Newer
Older
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
],
"source": [
"astar_search(puzzle, linear).solution()"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"astar_search(puzzle, manhattan).solution()"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']"
]
},
"execution_count": 36,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"astar_search(puzzle, sqrt_manhattan).solution()"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"astar_search(puzzle, max_heuristic).solution()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Even though all the heuristic functions give the same solution, the difference lies in the computation time.\n",
"<br>\n",
"This might make all the difference in a scenario where high computational efficiency is required.\n",
"<br>\n",
"Let's define a few puzzle states and time `astar_search` for every heuristic function.\n",
"We will use the %%timeit magic for this."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"puzzle_1 = EightPuzzle((2, 4, 3, 1, 5, 6, 7, 8, 0))\n",
"puzzle_2 = EightPuzzle((1, 2, 3, 4, 5, 6, 0, 7, 8))\n",
"puzzle_3 = EightPuzzle((1, 2, 3, 4, 5, 7, 8, 6, 0))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The default heuristic function is the same as the `linear` heuristic function, but we'll still check both."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"11.3 ms ± 2.28 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"astar_search(puzzle_1)\n",
"astar_search(puzzle_2)\n",
"astar_search(puzzle_3)"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"10.7 ms ± 591 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"astar_search(puzzle_1, linear)\n",
"astar_search(puzzle_2, linear)\n",
"astar_search(puzzle_3, linear)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"8.44 ms ± 870 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"astar_search(puzzle_1, manhattan)\n",
"astar_search(puzzle_2, manhattan)\n",
"astar_search(puzzle_3, manhattan)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"91.7 ms ± 1.89 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"astar_search(puzzle_1, sqrt_manhattan)\n",
"astar_search(puzzle_2, sqrt_manhattan)\n",
"astar_search(puzzle_3, sqrt_manhattan)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"8.53 ms ± 601 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n"
]
}
],
"source": [
"%%timeit\n",
"astar_search(puzzle_1, max_heuristic)\n",
"astar_search(puzzle_2, max_heuristic)\n",
"astar_search(puzzle_3, max_heuristic)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can infer that the `manhattan` heuristic function works the fastest.\n",
"<br>\n",
"`sqrt_manhattan` has an extra `sqrt` operation which makes it quite a lot slower than the others.\n",
"<br>\n",
"`max_heuristic` should have been a bit slower as it calls two functions, but in this case, those values were already calculated which saved some time.\n",
"Feel free to play around with these functions."
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## HILL CLIMBING\n",
"\n",
"Hill Climbing is a heuristic search used for optimization problems.\n",
"Given a large set of inputs and a good heuristic function, it tries to find a sufficiently good solution to the problem. \n",
"This solution may or may not be the global optimum.\n",
"The algorithm is a variant of generate and test algorithm. \n",
"<br>\n",
"As a whole, the algorithm works as follows:\n",
"- Evaluate the initial state.\n",
"- If it is equal to the goal state, return.\n",
"- Find a neighboring state (one which is heuristically similar to the current state)\n",
"- Evaluate this state. If it is closer to the goal state than before, replace the initial state with this state and repeat these steps.\n",
"<br>"
]
},
{
"cell_type": "code",
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">hill_climbing</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""From the initial node, keep choosing the neighbor with highest value,</span>\n",
"<span class=\"sd\"> stopping when no neighbor is better. [Figure 4.2]"""</span>\n",
" <span class=\"n\">current</span> <span class=\"o\">=</span> <span class=\"n\">Node</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">initial</span><span class=\"p\">)</span>\n",
" <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
" <span class=\"n\">neighbors</span> <span class=\"o\">=</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">expand</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">)</span>\n",
" <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">neighbors</span><span class=\"p\">:</span>\n",
" <span class=\"k\">break</span>\n",
" <span class=\"n\">neighbor</span> <span class=\"o\">=</span> <span class=\"n\">argmax_random_tie</span><span class=\"p\">(</span><span class=\"n\">neighbors</span><span class=\"p\">,</span>\n",
" <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"k\">lambda</span> <span class=\"n\">node</span><span class=\"p\">:</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">node</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">))</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">neighbor</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span> <span class=\"o\"><=</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">):</span>\n",
" <span class=\"k\">break</span>\n",
" <span class=\"n\">current</span> <span class=\"o\">=</span> <span class=\"n\">neighbor</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(hill_climbing)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will find an approximate solution to the traveling salespersons problem using this algorithm.\n",
"<br>\n",
"We need to define a class for this problem.\n",
"<br>\n",
"`Problem` will be used as a base class."
