{ "cells": [ { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "# Solving problems by Searching\n", "\n", "This notebook serves as supporting material for topics covered in **Chapter 3 - Solving Problems by Searching** and **Chapter 4 - Beyond Classical Search** from the book *Artificial Intelligence: A Modern Approach.* This notebook uses implementations from [search.py](https://github.com/aimacode/aima-python/blob/master/search.py) module. Let's start by importing everything from search module." ] }, { "cell_type": "code", "execution_count": 1, "metadata": { "collapsed": true, "scrolled": true }, "outputs": [], "source": [ "from search import *\n", "from notebook import psource, heatmap, gaussian_kernel, show_map, final_path_colors, display_visual, plot_NQueens\n", "\n", "# Needed to hide warnings in the matplotlib sections\n", "import warnings\n", "warnings.filterwarnings(\"ignore\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## CONTENTS\n", "\n", "* Overview\n", "* Problem\n", "* Node\n", "* Simple Problem Solving Agent\n", "* Search Algorithms Visualization\n", "* Breadth-First Tree Search\n", "* Breadth-First Search\n", "* Best First Search\n", "* Uniform Cost Search\n", "* Greedy Best First Search\n", "* A\\* Search\n", "* Hill Climbing\n", "* Simulated Annealing\n", "* Genetic Algorithm" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## OVERVIEW\n", "\n", "Here, we learn about a specific kind of problem solving - building goal-based agents that can plan ahead to solve problems. In particular, we examine navigation problem/route finding problem. We must begin by precisely defining **problems** and their **solutions**. We will look at several general-purpose search algorithms.\n", "\n", "Search algorithms can be classified into two types:\n", "\n", "* **Uninformed search algorithms**: Search algorithms which explore the search space without having any information about the problem other than its definition.\n", " * Examples:\n", " 1. Breadth First Search\n", " 2. Depth First Search\n", " 3. Depth Limited Search\n", " 4. Iterative Deepening Search\n", "\n", "\n", "* **Informed search algorithms**: These type of algorithms leverage any information (heuristics, path cost) on the problem to search through the search space to find the solution efficiently.\n", " * Examples:\n", " 1. Best First Search\n", " 2. Uniform Cost Search\n", " 3. A\\* Search\n", " 4. Recursive Best First Search\n", "\n", "*Don't miss the visualisations of these algorithms solving the route-finding problem defined on Romania map at the end of this notebook.*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For visualisations, we use networkx and matplotlib to show the map in the notebook and we use ipywidgets to interact with the map to see how the searching algorithm works. These are imported as required in `notebook.py`." ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": true }, "outputs": [], "source": [ "%matplotlib inline\n", "import networkx as nx\n", "import matplotlib.pyplot as plt\n", "from matplotlib import lines\n", "\n", "from ipywidgets import interact\n", "import ipywidgets as widgets\n", "from IPython.display import display\n", "import time" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## PROBLEM\n", "\n", "Let's see how we define a Problem. Run the next cell to see how abstract class `Problem` is defined in the search module." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
class Problem(object):\n",
       "\n",
       "    """The abstract class for a formal problem. You should subclass\n",
       "    this and implement the methods actions and result, and possibly\n",
       "    __init__, goal_test, and path_cost. Then you will create instances\n",
       "    of your subclass and solve them with the various search functions."""\n",
       "\n",
       "    def __init__(self, initial, goal=None):\n",
       "        """The constructor specifies the initial state, and possibly a goal\n",
       "        state, if there is a unique goal. Your subclass's constructor can add\n",
       "        other arguments."""\n",
       "        self.initial = initial\n",
       "        self.goal = goal\n",
       "\n",
       "    def actions(self, state):\n",
       "        """Return the actions that can be executed in the given\n",
       "        state. The result would typically be a list, but if there are\n",
       "        many actions, consider yielding them one at a time in an\n",
       "        iterator, rather than building them all at once."""\n",
       "        raise NotImplementedError\n",
       "\n",
       "    def result(self, state, action):\n",
       "        """Return the state that results from executing the given\n",
       "        action in the given state. The action must be one of\n",
       "        self.actions(state)."""\n",
       "        raise NotImplementedError\n",
       "\n",
       "    def goal_test(self, state):\n",
       "        """Return True if the state is a goal. The default method compares the\n",
       "        state to self.goal or checks for state in self.goal if it is a\n",
       "        list, as specified in the constructor. Override this method if\n",
       "        checking against a single self.goal is not enough."""\n",
       "        if isinstance(self.goal, list):\n",
       "            return is_in(state, self.goal)\n",
       "        else:\n",
       "            return state == self.goal\n",
       "\n",
       "    def path_cost(self, c, state1, action, state2):\n",
       "        """Return the cost of a solution path that arrives at state2 from\n",
       "        state1 via action, assuming cost c to get up to state1. If the problem\n",
       "        is such that the path doesn't matter, this function will only look at\n",
       "        state2.  If the path does matter, it will consider c and maybe state1\n",
       "        and action. The default method costs 1 for every step in the path."""\n",
       "        return c + 1\n",
       "\n",
       "    def value(self, state):\n",
       "        """For optimization problems, each state has a value.  Hill-climbing\n",
       "        and related algorithms try to maximize this value."""\n",
       "        raise NotImplementedError\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(Problem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `Problem` class has six methods.\n", "\n", "* `__init__(self, initial, goal)` : This is what is called a `constructor`. It is the first method called when you create an instance of the class as `Problem(initial, goal)`. The variable `initial` specifies the initial state $s_0$ of the search problem. It represents the beginning state. From here, our agent begins its task of exploration to find the goal state(s) which is given in the `goal` parameter.\n", "\n", "\n", "* `actions(self, state)` : This method returns all the possible actions agent can execute in the given state `state`.\n", "\n", "\n", "* `result(self, state, action)` : This returns the resulting state if action `action` is taken in the state `state`. This `Problem` class only deals with deterministic outcomes. So we know for sure what every action in a state would result to.\n", "\n", "\n", "* `goal_test(self, state)` : Return a boolean for a given state - `True` if it is a goal state, else `False`.\n", "\n", "\n", "* `path_cost(self, c, state1, action, state2)` : Return the cost of the path that arrives at `state2` as a result of taking `action` from `state1`, assuming total cost of `c` to get up to `state1`.\n", "\n", "\n", "* `value(self, state)` : This acts as a bit of extra information in problems where we try to optimise a value when we cannot do a goal test." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## NODE\n", "\n", "Let's see how we define a Node. Run the next cell to see how abstract class `Node` is defined in the search module." ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
class Node:\n",
       "\n",
       "    """A node in a search tree. Contains a pointer to the parent (the node\n",
       "    that this is a successor of) and to the actual state for this node. Note\n",
       "    that if a state is arrived at by two paths, then there are two nodes with\n",
       "    the same state.  Also includes the action that got us to this state, and\n",
       "    the total path_cost (also known as g) to reach the node.  Other functions\n",
       "    may add an f and h value; see best_first_graph_search and astar_search for\n",
       "    an explanation of how the f and h values are handled. You will not need to\n",
       "    subclass this class."""\n",
       "\n",
       "    def __init__(self, state, parent=None, action=None, path_cost=0):\n",
       "        """Create a search tree Node, derived from a parent by an action."""\n",
       "        self.state = state\n",
       "        self.parent = parent\n",
       "        self.action = action\n",
       "        self.path_cost = path_cost\n",
       "        self.depth = 0\n",
       "        if parent:\n",
       "            self.depth = parent.depth + 1\n",
       "\n",
       "    def __repr__(self):\n",
       "        return "<Node {}>".format(self.state)\n",
       "\n",
       "    def __lt__(self, node):\n",
       "        return self.state < node.state\n",
       "\n",
       "    def expand(self, problem):\n",
       "        """List the nodes reachable in one step from this node."""\n",
       "        return [self.child_node(problem, action)\n",
       "                for action in problem.actions(self.state)]\n",
       "\n",
       "    def child_node(self, problem, action):\n",
       "        """[Figure 3.10]"""\n",
       "        next_node = problem.result(self.state, action)\n",
       "        return Node(next_node, self, action,\n",
       "                    problem.path_cost(self.path_cost, self.state,\n",
       "                                      action, next_node))\n",
       "\n",
       "    def solution(self):\n",
       "        """Return the sequence of actions to go from the root to this node."""\n",
       "        return [node.action for node in self.path()[1:]]\n",
       "\n",
       "    def path(self):\n",
       "        """Return a list of nodes forming the path from the root to this node."""\n",
       "        node, path_back = self, []\n",
       "        while node:\n",
       "            path_back.append(node)\n",
       "            node = node.parent\n",
       "        return list(reversed(path_back))\n",
       "\n",
       "    # We want for a queue of nodes in breadth_first_search or\n",
       "    # astar_search to have no duplicated states, so we treat nodes\n",
       "    # with the same state as equal. [Problem: this may not be what you\n",
       "    # want in other contexts.]\n",
       "\n",
       "    def __eq__(self, other):\n",
       "        return isinstance(other, Node) and self.state == other.state\n",
       "\n",
       "    def __hash__(self):\n",
       "        return hash(self.state)\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(Node)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The `Node` class has nine methods. The first is the `__init__` method.\n", "\n", "* `__init__(self, state, parent, action, path_cost)` : This method creates a node. `parent` represents the node that this is a successor of and `action` is the action required to get from the parent node to this node. `path_cost` is the cost to reach current node from parent node.\n", "\n", "The next 4 methods are specific `Node`-related functions.\n", "\n", "* `expand(self, problem)` : This method lists all the neighbouring(reachable in one step) nodes of current node. \n", "\n", "* `child_node(self, problem, action)` : Given an `action`, this method returns the immediate neighbour that can be reached with that `action`.\n", "\n", "* `solution(self)` : This returns the sequence of actions required to reach this node from the root node. \n", "\n", "* `path(self)` : This returns a list of all the nodes that lies in the path from the root to this node.\n", "\n", "The remaining 4 methods override standards Python functionality for representing an object as a string, the less-than ($<$) operator, the equal-to ($=$) operator, and the `hash` function.\n", "\n", "* `__repr__(self)` : This returns the state of this node.\n", "\n", "* `__lt__(self, node)` : Given a `node`, this method returns `True` if the state of current node is less than the state of the `node`. Otherwise it returns `False`.\n", "\n", "* `__eq__(self, other)` : This method returns `True` if the state of current node is equal to the other node. Else it returns `False`.\n", "\n", "* `__hash__(self)` : This returns the hash of the state of current node." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will use the abstract class `Problem` to define our real **problem** named `GraphProblem`. You can see how we define `GraphProblem` by running the next cell." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
