRTAStarAgent` to solve a simple problem.\n",
    "We'll define a new `LRTA_problem` instance based on our `one_dim_state_space`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 83,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<search.Graph at 0x1eddaa35ef0>"
      ]
     },
     "execution_count": 83,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "one_dim_state_space"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's define an instance of `OnlineSearchProblem`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "metadata": {},
   "outputs": [],
   "source": [
    "LRTA_problem = OnlineSearchProblem('State_3', 'State_5', one_dim_state_space)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we initialize a `LRTAStarAgent` object for the problem we just defined."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "metadata": {},
   "outputs": [],
   "source": [
    "lrta_agent = LRTAStarAgent(LRTA_problem)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We'll pass the percepts `[State_3, State_4, State_3, State_4, State_5]` one-by-one to our agent to see what action it comes up with at each timestep."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 86,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State_3 Right State_4\n",
      "State_3 Left State_2\n"
    },
    {
     "data": {
      "text/plain": [
       "'Right'"
      ]
     },
     "execution_count": 86,
     "metadata": {},
     "output_type": "execute_result"
    "lrta_agent('State_3')"
   "cell_type": "code",
   "execution_count": 87,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State_3 Right State_4\n",
      "State_3 Left State_2\n",
      "State_4 Right State_5\n",
      "State_4 Left State_3\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Left'"
      ]
     },
     "execution_count": 87,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "lrta_agent('State_4')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 88,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State_4 Right State_5\n",
      "State_4 Left State_3\n",
      "State_3 Right State_4\n",
      "State_3 Left State_2\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Right'"
      ]
     },
     "execution_count": 88,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "lrta_agent('State_3')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State_3 Right State_4\n",
      "State_3 Left State_2\n",
      "State_4 Right State_5\n",
      "State_4 Left State_3\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "'Right'"
     "execution_count": 89,
     "metadata": {},
     "output_type": "execute_result"
    "lrta_agent('State_4')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If you manually try to see what the optimal action should be at each step, the outputs of the `lrta_agent` will start to make sense if it doesn't already."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 90,
   "metadata": {},
   "outputs": [],
   "source": [
    "lrta_agent('State_5')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is no possible action for this state."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<br>\n",
    "This concludes the notebook.\n",
    "Hope you learned something new!"
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.4"
  },
  "widgets": {
   "state": {
    "1516e2501ddd4a2e8e3250bffc0164db": {
     "views": [
      {
       "cell_index": 59
      }
     ]
    },
    "17be64c89a9a4a43b3272cb018df0970": {
     "views": [
      {
       "cell_index": 59
      }
     ]
    },
    "ac05040009a340b0af81b0ee69161fbc": {
     "views": [
      {
       "cell_index": 59
      }
     ]
    },
    "d9735ffe77c24f13ae4ad3620ce84334": {
     "views": [
      {
       "cell_index": 59
      }
     ]
    }
   },
   "version": "1.2.0"
 "nbformat_minor": 1