]
},
{
"cell_type": "code",
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class TSP_problem(Problem):\n",
"\n",
" \"\"\" subclass of Problem to define various functions \"\"\"\n",
"\n",
" def two_opt(self, state):\n",
" \"\"\" Neighbour generating function for Traveling Salesman Problem \"\"\"\n",
" neighbour_state = state[:]\n",
" left = random.randint(0, len(neighbour_state) - 1)\n",
" right = random.randint(0, len(neighbour_state) - 1)\n",
" if left > right:\n",
" left, right = right, left\n",
" neighbour_state[left: right + 1] = reversed(neighbour_state[left: right + 1])\n",
" return neighbour_state\n",
"\n",
" def actions(self, state):\n",
" \"\"\" action that can be excuted in given state \"\"\"\n",
" return [self.two_opt]\n",
"\n",
" def result(self, state, action):\n",
" \"\"\" result after applying the given action on the given state \"\"\"\n",
" return action(state)\n",
"\n",
" def path_cost(self, c, state1, action, state2):\n",
" \"\"\" total distance for the Traveling Salesman to be covered if in state2 \"\"\"\n",
" cost = 0\n",
" for i in range(len(state2) - 1):\n",
" cost += distances[state2[i]][state2[i + 1]]\n",
" cost += distances[state2[0]][state2[-1]]\n",
" return cost\n",
"\n",
" def value(self, state):\n",
" \"\"\" value of path cost given negative for the given state \"\"\"\n",
" return -1 * self.path_cost(None, None, None, state)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will use cities from the Romania map as our cities for this problem.\n",
"<br>\n",
"A list of all cities and a dictionary storing distances between them will be populated."
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['Arad', 'Bucharest', 'Craiova', 'Drobeta', 'Eforie', 'Fagaras', 'Giurgiu', 'Hirsova', 'Iasi', 'Lugoj', 'Mehadia', 'Neamt', 'Oradea', 'Pitesti', 'Rimnicu', 'Sibiu', 'Timisoara', 'Urziceni', 'Vaslui', 'Zerind']\n"
]
}
],
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
"source": [
"distances = {}\n",
"all_cities = []\n",
"\n",
"for city in romania_map.locations.keys():\n",
" distances[city] = {}\n",
" all_cities.append(city)\n",
" \n",
"all_cities.sort()\n",
"print(all_cities)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we need to populate the individual lists inside the dictionary with the manhattan distance between the cities."
]
},
{
"cell_type": "code",
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"for name_1, coordinates_1 in romania_map.locations.items():\n",
" for name_2, coordinates_2 in romania_map.locations.items():\n",
" distances[name_1][name_2] = np.linalg.norm(\n",
" [coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])\n",
" distances[name_2][name_1] = np.linalg.norm(\n",
" [coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The way neighbours are chosen currently isn't suitable for the travelling salespersons problem.\n",
"We need a neighboring state that is similar in total path distance to the current state.\n",
"<br>\n",
"We need to change the function that finds neighbors."