class GraphProblem(Problem):\n",
       "\n",
       "    """The problem of searching a graph from one node to another."""\n",
       "\n",
       "    def __init__(self, initial, goal, graph):\n",
       "        Problem.__init__(self, initial, goal)\n",
       "        self.graph = graph\n",
       "\n",
       "    def actions(self, A):\n",
       "        """The actions at a graph node are just its neighbors."""\n",
       "        return list(self.graph.get(A).keys())\n",
       "\n",
       "    def result(self, state, action):\n",
       "        """The result of going to a neighbor is just that neighbor."""\n",
       "        return action\n",
       "\n",
       "    def path_cost(self, cost_so_far, A, action, B):\n",
       "        return cost_so_far + (self.graph.get(A, B) or infinity)\n",
       "\n",
       "    def find_min_edge(self):\n",
       "        """Find minimum value of edges."""\n",
       "        m = infinity\n",
       "        for d in self.graph.graph_dict.values():\n",
       "            local_min = min(d.values())\n",
       "            m = min(m, local_min)\n",
       "\n",
       "        return m\n",
       "\n",
       "    def h(self, node):\n",
       "        """h function is straight-line distance from a node's state to goal."""\n",
       "        locs = getattr(self.graph, 'locations', None)\n",
       "        if locs:\n",
       "            if type(node) is str:\n",
       "                return int(distance(locs[node], locs[self.goal]))\n",
       "\n",
       "            return int(distance(locs[node.state], locs[self.goal]))\n",
       "        else:\n",
       "            return infinity\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(GraphProblem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Have a look at our romania_map, which is an Undirected Graph containing a dict of nodes as keys and neighbours as values." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "romania_map = UndirectedGraph(dict(\n", " Arad=dict(Zerind=75, Sibiu=140, Timisoara=118),\n", " Bucharest=dict(Urziceni=85, Pitesti=101, Giurgiu=90, Fagaras=211),\n", " Craiova=dict(Drobeta=120, Rimnicu=146, Pitesti=138),\n", " Drobeta=dict(Mehadia=75),\n", " Eforie=dict(Hirsova=86),\n", " Fagaras=dict(Sibiu=99),\n", " Hirsova=dict(Urziceni=98),\n", " Iasi=dict(Vaslui=92, Neamt=87),\n", " Lugoj=dict(Timisoara=111, Mehadia=70),\n", " Oradea=dict(Zerind=71, Sibiu=151),\n", " Pitesti=dict(Rimnicu=97),\n", " Rimnicu=dict(Sibiu=80),\n", " Urziceni=dict(Vaslui=142)))\n", "\n", "romania_map.locations = dict(\n", " Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288),\n", " Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449),\n", " Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506),\n", " Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537),\n", " Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410),\n", " Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350),\n", " Vaslui=(509, 444), Zerind=(108, 531))" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "It is pretty straightforward to understand this `romania_map`. The first node **Arad** has three neighbours named **Zerind**, **Sibiu**, **Timisoara**. Each of these nodes are 75, 140, 118 units apart from **Arad** respectively. And the same goes with other nodes.\n", "\n", "And `romania_map.locations` contains the positions of each of the nodes. We will use the straight line distance (which is different from the one provided in `romania_map`) between two cities in algorithms like A\\*-search and Recursive Best First Search.\n", "\n", "**Define a problem:**\n", "Now it's time to define our problem. We will define it by passing `initial`, `goal`, `graph` to `GraphProblem`. So, our problem is to find the goal state starting from the given initial state on the provided graph. \n", "\n", "Say we want to start exploring from **Arad** and try to find **Bucharest** in our romania_map. So, this is how we do it." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Romania Map Visualisation\n", "\n", "Let's have a visualisation of Romania map [Figure 3.2] from the book and see how different searching algorithms perform / how frontier expands in each search algorithm for a simple problem named `romania_problem`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Have a look at `romania_locations`. It is a dictionary defined in search module. We will use these location values to draw the romania graph using **networkx**." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "{'Arad': (91, 492), 'Bucharest': (400, 327), 'Craiova': (253, 288), 'Drobeta': (165, 299), 'Eforie': (562, 293), 'Fagaras': (305, 449), 'Giurgiu': (375, 270), 'Hirsova': (534, 350), 'Iasi': (473, 506), 'Lugoj': (165, 379), 'Mehadia': (168, 339), 'Neamt': (406, 537), 'Oradea': (131, 571), 'Pitesti': (320, 368), 'Rimnicu': (233, 410), 'Sibiu': (207, 457), 'Timisoara': (94, 410), 'Urziceni': (456, 350), 'Vaslui': (509, 444), 'Zerind': (108, 531)}\n" ] } ], "source": [ "romania_locations = romania_map.locations\n", "print(romania_locations)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's get started by initializing an empty graph. We will add nodes, place the nodes in their location as shown in the book, add edges to the graph." ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# node colors, node positions and node label positions\n", "node_colors = {node: 'white' for node in romania_map.locations.keys()}\n", "node_positions = romania_map.locations\n", "node_label_pos = { k:[v[0],v[1]-10] for k,v in romania_map.locations.items() }\n", "edge_weights = {(k, k2) : v2 for k, v in romania_map.graph_dict.items() for k2, v2 in v.items()}\n", "\n", "romania_graph_data = { 'graph_dict' : romania_map.graph_dict,\n", " 'node_colors': node_colors,\n", " 'node_positions': node_positions,\n", " 'node_label_positions': node_label_pos,\n", " 'edge_weights': edge_weights\n", " }" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have completed building our graph based on romania_map and its locations. It's time to display it here in the notebook. This function `show_map(node_colors)` helps us do that. We will be calling this function later on to display the map at each and every interval step while searching, using variety of algorithms from the book." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can simply call the function with node_colors dictionary object to display it." ] }, { "cell_type": "code", "execution_count": 10, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAABTsAAAPKCAYAAABbVI7QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzs3XlcVGXj/vFrkEVZlEcQRcx9wwVN\ncStNzIXcM5VHQZNy+7mlklu5AKm45IJLj7kVrlmaS2qZYm4ZlkuZFZZZmfqYpqYimmzn9wdf5mkE\nd2Bw+Lxfr3nVnLnPOdeMjebFfZ9jMgzDEAAAAAAAAAA85uysHQAAAAAAAAAAsgNlJwAAAAAAAACb\nQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYC\nAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAA\nAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAA\nm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2\nAgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAA\nAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAA\nAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQ\ndgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAA\nAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAA\nAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAm\nUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0A\nAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAA\nAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADA\nJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSd\nAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAA\nAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAA\nwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmU\nnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ3AY84wDGtHAAAAAAAA\nyBMoO4E8LC4uTklJSXd8/bffftN7772Xi4kAAAAAAADyLspOII/atWuXevbsKTu7O39NixYtqpEj\nR+qrr77KxWQAAAAAAAB5E2UnkAcZhqEJEyYoPDxc9vb2dxxXuHBhTZkyRYMHD1ZaWlouJgQAAAAA\nAMh7KDuBPCg2NlZ//vmngoOD7zm2R48esre3V0xMTM4HAwAAAAAAyMNMBnc3AfIUwzD01FNPaejQ\noerWrdt97XPkyBG1bdtW8fHxcnd3z+GEAAAAAAAAeRMzO4E8Ztu2bUpISFDXrl3ve586deqoQ4cO\nCg8Pz8FkAAAAAAAAeRszO4E8xDAM1a9fX6NHj1aXLl0eaN+LFy+qWrVq+uyzz1SjRo0cSggAAAAA\nAJB3MbMTyEM2b96s5ORkvfDCCw+8r6enp8LDwzVkyBDxMwwAAAAAAJAfMbMTAAAAAAAAgE1gZicA\nAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnYAPWrVsnk8lk7RgAAAAA\nAABWRdkJ5ICzZ8+qX79+KlWqlBwdHeXj46O+ffvqzJkz1o4GAAAAAABgsyg7gWz266+/yt/fX999\n952WLVumn3/+WStXrtT333+vevXq6bfffstyv6SkpNwNCgAAAAAAYGMoO4FsNmjQINnZ2Sk2NlbN\nmzdX6dKl1axZM8XGxsrOzk6DBg2SJAUEBGjAgAEaMWKEihUrpqefflqSNGvWLPn5+cnFxUU+Pj7q\n06ePrly5YnGO5cuXq0yZMnJ2dla7du10/vz5TDk2b96sunXrqmDBgipXrpzGjh1rUaiuXLlS9erV\nk5ubm7y8vNS1a1edPXs2Bz8ZAAAAAACAnEXZCWSjy5cva9u2bRo0aJCcnZ0tXnN2dtbAgQP1ySef\n6K+//pKUXjgahqF9+/Zp+fLlkiQ7OztFR0fr+++/1+rVq/XVV19pyJAh5uN8+eWXCg0NVb9+/fTN\nN9+offv2mjBhgsW5Pv30U4WEhGjw4MH6/vvv9c4772jdunV6/fXXzWOSkpIUGRmpo0ePasuWLbp4\n8aK6d++eUx8NAAAAAABAjjMZhmFYOwRgK7788ks1bNhQ69evV6dOnTK9vmHDBr3wwgv68ssvNWrU\nKF2+fFnffvvtXY+5bds2dezYUTdv3pSdnZ2Cg4P1559/aseOHeYxffr00dKlS5XxdX7mmWfUsmVL\njR8/3jxm48aN6tGjhxISErK8mdHx48fl6+ur06dPq1SpUg/7EQAAAAAAAFgNMzuBHHCnO6NnlJEZ\nr9etWzfTmM8++0wtW7ZUqVKl5ObmphdeeEFJSUn6448/JEnx8fFq1KiRxT63Pz98+LAmT54sV1dX\n8yM4OFiJiYnm4xw5ckQdO3ZUmTJl5ObmJn9/f0nS77///gjvHAAAAAAAwHooO4FsVKlSJZlMJn3/\n/fdZvh4fHy+TyaQKFSpIklxcXCxeP3XqlNq2bStfX1+tXbtWhw8f1jvvvCPpfzcwup/J2GlpaQoP\nD9c333xjfnz77bc6ceKEihUrpsTERAUGBsrZ2VkrVqzQwYMHtW3bNovzAAAAAAAAPG7srR0AsCVF\nixZVYGCg/vOf/2j48OEW1+28ceOG3nrrLbVu3VpFixbNcv9Dhw4pKSlJs2fPVoECBSRJW7ZssRhT\nrVo1HThwwGLb7c/r1Kmj48ePq2LFilme5+jRo7p48aKioqJUrlw5SdL69esf7M0CAAAAAADkMczs\nBLLZ/PnzlZKSohYtWuizzz7T6dOntXv3brVs2VKGYWj+/Pl33LdSpUpKS0tTdHS0fv31V7333nuK\njo62GPPKK68oNjZWU6ZM0YkTJ7R48WJt2LDBYsyECRO0evVqTZgwQd99952OHz+udevWadSoUZKk\n0qVLy8nJSfPnz9cvv/yirVu3WlzfEwAAAAAA4HFE2QlkswoVKujQoUOqXr26evbsqfLlyys4OFi+\nvr46ePCgeSZlVvz8/DRnzhzNmjVL1apV05IlSzRjxgyLMQ0bNtTSpUu1YMEC+fn5af369YqIiLAY\nExgYqK1bt2rXrl2qX7++6tevr6lTp6p06dKSpGLFimnZsmXauHGjqlWrpsjISM2aNSvbPwsAAAAA\nAIDcxN3YAQAAAAAAANgEZnYCAAAAAAAAsAncoAgAAAAAAORp165d04ULF5ScnGztKMBjzcHBQV5e\nXipcuLC1o+QYyk4AAAAAAJBnXbt2TefPn5ePj48KFSokk8lk7UjAY8kwDN28eVNnz56VJJstPFnG\nDgAAAAAA8qwLFy7Ix8dHzs7OFJ3AIzCZTHJ2dpaPj48uXLhg7Tg5hrITAAAAAADkWcnJySpUqJC1\nYwA2o1ChQjZ9SQjKTiAHXb58WZ6enjp58qS1o9xRcnKyqlevro0bN1o7CgAAAABkiRmdQPax9e8T\nZSeQg6Kjo9WpUydVqFDB2lHuyMHBQXPnzlVYWJhu3rxp7TgAAAAAAAAPzWQYhmHtEIAtMgxDKSkp\nSkxMlLu7u7Xj3FOXLl3k5+enCRMmWDsKAAAAAJjFx8fL19fX2jEAm2LL3ytmdgI5xGQyycHB4bEo\nOiVp5syZmjt3rk6dOmXtKAAAAABg00JDQ1WqVKksX9u9e7dMJpNiY2NzOVX2yXgPu3fvtnYUs9DQ\nUJUtW9baMZALKDsBSJLKlCmjV155Ra+++qq1owAAAAAAADwUyk4AZiNHjtSRI0e0c+dOa0cBAAAA\nAECpqalKSUmxdgw8Rig7AZgVKlRIs2bN0pAhQ5ScnGztOAAAAACQ75UtW1Y9evTQmjVr5OvrKxcX\nF/n7++vzzz+/72MsXrxYtWrVUsGCBeXp6anevXvr8uXL5teXLFkik8mkjRs3mrelpqbqmWeeUYUK\nFZSQkCBJioiIkMlk0rFjx9SsWTM5OzvL29tbEyZMUFpa2l0zGIah2bNnq0qVKnJ0dJS3t7cGDx6s\na9euWYwzmUwaO3aspk6dqnLlysnR0VHHjh2TJF28eFEDBgyQj4+PnJycVLVqVS1atCjTuXbu3Kk6\ndeqoYMGCqlChghYuXHjfnxUef5SdACx07NhRTzzxhObPn2/tKAAAAAAASfv27dPMmTM1ceJEvf/+\n+0pNTVW7du105cqVe+47ZswYDRw4UC1atNBHH32kN998U9u2bVPr1q2VmpoqSerTp4+6du2qPn36\n6OzZs5KkiRMnKi4uTqtXr5abm5vFMZ9//nm1aNFCGzduVHBwsCZOnKg33njjrjnGjh2rsLAwtWzZ\nUps3b9aoUaMUExOjtm3bZipKY2JitHXrVs2YMUNbt25VyZIlde3aNT399NPaunWrIiIitHXrVrVv\n314DBgzQvHnzzPvGx8erTZs2KlSokNasWaOoqChFR0ezgjEfsbd2AAB5i8lk0pw5c9SkSRMFBwer\nePHi1o4EAAAAAPnatWvX9M033+hf//qXJKlEiRKqV6+ePv74YwUHB99xv99++01vvvmmwsPDNWHC\nBPP2ypUrq3Hjxtq8ebOef/55SdKiRYtUq1Yt