]
},
{
"cell_type": "code",
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def hill_climbing(problem):\n",
" \n",
" \"\"\"From the initial node, keep choosing the neighbor with highest value,\n",
" stopping when no neighbor is better. [Figure 4.2]\"\"\"\n",
" \n",
" def find_neighbors(state, number_of_neighbors=100):\n",
" \"\"\" finds neighbors using two_opt method \"\"\"\n",
" \n",
" neighbors = []\n",
" \n",
" for i in range(number_of_neighbors):\n",
" new_state = problem.two_opt(state)\n",
" neighbors.append(Node(new_state))\n",
" state = new_state\n",
" \n",
" return neighbors\n",
"\n",
" # as this is a stochastic algorithm, we will set a cap on the number of iterations\n",
" iterations = 10000\n",
" \n",
" current = Node(problem.initial)\n",
" while iterations:\n",
" neighbors = find_neighbors(current.state)\n",
" if not neighbors:\n",
" break\n",
" neighbor = argmax_random_tie(neighbors,\n",
" key=lambda node: problem.value(node.state))\n",
" if problem.value(neighbor.state) <= problem.value(current.state):\n",
" current.state = neighbor.state\n",
" iterations -= 1\n",
" \n",
" return current.state"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"An instance of the TSP_problem class will be created."
]
},
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"tsp = TSP_problem(all_cities)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now generate an approximate solution to the problem by calling `hill_climbing`.\n",
"The results will vary a bit each time you run it."
]
},
{
"cell_type": "code",
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
"execution_count": 50,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['Arad',\n",
" 'Timisoara',\n",
" 'Lugoj',\n",
" 'Mehadia',\n",
" 'Drobeta',\n",
" 'Craiova',\n",
" 'Pitesti',\n",
" 'Giurgiu',\n",
" 'Bucharest',\n",
" 'Urziceni',\n",
" 'Eforie',\n",
" 'Hirsova',\n",
" 'Vaslui',\n",
" 'Iasi',\n",
" 'Neamt',\n",
" 'Fagaras',\n",
" 'Rimnicu',\n",
" 'Sibiu',\n",
" 'Oradea',\n",
" 'Zerind']"
]
},
"execution_count": 50,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hill_climbing(tsp)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The solution looks like this.\n",
"It is not difficult to see why this might be a good solution.\n",
"<br>\n",
""
]
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## SIMULATED ANNEALING\n",
"\n",
"The intuition behind Hill Climbing was developed from the metaphor of climbing up the graph of a function to find its peak. \n",
"There is a fundamental problem in the implementation of the algorithm however.\n",
"To find the highest hill, we take one step at a time, always uphill, hoping to find the highest point, \n",
"but if we are unlucky to start from the shoulder of the second-highest hill, there is no way we can find the highest one. \n",
"The algorithm will always converge to the local optimum.\n",
"Hill Climbing is also bad at dealing with functions that flatline in certain regions.\n",
"If all neighboring states have the same value, we cannot find the global optimum using this algorithm.\n",
"<br>\n",
"<br>\n",
"Let's now look at an algorithm that can deal with these situations.\n",
"<br>\n",
"Simulated Annealing is quite similar to Hill Climbing, \n",
"but instead of picking the _best_ move every iteration, it picks a _random_ move. \n",
"If this random move brings us closer to the global optimum, it will be accepted, \n",
"but if it doesn't, the algorithm may accept or reject the move based on a probability dictated by the _temperature_. \n",
"When the `temperature` is high, the algorithm is more likely to accept a random move even if it is bad.\n",
"At low temperatures, only good moves are accepted, with the occasional exception.\n",
"This allows exploration of the state space and prevents the algorithm from getting stuck at the local optimum.\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">simulated_annealing</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">,</span> <span class=\"n\">schedule</span><span class=\"o\">=</span><span class=\"n\">exp_schedule</span><span class=\"p\">()):</span>\n",
" <span class=\"sd\">"""[Figure 4.5] CAUTION: This differs from the pseudocode as it</span>\n",
"<span class=\"sd\"> returns a state instead of a Node."""</span>\n",
" <span class=\"n\">current</span> <span class=\"o\">=</span> <span class=\"n\">Node</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">initial</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">t</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">sys</span><span class=\"o\">.</span><span class=\"n\">maxsize</span><span class=\"p\">):</span>\n",
" <span class=\"n\">T</span> <span class=\"o\">=</span> <span class=\"n\">schedule</span><span class=\"p\">(</span><span class=\"n\">t</span><span class=\"p\">)</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">T</span> <span class=\"o\">==</span> <span class=\"mi\">0</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span>\n",
" <span class=\"n\">neighbors</span> <span class=\"o\">=</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">expand</span><span class=\"p\">(</span><span class=\"n\">problem</span><span class=\"p\">)</span>\n",
" <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">neighbors</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span>\n",
" <span class=\"n\">next_choice</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"n\">neighbors</span><span class=\"p\">)</span>\n",
" <span class=\"n\">delta_e</span> <span class=\"o\">=</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">next_choice</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span> <span class=\"o\">-</span> <span class=\"n\">problem</span><span class=\"o\">.</span><span class=\"n\">value</span><span class=\"p\">(</span><span class=\"n\">current</span><span class=\"o\">.</span><span class=\"n\">state</span><span class=\"p\">)</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">delta_e</span> <span class=\"o\">></span> <span class=\"mi\">0</span> <span class=\"ow\">or</span> <span class=\"n\">probability</span><span class=\"p\">(</span><span class=\"n\">math</span><span class=\"o\">.</span><span class=\"n\">exp</span><span class=\"p\">(</span><span class=\"n\">delta_e</span> <span class=\"o\">/</span> <span class=\"n\">T</span><span class=\"p\">)):</span>\n",
" <span class=\"n\">current</span> <span class=\"o\">=</span> <span class=\"n\">next_choice</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(simulated_annealing)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The temperature is gradually decreased over the course of the iteration.\n",
"This is done by a scheduling routine.\n",
"The current implementation uses exponential decay of temperature, but we can use a different scheduling routine instead.\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">exp_schedule</span><span class=\"p\">(</span><span class=\"n\">k</span><span class=\"o\">=</span><span class=\"mi\">20</span><span class=\"p\">,</span> <span class=\"n\">lam</span><span class=\"o\">=</span><span class=\"mf\">0.005</span><span class=\"p\">,</span> <span class=\"n\">limit</span><span class=\"o\">=</span><span class=\"mi\">100</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""One possible schedule function for simulated annealing"""</span>\n",
" <span class=\"k\">return</span> <span class=\"k\">lambda</span> <span class=\"n\">t</span><span class=\"p\">:</span> <span class=\"p\">(</span><span class=\"n\">k</span> <span class=\"o\">*</span> <span class=\"n\">math</span><span class=\"o\">.</span><span class=\"n\">exp</span><span class=\"p\">(</span><span class=\"o\">-</span><span class=\"n\">lam</span> <span class=\"o\">*</span> <span class=\"n\">t</span><span class=\"p\">)</span> <span class=\"k\">if</span> <span class=\"n\">t</span> <span class=\"o\"><</span> <span class=\"n\">limit</span> <span class=\"k\">else</span> <span class=\"mi\">0</span><span class=\"p\">)</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(exp_schedule)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we'll define a peak-finding problem and try to solve it using Simulated Annealing.\n",
"Let's define the grid and the initial state first.\n"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"initial = (0, 0)\n",
"grid = [[3, 7, 2, 8], [5, 2, 9, 1], [5, 3, 3, 1]]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We want to allow only four directions, namely `N`, `S`, `E` and `W`.\n",
"Let's use the predefined `directions4` dictionary."
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'E': (1, 0), 'N': (0, 1), 'S': (0, -1), 'W': (-1, 0)}"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"directions4"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Define a problem with these parameters."
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"problem = PeakFindingProblem(initial, grid, directions4)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We'll run `simulated_annealing` a few times and store the solutions in a set."
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"solutions = {problem.value(simulated_annealing(problem)) for i in range(100)}"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"9"
]
},
"execution_count": 8,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"max(solutions)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Hence, the maximum value is 9."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's find the peak of a two-dimensional gaussian distribution.\n",
"We'll use the `gaussian_kernel` function from notebook.py to get the distribution."
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [],
"source": [
"grid = gaussian_kernel()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's use the `heatmap` function from notebook.py to plot this."
]
},
{