9ejRQxEREZo0aZImTpyoBg0aZDpu3759NWbMGElS\nq1atdO3aNc2cOVPDhg3L8ia9ly9f1qxZs9SrVy/zxJrAwEAVK1ZMPXv21JYtW9ShQwfzeMMwtH37\ndhUqVMi8beLEiTp16pSOHTumSpUqSZJatGihK1euKDIyUgMGDJC9vb0mTZokNzc3bd++XS4uLpKk\np556ShUqVFDJkiXv7wPHY42ZncBD+ueUf1tTtWpVhYaGmv/wAgAAAABYT6NGjcxFpyTVrFlTkvT7\n779LSi8HU1JSzI+MGZs7duxQWlqaQkJCLF5v0KCBChcurL1795qP6e7urtWrV2vfvn0KDAxUkyZN\nNHr06CzzBAUFWTzv1q2brl+/ru+++y7L8QcOHNCtW7fUo0ePTPvZ29trz549Ftufe+45i6JTkrZt\n26YGDRqoXLlyFu8lMDBQly5d0g8//CBJiouLU5s2bcxFpyQ98cQTevrpp7PMBttD2Qk8hCVLligs\nLEy7d+/OtGzAMIy7Pn9cjB8/Xtu3b9eBAwesHQUAAAAAbIq9vb25kLxdxnZ7+/8txi1atKjFGCcn\nJ0nS33//LUlatmyZHBwczI8KFSpIki5cuCBJqlixosXrDg4Ounbtmi5dumRx3IYNG6pKlSq6deuW\nhg4dKju7rGuj21cAZjzPWAJ/u4zJQt7e3hbb7e3t5eHhkWky0e3jMt7L3r17M72Prl27SpL5vZw7\ndy7LFYqsWsw/WMYOPKDU1FS9+uqrSkpK0qeffqpOnTqpW7duqlWrlooUKSKTySRJSkxMlIODgxwd\nHa2c+OEULlxYU6dO1ZAhQ/Tll1/e8Q85AAAAAMCD8fLy0sWLF5WUlJTp74z//e9/JT1YOde+fXsd\nPHjQ/DyjDPXw8JAkbd++3WJmaIaM1zNERkbqxIkT8vPz0/Dhw9WsWTMVKVIk037nz59X+fLlLZ5L\nko+PT5b5MsraP/74Q9WrVzdvT0lJ0aVLlzLlyPh79e1Zvby8NGfOnCzPUaVKFUnpRWlGntszI3+g\nvQAe0Lp161S9enV9/fXXioyM1Mcff6yuXbtq/Pjx2rdvn/kuddHR0ZoyZYqV0z6aHj16yNHRUe+8\n8461owAAAACAzWjWrJlSUlL00UcfZXrtww8/lLe3t7m8ux8eHh7y9/c3PzKWubds2VJ2dnb6/fff\nLV7PeJQrV858jH379ikqKkqTJ0/W5s2bdeXKFQ0YMCDL833wwQcWz9esWSNXV1fVqFEjy/ENGzaU\nk5OT1qxZY7H9/fffV0pKipo2bXrP9/jcc8/p+PHjKl26dJbvJeMmSo0aNdLHH3+sxMRE876nT5/W\n/v3773kO2AZmdgIPyNXVVQ0bNpS7u7v69eunfv36af78+Zo2bZrWrl2r7t27q379+ho/frx27Nhh\n7biPxGQyad68eWrTpo06d+6c5U8CAQAAAAAPpkWLFmrZsqVCQ0N1/PhxNWjQQAkJCVqzZo02bdqk\nd999N1tW11WoUEGjR4/W4MGD9eOPP6pp06YqWLCgTp8+rR07dqhPnz5q1qyZ/vrrL4WEhKhZs2Ya\nMWKETCaTFi1apKCgIAUGBqpXr14Wx128eLHS0tJUr149ffrpp1qyZIkiIiKyvDmRlD6zMywsTFOm\nTJGLi4vatGmj+Ph4jRs3To0bN1bbtm3v+V6GDx+u999/X02aNNHw4cNVpUoVJSYm6vjx49q3b582\nbdokSRo3bpzWrl2rVq1aaeTIkUpKSlJ4eDjL2PMTA8B9S0hIMAzDME6ePGkYhmEkJydbvB4dHW2U\nKVPGMJlMxjPPPJPr+XJK//79jSFDhlg7BgAAAIB86IcffrB2hBxx8+ZNY+zYsUalSpUMR0dHw9XV\n1WjcuLGxceNGi3FlypQxQkJCMu0vyQgPD7+vcy1fvtxo0KCB4ezsbLi4uBhVq1Y1Bg0aZJw+fdow\nDMPo0qWL4enpafz3v/+12K93796Gq6urceLECcMwDCM8PNyQZBw7dswICAgwChYsaBQvXtwYN26c\nkZqaat5v165dhiRj165d5m1paWnGrFmzjMqVKxsODg5GiRIljIEDBxpXr17N9L7Gjh2b5fu4fPmy\nMWzYMKNs2bKGg4ODUaxYMaNx48bG7NmzLcbt2LHDqF27tuHo6GiUK1fOePvtt41evXoZZcqUua/P\nKz+w1e+VYRiGyTAe07unALns77//Vrt27TR16lT5+/vLMAzzdURSUlLMF48+fvy4qlWrpgMHDqh+\n/frWjJxtLl26JF9fX+3cudO8HAIAAAAAckN8fLx8fX2tHQOSIiIiFBkZqeTkZIsbKOHxY8vfK67Z\nCdyncePG6bPPPtNrr72ma9euWVwwOeM3+dTUVEVFRalSpUo2U3RK6dd/iYiI0JAhQx7bu8sDAAAA\nAADbR9kJ3IerV69qzpw5WrJkic6dO6fg4GCdO3dOUnrBmcEwDDVp0kRr1661VtQc079/f125ciXT\nhagBAAAAAADyCpaxA/ehT58++uWXX/TZZ59p5cqVGjZsmLp376558+ZlGpuamqoCBQpYIWXO27dv\nn0JCQhQfHy8XFxdrxwEAAACQD9jyclvAWmz5e8UFFoB7uHTpkpYtW6YvvvhCktSjRw/Z29tryJAh\ncnBw0OTJk1WoUCGlpaXJzs7OZotOSWrSpImaNGmiqKgoTZ482dpxAAAAAAAALLCMHbiHcePGqUmT\nJqpXr55SU1NlGIY6d+6swYMH691339WqVaskSXZ2+ePrNH36dC1cuFA///yztaMAAAAAAABYYGYn\ncA9z5sxRQkKCJJlnbTo4OCg8PFxJSUkKCwtTWlqa+vXrZ82YucbHx0cjR47U8OHDtXnzZmvHAQAA\nAAAAMMsfU9GAR+Do6CgPDw+LbWlpaZKksLAwtWvXTq+99pq++eYba8SzimHDhunHH3/Uxx9/bO0o\nAAAAAAAAZpSdwEPIWLLu4eGhpUuXqnbt2nJ2drZyqtzj5OSkOXPmaOjQobp165a14wAAAAAAAEhi\nGTvwSNLS0lSoUCFt2LBBhQsXtnacXNW6dWv5+vpq9uzZGjNmjLXjAAAAAMC9GYZ0MU669JWUnCA5\nuEke9SXPRpLJZO10ALIBZSfwAAzDkOkffwBmzPDMb0VnhtmzZ6tBgwbq2bOnfHx8rB0HAAAAALKW\nliydXCr9MF26dSH9eVqyZOeQ/nDykqqNkir0Tn8O4LHFMnbgPv3www+6cuWKDMOwdpQ8o0KFChow\nYIBGjhxp7SgAAAAAkLXk69LOZ6Ujr0qJv0opiVJakiQj/Z8pienbj7wq7WyePj6HxcTEyGQyZfmI\njY3N8fP/0/r16xUdHZ1pe2xsrEwmkz7//PNczQM8KspO4D4NGjRIGzdutJjZCem1117T/v37tXfv\nXmtHAQAAAABLacnS7tbSpYNS6o27j029kb68fXeb9P1ywdq1axUXF2fxqF+/fq6cO8Odys769esr\nLi5OtWrVytU8wKNiGTtwH3bt2qUzZ86oZ8+e1o6S5zg7O2vGjBkaMmSIDh8+LHt7flsBAAAAkEec\nXCpdPiKl3eeNVdNuSZcPSyffkSr1z9lskmrXrq2KFSve19hbt27JyckphxP9T+HChdWwYcNsOZZh\nGEpOTpajo2O2HA+4G2Z2AvdgGIYmTJig8PBwirw76NKlizw8PLRw4UJrRwEAAACAdIaRfo3Oe83o\nvF3qjfT9rHgJs4wl5Bs3btTLL78sT09Pi/skfPzxx2rQoIEKFSokd3d3derUSSdOnLA4RuPGjRUQ\nEKDt27frySeflLOzs2rUqKGPPvrIPKZHjx5atWqVTp06ZV5Gn1G+3mkZ+7p169SgQQM5OzvL3d1d\nQUFBOnPmjMWYUqVKKTQ0VIsXL1aVKlXk6OioTz/9NLs/JiBLlJ3APcTGxurPP/9U9+7drR0lzzKZ\nTJo3b54iIyN18eJFa8cBAAAAgPS7rt+68HD73jqfvn8OS01NVUpKivmRmppq8fqgQYNkb2+vVatW\naenSpZKkLVu2qF27dvrXv/6lDz74QG+99ZaOHj2qxo0b648//rDY/6efflJYWJhGjBih9evXq3jx\n4urcubN+/fVXSVJkZKQCAwNVokQJ8zL6devW3THv/PnzFRQUpJo1a+rDDz/U22+/raNHjyogIEDX\nr1te63THjh2aO3euIiMjtW3bNlWvXj07PjLgnpimBtyFYRgaP368IiIiVKBAAWvHydOqV6+u4OBg\njR07lhmeAAAAAHLW4WHSX9/cfcyNM1LKA87qzJByQ4p7UXIudecx/6ot1c18rcsHUbVqVYvnTz/9\ntMVMyqeeekqLFi2yGDNu3DhVrlxZW7duNf89tUGDBqpatapmzZql6dOnm8devHhRn3/+ucqXLy9J\nqlWrlkqWLKm1a9dq1KhRqlChgjw9PeXk5HTPJevXrl3Ta6+9pj59+lhkqlevnqpWraqYmBgNHjzY\nvP3q1av6+uuv5eXl9YCfCvBoKDuBu/jkk090/fp1BQUFWTvKYyEiIkK+vr7q27ev/P39rR0HAAAA\nQH5mpEp62KXoxv/tn7M2bNigUqX+V6i6ublZvN6pUyeL59euXdPRo0cVHh5uMSGnYsWKatiwofbs\n2WMxvmrVquaiU5K8vb3l6emp33///YGz7t+/X9evX1dISIhSUlLM28uUKaNKlSpp7969FmXnU089\nRdEJq6DsBO4g41qdkZGRsrPjig/3w93dXZMnT9aQIUO0f/9+PjcAAAAAOeN+ZlQej5a+GS2lJT34\n8e2cpCrDpKpDH3zfB1CjRo273qDI29vb4vnly5ez3C5JJUqU0NGjRy22FS1aNNM4Jycn/f333w+c\n9cKF9EsCBAQE3FfWrDICuYGyE7iDzZs3KyUlJdNP0nB3oaGhWrhwoVasWKFevXpZOw4AAACA/Mqj\nvmTn8JBlp73kUS/7Mz0gk8lk8TyjvLz92pwZ2zw8PHIsS8axV6xYkWn5vZR5Vurt2YHcwrQrIAtp\naWnM6nxIdnZ2mjdvnl577TVdvXrV2nEAAAAA5FeejSSnh1xGXbB4+v55TOHChVW7dm198MEHSktL\nM2//5ZdfdODAATVt2vSBj+nk5KSbN2/ec1zjxo3l4uKikydPyt/fP9OjSpUqD3xuICfQ4gBZ2LBh\ng+zt7dWhQwdrR3ks1a9fX61bt9Ybb7xh7SgAAAAA8iuTSao2Sirg/GD7FXCWfEel758HTZw4UfHx\n8Wrfvr22bNmi1atXq1WrVvLw8NDw4cMf+HjVqlXThQsXtGjRIh08eFDfffddluPc3d01bdo0TZo0\nSQMGDNBHH32k3bt3a9WqVerTp4/ef//9R31rQLag7ARuk5aWpvDwcL3xxhtMu38EU6ZM0fLlyxUf\nH2/tKAAAAADyqwq9paJ10q/BeT/snKSidaUKL+dsrkfQrl07bd68WRcvXlSXLl00YMAA1axZU59/\n/rlKlCjxwMfr16+fgoKCNHr0aNWvX1/PP//8HccOGjRIGzZsUHx8vEJCQtSmTRtFRETIMAzVqlXr\nUd4WkG1MhmE87K3JAJv0/vvva/bs2YqLi6PsfERz5szRli1btH37dj5LAAAAAA8lPj5evr6+D3+A\n5OvS7jbS5cNS6o07jyvgnF50BnwsObg+/PmAx8Ajf6/yMGZ2Av+QmpqqiIgIZnVmk4EDB+rcuXPa\nsGGDtaMAAAAAyK8cXKXmO6U6sySX8pK9y//N9DSl/9PeRXItn/56850UncBjjruxA//w3nvvydPT\nUy1btrR2FJvg4OCgefPm6aWXXtJzzz0nZ+cHvFYOAAAAAGQHOwepUn+pYj/pYpx06aCUkiDZu6Xf\ntd2zYZ69RieAB8MyduD/pKQ+iiPzAAAgAElEQVSkyNfXV4sWLVKzZs2sHcemBAUFqVq1aoqIiLB2\nFAAAAACPGVtebgtYiy1/r1jGDvyfFStWqFSpUhSdOWDGjBmaP3++fvvtN2tHAQAAAAAANoyyE5CU\nnJysiRMn6o033rB2FJtUunRpDRs2TGFhYdaOAgAAAAAAbBhlJyApJiZGFStWVJMmTawdxWaNGDFC\nR48e1Y4dO6wdBQAAAAAA2CjKTuR7t27d0qRJkxQZGWntKDatYMGCmj17tl555RUlJSVZOw4AAAAA\nALBBlJ3I95YuXarq1aurUaNG1o5i89q3b6+yZctq3rx51o4CAAAAAABskL21AwDW9PfffysqKkob\nN260dpR8wWQyac6cOXrqqacUHBwsb29va0cCAAAAkJ8YhhQXJ331lZSQILm5SfXrS40aSSaTtdMB\nyAaUncjXFi1apLp168rf39/aUfKNypUrq3fv3hozZoyWLVtm7TgAAAAA8oPkZGnpUmn6dOnChfTn\nycmSg0P6w8tLGjVK6t07/TmAxxbL2JFv3bhxQ1OnTlVERIS1o+Q748aN086dO/XFF19YOwoAAAAA\nW3f9uvTss9Krr0q//iolJkpJSemzPJOS0p//+mv6682bp4/PBXFxcQoKClLJkiXl6OgoDw8PtWzZ\nUsuWLVNqamquZMhuGzdu1KxZszJt3717t0wmk3bv3p0t5zGZTHd85NTKzex+Dzl1TDCzE/nYggUL\n1KhRIz355JPWjpLvuLm5adq0aRoyZIi++uorFShQwNqRAAAAANii5GSpdWvp4EHp1q27j71xI315\ne5s20s6dOTrDMzo6WmFhYXr22Wc1bdo0lSlTRn/99Ze2b9+uAQMGyN3dXR07dsyx8+eUjRs3KjY2\nVmFhYTl+rtDQUPXv3z/T9ipVquT4ubNLnTp1FBcXp2rVqlk7ik2h7ES+dP36db355puKjY21dpR8\nKzg4WG+//baWLl2qfv36WTsOAAAAAFu0dKl05Mi9i84Mt25Jhw9L77wjZVGkZYe9e/cqLCxMgwcP\n1ty5cy1e69ixo8LCwpSYmPjI50lOTpa9vb1MWVyL9NatW3Jycnrkc1iTj4+PGjZsaO0YDyU1NVWG\nYahw4cKP7XvIy1jGjnzprbfeUkBAgGrUqGHtKPmWyWTSvHnzNH78eF2+fNnacQAAAADYGsNIv0bn\njRsPtt+NG+n7GUaOxJo6daqKFi2q6dOnZ/l6hQoV5OfnJ0mKiIjIsqwMDQ1V2bJlzc9/++03mUwm\n/ec//9GoUaNUsmRJOTk56cqVK4qJiZHJZNLevXvVtWtXubu7q0GDBuZ99+zZo+bNm8vNzU0uLi4K\nDAzUd999Z3G+gIAANW7cWLGxsapTp46cnZ1Vo0YNiyXjoaGhWrZsmc6ePWteUv7PjP80ePBgFS9e\nXMnJyRbbr1+/Ljc3N7322mt3/Qzvx5IlSzIta09NTdUzzzyjChUqKCEhQdL/PuNjx46pWbNmcnZ2\nlre3tyZMmKC0tLS7nsMwDM2ePVtVqlSRo6OjvL29NXjwYF27ds1inMlk0tixYzV16lSVK1dOjo6O\nOnbsWJbL2O/ns87w3nvvqWrVqipYsKBq1qypjz76SAEBAQoICHj4D84GUHYi37l27Zpmzpyp8PBw\na0fJ92rXrq3OnTtrwoQJ1o4CAABgNbf/ZR9ANomLS78Z0cM4fz59/2yWmpqq3bt3q1WrVipYsGC2\nH3/y5Mn66aeftGjRIm3YsMHiHCEhISpXrpzWrVunqVOnSpK2bt2q5s2by9XVVStXrtTq1auVkJCg\nJk2a6PTp0xbHPnnypIYOHaqwsDCtX79e3t7e6tKli37++WdJ0vjx49WmTRsVK1ZMcXFxiouL04YN\nG7LMOXDgQF24cCHT66tWrVJiYqL69u17z/dqGIZSUlIyPTL06dNHXbt2VZ8+fXT27FlJ0sSJExUX\nF6fVq1fLzc3N4njPP/+8WrRooY0bNyo4OFgTJ07UG2+8cdcMY8eOVVhYmFq2bKnNmzdr1KhRiomJ\nUdu2bTMVpTExMdq6datmzJihrVu3qmTJknc87r0+a0nasWOHQkJCVLVqVX344YcaMWKEhg0bpp9+\n+umen52tYxk78p25c+eqVatW8vX1tXYUKP0Pm2rVqqlv376qVauWteMAAADkul27dmn27NmaPHmy\n6tSpY+04wONh2DDpm2/uPubMmQef1Znhxg3pxRelUqXuPKZ2bSk6+oEOe/HiRd28eVNlypR5uFz3\nULx4cW3YsCHL2aBdunTJNJt06NChatq0qTZt2mTe1qxZM5UvX14zZ85U9D/e38WLF7V3715VqlRJ\nUvr1Jr29vfXBBx/o9ddfV4UKFVSsWDE5Ojrec2l2tWrV1LRpUy1cuFBBQUHm7QsXLlSrVq1Uvnz5\ne77XqKgoRUVFZdr+559/ytPTU5K0aNEi1apVSz169FBERIQmTZqkiRMnWsxszdC3b1+NGTNGktSq\nVSvzRKlhw4bJ3d090/jLly9r1qxZ6tWrl+bPny9JCgwMVLFixdSzZ09t2bJFHTp0MI83DEPbt29X\noUKFzNvi4+OzfG/3+qwlKTw8XNWqVbP49a5Zs6bq1q2rypUr3/Pzs2XM7ES+cuXKFc2ZM4dZnXmI\nh4eHIiMjNWTIEBk5tEwEAAAgLwsICFC7du3Url07de3a9Y5/+QXwgFJTH34pumGk7/+Yef7557Ms\nOiWpU6dOFs9PnDihkydPKiQkxGJmpLOzsxo1aqS9e/dajK9UqZK5fJMkLy8veXl56ffff3+orAMH\nDtSuXbt04sQJSdLBgwf19ddfZ3nToay8/PLLOnjwYKbHP4tJd3d3rV69Wvv27VNgYKCaNGmi0aNH\nZ3m8f5auktStWzddv34905L+DAcOHNCtW7fUo0ePTPvZ29trz549Ftufe+45i6Lzbu71WaempurQ\noUPq3Lmzxa93nTp1VK5cufs6hy1jZifylejoaLVr187iNw1YX9++fbVo0SKtWbNG3bt3t3YcAACA\nXOXo6KhBgwbppZde0vz589W0aVO1bdtW4eHhd7zeHZDv3c+MyuhoafRoKSnpwY/v5JQ+e3To0Aff\n9y48PDxUqFAhnTp1KluPm8Hb2/u+X7vwf0v8e/furd69e2caX7p0aYvnRYsWzTTGyclJf//998NE\nVadOnVSiRAktXLhQM2bM0Ntvv62SJUuqffv297W/t7e3/P397zmuYcOGqlKlin744QcNHTpUdnZZ\nz/srXrx4ls8zlsDfLuPeE7d/rvb29vLw8Mh0b4q7/drc7l6f9cWLF5WcnCwvL69M425/H/kRMzuR\nb1y/fl1vvfWWxo8fb+0ouE2BAgU0b948jRw5UtevX7d2HAAAAKtwdnbWqFGjdOLECT3xxBOqW7eu\nBg8erHPnzlk7GvB4ql9fcnB4uH3t7aV69bI3j9KLsICAAO3YsUO37uMO8RnX3Ey6rbC9dOlSluPv\nNKszq9c8PDwkSVOmTMlyhuTmzZvvme9RODg4qE+fPoqJidGFCxe0Zs0a9e7dW/b22TsvLzIyUidO\nnJCfn5+GDx+uq1evZjnu/PnzWT738fHJcnxGIfnHH39YbE9JSdGlS5fMn2+Gu/3aPChPT085ODiY\nC+t/uv195EeUncg3nJ2ddfDgwfu69gdy39NPP61mzZpp8uTJ1o4CAABgVUWKFNEbb7yh+Ph4OTo6\nqkaNGhozZkymWUIA7qFRIymLmW/3pXjx9P1zwJgxY3Tp0iWNHDkyy9d//fVXffvtt5JkvrbnP5dS\nX7lyRV988cUj56hSpYrKli2r77//Xv7+/pkeGXeEfxBOTk66efPmfY/v37+/rl69qq5du+rWrVv3\ndWOiB7Fv3z5FRUVp8uTJ2rx5s65cuaIBAwZkOfaDDz6weL5mzRq5urqqRo0aWY5v2LChnJyctGbN\nGovt77//vlJSUtS0adPseRNZKFCggPz9/fXhhx9aXA7u8OHD+vXXX3PsvI8LlrEj37Czs2MZUB43\nffp01axZUy+//DKXGgAAAPmel5eXZs2apbCwME2cOFGVK1fWsGHDNHTo0Ex3EQaQBZNJGjVKevXV\nB7tRkbNz+n7ZOBPvn5555hnzdzs+Pl6hoaEqXbq0/vrrL+3cuVNLlizR6tWr5efnp9atW6tIkSLq\n27evIiMjdevWLU2fPl2urq6PnMNkMumtt95Sx44dlZSUpKCgIHl6eur8+fP64osvVLp0aYWFhT3Q\nMatVq6bLly9rwYIF8vf3V8GCBVWzZs07jvfx8VH79u21YcMGtW/fXk888cR9n+vs2bM6cOBApu1l\nypSRt7e3/vrrL4WEhKhZs2YaMWKETCaTFi1apKCgIAUGBqpXr14W+y1evFhpaWmqV6+ePv30Uy1Z\nskQRERFZ3pxISp/ZGRYWpilTpsjFxUVt2rRRfHy8xo0bp8aNG6tt27b3/V4eRmRkpFq1aqVOnTqp\nX79+unjxoiIiIlSiRIk7LtXPL/L3uweQp3h7e2v06NEaNmyYtaMAAADkGaVKldLChQsVFxen+Ph4\nVapUSdHR0Q99nTwgX+ndW6pTJ/0anPfDyUmqW1d6+eUcjTVs2DB9/vnncnd314gRI/Tss88qNDRU\n8fHxWrhwofm6le7u7tqyZYvs7OwUFBSk1157TUOGDFGzZs2yJUebNm20d+9eJSYmqk+fPgoMDNSo\nUaP0xx9/qNFDzGzt06ePunXrptdff13169e/r+tvdu3aVZLu+8ZEGWJiYtSoUaNMj1WrVkmS+vXr\np5s3b2r58uXmJeRdu3ZV7969NXjwYP38888Wx9u0aZN27NihDh06aOXKlRo3btw9L4M3efJkzZo1\nS5988onatWunqVOn6sUXX9TWrVtzvHBs2bKlVq1apfj4eHXq1EnTpk3TzJkzVaJECRUpUiRHz53X\nmQxufwwgD0lKSpKfn59mzJihdu3aWTsOAABAnvPtt99q/PjxOnLkiCZMmKDQ0FA5POx1CYHHQHx8\nvHx9fR/+ANevS23aSIcP332Gp7NzetH58cdSNsycxP0JCQnR/v379csvv1hlRmJERIQiIyOVnJyc\n7dcLzW1nzpxRxYoVNXbs2HsWtY/8vcrDmNkJIE9xdHTUnDlzNGzYMGYrAAAAZMHPz0+bNm3S2rVr\ntWbNGlWrVk3vvfee0tLSrB0NyJtcXaWdO6VZs6Ty5SUXl/QZnCZT+j9dXNK3z5qVPo6iM1ccOHBA\nb7/9tt5//32FhYXl+6XXD+rmzZsaMGCAPvzwQ+3Zs0fvvvuuWrZsKWdnZ/Xp08fa8ayKmZ0A8qTn\nn39e9evX1+uvv27tKAAAAHnazp07NXbsWN28eVOTJk1Su3btsvWuv4C1ZesMNMOQ4uKkgwelhATJ\nzS39ru0NG+bYNTqRNZPJJFdXVwUFBWnhwoVWm1X5uM7sTEpK0r///W8dOHBAly5dkouLi5o0aaKo\nqKg73lTpn2x5ZidlJ4A86ZdfflH9+vX19ddfP9BFqgEAAPIjwzC0efNmjR07Vq6uroqKisq2a/oB\n1mbLpQxgLbb8vWKOMIA8qXz58ho4cKBGjhxp7SgAAAB5nslkUocOHXTs2DENGTJEffv2VYsWLfTl\nl19aOxoAALmKshNAnjVmzBjFxcVp9+7d1o4CAADw2AgODlZ8fLyCgoLUpUsXPf/88zp27Ji1YwEA\nkCsoOwHkWc7Ozpo5c6ZeeeUVpaSkWDsOAADAY8PBwUH9+vXTiRMn1LRpU7Vo0UI9evTQzz//bO1o\nAADkKMpOAHla586dVaxYMS1YsMDaUQAAAB47BQsW1PDhw/Xzzz+rSpUqatiwofr3768zZ85YOxoA\nADmCshNAnmYymTR37ly98cYb+vPPP60dBwAA4LHk5uam8ePH68cff5S7u7v8/Pz06quv8v9XAACb\nQ9kJIM+rXr26evTooddff93aUQAAAB5rHh4emjZtmr777jv9/fffqlq1qsLDw3X16lVrRwNyhWEY\nOn36tA4cOKA9e/bowIEDOn36tAzDsHY0ANmEshPAYyEiIkJbtmzRoUOHrB0FAADYsNDQUJlMJk2a\nNMli++7du2UymXTx4kUrJUsXExMjV1fXRz5OyZIl9dZbb+nQoUM6deqUKlWqpDfffFM3btzIhpRA\n3pOamqpDhw5p7ty5WrFihWJjY7V7927FxsZqxYoVmjt3rg4dOqTU1FRrRwXwiCg7ATwWihQpoqio\nKA0ePFhpaWnWjgMAAGxYwYIFNX369HyxxLtcuXKKiYnR7t279eWXX6pSpUr6z3/+o6SkJGtHA7JN\nUlKSli9fru3bt+vKlStKTk42l5qpqalKTk7WlStXtH37di1fvjxX/vuPiYmRyWTK8uHu7p4j5wwN\nDVXZsmVz5NgPy2QyKSIiwtoxYGMoO2FT/vrrL6v/tB05p1evXpKk5cuXWzkJAACwZc2aNVPZsmU1\nceLEO4754Ycf1LZtW7m5ucnLy0vdu3fXH3/8YX794MGDatWqlTw9PVW4cGE1btxYcXFxFscwmUxa\nsGCBOnbsKGdnZ1WuXFm7du3SmTNnFBgYKBcXF9WuXVtHjhyRlD679KWXXlJiYqK5FMmukqBatWpa\nt26dNm3apI8++khVq1bV8uXLmeWGx15qaqpWrVqls2fPKjk5+a5jk5OTdfbsWa1atSrX/ttfu3at\n4uLiLB6xsbG5cm7AVlF2wqZERETo3XfftXYM5BA7OzvNmzdPr7/+OteVAgAAOcbOzk5Tp07V22+/\nrZMnT2Z6/dy5c3rmmWdUo0YNffXVV4qNjdX169fVoUMH8wqUhIQE9ezZU/v27dNXX32l2rVrq02b\nNpl+MD9p0iR169ZNR48elb+/v7p3767evXtr4MCB+vrrr1WyZEmFhoZKkp566ilFR0fL2dlZ586d\n07lz5zRixIhsfe/+/v7atm2bYmJitGjRItWsWVPr16/neoZ4bH399dc6d+7cfZeXqampOnfunL7+\n+uscTpaudu3aatiwocXD398/V879KG7dumXtCMAdUXbCZty6dUurV69W586drR0FOahevXpq06aN\nIiMjrR0FAADYsDZt2ujpp5/W2LFjM722YMEC1apVS9OmTZOvr6/8/Py0fPlyHTx40Hx98WeffVY9\ne/aUr6+vqlatqnnz5qlgwYLatm2bxbFefPFFde/eXZUqVdLrr7+u8+fPKzAwUB07dlTlypU1atQo\nHTt2TBcvXpSjo6OKFCkik8mkEiVKqESJEtly/c6sPPPMM9q3b59mzpypSZMmqV69evr0008pPfFY\nMQxD+/fvv+eMztslJydr//79Vv3vPS0tTQEBASpbtqzFRI9jx46pUKFCGjlypHlb2bJl1aNHDy1e\nvFgVK1ZUwYIFVadOHe3ateue5zl37pxefPFFeXp6ysnJSX5+flq5cqXFmIwl93v37lXXrl3l7u6u\nBg0amF/fs2ePmjdvLjc3N7m4uCgwMFDfffedxTFSU1M1btw4eXt7y9nZWQEBAfr+++8f9uMB7oqy\nEzZj06ZN8vPzU/ny5a0dBTksKipKK1as0A8//GDtKAAAwIZNnz5da9euzXSDxMOHD2vv3r1ydXU1\nP5544glJMs8EvXDhgvr376/KlSurSJEicnNz04ULF/T7779bHMvPz8/878WLF5ck1axZM9O2Cxcu\nZP8bvAeTyaTWrVvr0KFDGj16tIYOHaqAgADt378/17MAD+PMmTNKTEx8qH0TExN15syZbE6UWWpq\nqlJSUiweaWlpsrOz08qVK5WQkKD+/ftLkm7evKlu3bqpevXqmjx5ssVx9uzZo1mzZmny5Mlas2aN\nnJyc1Lp1a/344493PHdiYqKaNm2qTz75RFFRUdq4caNq1qypnj17atGiRZnGh4SEqFy5clq3bp2m\nTp0qSdq6dauaN28uV1dXrVy5UqtXr1ZCQoKaNGmi06dPm/eNiIhQVFSUQkJCtHHjRrVq1UodOnTI\njo8QyMTe2gGA7LJ06VL17t3b2jGQC7y8vDR+/Hi98sor2rFjh0wmk7UjAQAAG1SvXj117txZo0eP\n1vjx483b09LS1LZtW82YMSPTPhnlZK9evXT+/HnNnj1bZcuWlZOTk5o3b57pxicODg7mf8/4f5qs\ntlnzBo12dnbq2rWrOnXqpBUrVig4OFg1atTQpEmT9OSTT1otF/K3bdu2WVwnNyvXrl174FmdGZKT\nk7VhwwYVLlz4jmNKlCih55577qGOn6Fq1aqZtrVt21ZbtmxRqVKltGTJEr3wwgsKDAxUXFycTp06\npSNHjsjR0dFin/Pnz2v//v0qXbq0JKl58+YqU6aMJk2apBUrVmR57nfffVcnTpzQrl27FBAQIElq\n3bq1zp8/r3Hjxql3794qUKCAeXyXLl00ffp0i2MMHTpUTZs21aZNm8zbmjVrpvLly2vmzJmKjo7W\nX3/9pdmzZ6tfv37m3zdbtWqlAgUKaMyYMQ/+oQH3wMxO2IRTp07p0KFD6tSpk7WjIJcMHDhQ58+f\n1/r1660dBQAA2LCoqCjt27fPYvl5nTp19P3336tMmTKqWLGixcPNzU2S9Pnnn2vIkCFq27atqlev\nLjc3N507d+6R8zg6OlrtpkH29vZ66aWX9NNPP6l169Zq06aN/v3vf9915hhgTY/6Q4Lc+CHDhg0b\ndPDgQYtHdHS0+fVOnTqpf//+GjBggBYvXqx58+apcuXKmY7TsGFDc9EpSW5ubmrbtm2mG6P90969\ne+Xj42MuOjP06NFDf/75Z6aVdLf/ffvEiRM6efKkQkJCLGamOjs7q1GjRtq7d6+k9KX3iYmJCgoK\nsti/W7dud/9wgIfEzE7YhGXLlqlbt24qVKiQtaMgl9jb22vevHkKDQ1V69at5ezsbO1IAADABlWs\nWFH9+vXTnDlzzNsGDRqkxYsX69///rdGjx6tYsWK6ZdfftEHH3ygmTNnys3NTZUrV9bKlSvVoEED\nJSYmatSoUZlmYj2MsmXL6u+//9aOHTv05JNPytnZOdf/P8jJyUmDBw/WSy+9pHnz5qlx48bq0KGD\nJkyYoDJlyuRqFuRf9zOj8sCBA4qNjX2oHxAUKFDAfMOgnFSjRg1VrFjxrmN69eqlhQsXysvLS8HB\nwVmOyZhVfvu2s2fP3vG4ly9flre3d6btJUqUML/+T7ePzbi8Ru/evbNcZZlRvmb8oOf2jFllBrID\nMzthEyZMmKC33nrL2jGQywICAtSgQQNNmzbN2lEAAIANmzBhguzt/zdPpGTJktq/f7/s7Oz03HPP\nqXr16ho0aJCcnJzk5OQkSXrnnXd0/fp11a1bV926ddPLL7+ssmXLPnKWp556Sv/v//0/de/eXcWK\nFcu0pDQ3ubi4aMyYMTpx4oS8vb1Vp04dvfLKK/dcWgzkFh8fH9nZPVztYWdnJx8fn2xO9OBu3Lih\nl19+WTVq1NDVq1fvuOz7/PnzWW6723soWrRolt/XjG0eHh4W22+/fFjG61OmTMk0O/XgwYPavHmz\npP+VpLdnzCozkB2Y2QngsTZjxgw9+eSTCg0NVbly5awdBwAAPOZiYmIybfPy8lJCQoLFtkqVKmnd\nunV3PE6tWrX05ZdfWmzr2bOnxfPb7/Ts6emZaVvVqlUzbVuwYIEWLFhwx3PnNnd3d02aNEmvvPKK\npkyZourVq6t///4aOXKk/vWvf1k7HvKxUqVKycXFRVeuXHngfV1dXVWqVKkcSPVghg4dqrNnz+qb\nb77Rli1bNGzYMAUGBmaa2XrgwAGdPn3afLO0hIQEbd26VW3btr3jsZs2baq1a9dq//79evrpp83b\nV69eLS8vL/n6+t412/9n777jqqz//48/DhsEJzkRFRFBCEXNrTlypKFmIrhRU8vEFc4cuMrSzFLr\nYx/FkQO03JZ758iBWyP7aCpq7lIcrPP7o6/8IrMcwAWc5/12O3+c61zjeR3h5uF1Xu/3u2zZspQs\nWZLjx4//49yb/v7+5MqVi8WLF1O/fv3U7VFRUf94fpFnpWKniGRrxYsXp3///gwYMIBly5YZHUdE\nRETEYhUsWJBPPvmE/v37M3bsWLy8vOjfvz99+vTB2dn5X49/uAK1SHoxmUzUrFmT9evXP9VCRba2\nttSoUSNTFkI9dOgQ165de2R75cqVWbFiBTNnzuSrr77Cw8ODPn36sH79ekJDQzly5AgFCxZM3b9Q\noUI0atSIiIgI7O3t+fDDD4mPj0+zuNpfhYaG8umnn9KqVSvGjx+Pm5sbCxYsYMOGDcyYMSPN4kR/\nx2QyMX36dFq0aEFCQgJt2rTB1dWVX3/9lV27duHu7s6AAQPImzcv/fv3Z/z48bi4uNCoUSP27dvH\nrFmznv2NE/kHKnaKSLb37rvv4ufnx/r162nUqJHRcUREREQsmru7O//9738ZOHAgo0aNokyZMpw5\ncwZ7e/u/LR5dvnyZRYsWERMTQ8mSJRkxYkSaFelFnkdAQABHjx4lLi7uiebutLa2pkiRIgQEBGRC\nOggKCvrb7efOnaN79+60b9+eDh06pG6fPXs2/v7+hIaGsmbNmtTfqZdffpm6desybNgwLly4QLly\n5fjuu+/+djGjh3LlysW2bdsYNGgQQ4YM4fbt25QtW5avvvoqzTX/SdOmTdm+fTvjx4/nzTff5N69\nexQuXJhq1aoRHBycul9ERARms5mZM2cybdo0qlatyqpVq/D19X2i64g8DZP5r2MiRESyoVWrVjFw\n4ECOHDmSLpP/i4iIiEj6OH/+PG5ubn9b6ExJSaF169YcOHCA4OBgdu3aRWxsLNOnTycoKAiz2Zwp\n3XWStZ08efJfh1T/k4SEBBYsWMClS5f+scPT1taWIkWK0L59+2z1N0XJkiWpVasW8+fPNzqKZCPP\n+3uVlWmMgFiE0NBQXnvttec+j5+fHxEREc8fSNLda6+9hoeHB5999pnRUURERETkT4oXL/7YguXF\nixc5ceIEw4cP56OPPg0oDVEAACAASURBVGLnzp28++67TJs2jbt376rQKenCzs6OTp060ahRI/Lm\nzYutrW3qEG1ra2tsbW3Jly8fjRo1olOnTtmq0Ckij9IwdskStm7dSr169R77et26ddmyZcszn//T\nTz99ZGJ3yVlMJhNTpkyhRo0atG/fPnXFPxERERHJuooUKULlypXJmzdv6jZ3d3d+/vlnDh8+TPXq\n1UlKSmLu3Ll069bNwKSS3VlbW1O5cmUqVarEhQsXiIuLIyEhATs7O4oVK/bY7mMRyX7U2SlZQo0a\nNbh06dIjjxkzZmAymejVq9cznTcpKQmz2UyePHnSfICSnMnLy4s333yTwYMHGx1FRERERP7F3r17\n6dChAydPniQ4OJg+ffqwc+dOpk+fjoeHB/nz5wfg6NGjvPXWW5QoUULDdOW5mUwmihcvTrVq1ahT\npw7VqlX7x+7j7ODs2bP63RD5ExU7JUuws7OjcOHCaR43b95k4MCBDBs2LHXS5ri4OEJCQsiXLx/5\n8uWjWbNm/PTTT6nniYiIwM/Pjzlz5lC6dGns7e2Jj49/ZBh73bp16dWrF8OGDcPV1ZWCBQsSHh5O\nSkpK6j5XrlyhRYsWODo6UqJECSIjIzPvDZFnNnz4cDZv3sz3339vdBQREREReYx79+5Rv359ihYt\nypQpU1ixYgXr1q0jPDycBg0a8MEHH1C2bFngjwVmEhMTCQ8Pp3///nh6erJ27VqD70BERLIqFTsl\nS7p16xYtW7bk5ZdfZuzYsQDcvXuXevXq4eDgwLZt29i9ezdFihThlVde4e7du6nHnjlzhoULF7Jk\nyRIOHz6Mg4PD315jwYIF2NjYsGvXLqZNm8aUKVOIjo5OfT00NJTTp0+zceNGli9fzrx58zh79myG\n3rc8P2dnZz766CN69+79RKstioiIiEjmW7RoEX5+fgwbNozatWsTGBjI9OnTuXjxIm+99RY1a9YE\nwGw2pz7CwsKIi4vjtddeo2nTpvTv3z/N3wEiIiKgYqdkQSkpKbRr1w5ra2vmz5+fOpwgKioKs9nM\n7Nmz8ff3x9vbmxkzZnDnzh1Wr16denxCQgJfffUVFStWxM/PDxubv5+atly5cowZMwYvLy/atGlD\nvXr12LRpEwCxsbF89913fPnll9SsWZOAgADmzp3LvXv3Mv4NkOfWtm1bXFxc+O9//2t0FBERERH5\nG4mJiVy6dInff/89dVuxYsXImzcvBw4cSN1mMpkwmUyp8+9v2rSJ06dPU7ZsWerVq4eTk1OmZxcR\nkaxNxU7JcoYNG8bu3btZsWIFuXPnTt1+4MABzpw5g4uLC87Ozjg7O5MnTx5u3rzJzz//nLqfm5sb\nhQoV+tfr+Pv7p3letGhRrly5AsDJkyexsrKiSpUqqa+XKFGCokWLPu/tSSYwmUxMnTqVkSNHcv36\ndaPjiIiIiMhfvPzyyxQuXJiJEycSFxfHsWPHWLRoERcuXKBMmTLAH12dD6eZSk5OZseOHXTq1Inf\nfvuNb775hubNmxt5CyIikkVpNXbJUqKjo5k0aRJr1qxJ/ZDzUEpKChUqVCAqKuqR4x5OXg6QK1eu\nJ7qWra1tmucmkyn1w5RWbs/+ypcvT1BQECNGjODzzz83Oo6IiIiI/Im3tzezZ8/m7bffpnLlyhQo\nUID79+8zaNAgypYtS0pKClZWVqmjvD755BOmTp1KnTp1+OSTT3B3d8dsNmfrRWVERCRjqNgpWcah\nQ4fo2rUrEyZMoHHjxo+8XrFiRRYtWoSrq2uGr6zu4+NDSkoK+/bto0aNGgCcO3eOixcvZuh1JX2N\nHTsWX19fxo4dS4ECBYyOIyIiIiJ/4uvry/bt24mJieH8+fNUqlSJggULApCUlISdnR03btxg9uzZ\njBkzhtDQUCZOnIijoyOACp3yTMxmM7sv7OaHuB+4/eA2LvYuVClWhepu1fUzJZJDqNgpWcK1a9do\n2bIldevWpUOHDly+fPmRfdq3b8+kSZNo0aIFY8aMwd3dnfPnz7NixQreeuutRzpBn0fZsmVp0qQJ\nPXv25Msvv8TR0ZEBAwakfrCS7CF//vycP38ea2tro6OIiIiIyGMEBAQQEBAAkDrSys7ODoB+/fqx\nZs0ahg8fTp8+fXB0dEzt+hR5GonJicyKmcVH33/ElfgrJKYkkpiciK21LbZWthTMVZBBNQfRLaAb\ntta2/35CEcmy9D+EZAlr1qzhl19+4dtvv6VIkSJ/+3BycmL79u14eHgQFBSEt7c3nTt35ubNm+TL\nly/dM82ZM4dSpUpRv359AgMDadeuHSVLlkz360jGsra21je0IiIiItnEwyLmL7/8Qp06dVi2bBlj\nxoxhyJAhqYsR/V2hU9NQyT+5k3CH+vPq8+76dzlz6wzxifEkJCdgxkxCcgLxifGcuXWGd9e/S4N5\nDbiTcCdD88yZMyd18a2/PjZu3AjAxo0bMZlM7Ny5M8NydOjQAU9Pz3/d7/Lly4SFheHl5YWjoyOu\nrq5UqlSJvn37kpiY+FTXPH36NCaTifnz5z913s2bNxMREZGu55ScyWTW/woiIjx48AB7e3ujY4iI\niIjI/1m0aBHu7u7UrFkT4LEdnWazmY8//pjChQvTtm1bjerJgU6ePImPj88zHZuYnEj9efXZF7eP\nB8kP/nV/e2t7qhSrwqZOmzKsw3POnDl06dKFJUuW4Obmlua1cuXKkTt3bn7//XdOnDiBr68vLi4u\nGZKjQ4cO7Nmzh9OnTz92n1u3buHv74+dnR3h4eGULVuWGzduEBMTw4IFCzh69CjOzs5PfM3Tp09T\npkwZvvrqKzp06PBUeYcPH8748eMf+XLjwYMHxMTE4Onpiaur61Od05I9z+9VVqdh7CJi0VJSUtiy\nZQsHDx6kU6dOFCpUyOhIIiIiIgK0bds2zfPHDV03mUxUrlyZ9957jwkTJjBu3DhatGih0T0CwKyY\nWRy8dPCJCp0AD5IfcODSASJjIulZuWeGZqtQocJjOytz585NtWrVMvT6T2Lx4sWcP3+eY8eO4evr\nm7r9jTfeYOzYsVni98ze3j5LvFeSdWgYu4hYNCsrK+7evcvWrVvp27ev0XFERERE5BnUrVuXnTt3\n8uGHHxIREUHVqlXZsGGDhrdbOLPZzEfff8TdxLtPddzdxLt89P1Hhv78/N0w9lq1alG3bl3Wr19P\nQEAATk5O+Pn5sXLlyjTHxsbG0qFDB0qWLImjoyOlS5fmnXfe4datW0+d48aNGwAULlz4kdf+WuhM\nSEhg2LBhlChRAjs7O0qWLMnIkSP/dah7rVq1eOWVVx7Z7ubmxptvvgn8/67Oh9c1mUzY2PzRv/e4\nYexz587F398fe3t7XnjhBTp37syvv/76yDVCQ0NZsGAB3t7e5MqVi5deeoldu3b9Y2bJ2lTsFBGL\nlZCQAEBgYCBvvPEGixcvZsOGDQanEhEREZFnYTKZaNasGQcPHiQ8PJzevXtTv359FS0s2O4Lu7kS\nf+WZjv01/ld2X9idzonSSk5OJikpKfWRnJz8r8fExsYyYMAAwsPDWbp0KYUKFeKNN97gzJkzqfvE\nxcVRokQJPv30U9atW8d7773HunXreO211546Y5UqVQBo06YN69evJz4+/rH7dujQgYkTJ9KlSxdW\nr15Np06deP/99+nWrdtTX/ev3nrrLUJDQwHYvXs3u3fv5vvvv3/s/p9//jmhoaG8+OKLLF++nPHj\nx7NmzRrq1q3L3btpi99btmzhs88+Y/z48URFRZGQkMBrr73G77///ty5xRgaxi4iFicpKQkbGxvs\n7OxISkpi8ODBzJo1i5o1az71BNsiIiIikrVYWVnRpk0bWrVqxbx582jbti3+/v6MGzeO8uXLGx1P\n0km/tf04dPnQP+5z4fcLT93V+dDdxLt0WtYJt9xuj92nQuEKTGky5ZnOD+Dt7Z3mec2aNf91QaJr\n166xc+dOPDw8AChfvjxFixZlyZIlDBo0CIB69epRr1691GNq1KiBh4cH9erV4+jRo7z44otPnLF+\n/fqMHDmS999/n82bN2NtbU1AQACBgYH069eP3LlzA3D48GGWLFnC2LFjGT58OACNGjXCysqK0aNH\nM2TIEMqVK/fE1/0rNzc3ihUrBvCvQ9aTkpIYNWoUDRo0YMGCBanbvby8qFevHnPmzKFXr16p2+/c\nucP69evJkycPAC+88ALVq1dn7dq1tGnT5pkzi3HU2SkiFuHnn3/mp59+Akgd7jB37lxKlCjB8uXL\nGTFiBJGRkTRp0sTImCIiIiKSTmxsbOjatSuxsbE0bNiQxo0b07ZtW2JjY42OJpkkOSUZM882FN2M\nmeSUf++0fB7Lli1j3759qY9Zs2b96zHe3t6phU6AIkWK4Orqyrlz51K3PXjwgHHjxuHt7Y2joyO2\ntrapxc8ff/zxqXOOHj2aX375hf/+97906NCBq1evMmrUKPz8/Lh69SoA27ZtA3hk0aGHzx++nhlO\nnDjBtWvXHslSt25dihUr9kiWmjVrphY6gdRi8J/fU8le1NkpIhZhwYIFLFq0iJMnTxITE0NYWBjH\njh2jXbt2dO7cmfLly+Pg4GB0TBERERFJZ/b29vTp04euXbvy2WefUbNmTVq2bMnIkSMpXry40fHk\nGT1JR+WUPVMYvHEwCckJT31+e2t7+lXrR99qGTevv5+f32MXKHqc/PnzP7LN3t6e+/fvpz4fNGgQ\nX3zxBREREVSrVg0XFxd++eUXgoKC0uz3NIoWLcqbb76ZOofmp59+Sr9+/fj444+ZMGFC6tyeRYoU\nSXPcw7k+H76eGR6X5WGev2b563tqb28P8MzvlRhPnZ2S5ZnNZn777TejY0g2N3ToUC5evEilSpV4\n+eWXcXZ2Zt68eYwbN46qVaumKXTeunUrU795FBEREZGM5+zszLBhw4iNjaVgwYJUqFCBfv36ceXK\ns83pKFlflWJVsLWyfaZjbaxseKnYS+mcKHNERUXRtWtXhg0bRv369XnppZfSdC6mh759+5I7d25O\nnDgB/P+C4eXLl9Ps9/B5gQIFHnsuBweH1PUUHjKbzdy8efOZsj0uy8Nt/5RFcgYVOyXLM5lMqfOA\niDwrW1tbPv/8c2JiYhg8eDAzZsygefPmj3yLt3btWvr370+rVq3YtGmTQWlFREREJKPky5eP8ePH\nc+LECcxmMz4+PgwfPvyZVqqWrK26W3UK5ir4TMcWci5Edbfq6Zwoc9y7dw9b27RF3tmzZz/TuS5d\nuvS3CydduHCB27dvp3ZPvvzyy8AfhdY/ezhnZp06dR57jRIlSvDjjz+SlJSUum3Lli2PLCT0sOPy\n3r17/5i5XLlyuLq6PpJl27ZtxMXFpWaVnEvFTskWTCaT0REkB2jfvj3lypUjNjaWEiVKAH98Ywh/\nfMM3ZswY3nvvPa5fv46fnx+dOnUyMq6IiIiIZKBChQrx6aefcvDgQS5dukSZMmWYMGHCP642LdmL\nyWRiUM1BONk6PdVxTrZODKoxKNv+Hdq4cWMiIyP54osvWL9+Pd27d+eHH354pnPNnTsXDw8PRo8e\nzXfffcfWrVv58ssvqV+/Pg4ODqkL/ZQvX56goCBGjBjB2LFj2bBhAxEREYwbN46OHTv+4+JEISEh\nXLlyha5du7Jx40ZmzJjBO++8g4uLS5r9Hp5j0qRJ7N27lwMHDvzt+WxsbBg9ejRr166lc+fOrF27\nlpkzZxIUFIS3tzedO3d+pvdCsg8VO0XEokRGRnLkyBHi4uKA/19IT0lJITk5mdjYWMaPH8+2bdtw\ndnYmIiLCwLQiIiIiktFKlCjBrFmz2LlzJzExMXh6ejJ16lQePHhgdDRJB90CulGxSEXsre2faH97\na3sqFalE14CuGZws43z++ec0a9aMoUOHEhwczP3799OsSv40AgMDef3111m2bBnt27enYcOGRERE\nUKFCBXbt2kX58uVT950/fz7h4eHMnDmTpk2bMmfOHIYOHfqvCy81bNiQ6dOns2vXLgIDA/nqq69Y\nuHDhIyM8W7RoQc+ePfnss8+oXr06VatWfew5e/XqxZw5c4iJiaFFixYMGTKEV199la1bt+Lk9HTF\nb8l+TOaHbU0iIhbi559/pmDBgsTExKQZTnH16lWCg4OpUaMG48aNY9WqVbRq1YorV66QL18+AxOL\niIiISGaJiYlhxIgRHDt2jFGjRtGxY0dsbLS2r5FOnjyJj4/PMx9/J+EOTRc05cClA9xNvPvY/Zxs\nnahUpBLftv8WZzvnZ76eSHbwvL9XWZk6O0XE4nh4eNCvXz8iIyNJSkpKHcr+wgsv0KNHD9atW8fV\nq1cJDAwkLCzsscMjRERERCTnCQgIYPXq1SxYsIA5c+bg5+fHkiVLSElJMTqaPCNnO2c2ddrE5EaT\n8cjrQS7bXNhb22PChL21Pblsc+GRz4PJjSazqdMmFTpFsjl1dkqW8PDHMLvOiSLZzxdffMHUqVM5\nePAgDg4OJCcnY21tzWeffca8efPYsWMHjo6OmM1m/VyKiIiIWCiz2cyGDRsYNmwYKSkpjB8/niZN\nmujzYSZLzw40s9nM7gu72Re3j9sJt3Gxc6FKsSpUc6umf1exKDm5s1PFTsmSHhaYVGiSjOTp6Umn\nTp3o3bs3+fPnJy4ujsDAQPLnz8/atWs1XElEREREgD/+Plm2bBkjRowgf/78jB8//h9Xl5b0lZOL\nMiJGycm/VxrGLob74IMPGDx4cJptDwucKnRKRpozZw5ff/01zZo1o02bNtSoUQN7e3umT5+eptCZ\nnJzMjh07iI2NNTCtiIiIiBjFZDLRqlUrjhw5Qo8ePQgNDaVJkyaa7khEJAtSsVMMN23aNDw9PVOf\nr1mzhi+++IJPPvmELVu2kJSUZGA6yclq1arFzJkzqV69OlevXqVLly5MnjwZLy8v/tz0fubMGRYs\nWMCQIUNISEgwMLGIiIiIGMna2pqOHTty6tQpWrRoQfPmzWndujUnTpwwOpqIiPwfDWMXQ+3evZsG\nDRpw48YNbGxsCA8PZ968eTg6OuLq6oqNjQ2jRo2iefPmRkcVC5CSkoKV1d9/B7R161YGDBhA5cqV\n+fLLLzM5mYiIiIhkRXfv3mX69OlMnDiRpk2bMmrUKEqVKmV0rBzn5MmTeHt7a+SfSDoxm82cOnVK\nw9hFMsLEiRMJCQnBwcGBxYsXs2XLFqZPn05cXBwLFiygTJkytG/fnsuXLxsdVXKwhytrPix0/vU7\noOTkZC5fvsyZM2dYtWoVv//+e6ZnFBEREZGsx8nJiYEDB/LTTz9RokQJKleuzDvvvMOlS5eMjpaj\n2Nracu/ePaNjiOQY9+7dw9bW1ugYGUbFTjHUrl27OHz4MCtXrmTq1Kl06tSJtm3bAuDn58eECRMo\nVaoUBw8eNDip5GQPi5y//vorkHau2AMHDhAYGEj79u0JDg5m//795M6d25CcIiIiIpI15cmTh9Gj\nR3Pq1CkcHR3x8/Nj8ODBXL9+3ehoOULBggWJi4vj7t27jzQmiMiTM5vN3L17l7i4OAoWLGh0nAyj\npYbFMHfu3GHAgAEcOnSIQYMGcf36dSpUqJD6enJyMoULF8bKykrzdkqGO3v2LO+++y4TJkygTJky\nxMXFMXnyZKZPn06lSpXYuXMn1atXNzqmiIiIiGRhL7zwApMmTaJfv36MGzeOsmXL0rdvX/r164eL\ni4vR8bKth80GFy9eJDEx0eA0Itmbra0thQoVytFNPJqzUwxz4sQJypUrR1xcHD/88ANnz56lYcOG\n+Pn5pe6zfft2mjZtyp07dwxMKpaiSpUquLq60rp1ayIiIkhMTGTcuHF069bN6GgiIiIikg2dPn2a\niIgINmzYwODBg3n77bdxdHQ0OpaISI6mYqcY4vz587z00ktMnTqVoKAggNRv6B7OG3Ho0CEiIiLI\nmzcvc+bMMSqqWJDTp0/j5eUFwIABAxg+fDh58+Y1OJWIiIiIZHfHjh1jxIgR7N+/nxEjRtClS5cc\nPV+eiIiRNGenGGLixIlcuXKF0NBQxo4dy+3bt7G1tU2zEvapU6cwmUwMHTrUwKRiSTw9PRk2bBju\n7u68//77KnSKiIiISLrw8/Nj2bJlfP311yxZsgQfHx8WLlyYulCmiIikH3V2iiFcXFxYuXIl+/fv\nZ+rUqQwePJh33nnnkf1SUlLSFEBFMoONjQ3/+c9/ePPNN42OIiIiIiI50ObNm3nvvfeIj49n3Lhx\nBAYGplkkU0REnp2qSJLpli5dSq5cuahXrx7dunWjTZs29OnTh549e3LlyhUAkpKSSE5OVqFTDLF1\n61ZKlSqllR5FREREJEPUr1+fXbt28f777zNixAiqV6/O5s2bjY4lIpIjqLNTMl2tWrWoVasWEyZM\nSN02Y8YMPvjgA4KCgpg4caKB6URERERERDJPSkoKixcvZsSIEbi7uzN+/HiqVatmdCwRkWxLxU7J\nVL///jv58uXjp59+wsPDg+TkZKytrUlKSuLLL78kPDycBg0aMHXqVEqWLGl0XBERERERkUyRmJjI\n3LlzGT16NBUrVmTs2LH4+/sbHUtEJNvRGGHJVLlz5+bq1at4eHgAYG1tDfwxR2KvXr2YO3cux44d\no0+fPty9e9fIqCJpmM1mkpOTjY4hIiIiIjmUra0tb775Jj/99BP16tWjUaNGtG/fntOnTxsdTUQk\nW1GxUzJd/vz5H/taUFAQkydP5tq1azg5OWViKpF/Fh8fT/Hixbl48aLRUUREREQkB3NwcKBfv36c\nPn2acuXKUa1aNSZMmKCV20VEnpCGsUuWdPPmTfLly2d0DJE0hg0bxrlz55g/f77RUURERETEQty4\ncYP//e9/VK5c2egoIiLZgoqdYhiz2YzJZDI6hsgTu3PnDj4+PixatIhatWoZHUdERERERERE/kLD\n2MUwZ8+eJSkpyegYIk/M2dmZiRMnEhYWpvk7RURERERERLIgFTvFMG3btmXt2rVGxxB5KsHBweTJ\nk4cvv/zS6CgiIiIiIiIi8hcaxi6GOH78OI0aNeKXX37BxsbG6DgiT+XIkSO88sornDx5kgIFChgd\nR0RERERERET+jzo7xRCRkZF07txZhU7Jlvz9/QkODmb48OFGRxERERERERGRP1Fnp2S6hIQE3Nzc\n2LVrF56enkbHEXkmN2/exMfHh++++46AgACj44iIiIiIiIgI6uwUA6xatQofHx8VOiVby5cvH2PH\njiUsLAx9ZyQiIiIiIiKSNajYKZkuMjKSbt26GR1D5Ll17dqV+/fvs2DBAqOjiIiIiIiIiAgaxi6Z\nLC4ujhdffJELFy7g5ORkdByR57Znzx7eeOMNTp06hYuLi9FxRERERERERCyaOjslU82ZM4egoCAV\nOiXHqFatGg0bNmTs2LFGRxERERERERGxeOrslEyTkpJCmTJlWLRoEVWqVDE6jki6uXz5Mn5+fnz/\n/feULVvW6DgiIiIiYsESExM5evQoFStWNDqKiIgh1NkpmWb79u04OTnx0ksvGR1FJF0VLlyYYcOG\n0bdvXy1WJCIiIiKGa926Ndu3bzc6hoiIIVTslEwza9YsunXrhslkMjqKSLoLCwvj3LlzrFy50ugo\nIiIiImLBbG1tGTVqFMOHD9cX8SJikTSMXTLFrVu3KFmyJKdPn8bV1dXoOCIZYuPGjfTo0YPjx4/j\n6OhodBwRERERsVBJSUn4+voybdo0GjZsaHQcEZFMpc5OyRSLFi2iYcOGKnRKjvbKK68QEBDApEmT\njI4iIiIiIhbMxsaG0aNHM2LECHV3iojFUbFTMkVkZCTdunUzOoZIhvv444+ZMmUKv/zyi9FRRERE\nRMSCtWnThvj4eNasWWN0FBGRTKVip2S4I0eOcPnyZQ2fEItQsmRJ+vTpQ3h4uNFRRERERMSCWVlZ\nMWbMGEaOHElKSorRcUREMo2KnZLhZs2aRWhoKNbW1kZHEckUgwYNYv/+/WzatMnoKCIiIiJiwVq2\nbInJZGLZsmVGRxERyTRaoEgy1IMHD3Bzc2Pv3r14eHgYHUck0yxbtozhw4dz6NAhbG1tjY4jIiIi\nIiIiYhHU2SkZasWKFfj7+6vQKRanZcuWFCtWjGnTphkdRURERERERMRiqLNTMlTjxo3p3Lkz7dq1\nMzqKSKY7deoUtWrV4vjx4xQqVMjoOCIiIiIiIiI5noqdkmF++eUXKlasyIULF3B0dDQ6joghwsPD\nuX79OrNnzzY6ioiIiIiIiEiOp2HskmHmzJlDSEiICp1i0UaOHMm6devYs2eP0VFEREREREREcjwV\nOyVDpKSkMHv2bLp162Z0FBFD5c6dmwkTJhAWFkZKSorRcURERETEQkVERODn52d0DBGRDKdip2SI\nzZs3ky9fPipWrGh0FBHDdejQAVtbWyIjI42OIiIiIiLZSGhoKK+99lq6nCs8PJxt27aly7lERLIy\nFTslQ8yaNYuuXbsaHUMkS7CysmLatGkMHz6cmzdvGh1HRERERCyQs7MzBQoUMDqGiEiGU7FT0t2N\nGzf47rvvaN++vdFRRLKMihUr0qJFC0aNGmV0FBERERHJhvbt20ejRo1wdXUld+7c1KpVi927d6fZ\nZ8aMGXh5eeHg4MALL7xA48aNSUpKAjSMXUQsh4qdku4WLlzIq6++Sv78+Y2OIpKljB8/nqioKI4e\nPWp0FBERERHJZm7fvk3Hjh3ZsWMHP/zwAxUqVKBp06Zcu3YNgP379/POO+8watQofvzxRzZu3EiT\nJk0MTi0ikvlsjA4gOc+sWbOYOHGi0TFEshxXV1dGjRpFWFgYW7ZswWQyGR1JRERERLKJ+vXrp3k+\ndepUvvnmG9auXUuHDh04d+4cuXLlonnz5ri4uFCiRAnKly9vUFoREeOos1PS1cGDB7l58+Yj/xGL\nyB969uzJzZs3Wbx4sdFRRERERCQbuXLlCj179sTLy4s8efLg4uLClStXOHfuHAANGzakRIkSlCpV\nivbt2zN37lxuIpfk/QAAIABJREFU375tcGoRkcynYqekq61bt9KlSxesrPSjJfJ3bGxsmDp1KuHh\n4cTHxxsdR0RERESyic6dO7Nv3z4++eQTdu3axaFDh3BzcyMhIQEAFxcXDh48yOLFi3F3d+eDDz7A\n29ubixcvGpxcRCRzqSIl6ertt99m0KBBRscQydLq1KlD7dq1ef/9942OIiIiIiLZxM6dOwkLC6NZ\ns2b4+vri4uLCpUuX0uxjY2ND/fr1+eCDDzhy5Ajx8fGsXr3aoMQiIsbQnJ2SrhwdHY2OIJItTJw4\nEX9/f7p06YKnp6fRcUREREQki/Py8mL+/PlUrVqV+Ph4Bg0ahJ2dXerrq1ev5ueff6ZOnTrkz5+f\nLVu2cPv2bXx8fP713FevXuWFF17IyPgiIplGnZ0iIgYoVqwYAwcOpH///kZHEREREZFsIDIykjt3\n7lCpUiVCQkLo2rUrJUuWTH09b968LF++nFdeeQVvb28mTZrEzJkzqV279r+e+6OPPsrA5CIimctk\nNpvNRocQEbFEDx484MUXX2TKlCk0bdrU6DgiIiIiYqHy58/P8ePHKVKkiNFRRESemzo7RUQMYm9v\nz5QpU+jbty8PHjwwOo6IiIiIWKjQ0FA++OADo2OIiKQLdXaKiBgsMDCQmjVrMmTIEKOjiIiIiIgF\nunLlCt7e3hw6dAh3d3ej44iIPBcVO0VEDHb69GmqVq3KkSNHKFasmNFxRERERMQCDR06lBs3bjBj\nxgyjo4iIPBcVO0VEsoD33nuPM2fOsHDhQqOjiIiIiIgFunHjBl5eXvzwww94eHgYHUdE5Jmp2Cki\nkgXEx8fj4+PD/PnzqVOnjtFxRERERMQCRUREcPbsWebMmWN0FBGRZ6Zip4hIFrF48WLGjx/PgQMH\nsLGxMTqOiIiIiFiY3377DU9PT3bs2IG3t7fRcUREnolWY5cMd/36daZOncqZM2eMjiKSpQUFBVGg\nQAHNkyQiIiIihsiTJw8DBgxg9OjRRkcREXlmKnZKhktKSuL48eNUqVKFKlWqMHnyZM6fP290LJEs\nx2Qy8dlnnzF69GiuXbtmdBwRERERsUBhYWFs2bKFI0eOGB1FROSZaBi7ZJqkpCQ2b95MVFQUy5cv\np1y5cgQHBxMUFEThwoWNjieSZfTt25f79++rw1NEREREDDF58mR27NjBsmXLjI4iIvLUVOwUQyQk\nJLB+/Xqio6NZtWoVFStWJDg4mDfeeANXV1ej44kY6tatW3h7e7NmzRoqVapkdBwRERERsTD37t3D\n09OTlStX6vOoiGQ7KnaK4e7du8d3331HdHQ0a9eupXr16gQHB/P666+TN29eo+OJGGLWrFnMmjWL\nnTt3YmWlGUdEREREJHNNnz6dNWvW8O233xodRUTkqajYKVnKnTt3WL16NdHR0WzevJmXX36Z4OBg\nmjdvjouLi9HxRDJNSkoK1apVo3fv3nTq1MnoOCIiIiJiYR48eICXlxeLFi2iRo0aRscREXliKnbK\nczt79iw2Nja4ubml63l/++03VqxYQXR0NDt37qRhw4YEBwfTrFkznJyc0vVaIlnR3r17ef311zl1\n6hS5c+c2Oo6IiIiIWJiZM2eyaNEiNm3aZHQUEZEnpmKnPLchQ4aQN29ehgwZkmHXuHHjBsuWLSMq\nKop9+/bx6quvEhISQpMmTbC3t8+w64oYrWvXruTPn59JkyYZHUVERERELExiYiI+Pj7897//pV69\nekbHERF5IpoITp6bg4MD9+/fz9Br5M+fn27durFhwwZ+/PFHateuzeTJkylcuDCdO3fmu+++IzEx\nMUMziBjhgw8+YO7cuZw8edLoKCIiIiJiYWxtbRk1ahQjRoxAfVIikl2o2CnPzcHBgXv37mXa9QoV\nKkSvXr3Ytm0bx44do2LFiowZM4YiRYrQvXt3Nm3aRFJSUqblEclIhQoV4r333qNv3776gCkiIiIi\nma5du3Zcv36d9evXGx1FROSJqNgpzy0zOjsfp1ixYvTt25fdu3dz4MABvLy8GDx4MMWKFeOdd95h\n+/btpKSkGJJNJL288847xMXFsXz5cqOjiIiIiIiFsba2ZvTo0QwfPlxfvotItqBipzw3R0dHw4qd\nf1aiRAkGDhzI/v37+f777ylatCi9e/fG3d2d/v37s2fPHv3nLNmSra0tU6dOZcCAAZnaRS0iIiIi\nAtC6dWsSEhJYtWqV0VFERP6Vip3y3DJ7GPuT8PT05L333uPIkSOsX7+e3LlzExoaioeHB4MHD+bg\nwYMqfEq2Ur9+fSpXrsxHH31kdBQRERERsTBWVlaMGTOGESNGaOSciGR5Wo1dLIbZbObw4cNER0cT\nHR2NtbU1ISEhBAcH4+fnZ3Q8kX917tw5AgICOHDgACVLljQ6joiIiIhYELPZTJUqVRg0aBBBQUFG\nxxEReSwVO8Uimc1m9u/fT1RUFIsXLyZ37typhU8vLy+j44k81tixYzl06BDffPON0VFERERExMKs\nW7eO/v37c/ToUaytrY2OIyLyt1TsFIuXkpLC7t27iY6OZsmSJRQuXJiQkBDatGlDqVKljI4nksb9\n+/cpV64cX375Ja+88orRcURERETEgpjNZmrXrs1bb71Fhw4djI4jIvK3VOwU+ZPk5GS2b99OdHQ0\n33zzDR4eHgQHB9OmTRvc3NyMjicCwIoVKxg6dCiHDx/G1tbW6DgiIiIiYkG2bt3Km2++ycmTJ/VZ\nVESyJBU7RR4jMTGRzZs3Ex0dzfLly/H19SU4OJjWrVtTuHBho+OJBTObzbz66qs0atSIAQMGGB1H\nRERERCxMgwYNaNeuHd26dTM6iojII1TsFEO89tpruLq6MmfOHKOjPJEHDx6wfv16oqOjWb16NZUq\nVSI4OJhWrVrh6upqdDyxQD/++CM1a9bk2LFjKr6LiIiISKbatWsXbdu2JTY2Fnt7e6PjiIikYWV0\nAMlaYmJisLa2pmbNmkZHyVLs7e0JDAxk/vz5XLp0iV69erFx40ZKly7Nq6++ypw5c7h165bRMcWC\nlC1blq5duzJkyBCjo4iIiIiIhalRowa+vr7MmjXL6CgiIo9QZ6ek0atXL6ytrZk3bx579uzBx8fn\nsfsmJiY+8xwt2a2z83Hu3LnD6tWriYqKYvPmzdSrV4/g4GACAwNxcXExOp7kcLdv38bb25uvv/6a\n6tWrGx1HRERERCzIgQMHaN68OadPn8bR0dHoOCIiqdTZKanu3bvHwoUL6d69O61bt07zLd3Zs2cx\nmUwsWrSI+vXr4+joyIwZM7h+/Tpt27bFzc0NR0dHfH19mT17dprz3r17l9DQUJydnSlUqBDvv/9+\nZt9ahnF2diYkJITly5dz/vx53njjDebPn4+bmxtBQUF8/fXX3L171+iYkkO5uLjw4YcfEhYWRnJy\nstFxRERERMSCVKpUiSpVqvCf//zH6CgiImmo2Cmpvv76a0qUKIG/vz8dO3Zk3rx5JCYmptln6NCh\n9OrVixMnTtCyZUvu379PxYoVWb16NcePH6dv37707NmTTZs2pR4THh7Ohg0b+Oabb9i0aRMxMTFs\n3749s28vw+XJk4dOnTrx7bff8r///Y/GjRvzn//8h6JFi9KuXTtWrlzJgwcPjI4pOUz79u1xcHAg\nMjLS6CgiIiIiYmHGjBnDhx9+yJ07d4yOIiKSSsPYJdXLL79MYGAg4eHhmM1mSpUqxccff8wbb7zB\n2bNnKVWqFJMmTeLdd9/9x/OEhITg7OzMzJkzuXPnDgUKFCAyMpL27dsDfwz9dnNzo2XLltl+GPuT\n+PXXX/nmm2+Ijo7m6NGjNG/enJCQEBo0aPDM0wCI/FlMTAyvvvoqJ0+eJF++fEbHERERERELEhIS\nQvny5Rk6dKjRUUREAHV2yv85ffo033//Pe3atQPAZDLRvn17Zs6cmWa/ypUrp3menJzM+PHj8ff3\np0CBAjg7O7N06VLOnTsHwM8//0xCQkKa+QSdnZ158cUXM/iOso5ChQrRq1cvtm3bxtGjR6lQoQKj\nR4+maNGi9OjRg02bNmkIsjyXgIAAXn/9dUaOHGl0FBERERGxMBEREUyePJnffvvN6CgiIoCKnfJ/\nZs6cSXJyMu7u7tjY2GBjY8OECRNYv34958+fT90vV65caY6bNGkSH3/8MQMHDmTTpk0cOnSIli1b\nkpCQAIAah9MqVqwY/fr1Y/fu3ezbtw9PT08GDRpEsWLF6N27Nzt27CAlJcXomJINjRs3jujoaI4c\nOWJ0FBERERGxIN7e3jRt2pRPPvnE6CgiIoCKnQIkJSUxd+5cPvjgAw4dOpT6OHz4MP7+/o8sOPRn\nO3fuJDAwkI4dO1KhQgVKly5NbGxs6uuenp7Y2tqyZ8+e1G3x8fEcO3YsQ+8pOyhZsiSDBg3iwIED\n7Nixg8KFC9OrVy/c3d0ZMGAAe/fuVbFYnliBAgUYPXo0YWFh+rkRERERkUw1cuRIpk2bxvXr142O\nIiKiYqfAmjVruHbtGt27d8fPzy/NIyQkhMjIyMd2G3p5ebFp0yZ27tzJqVOn6N27N2fOnEl93dnZ\nmW7dujF48GA2bNjA8ePH6dq1q4Zt/0WZMmUYPnw4R48eZd26dTg7O9OpUyc8PDwYMmQIMTExKmDJ\nv+rRowe///470dHRRkcREREREQtSunRpWrVqxaRJk4yOIiKiBYoEmjdvzv3791m/fv0jr/3vf/+j\ndOnSzJgxg549e7Jv374083bevHmTbt26sWHDBhwdHQkNDeXOnTucOHGCrVu3An90cr799tssXboU\nJycnwsLC2Lt3L66urhaxQNGzMpvNHD58mKioKKKjo7G1tSUkJITg4GB8fX2NjidZ1M6dO2nbti0n\nT57E2dnZ6DgiIiIiYiHOnTtHQEAAJ0+epGDBgkbHERELpmKnSDZgNpvZt28f0dHRREdHkzdv3tTC\nZ5kyZYyOJ1lMhw4dcHd35/333zc6ioiIiIhYkPfff5/Q0FCKFi1qdBQRsWAqdopkMykpKezatYvo\n6GiWLFlC0aJFCQkJoU2bNpQsWdLoeJIFXLx4EX9/f/bs2YOnp6fRcURERETEQjwsL5hMJoOTiIgl\nU7FTJBtLTk5m27ZtREdHs3TpUkqXLk1wcDBt2rShWLFiRscTA3300Uds376d1atXGx1FRERERERE\nJNOo2CmSQyQmJrJp0yaio6NZsWIFfn5+BAcH07p1awoVKmR0PMlkCQkJvPjii0yePJlmzZoZHUdE\nREREREQkU6jYKZIDPXjwgHXr1hEdHc2aNWuoXLkywcHBtGrVigIFCjzzeVNSUkhMTMTe3j4d00pG\nWbt2LWFhYRw7dkz/ZiIiIiIiImIRVOwUyeHu3bvHt99+S1RUFOvXr6dmzZoEBwfTsmVL8uTJ81Tn\nio2N5dNPP+Xy5cvUr1+fLl264OTklEHJJT20aNGCatWqMXToUKOjiIiIiIhw4MABHBwc8PX1NTqK\niORQVkYHkJwhNDSUOXPmGB1D/oajoyNvvPEGS5YsIS4ujo4dO7Js2TKKFy9Oy5YtWbRoEXfu3Hmi\nc928eZP8+fNTrFgxwsLCmDJlComJiRl8B/I8PvnkEyZNmsT58+eNjiIiIiIiFmzXrl34+PhQp04d\nmjdvTvfu3bl+/brRsUQkB1KxU9KFg4MD9+/fNzqG/AtnZ2fatm3L8uXLOXfuHK+//jpfffUVxYoV\nIygoiD179vBPzd5Vq1Zl7NixNG7cmBdeeIFq1apha2ubiXcgT8vDw4NevXoxcOBAo6OIiIiIiIX6\n7bffeOutt/Dy8mLv3r2MHTuWX3/9lT59+hgdTURyIBujA0jO4ODgwL1794yOIU8hb968dO7cmc6d\nO3P9+nWWLl1K3rx5//GYhIQE7OzsWLRoEeXKlaNs2bJ/u9+tW7eIjIykZMmSvP7665hMpoy4BXlC\nQ4cOxcfHh61bt1K3bl2j44iIiIiIBbh79y52dnbY2Nhw4MABfv/9d4YMGYKfnx9+fn6UL1+e6tWr\nc/78eYoXL250XBHJQdTZKelCnZ3ZW4ECBejevTve3t7/WJi0s7MD/lj4pnHjxhQsWBD4Y+GilJQU\nADZu3MioUaMIDw+nV69efP/99xl/A/KPnJycmDRpEn369CEpKcnoOCIiIiKSw12+fJmvvvqK2NhY\nAEqUKMGFCxcICAhI3SdXrlz4+/tz69Yto2KKSA6lYqekC0dHRxU7c7jk5GQA1qxZQ0pKCjVq1Egd\nwm5lZYWVlRWffvop3bt359VXX+Wll16iZcuWeHh4pDnPlStXOHDgQKbnt3StW7fG1dWVL774wugo\nIiIiIpLD2draMmnSJC5evAhA6dKlqVq1Kr179+bBgwfcuXOH8ePHc+7cOdzc3AxOKyI5jYqdki40\njN1yzJ49m8qVK+Pp6Zm67eDBg3Tv3p0FCxawZs0aqlSpwvnz53nxxRcpWrRo6n6ff/45zZo1Iygo\niFy5cjFw4EDi4+ONuA2LYzKZmDp1KmPGjOHq1atGxxERERGRHKxAgQJUqlSJL774IrUpZsWKFfz8\n88/Url2bSpUqsX//fmbNmkW+fPkMTisiOY2KnZIuNIw9ZzObzVhbWwOwefNmmjRpgqurKwA7duyg\nY8eOBAQE8P3331OuXDkiIyPJmzcv/v7+qedYv349AwcOpFKlSmzZsoUlS5awcuVKNm/ebMg9WSJf\nX1/at2/PsGHDjI4iIiIiIjncJ598wpEjRwgKCmLZsmWsWLECb29vfv75Z8xmMz179qROnTqsWbOG\nDz/8kF9//dXoyCKSQ2iBIkkXGsaecyUmJvLhhx/i7OyMjY0N9vb21KxZEzs7O5KSkjh8+DCxsbHM\nmzcPGxsbevTowfr166lduza+vr4AXLp0idGjR9OsWTP+85//AH/M27NgwQImTpxIYGCgkbdoUSIi\nIvDx8WH//v1UrlzZ6DgiIiIikkMVKVKEyMhIFi5cSM+ePXF1deWFF16ga9euhIeHU6hQIQDOnTvH\nunXrOHHiBHPnzjU4tYjkBCp2SrpQZ2fOZWVlhYuLC+PGjeP69esAfPfdd7i7u1O4cGF69OhB9erV\niYqK4uOPP+add97B2tqaIkWKkCdPHuCPYe579+7lhx9+AP4ooNra2pIrVy7s7OxITk5O7RyVjJU3\nb17Gjx9P79692bVrF1ZWavAXERERkYxRu3Ztateuzccff8ytW7ews7NLHSGWlJSEjY0Nb731FjVr\n1qR27drs3buXqlWrGpxaRLI7/ZUr6UJzduZc1tbW9O3bl6tXr/LLL78wYsQIZsyYQZcuXbh+/Tp2\ndnZUqlSJiRMn8uOPP9KzZ0/y5MnDypUrCQsLA2D79u0ULVqUihUrYjabUxc2Onv2LB4eHvrZyWSh\noaGYzWbmzZtndBQRERERsQBOTk44ODg8UuhMTk7GZDLh7+9Px44dmTZtmsFJRSQnULFT0oU6Oy1D\n8eLFGT16NJcuXWLevHmpH1b+7MiRI7Rs2ZKjR4/y4YcfArBz504aN24MQEJCAgCHDx/mxo0buLu7\n4+zsnHk3IVhZWTF16lSGDh3Kb7/9ZnQcEREREcnBkpOTadCgARUqVGDgwIFs2rQptdnhz6O7bt++\njZOTE8nJyUZFFZEcQsVOSReas9PyFCxY8JFtZ86cYf/+/fj6+uLm5oaLiwsAv/76K2XLlgXAxuaP\n2TNWrFiBjY0N1atXB/5YBEkyT5UqVWjatCmjR482OoqIiIiI5GDW1tZUrlyZCxcucP36ddq2bctL\nL71Ejx49+Prrr9m3bx+rVq1i6dKllC5dWtNbichzM5lVYZB0sGPHDoYNG8aOHTuMjiIGMZvNmEwm\nfvrpJxwcHChevDhms5nExER69erF8ePH2blzJ9bW1sTHx1OmTBnatWvHqFGjUouikrmuXLmCr68v\n27Zto1y5ckbHEREREZEc6v79++TOnZvdu3fz4osvsnDhQrZt28aOHTu4f/8+V65coXv37kyfPt3o\nqCKSA6jYKeli3759vP322+zfv9/oKJIF7d27l9DQUKpXr46npycLFy4kKSmJzZs3U7Ro0Uf2v3Hj\nBkuXLqVVq1bkz5/fgMSW49NPP2XVqlVs2LABk8lkdBwRERERyaH69+/Pzp072bdvX5rt+/fvp0yZ\nMqmLmz5sohAReVYaxi7pQsPY5XHMZjNVq1Zl9uzZ/P7776xatYrOnTuzYsUKihYtSkpKyiP7X7ly\nhXXr1lGqVCmaNm3KvHnzNLdkBunVqxeXL19m6dKlRkcRERERkRxs0qRJxMTEsGrVKuCPRYoAKleu\nnFroBFToFJHnps5OSRenT5+mSZMmnD592ugokoPcvn2bVatWER0dzZYtW6hfvz4hISEEBgaSK1cu\no+PlGFu2bKFLly6cOHECJycno+OIiIiISA41cuRIrl27xueff250FBHJwVTslHRx4cIFqlatSlxc\nnNFRJIe6desWy5cvJzo6ml27dtG4cWNCQkJ49dVXcXR0NDpettemTRt8fHy0YJGIiIiIZKhTp05R\ntmxZdXCKSIZRsVPSxbVr1yhbtizXr183OopYgGvXrrF06VKio6M5ePAgzZo1Izg4mEaNGmFvb290\nvGzp3LlzBAQEsH//fkqVKmV0HBEREREREZFnomKnpIv4+HgKFixIfHy80VHEwly+fJmvv/6a6Oho\nTpw4QYsWLQgODqZ+/frY2toaHS9bGTduHAcOHGDZsmVGRxERERERC2A2m0lMTMTa2hpra2uj44hI\nDqFip6SLpKQk7O3tSUpK0nAEMcyFCxdYsmQJUVFRnDlzhlatWhEcHEydOnX04ekJ3L9/H19fX774\n4gsaNWpkdBwRERERsQCNGjWidevW9OjRw+goIpJDqNgp6cbW1pb4+Hjs7OyMjiLCmTNnWLx4MVFR\nUVy+fJmgoCCCg4OpXr06VlZWRsfLslauXMmgQYM4cuSIfpdFREREJMPt3buXoKAgYmNjcXBwMDqO\niOQAKnZKunFxcSEuLo7cuXMbHUUkjdjYWKKjo4mKiuL27du0adOG4OBgKleurE7kvzCbzTRt2pQG\nDRoQHh5udBwRERERsQCBgYE0atSIsLAwo6OISA6gYqekm4IFC3Ls2DEKFixodBSRxzp27BjR0dFE\nR0eTnJxMcHAwwcHB+Pv7q/D5f2JjY6lRowZHjx6lSJEiRscRERERkRwuJiaGZs2acfr0aZycnIyO\nIyLZnIqdkm7c3d3ZsWMHJUqUMDqKyL8ym83ExMSkFj4dHBwICQkhODgYHx8fo+MZbvDgwVy6dIl5\n8+YZHUVERERELEDr1q2pVq2aRheJyHNTsVPSjZeXF6tWraJs2bJGRxF5KmazmR9++IGoqCgWL15M\ngQIFUjs+PT3/H3v3HR5VtbZx+JkUkpCEHoqAgEAoAlJCFUV6M4CAoEjoTaSJICVAEggdQSkWepMu\nKJHmEUGBSFM6QXoPHaSE9Pn+8JDPHEApM1kpv/u65kpmzy7P5Bw3yTvvWquQ6XhG3LlzR8WKFdOy\nZctUpUoV03EAAACQyh06dEg1atTQ8ePH5enpaToOgBSMVTpgM25uboqMjDQdA3hqFotFFStW1KRJ\nk3Tu3DlNnTpVFy9e1KuvviofHx+NHz9eZ86cMR0zSXl6emrs2LHq0aOH4uLiTMcBAABAKvfyyy+r\nVq1amjx5sukoAFI4ip2wGVdXV4qdSPEcHBz0+uuva9q0abpw4YLGjh2ro0ePqly5cqpSpYo+++wz\nXbx40XTMJNGqVSu5u7tr5syZpqMAAAAgDQgICNCnn36qW7dumY4CIAWj2AmbcXV11f37903HAGzG\nyclJNWvW1IwZMxQeHq6hQ4dqz549evnll/XGG2/oiy++0JUrV0zHtBuLxaIpU6Zo2LBhunHjhuk4\nAAAASOW8vb3l6+uriRMnmo4CIAVjzk7YTN26dfXhhx+qXr16pqMAdhUZGakNGzZo6dKlWrt2rSpU\nqKCWLVvqrbfeUpYsWUzHs7nu3bvLYrFo2rRppqMAAAAglTt9+rR8fHx05MgRZcuWzXQcACkQnZ2w\nGebsRFrh6uqqxo0ba9GiRbp48aI6d+6sdevWqUCBAmrYsKEWLFig27dvm45pMyNGjNCKFSu0b98+\n01EAAACQyuXPn19vv/22xo8fbzoKgBSKYidshmHsSIvSp0+vt99+WytWrND58+fVqlUrLV++XHnz\n5tVbb72lpUuX6t69e6ZjPpesWbMqKChIPXv2FIMBAAAAYG/+/v6aOXOmLl26ZDoKgBSIYidshgWK\nkNZ5enrqvffe0+rVq3X69Gk1atRIc+bM0QsvvKCWLVtq1apVKfa/kc6dO+vu3btavHix6SgAAABI\n5fLkySM/Pz+NGTPGdBQAKRBzdsJm3n//fZUqVUrvv/++6ShAsnLt2jWtXLlSS5Ys0Z49e/Tmm2+q\nZcuWqlOnjtKlS2c63hPbtm2bWrZsqSNHjsjDw8N0HAAAAKRily5d0ssvv6x9+/YpT548puMASEHo\n7ITN0NkJPFq2bNnUpUsX/fTTTwoLC1PFihU1ZswY5cqVSx07dtQPP/yg2NhY0zH/1auvvqrq1asr\nODjYdBQAAACkcjlz5lSnTp00cuRI01EApDB0dsJmBg0aJE9PTw0ePNh0FCBFOHfunJYvX64lS5bo\n9OnTatasmVq2bKnXXntNjo6OpuM9Unh4uEqWLKnQ0FB5e3ubjgMAAIBU7Pr16/L29tbu3btVoEAB\n03EApBB0dsJm6OwEnk7evHnVt29f7dy5U9u3b1e+fPn04YcfKm/evOrdu7dCQ0MVHx9vOmYiuXLl\n0sCBA9WnTx8WKwIAAIBdZc2aVR988IFGjBhhOgqAFIRiJ2zGzc2NYifwjF566SUNHDhQe/bs0aZN\nm5Q1a1Z16tRJ+fPnV//+/bV79+5kU1zs1auXTp48qe+//950FAAAAKRyffv2VUhIiI4ePWo6CoAU\ngmInbMb5CQWEAAAgAElEQVTV1VX37983HQNI8YoUKaJhw4bp0KFDWrNmjVxcXPTuu++qcOHC8vf3\n1/79+40WPtOlS6fJkyerT58+fMABAAAAu8qUKZP69OmjoKAg01EApBAUO2EzDGMHbMtisahkyZIK\nDg7W0aNHtWzZMsXExKhRo0YqXry4AgMDFRYWZiRbnTp1VKpUKX3yySdGrg8AAIC0o1evXvrxxx91\n8OBB01EApAAUO2EzDGMH7Mdisahs2bIaN26cTp06pTlz5ujWrVuqVauWXnnlFY0aNUonTpxI0kwT\nJ07UpEmTdO7cuSS9LgAAANIWT09P9e/fX4GBgaajAEgBKHbCZujsBJKGxWJRpUqV9Omnn+rcuXOa\nMmWKzp8/rypVqqh8+fKaMGGCzp49a/ccBQoU0AcffKB+/frZ/VoAAABI27p3767Q0FDt2bPHdBQA\nyRzFTtgMc3YCSc/BwUGvv/66Pv/8c124cEGjR4/WH3/8obJly+rVV1/V5MmTFR4ebrfrDxgwQDt2\n7NCmTZvsdg0AAAAgffr0GjRokIYNG2Y6CoBkjmInbIbOTsAsJycn1apVSzNmzNDFixfl7++v3377\nTcWLF1f16tX15Zdf6urVqza9Zvr06fXJJ5+oV69eio2Ntem5AQAAgL/r0qWL9u3bp+3bt5uOAiAZ\no9gJm2HOTiD5SJcunRo0aKB58+YpPDxcvXv31s8//6zChQurbt26mj17tm7evGmTazVt2lQ5cuTQ\n559/bpPzAQAAAI/i4uKiIUOG0N0J4B9R7ITNMIwdSJ5cXV3VpEkTLV68WBcuXFDHjh21Zs0a5c+f\nX76+vlq4cKFu3779zOe3WCyaPHmyRowYoStXrtgwOQAAAJBY+/btdeLECf3yyy+mowBIpih2wmYY\nxg4kf+7u7mrRooW++eYbnTt3Ti1bttTSpUuVN29eNW3aVMuWLdO9e/ee+rzFixfXp59+qhs3btgh\nNQAAAPAXZ2dnBQQEaMiQIbJarabjAEiGLFbuDrCREydOqE6dOjpx4oTpKACe0s2bN/Xtt99qyZIl\n2rFjh+rVq6eWLVuqfv36cnV1faJzWK1WWSwWOycFAABAWhcXF6eXX35ZU6ZMUe3atU3HAZDMUOyE\nzVy4cEEVKlTQhQsXTEcB8ByuXr2qlStXaunSpdqzZ498fX3VsmVL1a5dW+nSpTMdDwAAANDSpUs1\nadIk/frrr3zgDiARhrHDZpizE0gdvLy81LVrV/300086fPiwypcvr9GjR+uFF15Qp06d9J///IeV\n1wEAAGDU22+/rYiICK1Zs8Z0FADJDJ2dsJl79+7Jy8tLERERpqMAsIOzZ89q+fLlWrp0qc6cOaNm\nzZpp8ODBypMnj+loAAAASIO+/fZbDR8+XLt375aDA71cAP7C3QA2kz59eu3bt49JooFU6sUXX9RH\nH32knTt3KjQ0VPnz51d0dLTpWAAAAEijGjduLAcHB61atcp0FADJCJ2dAAAAAAAgRVq3bp369eun\n/fv3y9HR0XQcAMkAnZ0AAAAAACBFqlevnjJmzKilS5eajgIgmaCzEwBgVHBwsC5duqQcOXIoZ86c\nCV8ffO/i4mI6IgAAAJKxn376Sd26ddPhw4fl5ORkOg4Awyh2AgCMiY+P14YNG3T8+HFdunRJly9f\n1qVLlxK+v3z5stzd3RMVQf+3GPrga/bs2eXs7Gz6LQEAAMCA6tWrq02bNmrfvr3pKAAMo9gJAEi2\nrFarbt68magA+r/fP/h67do1ZcqU6bHF0L9vy5YtG3M6AQAApCJbt26Vn5+f/vjjD6VLl850HAAG\nUexEkomJiZGDgwMFBgB2ERcXp+vXrz+2KPr372/duqWsWbM+VBR9VIE0S5Ysslgspt8eAAAA/kW9\nevXUpEkTdevWzXQUAAZR7ITNbNiwQZUqVVLGjBkTtj34v5fFYtHMmTMVHx+vLl26mIoIAJL++vDl\n6tWrj+wQ/d/v7927p+zZsz+2KPr37zNkyJBiC6MzZszQzz//LDc3N1WvXl3vvvtuin0vAAAgbdq1\na5feeustHT9+XK6urqbjADCEYidsxsHBQdu2bVPlypUf+fr06dM1Y8YMbd26lQVHAKQYUVFRCfOH\nPm4I/YPvo6Oj/3UI/YOvHh4ept+aJOnevXvq3bu3QkND1ahRI126dEnHjh3TO++8o549e0qSwsLC\nNHz4cG3fvl2Ojo5q06aNhg0bZjg5AADAwxo3bqwaNWqod+/epqMAMIRiJ2zG3d1dixcvVuXKlRUR\nEaHIyEhFRkbq/v37ioyM1I4dOzRo0CDduHFDmTJlMh0XAGzu3r17iQqjjyuQhoeHy9HR8V+H0D/4\n3p6dCb/++qvq1KmjOXPmqHnz5pKkL7/8UkOHDtWJEyd0+fJl1ahRQz4+PurXr5+OHTumGTNm6I03\n3tDIkSPtlgsAAOBZ7Nu3T/Xq1dPx48fl7u5uOg4AAyh2wmZy5cqly5cvy83NTdJfQ9cfzNHp6Ogo\nd3d3Wa1W7du3T5kzZzacFkBSi46O1oEDB1SuXDnTUYyzWq26c+fOE3WLPrivPumK9E87If+CBQs0\nYMAAnThxQunSpZOjo6POnDkjX19f9ejRQ87Ozho6dKiOHDmS0I06e/ZsBQUFac+ePcqSJYs9fkQA\nAADPrEWLFvLx8dHHH39sOgoAA5xMB0DqERcXp48++kg1atSQk5OTnJyc5OzsnPDV0dFR8fHx8vT0\nNB0VgAFxcXF68803tWHDBpUqVcp0HKMsFosyZMigDBkyqHDhwv+4r9Vq1a1btx45n+ixY8cSbbt6\n9aoyZsz4UDF06NChj/2QydPTU1FRUVq9erVatmwpSVq3bp3CwsJ0+/ZtOTs7K3PmzPLw8FBUVJRc\nXFxUtGhRRUVFacuWLWrcuLHNfz4AAADPIygoSNWqVVO3bt2UIUMG03EAJDGKnbAZJycnlStXTvXr\n1zcdBUAy5Obmpr59+2rkyJFaunSp6TgphsViUebMmZU5c2YVK1bsH/eNj49PWJH+70XQf5onuV69\neurQoYN69eql2bNnK3v27Dp//rzi4uLk5eWl3Llz6/z581q0aJFatWqlu3fvasqUKbp69aru3btn\n67cLAADw3IoVK6Z69erps88+09ChQ03HAZDEGMYOm/H395evr68qVar00GtWq5VVfQHo7t27Kliw\noDZv3vyvhTsknVu3bmnr1q3asmWLPDw8ZLFY9O2336pHjx5q166dhg4dqgkTJshqtapYsWLy9PTU\n5cuXNWrUKDVr1izhPA9+peB+DwAATDt+/LgqVaqkY8eOMY0akMZQ7ESSuXnzpmJiYpQtWzY5ODiY\njgPAkFGjRunw4cNauHCh6Sh4jBEjRmj16tWaPn26ypQpI0n6888/dfjwYeXMmVOzZ8/Wxo0bNW7c\nOFWtWjXhOKvVqsWLF2vQoEFPtPhSclmRHgAApE6dO3dWjhw5FBwcbDoKgCREsRM2s3z5chUsWFBl\ny5ZNtD0+Pl4ODg5asWKFdu/erR49eihPnjyGUgIw7fbt2ypYsKBCQ0P/db5K2N+ePXsUFxenMmXK\nyGq1atWqVXr//ffVr18/9e/fP6FL8+8fUlWrVk158uTRlClTHlqgKCYmRufPn//HFekfPCwWy2OL\nov9bIH2w+B0AAMCTOnPmjMqWLasjR47Iy8vLdBwASYRiJ2ymXLly8vX1VWBg4CNf//XXX9WzZ099\n8sknqlatWtKGA5CsBAYG6uzZs5o9e7bpKGne+vXrNXToUN25c0fZs2fXjRs3VLNmTY0aNUru7u76\n5ptv5OjoqAoVKigiIkKDBg3Sli1b9O233z5y2pInZbVadffu3Sdakf7SpUtydXX91xXpc+bM+Uwr\n0gMAgNSrR48ecnNz0/jx401HAZBEWKAINpMxY0ZduHBBf/zxh+7evav79+8rMjJSERERioqK0sWL\nF7V3715dvHjRdFQAhvXu3VuFChXSqVOnVKBAAdNx0rTq1atr1qxZOnr0qK5du6ZChQqpVq1aCa/H\nxsbK399fp06dkpeXl8qUKaNly5Y9V6FT+mteT09PT3l6eqpQoUL/uO+DFekfVQzdtm1bosLolStX\nlCFDhn8dQp8jRw55eXnJyYlfhQAASM0GDx6skiVLqm/fvsqVK5fpOACSAJ2dsBk/Pz99/fXXSpcu\nneLj4+Xo6CgnJyc5OTnJ2dlZHh4eiomJ0dy5c1WzZk3TcQEAj/GoReUiIiJ0/fp1pU+fXlmzZjWU\n7N/Fx8frxo0bT9QteuPGDWXJkuUfu0UffM2aNSvzTQMAkEJ99NFHiomJ0eTJk01HAZAEKHbCZlq0\naKGIiAiNHz9ejo6OiYqdTk5OcnBwUFxcnDJnziwXFxfTcQEAaVxsbKyuXbv22GLo37fduXNH2bJl\ne6I5RjNlysSK9AAAJCNXrlxRsWLFtGfPHr344oum4wCwM4qdsJk2bdrIwcFBc+fONR0FAACbio6O\n1pUrVx674NLfC6T3799/qDP0cQVSDw8PCqMAACSBwYMH6/r16/rqq69MRwFgZxQ7YTPr169XdHS0\nGjVqJOn/h0FardaEh4ODA3/UAQBStfv37+vy5ctPtCK91Wp94hXp06dPb/qtAQCQYt24cUPe3t7a\nsWOHChYsaDoOADui2AkAAGDI06xIny5dOuXMmVMff/yxOnXqZDo6AAApTlBQkE6ePKl58+aZjgLA\njih2wqbi4uIUFham48ePK3/+/CpdurQiIyP1+++/6/79+ypRooRy5MhhOiYAG3rjjTdUokQJTZ06\nVZKUP39+9ejRQ/369XvsMU+yD4D/Z7Va9eeff+ry5ctydXVVvnz5TEcCACDF+fPPP1W4cGH98ssv\nKlq0qOk4AOzEyXQApC5jx47VkCFDlC5dOnl5eWnEiBGyWCzq3bu3LBaLmjRpojFjxlDwBFKQq1ev\nKiAgQGvXrlV4eLgyZcqkEiVKaODAgapdu7ZWrlwpZ2fnpzrnrl275O7ubqfEQOpjsViUKVMmZcqU\nyXQUAABSrIwZM6pv374KDAzUkiVLTMcBYCcOpgMg9fj555/19ddfa8yYMYqMjNSkSZM0YcIEzZgx\nQ59//rnmzp2rQ4cOafr06aajAngKzZo1086dOzVr1iwdPXpU33//verXr6/r169LkrJkySJPT8+n\nOqeXlxfzDwIAACDJ9ejRQ5s3b9b+/ftNRwFgJxQ7YTPnzp1TxowZ9dFHH0mSmjdvrtq1a8vFxUWt\nWrVS48aN1aRJE+3YscNwUgBP6tatW9qyZYvGjBmjmjVrKl++fCpfvrz69eund955R9Jfw9h79OiR\n6Li7d++qdevW8vDwUM6cOTVhwoREr+fPnz/RNovFohUrVvzjPgAAAMDz8vDw0IABAxQQEGA6CgA7\nodgJm3F2dlZERIQcHR0Tbbt3717C86ioKMXGxpqIB+AZeHh4yMPDQ6tXr1ZkZOQTHzdx4kQVK1ZM\nv//+u4KCgjR48GCtXLnSjkkBAACAJ9OtWzft2rVLv/32m+koAOyAYidsJm/evLJarfr6668lSdu3\nb9eOHTtksVg0c+ZMrVixQhs2bFC1atUMJwXwpJycnDR37lwtXLhQmTJlUuXKldWvX79/7dCuWLGi\n/P395e3tra5du6pNmzaaOHFiEqUGAAAAHs/NzU3BwcE6efKk6SgA7IBiJ2ymdOnSatCggdq3b686\nderIz89POXLkUFBQkAYMGKDevXsrV65c6ty5s+moAJ5Cs2bNdPHiRYWEhKh+/foKDQ1VpUqVNGrU\nqMceU7ly5YeeHz582N5RAQAAgCfSpk0bvf3226ZjALADVmOHzaRPn17Dhw9XxYoVtXHjRjVu3Fhd\nu3aVk5OT9u7dq+PHj6ty5cpydXU1HRXAU3J1dVXt2rVVu3ZtDRs2TJ06dVJgYKD69etnk/NbLBZZ\nrdZE22JiYmxybgBSbGysdu3apUqVKslisZiOAwCAcQ4O9H4BqRXFTtiUs7OzmjRpoiZNmiTanjdv\nXuXNm9dQKgC2Vrx4ccXGxj52Hs/t27c/9LxYsWKPPZ+Xl5fCw8MTnl++fDnRcwDPx2q1qnv37urR\no4c6duxoOg4AAABgNxQ7YRcPOrT+3j1itVrpJgFSmOvXr+vtt99Whw4dVKpUKXl6emr37t0aN26c\natasqQwZMjzyuO3bt2v06NFq3ry5Nm/erPnz5yfM5/soNWrU0LRp01SlShU5Ojpq8ODBdIEDNuTs\n7KwFCxaoevXqqlGjhgoUKGA6EgAAAGAXFDthF48qalLoBFIeDw8PVapUSZ999pmOHz+uqKgo5c6d\nW61atdKQIUMee1zfvn21f/9+jRw5Uu7u7ho+fLiaN2/+2P0/+eQTdezYUW+88YZy5MihcePGKSws\nzB5vCUizSpQooQEDBqht27batGmTHB0dTUcCAAAAbM5i/d9J0gAAAJAqxcXFqUaNGvL19bXZnLsA\nAABAckKxEzb3qCHsAAAgeTh16pQqVKigTZs2qUSJEqbjAAAAADbF8mOwufXr1+vPP/80HQMAADxC\ngQIFNGbMGLVu3VrR0dGm4wAAAAA2RbETNjdo0CCdOnXKdAwAAPAYHTp00IsvvqigoCDTUQAAAACb\nYoEi2Jybm5siIyNNxwAAAI9hsVi0evVq0zEAAAAAm6OzEzbn6upKsRMAAAAAAABJjmInbM7V1VX3\n7983HQNAKvLGG29o/vz5pmMAAAAAAJI5ip2wOTo7Adja0KFDNXLkSMXFxZmOAgAAAABIxih2wuaY\nsxOArdWoUUPZsmXT8uXLTUcBAAAAACRjFDthcwxjB2BrFotFQ4cOVXBwsOLj403HAQAAQAoXHx/P\nqCEglaLYCZtjGDsAe6hbt67c3Ny0atUq01GAZ9auXTtZLJaHHnv37jUdDQCANGXOnDkaO3as6RgA\n7IBiJ2yOYewA7MFisWjYsGEaMWKErFar6TjAM6tVq5bCw8MTPUqUKGEsT3R0tLFrAwBgQkxMjEaO\nHKnXX3/ddBQAdkCxEzZHZycAe3nzzTdlsVgUEhJiOgrwzFxcXJQzZ85EDycnJ61du1ZVq1ZVpkyZ\nlCVLFtWvX19//PFHomNDQ0NVunRpubq6qmzZsvr+++9lsVi0detWSX/98dahQwcVKFBAbm5u8vb2\n1oQJExJ9QNC6dWs1adJEo0aNUu7cuZUvXz5J0rx58+Tj4yNPT0/lyJFDLVu2VHh4eMJx0dHR6tGj\nh3LlyiUXFxflzZtX/v7+SfATAwDAthYsWKCXXnpJVatWNR0FgB04mQ6A1Ic5OwHYi8Vi0ZAhQzRi\nxAj5+vrKYrGYjgTYzL1799S3b1+VLFlSERERGj58uHx9fXXo0CE5Ozvr9u3b8vX1VYMGDbRo0SKd\nO3dOffr0SXSOuLg4vfjii1q2bJm8vLy0fft2denSRV5eXmrbtm3Cfhs3blSGDBn0ww8/JBRCY2Ji\nNGLECBUpUkRXr17Vxx9/rFatWmnTpk2SpEmTJikkJETLli3Tiy++qPPnz+vYsWNJ9wMCAMAGYmJi\nFBwcrHnz5pmOAsBOLFbGAsLGxo8fr8uXL2vChAmmowBIheLj41WqVClNmDBB9erVMx0HeCrt2rXT\nwoUL5erqmrDttdde07p16x7a9/bt28qUKZNCQ0NVqVIlTZs2TQEBATp//nzC8fPnz1fbtm21ZcuW\nx3an9OvXTwcPHtT69esl/dXZ+eOPP+rs2bNKly7dY7MePHhQJUuWVHh4uHLmzKnu3bvr+PHj2rBh\nAx80AABSrNmzZ2vRokX68ccfTUcBYCcMY4fNMWcnAHtycHDQkCFDNHz4cObuRIr0+uuva+/evQmP\nmTNnSpKOHTumd999Vy+99JIyZMigF154QVarVWfPnpUkHTlyRKVKlUpUKK1YseJD5582bZp8fHzk\n5eUlDw8PTZkyJeEcD5QsWfKhQufu3bvVqFEj5cuXT56engnnfnBs+/bttXv3bhUpUkQ9e/bUunXr\nFB8fb7sfDAAAdvZgrs6AgADTUQDYEcVO2BzD2AHY29tvv60bN27ol19+MR0FeGrp06dXoUKFEh65\nc+eWJDVs2FA3btzQjBkztGPHDv32229ycHBIWEDIarX+a0fl119/rX79+qlDhw7asGGD9u7dq65d\nuz60CJG7u3ui53fu3FHdunXl6emphQsXateuXVq7dq2k/1/AqHz58jp9+rSCg4MVExOj1q1bq379\n+nzoAABIMRYuXKj8+fPrtddeMx0FgB0xZydsjgWKANibo6OjfvrpJ+XKlct0FMAmLl++rGPHjmnW\nrFkJf4Dt3LkzUedksWLFtHTpUkVFRcnFxSVhn7/bunWrqlSpou7duydsO378+L9e//Dhw7px44bG\njBmjvHnzSpL279//0H4ZMmRQixYt1KJFC/n5+alq1ao6deqUXnrppad/0wAAJLH27durffv2pmMA\nsDM6O2FzDGMHkBRy5crFvIFINbJly6YsWbJo+vTpOn78uDZv3qwPPvhADg7//6uan5+f4uPj1aVL\nF4WFhek///mPxowZI0kJ/y14e3tr9+7d2rBhg44dO6bAwEBt27btX6+fP39+pUuXTlOmTNGpU6f0\n/fffPzTEb8KECVqyZImOHDmiY8eOafHixcqYMaNeeOEFG/4kAAAAgOdDsRM2R2cngKRAoROpiaOj\no5YuXarff/9dJUqUUM+ePTV69Gg5Ozsn7JMhQwaFhIRo7969Kl26tAYMGKCgoCBJSpjHs3v37mra\ntKlatmypChUq6MKFCw+t2P4oOXLk0Ny5c7VixQoVK1ZMwcHBmjhxYqJ9PDw8NHbsWPn4+MjHxydh\n0aO/zyEKAAAAmMZq7LC5jRs3auTIkfrpp59MRwGQxsXHxyfqjANSm2+++UYtWrTQtWvXlDlzZtNx\nAAAAAOOYsxM2R2cnANPi4+MVEhKixYsXq1ChQvL19X3kqtVASjNnzhwVLlxYefLk0YEDB9S3b181\nadKEQicAAADwX7S7wOaYsxOAKTExMZKkvXv3qm/fvoqLi9Mvv/yijh076vbt24bTAc/v0qVLeu+9\n91SkSBH17NlTvr6+mjdvnulYAACkSrGxsbJYLPr222/tegwA26LYCZtzdXXV/fv3TccAkIZERESo\nf//+KlWqlBo1aqQVK1aoSpUqWrx4sTZv3qycOXNq8ODBpmMCz23QoEE6c+aMoqKidPr0aU2dOlUe\nHh6mYwEAkOR8fX1Vq1atR74WFhYmi8Wi//znP0mcSnJyclJ4eLjq16+f5NcG8BeKnbA5hrEDSEpW\nq1XvvvuuQkNDFRwcrJIlSyokJEQxMTFycnKSg4ODevfurZ9//lnR0dGm4wIAAMAGOnXqpJ9++kmn\nT59+6LVZs2YpX758qlmzZtIHk5QzZ065uLgYuTYAip2wA4axA0hKf/zxh44ePSo/Pz81a9ZMI0eO\n1MSJE7VixQpduHBBkZGRWrt2rbJly6Z79+6ZjgsAAAAbaNiwoXLkyKE5c+Yk2h4TE6MFCxaoQ4cO\ncnBwUL9+/eTt7S03NzcVKFBAAwcOVFRUVML+Z86cUaNGjZQlSxalT59exYoV0/Llyx95zePHj8ti\nsWjv3r0J2/532DrD2AHzKHbC5ujsBJCUPDw8dP/+fb3++usJ2ypWrKiXXnpJ7dq1U4UKFbRt2zbV\nr1+fRVwAG4mKilLJkiU1f/5801EAAGmUk5OT2rZtq7lz5yo+Pj5he0hIiK5du6b27dtLkjJkyKC5\nc+cqLCxMU6dO1cKFCzVmzJiE/bt166bo6Ght3rxZhw4d0sSJE5UxY8Ykfz8AbIdiJ2yOOTsBJKU8\nefKoaNGi+vTTTxN+0Q0JCdG9e/cUHBysLl26qG3btmrXrp0kJfplGMCzcXFx0cKFC9WvXz+dPXvW\ndBwAQBrVsWNHnT17Vj/++GPCtlmzZqlOnTrKmzevJGnYsGGqUqWK8ufPr4YNG2rgwIFavHhxwv5n\nzpzRa6+9plKlSqlAgQKqX7++6tSpk+TvBYDtOJkOgNTHxcVFUVFRslqtslgspuMASAPGjx+vFi1a\nqGbNmipTpoy2bNmiRo0aqWLFiqpYsWLCftHR0UqXLp3BpEDq8corr6hv375q166dfvzxRzk48Bk6\nACBpFS5cWK+//rpmz56tOnXq6OLFi9qwYYOWLl2asM/SpUs1efJknThxQnfv3lVsbGyif7N69+6t\nHj16aM2aNapZs6aaNm2qMmXKmHg7AGyE30phcw4ODgkFTwBICiVLltSUKVNUpEgR/f777ypZsqQC\nAwMlSdevX9f69evVunVrde3aVZ9//rmOHTtmNjCQSvTv319RUVGaMmWK6SgAgDSqU6dO+vbbb3Xj\nxg3NnTtXWbJkUaNGjSRJW7du1XvvvacGDRooJCREe/bs0fDhwxMtWtm1a1edPHlSbdu21ZEjR1Sp\nUiUFBwc/8loPiqRWqzVhW0xMjB3fHYBnQbETdsFQdgBJrVatWvryyy/1/fffa/bs2cqRI4fmzp2r\natWq6c0339SFCxd048YNTZ06Va1atTIdF0gVHB0dNW/ePAUHByssLMx0HABAGtS8eXO5urpq4cKF\nmj17ttq0aSNnZ2dJ0rZt25QvXz75+/urfPnyKly48CNXb8+bN6+6du2q5cuXa9iwYZo+ffojr5U9\ne3ZJUnh4eMK2vy9WBCB5oNgJu2CRIgAmxMXFycPDQxcuXFDt2rXVuXNnVa5cWWFhYfrhhx+0cuVK\n7dixQ9HR0Ro7dqzpuECqUKhQIQUHB8vPz4/uFgBAknNzc1OrVq0UGBioEydOqGPHjgmveXt76+zZ\ns1q8eLFOnDihqVOnatmyZYmO79mzpzZs2KCTJ09qz5492rBhg4oXL/7Ia3l4eMjHx0djxozR4cOH\ntXXrVn388cd2fX8Anh7FTtiFm5sbxU4ASc7R0VGSNHHiRF27dk0bN27UjBkzVLhwYTk4OMjR0VGe\nnoJfKWgAACAASURBVJ4qX768Dhw4YDgtkHp06dJF2bNnf+ywPwAA7KlTp066efOmqlSpomLFiiVs\nf+utt/Thhx+qV69eKl26tDZv3qygoKBEx8bFxemDDz5Q8eLFVbduXeXOnVtz5sx57LXmzp2r2NhY\n+fj4qHv37vzbByRDFuvfJ5sAbKRYsWJauXJlon9oACApnD9/XjVq1FDbtm3l7++fsPr6gzmW7t69\nq6JFi2rIkCHq1q2byahAqhIeHq7SpUsrJCREFSpUMB0HAAAAaRSdnbAL5uwEYEpERIQiIyP13nvv\nSfqryOng4KDIyEh98803ql69urJly6a33nrLcFIgdcmVK5emTJmiNm3aKCIiwnQcAAAApFEUO2EX\nzNkJwBRvb29lyZJFo0aN0pkzZxQdHa1FixapV69eGj9+vHLnzq2pU6cqR44cpqMCqU6LFi1UtmxZ\nDRw40HQUAAAApFFOpgMgdWLOTgAmffHFF/r4449VpkwZxcTEqHDhwsqQIYPq1q2r9u3bK3/+/KYj\nAqnWtGnTVKpUKTVq1Ei1atUyHQcAAABpDMVO2AXD2AGYVLlyZa1bt04bNmyQi4uLJKl06dLKkyeP\n4WRA6pc5c2bNmjVLHTp00P79+5UpUybTkQAAAJCGUOyEXTCMHYBpHh4eatasmekYQJpUp04dNWrU\nSD179tSCBQtMxwEAAEAawpydsAuGsQMAkLaNHTtWO3bs0IoVK0xHAQCkUnFxcSpatKg2btxoOgqA\nZIRiJ+yCzk4AyZHVajUdAUgz3N3dNX/+fPXo0UPh4eGm4wAAUqGlS5cqW7ZsqlGjhukoAJIRip2w\nC+bsBJDcREVF6YcffjAdA0hTKlWqpM6dO6tz58582AAAsKm4uDgNHz5cgYGBslgspuMASEYodsIu\n6OwEkNycO3dOrVu31u3bt01HAdKUoUOH6uLFi5o5c6bpKACAVORBV2fNmjVNRwGQzFDshF0wZyeA\n5KZQoUKqV6+epk6dajoKkKakS5dOCxYs0ODBg3Xy5EnTcQAAqcCDrs6AgAC6OgE8hGIn7IJh7ACS\nI39/f3366ae6e/eu6ShAmvLyyy9r0KBBatu2reLi4kzHAQCkcMuWLVPWrFlVq1Yt01EAJEMUO2EX\nDGMHkBwVLVpU1atX1xdffGE6CpDm9OnTR46Ojvrkk09MRwEApGDM1Qng31DshF0wjB1AcjVkyBBN\nnDhRERERpqMAaYqDg4Pmzp2r8ePHa//+/abjAABSqGXLlilLlix0dQJ4LIqdsAs6OwEkVyVLllTl\nypU1ffp001GANCd//vwaN26c/Pz8FBUVZToOACCFiYuL04gRI5irE8A/otgJu2DOTgDJ2ZAhQzR+\n/Hg+lAEMaNeunfLnz6/AwEDTUQAAKczy5cuVKVMm1a5d23QUAMkYxU7YBZ2dAJKzsmXLqkyZMpo9\ne7bpKECaY7FYNGPGDM2dO1fbtm0zHQcAkEIwVyeAJ0WxE3bBnJ0AkruhQ4dqzJgxio6ONh0FSHOy\nZ8+uL774Qm3bttXdu3dNxwEApADLly9XxowZ6eoE8K8odsIuGMYOILmrWLGiihUrpnnz5pmOAqRJ\nTZo00WuvvaZ+/fqZjgIASOYezNVJVyeAJ0GxE3bBMHYAKcHQoUM1evRoxcTEmI4CpEmffvqp1q9f\nr3Xr1pmOAgBIxlasWKEMGTKoTp06pqMASAEodsIuGMYOICWoWrWq8ufPr0WLFpmOAqRJGTNm1Jw5\nc9SpUyddv37ddBwAQDLEXJ0AnhbFTtgFnZ0AUoqhQ4dq5MiRiouLMx0FSJOqV6+uli1b6v3335fV\najUdBwCQzKxYsUKenp50dQJ4YhQ7YRfM2QkgpXjjjTeUPXt2LV261HQUIM0aOXKkDh48qMWLF5uO\nAgBIRuLj4+nqBPDUKHbCLujsBJBSWCwWDRs2TMHBwYqPjzcdB0iT3NzctGDBAvXp00fnz583HQcA\nkEw86OqsW7eu6SgAUhCKnbAL5uwEkJLUrl1bnp6e+uabb0xHAdKscuXKqWfPnurQoQPD2QEAdHUC\neGYUO2EXDGMHkJJYLBYNHTqU7k7AsEGDBunPP//U559/bjoKAMCwb775Ru7u7nR1AnhqFDthFy4u\nLoqOjqZoACDFaNiwoRwdHRUSEmI6CpBmOTk5af78+QoICNDRo0dNxwEAGBIfH6+goCC6OgE8E4qd\nsAuLxSJXV1dFRUWZjgIAT+RBd+fw4cMZQgsYVKRIEQUGBsrPz0+xsbGm4wAADHjQ1VmvXj3TUQCk\nQBQ7YTcsUgQgpWncuLGio6O1bt0601GANK179+7KmDGjxowZYzoKACCJPejqDAgIoKsTwDOh2Am7\nYd5OACmNg4ODhg4dqhEjRtDdCRjk4OCg2bNna/Lkyfr9999NxwEAJKGVK1cqffr0ql+/vukoAFIo\nip2wGzo7AaREzZo1061bt7Rx40bTUYA0LU+ePJo0aZL8/Pz4fQIA0gjm6gRgCxQ7YTdubm78cQIg\nxXF0dJS/v7+GDx9uOgqQ5rVq1Uovv/yy/P39TUcBACSBlStXys3Nja5OAM+FYifshmHsAFKqd955\nRxcvXtTPP/9sOgqQplksFn3xxRdasmSJNm/ebDoOAMCO4uPjNXz4cObqBPDcKHbCbhjGDiClcnJy\nkr+/v0aMGGE6CpDmZc2aVTNmzFC7du10+/Zt03EAAHayatUqubi4qEGDBqajAEjhKHbCbhjGDiAl\na926tU6cOKHQ0FDTUYA0r0GDBqpbt6769OljOgoAwA6YqxOALVHshN3Q2QkgJXN2dtbAgQPp7gSS\niU8++UQ///yzvvvuO9NRAAA2RlcnAFui2Am7Yc5OACldu3btdPDgQe3atct0FCDN8/Dw0Pz589Wt\nWzdduXLFdBwAgI0wVycAW6PYCbuhsxNASufi4qIBAwbQ3QkkE6+++qratm2rLl26yGq1mo4DALCB\nb7/9Vs7OzmrYsKHpKABSCYqdsBvm7ASQGnTs2FG7d+/W3r17TUcBICkoKEinTp3SvHnzTEcBADwn\n5uoEYA8UO2E3DGMHkBq4ubmpf//+Cg4ONh0FgP7quF6wYIH69++vM2fOmI4DAHgO3333HV2dAGyO\nYifshmHsAFKLrl27auvWrTp48KDpKAAklSpVSv369VO7du0UHx9vOg4A4Bk86Opkrk4AtkaxE3bD\nMHYAqUX69On14YcfauTIkaajAPivfv36KSYmRp999pnpKACAZ/Ddd9/J0dFRb775pukoAFIZip2w\nGzo7AaQm3bt318aNG3XkyBHTUQBIcnR01Lx58zRy5EgdOnTIdBwAwFOgqxOAPVHshN0wZyeA1MTT\n01O9evXSqFGjTEcB8F8FCxbUqFGj5Ofnp+joaNNxAABPaPXq1XJwcJCvr6/pKABSIYqdsBs6OwGk\nNj179tTatWt14sQJ01EA/Ffnzp2VK1cuFhEDgBTCarWyAjsAu6LYCbthzk4AqU3GjBn1wQcfaPTo\n0aajAPgvi8WimTNnavr06dqxY4fpOACAf/Hdd9/JYrHQ1QnAbih2wm4Yxg4gNerdu7dWrVqlM2fO\nmI4C4L9y5cqlqVOnys/PTxEREabjAAAe40FXJ3N1ArAnip2wG1dXV+bPApDqZMmSRV26dNGYMWNM\nRwHwN82bN1eFChX08ccfm44CAHiM1atXS5IaNWpkOAmA1MxitVqtpkMgdYqIiND9+/eVNWtW01EA\nwKauXr2qUqVKKSwsTJkyZTIdB8B/3bx5U6+88opmzpypOnXqmI4DAPgbq9WqsmXLKjAwUI0bNzYd\nB0AqRmcn7CZ9+vQUOgGkSl5eXtq3bx+FTiCZyZw5s2bNmqWOHTvq5s2bpuMAAP6Grk4ASYXOTgAA\nAKQqPXv21I0bN/T111+bjgIA0F9dneXKldOwYcPUpEkT03EApHJ0dgIAACBVGTt2rHbv3q1ly5aZ\njgIAkBQSEiKr1crwdQBJgs5OAAAApDo7d+6Ur6+v9u7dq1y5cpmOAwBpFl2dAJIanZ0AAABIdSpU\nqKCuXbuqY8eO4rN9ADAnJCRE8fHxdHUCSDIUOwEAAJAqDR06VJcvX9aMGTNMRwGANMlqtSooKEgB\nAQGyWCym4wBIIyh2AgAAIFVydnbWggUL5O/vrxMnTpiOAwBpzvfff6+4uDi6OgEkKYqdAAAASLWK\nFy8uf39/tWnTRnFxcabjAECaYbVaFRgYqICAADk4UHoAkHS44wAAACBV69Wrl9KlS6cJEyaYjgIA\nacaaNWsUGxtLVyeAJMdq7AAAAEj1zpw5Ix8fH/3444965ZVXTMcBgFTNarWqfPnyGjx4sJo2bWo6\nDoA0hs5OGEWtHQAAJIV8+fJpwoQJ8vPzU1RUlOk4AJCqrVmzRjExMWrSpInpKADSIIqdMGrMmDFa\nsWKF4uPjTUcBALsKDQ3V/fv3TccA0rQ2bdqoYMGCGjZsmOkoAJBqPZirc9iwYczVCcAI7jwwxmq1\n6pVXXtHYsWNVqlQpLV26lIUDAKRK0dHRmj59uooUKaK5c+dyrwMMsVgs+uqrrzR//nxt3brVdBwA\nSJXWrl2r6OhovfXWW6ajAEijmLMTxlmtVq1fv15BQUG6ffu2hgwZopYtW8rR0dF0NACwqdDQUPXv\n31937tzR2LFjVa9ePVksFtOxgDTnu+++U9++fbV37155enqajgMAqYbValWFChU0cOBANWvWzHQc\nAGkUxU4kG1arVT/++KOCgoJ09epV+fv7q1WrVnJycjIdDQBsxmq16rvvvtPAgQOVO3dujRs3TuXK\nlTMdC0hzOnToICcnJ02fPt10FABINdasWaNBgwZp7969DGEHYAzFTiQ7VqtVmzZtUlBQkC5cuCB/\nf3+1bt1azs7OpqMBgM3ExsZq1qxZCgoKUvXq1RUcHKwCBQqYjgWkGbdv39Yrr7yiqVOnqmHDhqbj\nAECK96Crc8CAAWrevLnpOADSMD5qQbJjsVhUo0YN/fzzz5o1a5YWLlwob29vzZgxQ9HR0abjAcBj\nrVmzRnv27HmifZ2cnNS1a1cdPXpU3t7e8vHxUd++fXX9+nU7pwQgSRkyZNDcuXPVuXNnXbt2zXQc\nAEjx1q1bp8jISDVt2tR0FABpHMVOJGvVqlXTxo0btWDBAi1fvlyFCxfWl19+qaioKNPRAOAh27Zt\n0/fff/9Ux3h4eCggIECHDh1SZGSkihYtqrFjx7JyO5AEqlWrpnfffVfdunUTg50A4Nk9WIE9ICCA\n4esAjOMuhBShatWq+uGHH7RkyRKtXr1ahQoV0rRp0xQZGWk6GgAkKFy4sI4ePfpMx+bMmVOff/65\ntm7dqh07drByO5BERo4cqbCwMC1atMh0FABIsdatW6f79+/T1QkgWaDYiRSlcuXKWrt2rVauXKn1\n69erYMGC+uyzz+iAApAsFC5cWMeOHXuucxQpUkQrV67UkiVLNGPGDJUpU0br16+n6wywE1dXVy1c\nuFAffvihzp07ZzoOAKQ4VqtVQUFBGjZsGF2dAJIF7kRIkcqXL6+QkBCFhIRo8+bNKliwoCZOnKh7\n9+6ZjgYgDfP29n7uYucDVapU0datWzV8+HD17t1btWvX1u+//26TcwNIrEyZMurdu7fat2+v+Ph4\n03EAIEVZv3697t27p2bNmpmOAgCSKHYihStbtqxWrVqltWvXKjQ0VAULFtT48eN19+5d09EApEFe\nXl6KjY3VjRs3bHI+i8WiJk2a6ODBg2revLkaNmyo9957T6dOnbLJ+QH8vwEDBuju3buaNm2a6SgA\nkGIwVyeA5MhiZVwcAAAAoKNHjyZ0VRctWtR0HABI9tatW6f+/ftr//79FDsBJBvcjQAAAAD9NRXF\n8OHD1aZNG8XGxpqOAwDJGnN1AkiuuCMBAJBKsHI78Pzef/99Zc6cWaNGjTIdBQCStT179ujOnTtq\n3ry56SgAkAjD2AEASCVeeeUVjR07VnXr1pXFYjEdB0ixLly4oDJlymjt2rXy8fExHQcAkp0HZYSo\nqCi5uroaTgMAidHZiTRr8ODBunbtmukYAGAzgYGBrNwO2EDu3Ln12Wefyc/PT/fv3zcdBwCSHYvF\nIovFIhcXF9NRAOAhFDvTOIvFohUrVjzXOebOnSsPDw8bJUo6N27ckLe3tz7++GNduXLFdBwABuXP\nn18TJkyw+3Xsfb986623WLkdsJF33nlHpUqV0uDBg01HAYBki5EkAJIjip2p1INP2h73aNeunSQp\nPDxcvr6+z3Wtli1b6uTJkzZInbS+/PJL7du3T/fu3VPRokX10Ucf6dKlS6ZjAbCxdu3aJdz7nJyc\n9OKLL+r999/XzZs3E/bZtWuXunfvbvcsSXG/dHZ2Vrdu3XTs2DF5e3vLx8dHH330ka5fv27X6wKp\njcVi0eeff67ly5dr06ZNpuMAAADgCVHsTKXCw8MTHjNmzHho22effSZJypkz53MPPXBzc1P27Nmf\nO/PziI6Ofqbj8ubNq2nTpunAgQOKjY1V8eLF1adPH128eNHGCQGYVKtWLYWHh+v06dOaOXOmQkJC\nEhU3vby8lD59ervnSMr7pYeHhwICAnTo0CFFRESoaNGiGjduHENygaeQNWtWzZgxQ+3atdOff/5p\nOg4AAACeAMXOVCpnzpwJj0yZMj20LWPGjJISD2M/ffq0LBaLlixZomrVqsnNzU1lypTR/v37dfDg\nQVWpUkXu7u6qWrVqomGR/zss89y5c2rcuLGyZMmi9OnTq2jRolqyZEnC6wcOHFCtWrXk5uamLFmy\nPPQHxK5du1SnTh1ly5ZNGTJkUNWqVfXrr78men8Wi0XTpk1T06ZN5e7ursGDBysuLk4dO3ZUgQIF\n5ObmpsKFC2vcuHGKj4//15/Xg7m5Dh06JAcHB5UoUUI9evTQ+fPnn+GnDyC5cXFxUc6cOZUnTx7V\nqVNHLVu21A8//JDw+v8OY7dYLPriiy/UuHFjpU+fXt7e3tq0aZPOnz+vunXryt3dXaVLl040L+aD\ne+HGjRtVokQJubu7q3r16v94v5SkNWvWqGLFinJzc1PWrFnl6+uryMjIR+aSpDfeeEM9evR44vee\nM2dOffHFF9q6dau2b9+uIkWKaN68eazcDjyh+vXrq0GDBurdu7fpKABgBGsaA0hpKHbiIQEBARow\nYID27NmjTJkyqVWrVurZs6dGjhypnTt3KjIyUr169Xrs8d27d1dERIQ2bdqkQ4cO6dNPP00ouEZE\nRKhevXry8PDQzp07tWrVKoWGhqpDhw4Jx9+5c0d+fn7asmWLdu7cqdKlS6tBgwYPLSYUFBSkBg0a\n6MCBA/rggw8UHx+v3Llza9myZQoLC9PIkSM1atQozZkz54nfe65cuTRx4kSFhYXJzc1NpUqV0vvv\nv68zZ8485U8RQHJ18uRJrV+/Xs7Ozv+4X3BwsN555x3t27dPPj4+evfdd9WxY0d1795de/bs0Qsv\nvJAwJcgDUVFRGj16tGbPnq1ff/1Vt27dUrdu3R57jfXr16tx48aqXbu2fvvtN23atEnVqlV7og9p\nnlaRIkW0cuVKLV68WF999ZXKli2rDRs28AcM8ATGjx+vrVu3atWqVaajAECS+PvvBw/m5bTH7ycA\nYBdWpHrLly+3Pu5/aknW5cuXW61Wq/XUqVNWSdYvv/wy4fWQkBCrJOs333yTsG3OnDlWd3f3xz4v\nWbKkNTAw8JHXmz59ujVDhgzW27dvJ2zbtGmTVZL12LFjjzwmPj7emjNnTuuCBQsS5e7Ro8c/vW2r\n1Wq1DhgwwFqzZs1/3e9xrly5Yh04cKA1S5Ys1s6dO1tPnjz5zOcCYEbbtm2tjo6OVnd3d6urq6tV\nklWSdeLEiQn75MuXzzp+/PiE55KsAwcOTHh+4MABqyTrJ598krDtwb3r6tWrVqv1r3uhJOuRI0cS\n9lm4cKHV2dnZGhcXl7DP3++XVapUsbZs2fKx2f83l9VqtVarVs36wQcfPO2PIZH4+HjrypUrrd7e\n3taaNWtaf/vtt+c6H5AWbNu2zZojRw7rpUuXTEcBALuLjIy0btmyxdqpUyfrkCFDrBEREaYjAcAT\no7MTDylVqlTC9zly5JAklSxZMtG2e/fuKSIi4pHH9+7dW8HBwapcubKGDBmi3377LeG1sLAwlSpV\nSp6engnbqlSpIgcHBx0+fFiSdOXKFXXt2lXe3t7KmDGjPD09deXKFZ09ezbRdXx8fB669pdffikf\nHx95eXnJw8NDkyZNeui4p+Hl5aXRo0fr6NGjyp49u3x8fNSxY0edOHHimc8JIOm9/vrr2rt3r3bu\n3KmePXuqQYMG/9ihLj3ZvVD66571gIuLi4oUKZLw/IUXXlBMTIxu3br1yGvs2bNHNWvWfPo39Jws\nFstDK7e3bt1ap0+fTvIsQEpRpUoVdejQQZ07d6YjGkCqN3LkSHXv3l0HDhzQokWLVKRIkUR/1wFA\nckaxEw/5+9DOB0MWHrXtccMYOnbsqFOnTql9+/Y6evSoqlSposDAQEl/DYd4cPz/erC9bdu22rVr\nlyZNmqTQ0FDt3btXefLkeWgRInd390TPly5dqj59+qhdu3basGGD9u7dq+7duz/z4kV/lzVrVgUH\nB+v48ePKmzevKlasqLZt2+ro0aPPfW4A9pc+fXoVKlRIJUuW1OTJkxUREaERI0b84zHPci90cnJK\ndI7nHfbl4ODwUFElJibmmc71KA9Wbj969KgKFSqkcuXK6aOPPtKNGzdsdg0gNQkMDNTZs2efaooc\nAEhpwsPDNXHiRE2aNEkbNmxQaGio8ubNq8WLF0uSYmNjJTGXJ4Dki2In7CJPnjzq0qWLli1bpuHD\nh2v69OmSpOLFi2vfvn26c+dOwr6hoaGKj49XsWLFJElbt25Vz5491bBhQ7388svy9PRUeHj4v15z\n69atqlixonr06KGyZcuqUKFCNu/AzJw5swIDA3X8+HEVKlRIr776qlq3bq2wsDCbXgeAfQUEBGjs\n2LG6ePGi0RxlypTRxo0bH/u6l5dXovtfZGSkjhw5YvMcnp6eCgwMTFi5vUiRIho/fnzCQkkA/pIu\nXTotWLBAAwYMSLT4GACkJpMmTVLNmjVVs2ZNZcyYUTly5FD//v21YsUK3blzJ+HD3a+++kr79+83\nnBYAHkaxEzbXu3dvrV+/XidPntTevXu1fv16FS9eXJL03nvvyd3dXW3atNGBAwf0yy+/qGvXrmra\ntKkKFSokSfL29tbChQt1+PBh7dq1S++8847SpUv3r9f19vbW77//rnXr1unYsWMa8X/s3Xlczfn/\nBfBz720RUQwpW0ilmAaRyZjsjbFvI1sJkaxJUXYllFCMsY01xsxY42vJIKFkG9JCEWHwHYOUJG33\n94df98uMbaj7vrd7no9Hf+jeW+fOw9x07uvzfgUEIDo6ulSeo6GhIWbOnIm0tDQ0atQIbdq0wYAB\nA5CYmFgq34+ISlbbtm3RqFEjzJs3T2iO6dOnY/v27ZgxYwaSk5ORlJSEpUuXKo4Jad++PbZu3Yrj\nx48jKSkJw4cPL9HJzr97dXP76dOnYWlpic2bN3NzO9ErPv/8c0yZMgWurq5c1kFEZU5eXh7++OMP\nmJubK17jCgsL0a5dO+jo6GDPnj0AgNTUVIwZM+a148mIiFQFy04qcUVFRRg/fjysra3RqVMnVK9e\nHZs2bQLw8lLSyMhIZGVlwc7ODj179oS9vT3Wr1+vePz69euRnZ0NW1tbDBgwAMOHD0fdunXf+33d\n3d3Rv39/DBo0CC1atEB6ejomT55cWk8TAFCpUiX4+fkhLS0NzZo1Q4cOHfDdd9/9q3c4CwsLkZCQ\ngMzMzFJMSkR/5+XlhXXr1uHWrVvCMnTp0gW7d+/GwYMH0bRpU7Rp0wZRUVGQSl/+ePbz80P79u3R\ns2dPODo6onXr1mjWrFmp5yre3P7TTz9h1apVsLW15eZ2old4eXlBLpdj6dKloqMQEZUoHR0dDBw4\nEA0aNFD8e0Qmk8HAwACtW7fG3r17Abx8w7ZHjx6oV6+eyLhERG8kkfM3F6IS8+zZM6xatQohISGw\nt7fHzJkz0bRp03c+JiEhAYsWLcKlS5fQsmVLBAUFoUqVKkpKTET0bnK5HLt374afnx/q1KmD4ODg\n976uEWmCGzduoGXLloiKikLjxo1FxyEiKjHFV5Foa2u/tnMhKioK7u7u2L59O2xtbZGSkgIzMzOR\nUYmI3oiTnUQlqEKFCpg8eTLS0tLg4OCA3r17v/cSt1q1amHAgAEYN24c1q1bh9DQUJ6TR0QqQyKR\noE+fPkhMTESfPn3QpUsXbm4nAlC/fn0sWLAAzs7OJbIMkYhItCdPngB4WXL+vejMy8uDvb09qlSp\nAjs7O/Tp04dFJxGpLJadRKWgfPny8PT0xPXr19+6fb5Y5cqV0aVLFzx69AhmZmbo3LkzypUrp7i9\nNM/nIyL6UNra2vDw8Hhtc7u3tzc3t5NGGzFiBGrVqgV/f3/RUYiIPsnjx48xevRobN68WfGG5qu/\nx+jo6KBcuXKwtrZGfn4+Fi1aJCgpEdH7yebMmTNHdAiiskoqlb6z7Hz13dL+/fvDyckJ/fv3Vyxk\nun37NjZs2ICjR4/C1NQUhoaGSslNRPQ2urq6aNu2LYYOHYrffvsNY8aMgUQiga2trWI7K5GmkEgk\naN++PUaNGoXWrVujVq1aoiMREX2UH374AaGhoUhPT8f58+eRn5+PypUrw8DAAKtXr0bTpk0hlUph\nb28PBwcH2NnZiY5MRPRWnOwkEqh4w/GiRYsgk8nQu3dv6OvrK25//PgxHjx4gNOnT6N+/fpYsmQJ\nN78SkUoo3tx+8uRJxMbGcnM7aSxjY2OsWLECzs7OePbsmeg4REQfxd7eHra2thg2bBgyMjIwdepU\nzJgxA8OHD8eUKVOQk5MDADAyMkK3bt0EpyUiejeWnUQCFU9BhYaGwsnJ6R8LDpo0aYLAwEAU+uMI\nEQAAIABJREFUD2BXqlRJ2RGJiN6pYcOG2L1792ub2w8fPiw6FpFS9e3bF/b29pgyZYroKEREH6VV\nq1b48ssv8fz5cxw5cgRhYWG4ffs2tmzZgvr16+PgwYNIS0sTHZOI6IOw7CQSpHhCc+nSpZDL5ejT\npw8qVqz42n0KCwuhpaWFtWvXwsbGBj179oRU+vr/ts+fP1daZiKit/nqq68QExODWbNmYfz48ejU\nqRMuXrwoOhaR0ixbtgz79u1DZGSk6ChERB9l0qRJOHToEO7cuYO+ffti6NChqFixIsqXL49JkyZh\n8uTJiglPIiJVxrKTSMnkcjmOHDmCM2fOAHg51dm/f3/Y2Ngobi8mk8lw+/ZtbNq0CRMmTEC1atVe\nu8/NmzcRGBiIKVOmIDExUcnPhIjeJzg4GJMnTxYdQ2netLnd2dkZt27dEh2NqNQZGhpiw4YNGDFi\nBBd3EZHaKSwsRP369WFiYoLZs2cDAKZNm4b58+cjJiYGS5YswZdffony5csLTkpE9H4sO4mUTC6X\n4+jRo/jqq69gZmaGrKws9O3bVzHVWbywqHjyMzAwEBYWFq+djVN8n8ePH0MikeDKlSuwsbFBYGCg\nkp8NEb2Lubk5rl27JjqG0r26ud3MzAzNmjXj5nbSCB06dEDfvn0xbtw40VGIiD6YXC6HTCYDAMya\nNQt//vknRo4cCblcjt69ewMAnJyc4OvrKzImEdEHY9lJpGRSqRQLFixAamoq2rZti8zMTPj5+eHi\nxYuvLR+SSqW4e/cuNm7ciIkTJ8LIyOgfX8vW1hazZs3CxIkTAQCNGjVS2vMgovfT1LKzWMWKFTFn\nzhwkJiYiOzsblpaWWLRoEXJzc0VHIyo1CxYswO+//45ffvlFdBQioncqPg7r1WELS0tLfPnll9i4\ncSOmTZum+B2ES1KJSJ1I5K9eM0tESpeeno4pU6agQoUKWLt2LXJycqCnpwdtbW2MGTMGUVFRiIqK\ngrGx8WuPk8vlin+YDBkyBCkpKTh37pyIp0BEb/H8+XNUrlwZ2dnZioVkmuzq1avw8/PD77//jnnz\n5mHw4MH/OIeYqCw4d+4cunXrhosXL6JGjRqi4xAR/UNmZibmz5+Pb7/9Fk2bNoWBgYHitnv37uHI\nkSPo1asXKlWq9NrvHURE6oBlJ5GKyM3Nha6uLqZOnYrY2FiMHz8ebm5uWLJkCUaOHPnWx124cAH2\n9vb45ZdfFJeZEJHqMDU1RVRUFOrXry86isqIiYmBj48PcnJyEBwcDEdHR9GRiErcpk2bMGDAAOjo\n6LAkICKV4+HhgdWrV6NOnTro3r27YofAq6UnALx48QK6urqCUhIRfRyOUxCpiHLlykEikcDb2xvV\nqlXDkCFD8OzZM+jp6aGwsPCNjykqKkJYWBgaNWrEopNIRWn6pexv8urm9nHjxsHR0ZGb26nMcXFx\nYdFJRCrp6dOniIuLw6pVqzB58mRERETgu+++w4wZMxAdHY2MjAwAQGJiIkaNGoVnz54JTkxE9O+w\n7CRSMUZGRti9ezf++9//YtSoUXBxccGkSZOQmZn5j/tevnwZv/zyC6ZPny4gKRF9CJadb1a8uT0p\nKQm9evXi5nYqcyQSCYtOIlJJd+7cQbNmzWBsbIzx48fj9u3bmDlzJvbu3Yv+/ftj1qxZOHHiBCZO\nnIiMjAxUqFBBdGQion+Fl7ETqbiHDx/i7Nmz+OabbyCTyXDv3j0YGRlBS0sLw4YNw4ULFxAfH89f\nqIhU1JIlS3Dr1i2EhYWJjqLSnj59ipCQEHz//fcYNmwYpk2bhipVqoiORVRq8vLyEBYWhvr166Nv\n376i4xCRBikqKsK1a9dQvXp1GBoavnbbihUrEBISgidPniAzMxMpKSkwNzcXlJSI6ONwspNIxVWt\nWhVdunSBTCZDZmYm5syZAzs7OyxevBg7duzArFmzWHQSqTBOdn6YihUrYu7cua9tbg8JCfngze18\n75bUzZ07d3Dt2jXMnDkT+/fvFx2HiDSIVCqFpaXla0VnQUEBAGDs2LG4efMmjIyM4OzszKKTiNQS\ny04iNWJgYIAlS5agWbNmmDVrFp49e4b8/Hw8f/78rY9hAUAkFsvOf8fExASrVq3CyZMnERMTA0tL\nSxw4cOC9r2X5+fnIyMjA2bNnlZSU6OPJ5XKYmZkhLCwMrq6uGDlyJF68eCE6FhFpMC0tLQAvpz7P\nnDmDa9euYdq0aYJTERF9HF7GTqSmcnJyMGfOHISEhGDChAmYN28e9PX1X7uPXC7Hvn37cPfuXQwf\nPpybFIkEyMvLQ8WKFZGdnQ1tbW3RcdTOqVOnYG5uDiMjo3dOsbu5uSEuLg7a2trIyMjA7NmzMWzY\nMCUmJXo/uVyOwsJCyGQySCQSRYn/9ddfo1+/fvD09BSckIgIOHr0KI4cOYIFCxaIjkJE9FE42Umk\npsqXL4/g4GA8e/YMgwYNgp6e3j/uI5FIYGJigv/85z8wMzPD8uXLP/iSUCIqGTo6OqhZsyZu3rwp\nOopaat269XuLzh9++AHbtm3DmDFj8Ouvv2LWrFkIDAzEwYMHAXDCncQqKirCvXv3UFhYCIlEAi0t\nLcXf5+IlRjk5OahYsaLgpESkaeRy+Rt/RrZv3x6BgYECEhERlQyWnURqTk9PD3Z2dpDJZG+8vUWL\nFti/fz/27NmDI0eOwMzMDKGhocjJyVFyUiLNZWFhwUvZP8H7ziVetWoV3NzcMGbMGJibm2P48OFw\ndHTE2rVrIZfLIZFIkJKSoqS0RP+Tn5+PWrVqoXbt2ujQoQO6du2K2bNnIyIiAufOnUNaWhrmzp2L\nS5cuoUaNGqLjEpGGmThxIrKzs//xeYlEAqmUVQERqS++ghFpiObNmyMiIgL/+c9/cOLECZiZmSEk\nJATPnj0THY2ozOO5naUnLy8PZmZmitey4gkVuVyumKBLSEiAlZUVunXrhjt37oiMSxpGW1sbXl5e\nkMvlGD9+PBo3bowTJ07A398f3bp1g52dHdauXYvly5fj22+/FR2XiDRIdHQ0Dhw48Marw4iI1B3L\nTiIN07RpU+zatQuRkZE4c+YM6tevj6CgoDe+q0tEJYNlZ+nR0dFBmzZtsGPHDuzcuRMSiQT79+9H\nTEwMDAwMUFhYiM8//xxpaWmoVKkSTE1NMWLEiHcudiMqSd7e3mjcuDGOHj2KoKAgHDt2DBcuXEBK\nSgqOHDmCtLQ0uLu7K+5/9+5d3L17V2BiItIEc+fOxYwZMxSLiYiIyhKWnUQaysbGBtu3b8fRo0dx\n6dIl1K9fH/Pnz0dWVpboaERlDsvO0lE8xenp6YmFCxfC3d0dLVu2xMSJE5GYmIj27dtDJpOhoKAA\n9erVw08//YTz58/j2rVrMDQ0RHh4uOBnQJpi7969WLduHSIiIiCRSFBYWAhDQ0M0bdoUurq6irLh\n4cOH2LRpE3x9fVl4ElGpiY6Oxu3btzFkyBDRUYiISgXLTiIN17hxY2zbtg3R0dFITk6GmZkZAgIC\n8OTJE9HRiMoMlp0lr6CgAEePHsX9+/cBAKNHj8bDhw/h4eGBxo0bw97eHgMHDgQAReEJACYmJujQ\noQPy8/ORkJCAFy9eCHsOpDnq1q2L+fPnw9XVFdnZ2W89Z7tq1apo0aIFcnJy4OTkpOSURKQp5s6d\ni+nTp3Oqk4jKLJadRAQAsLKywpYtWxATE4O0tDQ0aNAAs2fPxuPHj0VHI1J7devWxf3795Gbmys6\nSpnx6NEjbNu2Df7+/sjKykJmZiYKCwuxe/du3LlzB1OnTgXw8kzP4g3Yjx8/Rp8+fbB+/XqsX78e\nwcHB0NXVFfxMSFNMnjwZkyZNwtWrV994e2FhIQCgU6dOqFixImJjY3HkyBFlRiQiDXDixAncunWL\nU51EVKZJ5MXXgBERveL69etYsGAB9uzZAw8PD0yaNAmfffaZ6FhEasvCwgJ79uyBtbW16Chlxvnz\n5zF8+HA8fvwY5ubmSE5OhpGREebNm4eePXsCAIqKiiCVShEREYH58+cjIyMDy5YtQ+fOnQWnJ01U\n/PfxVXK5HBKJBABw6dIlDBs2DPfv34e/vz/69euHKlWqiIhKRGVUhw4dMGTIEAwbNkx0FCKiUsPJ\nTiJ6owYNGmDdunU4f/48Hjx4AHNzc/j6+uKvv/4SHY1ILVlYWPBS9hLWvHlzXL58GatXr0bv3r2x\nZcsWREdHK4pO4OXl7vv27cPIkSOhr6+PAwcOKIpOvt9LylZcdF67dg0PHjwAAEXRGRQUBDs7Oxgb\nG+PQoUNwc3Nj0UlEJerEiRNIT0/nVCcRlXksO4nonerVq4c1a9bg4sWLyMzMhKWlJXx8fPDnn3+K\njkakVnhuZ+np2rUrJkyYgE6dOsHQ0PC12/z9/TF8+HB07doV69evR4MGDVBUVATgfyUTkbIdPHgQ\nffr0AQCkp6fDwcEBAQEBCAwMxNatW9GkSRNFMVr895WI6FMVn9Wpra0tOgoRUali2UlEH8TU1BQr\nV65EfHw8cnNzYWVlBS8vL8VyECJ6N5adylFcEN25cwf9+vVDWFgYXFxcsGHDBpiamr52HyJRxowZ\ng0uXLqFTp05o0qQJCgsLcfjwYXh5ef1jmrP47+vz589FRCWiMuLkyZO4efMmnJ2dRUchIip1/Nc+\nEf0rtWvXxvLly5GYmIiioiI0atQIEyZMwN27d0VHI1JpLDuVy8jICMbGxvjxxx+xcOFCAP9bAPN3\nvJydlE1LSwv79u3D0aNH0b17d0RERKBVq1Zv3NKenZ2NlStXIiwsTEBSIior5s6dixkzZnCqk4g0\nAstOIvooNWrUQGhoKJKTk6Gjo4PPP/8cY8eOxe3bt0VHI1JJLDuVS1dXF99//z2cnJwUv9i9qUiS\ny+XYunUrvvnmG1y6dEnZMUmDtWvXDqNGjcLJkyehpaX11vvp6+tDV1cX+/btw4QJE5SYkIjKilOn\nTuHGjRuc6iQijcGyk4g+ibGxMUJCQnD16lXo6+ujSZMmcHd3R3p6uuhoRCqldu3aePjwIXJyckRH\noVdIJBI4OTmhR48e+Pbbb+Hi4oJbt26JjkUaYtWqVahZsyaOHz/+zvsNHDgQ3bt3x/fff//e+xIR\n/R3P6iQiTcOyk4hKhJGREYKCgpCamorPPvsMtra2cHNzw40bN0RHI1IJMpkM9erVw/Xr10VHob/R\n1tbG2LFjkZqairp166JZs2bw8fFBRkaG6GikAfbs2YNWrVq99fbMzEyEhYUhMDAQnTp1gpmZmRLT\nEZG6O3XqFK5fvw4XFxfRUYiIlIZlJxGVqKpVq2L+/Pm4du0aatSoATs7OwwbNoyX7xKBl7KruooV\nK8Lf3x+JiYnIysqCpaUlFi9ejNzcXNHRqAyrVq0ajIyMkJOT84+/a/Hx8ejVqxf8/f0xb948REZG\nonbt2oKSEpE64lmdRKSJWHYSUamoUqUK/P39ce3aNdStWxf29vZwcXFBSkqK6GhEwlhYWLDsVAMm\nJiZYvXo1oqOjcfLkSTRs2BBbtmxBUVGR6GhUhoWHh2PevHmQy+XIzc3F999/DwcHB7x48QJnz57F\nxIkTRUckIjUTExPDqU4i0kgsO4moVFWuXBmzZ89GWloaLC0t8fXXX2PQoEFITk4WHY1I6TjZqV6s\nrKywZ88ehIeH4/vvv0fz5s1x5MgR0bGojGrXrh3mz5+PkJAQDB48GJMmTYKXlxdOnjyJxo0bi45H\nRGqIZ3USkaZi2UlESmFgYIDp06cjLS0NNjY2aNeuHZycnJCQkCA6GpHSsOxUT19//TVOnz6NadOm\nwcPDA9988w3i4+NFx6IyxsLCAiEhIZg6dSqSk5Nx6tQpzJ49GzKZTHQ0IlJDMTExuHbtGqc6iUgj\nsewkIqWqWLEifH19kZaWhubNm6NTp07o27cviwPSCCw71ZdEIkG/fv2QnJyMHj164JtvvsHQoUNx\n+/Zt0dGoDPHy8kLHjh1Rp04dtGzZUnQcIlJjxVOdOjo6oqMQESkdy04iEkJfXx8+Pj5IS0vDV199\nhc6dO6NXr174/fffRUcjKjU1atRAVlYWnj59KjoKfaRXN7ebmpqiadOmmDJlCje3U4nZsGEDjh49\nigMHDoiOQkRqKjY2FqmpqZzqJCKNxbKTiISqUKECvLy8cOPGDbRv3x7du3dH9+7dcfbsWdHRiEqc\nVCqFmZkZpzvLgEqVKsHf3x8JCQl48uQJN7dTialZsyZOnz6NOnXqiI5CRGqKU51EpOlYdhKRStDT\n08OECROQlpaGzp07o2/fvvj2229x+vRp0dGIShQvZS9batSogTVr1uD48eM4ceIEGjZsiK1bt3Jz\nO32SFi1a/GMpkVwuV3wQEb1NbGwsUlJSMHToUNFRiIiEYdlJRCqlXLlyGDt2LK5fv45evXph4MCB\ncHR0xKlTp0RHIyoRFhYWLDvLIGtra0RERCA8PBzLly/n5nYqFTNnzsT69etFxyAiFTZ37lxMmzaN\nU51EpNFYdhKRStLV1YW7uztSU1PRv39/uLi4oH379oiOjhYdjeiTcLKzbPv75vbOnTtzARuVCIlE\nggEDBsDX1xc3btwQHYeIVNDp06dx9epVuLq6io5CRCQUy04iUmk6Ojpwc3NDSkoKnJ2dMWLECLRp\n0wbHjh3jpXykllh2ln2vbm7v3r07N7dTiWncuDF8fX3h6uqKwsJC0XGISMXwrE4iopdYdhKRWtDW\n1sawYcNw9epVuLm5wcPDA19//TUOHz7M0pPUCstOzfHq5vY6depwczuVCE9PT0gkEixZskR0FCJS\nIadPn8aVK1c41UlEBJadRKRmtLS04OzsjOTkZIwZMwYTJ05EUlKS6FhEH6x69erIzc3FkydPREch\nJalUqRICAgJe29y+ZMkSvHjxQnQ0UkMymQwbN25EcHAwEhISRMchIhXBszqJiP6HZScRqSWZTIZB\ngwYhMTER1tbWouMQfTCJRMLpTg316ub26Ohobm6nj1avXj0EBQXB2dkZeXl5ouMQkWBxcXG4cuUK\nhg0bJjoKEZFKYNlJRGpNJpNBKuVLGakXc3NzpKamio5BghRvbt+0aROWLVvGze30UYYNG4Y6depg\nzpw5oqMQkWCc6iQieh0bAiIiIiXjZCcBgIODA+Li4ri5nT6KRCLB2rVrsX79esTGxoqOQ0SCnDlz\nBsnJyZzqJCJ6BctOIiIiJbOwsGDZSQC4uZ0+TfXq1bFy5Uq4uLggOztbdBwiEmDu3Lnw8/PjVCcR\n0StYdhIRESkZJzvp7960uX3q1KlcZEXv1bt3b3z11Vfw8fERHYWIlOzMmTNITEzkVCcR0d+w7CQi\nIlKy4rJTLpeLjkIq5tXN7RkZGbCwsODmdnqvZcuW4cCBAzh48KDoKESkRMVnderq6oqOQkSkUlh2\nEhERKdlnn30GAHj06JHgJKSqXt3cfvz4cW5up3cyMDDAhg0bMHLkSL6uEGmIs2fPcqqTiOgtWHYS\nEREpmUQi4aXs9EGsra2xd+/e1za3Hz16VHQsUkHt27dHv379MHbsWNFRiEgJis/q5FQnEdE/sewk\nIiISwNzcHKmpqaJjkJp4dXP76NGj8e233+Ly5cuiY5GKWbBgAeLj47Ft2zbRUYioFJ09exYJCQkY\nPny46ChERCqJZScREZEAnOykf6t4c3tSUhK6du0KR0dHuLq64s6dO6KjkYrQ09NDeHg4Jk6ciLt3\n74qOQ0SlhFOdRETvxrKTiIhIAAsLC5ad9FF0dHQwbtw4pKamonbt2mjSpAk3t5NC8+bNMW7cOAwf\nPpxL0IjKoHPnzuHy5cuc6iQiegeWnUSkEfgLH6kaTnbSp+LmdnobPz8/ZGRkYOXKlaKjEFEJ41Qn\nEdH7sewkojKvZ8+eeP78uegYRK8pLjtZxNOnetPm9p9++omb2zWYtrY2Nm/ejFmzZvFNFaIy5Ny5\nc4iPj8eIESNERyEiUmksO4mozDt37hweP34sOgbRawwNDVGuXDn8+eefoqNQGfHq5vawsDC0aNGC\nm9s1WMOGDTF79mw4OzujoKBAdBwiKgFz586Fr68vpzqJiN6DZScRlXmVK1dGRkaG6BhE/8BL2ak0\nFG9u9/X1hbu7Oze3a7CxY8dCX18fQUFBoqMQ0Sc6f/48Ll26xKlOIqIPwLKTiMo8lp2kqlh2UmmR\nSCT47rvvkJyczM3tGkwqlWLDhg0ICwvDxYsXRcchok9QfFZnuXLlREchIlJ5LDuJqMxj2Umqytzc\nHKmpqaJjUBnGze1Uu3ZtLFmyBEOGDEFubq7oOET0Ec6fP4+LFy9yqpOI6AOx7CSiMo9lJ6kqCwsL\nTnaSUry6uf3x48ewsLDA0qVLubldQwwePBhWVlaYMWOG6ChE9BH8/f3h6+vLqU4iog8kkXMNLBER\nkRAXL17E0KFDeZ4iKV1ycjJ8fX2RkJCAwMBADBgwAFIp3wMvyx4+fAgbGxts27YNbdq0ER2HiD7Q\nhQsX0LNnT1y/fp1lJxHRB2LZSUREJMjTp09hbGyMp0+fsmgiIU6cOAEfHx8UFBRg0aJFaN++vehI\nVIr279+PcePGIT4+HpUqVRIdh4g+QI8ePeDo6Ihx48aJjkJEpDZYdhIREQlkYmKCc+fOoVatWqKj\nkIaSy+XYsWMH/Pz8YG5ujqCgINjY2IiORaVk1KhRKCwsxLp160RHIaL34FQnEdHH4RgJERGRQNzI\nTqK9aXP7sGHDuLm9jFq8eDGioqIQEREhOgoRvYe/vz+mTp3KopOI6F9i2UlERCQQy05SFa9ubq9Z\nsyaaNGkCX19fbm4vYypWrIhNmzZh9OjRePDggeg4RPQWv//+O86fP4+RI0eKjkJEpHZYdhIRvcOc\nOXPQuHFj0TGoDDM3N0dqaqroGEQKlSpVwrx583D58mU8evQIlpaW3Nxexnz99ddwcXHB6NGjwROt\niFTT3LlzuYGdiOgjsewkIpXl6uqKbt26Cc3g7e2N6OhooRmobONkJ6mqmjVrYu3atTh27BiioqJg\nZWWFbdu2oaioSHQ0KgH+/v64du0aNm/eLDoKEf0NpzqJiD4Ny04ionfQ19fHZ599JjoGlWEWFhYs\nO0mlNWrUCHv37sWGDRuwdOlS2NnZ4dixY6Jj0SfS1dXFli1b4O3tjVu3bomOQ0Sv4FmdRESfhmUn\nEakliUSCHTt2vPa5unXrIiQkRPHn1NRUtGnTBuXKlYOlpSUOHDgAfX19bNy4UXGfhIQEdOzYEXp6\neqhSpQpcXV2RmZmpuJ2XsVNpMzMzw82bN1FYWCg6CtE7tWnTBmfOnMHUqVMxatQodOnSBQkJCaJj\n0Sf44osvMHnyZAwbNowTu0Qq4uLFizh37hynOomIPgHLTiIqk4qKitC7d29oaWkhLi4OGzduxNy5\nc187cy4nJwedO3eGvr4+zp49i927dyM2NhbDhw8XmJw0Tfny5VG1alVuvia18Orm9m+//RYhISEo\nKCgQHYs+gY+PD168eIFly5aJjkJEeHlW59SpU6Gnpyc6ChGR2tISHYCIqDT89ttvSElJweHDh1Gz\nZk0AwNKlS/HVV18p7rN161ZkZ2cjPDwcFStWBACsWbMG7dq1w/Xr19GgQQMh2UnzFJ/bWbduXdFR\niD6Ijo4Oxo8fj/z8fGhp8Z+T6kwmk2Hz5s1o2bIlHB0dYW1tLToSkcYqnurctm2b6ChERGqNk51E\nVCZdvXoVNWrUUBSdANCiRQtIpf972bty5QpsbGwURScAtGrVClKpFMnJyUrNS5qNS4pIXWlra4uO\nQCXAzMwMgYGBcHFxQX5+vug4RBrL398fU6ZM4VQnEdEnYtlJRGpJIpFALpe/9rlXf0GTy+WQSCTv\n/Brvus/7HktUkszNzZGamio6BhFpsFGjRsHIyAjz5s0THYVII128eBFnzpzBqFGjREchIlJ7LDuJ\nSC1Vq1YN9+/fV/z5zz//fO3PVlZWuHv3Lu7du6f43Pnz519bwGBtbY34+Hg8ffpU8bnY2FgUFRXB\nysqqlJ8B0f9wspOIRJNIJFi3bh1WrVqFs2fPio5DpHE41UlEVHJYdhKRSsvKysKlS5de+0hPT0f7\n9u2xYsUKnD9/HhcvXoSrqyvKlSuneFynTp1gaWmJoUOHIj4+HnFxcfDy8oKWlpZianPw4MGoUKEC\nXFxckJCQgBMnTsDd3R19+vTheZ2kVBYWFiw7iUg4ExMTLF++HM7OzsjJyREdh0hjXLp0CWfOnIG7\nu7voKEREZQLLTiJSaSdPnkTTpk1f+/D29sbixYtRv359tG3bFv369YObmxuMjIwUj5NKpdi9ezde\nvHgBOzs7DB06FNOnT4dEIlGUouXLl0dkZCSysrJgZ2eHnj17wt7eHuvXrxf1dElD1a9fH7dv3+ZW\nayISrn///mjevDl8fX1FRyHSGJzqJCIqWRL53w+9IyIqo+Lj49GkSROcP38etra2H/QYPz8/REVF\nIS4urpTTkaarV68efvvtN04VE5FwGRkZsLGxwfr169GpUyfRcYjKtPj4eHz77bdIS0tj2UlEVEI4\n2UlEZdbu3btx+PBh3Lx5E1FRUXB1dcUXX3yBZs2avfexcrkcaWlpOHr0KBo3bqyEtKTpeG4naZqC\nggLcvHlTdAx6g8qVK2PdunUYPnw4MjIyRMchKtP8/f3h4+PDopOIqASx7CSiMuvp06cYN24crK2t\nMXjwYFhZWSEyMvKDNq1nZmbC2toaOjo6mDlzphLSkqZj2Uma5uHDh7C3t4e7uzv++usv0XHobxwd\nHdGzZ0+MHz9edBSiMis+Ph6xsbE8q5OIqISx7CSiMsvFxQWpqal4/vw57t27h59++gnVq1f/oMca\nGhrixYsXOHXqFExNTUs5KRHLTtI8xsbGuHLlCvT09GBtbY3Q0FDk5+eLjkWvCAoKwtmzZ7F9+3bR\nUYjKpOKzOsuXLy86ChFRmcKyk4iISAWYm5sjNTVVdAyij5KQkIA7d+7868dVrlwZoaFCGEKsAAAg\nAElEQVShiI6OxsGDB2FjY4NDhw6VQkL6GBUqVEB4eDjGjRuH+/fvi45DVKZcvnyZU51ERKWEZScR\nEZEK4GQnqau//voLXbp0QVpa2kd/DWtraxw6dAjBwcEYP348unXrxvJfRbRs2RKjRo2Cm5sbuNeU\nqOQUn9XJqU4iopLHspOINMLdu3dhYmIiOgbRW9WrVw/37t1DXl6e6ChEH6yoqAhDhw7FoEGD0LZt\n20/6WhKJBN27d0diYiLatGmDVq1awcfHB5mZmSUTlj7azJkzcf/+ffz444+ioxCVCZcvX0ZMTAxG\njx4tOgoRUZnEspOINIKJiQmuXr0qOgbRW2lra6N27dq4ceOG6ChEH2zJkiXIyMjAvHnzSuxr6urq\nwsfHB4mJiXj06BEaNmyIdevWoaioqMS+B/07Ojo6CA8Ph5+f3ydN8BLRS5zqJCIqXRI5r0chIiJS\nCV26dIGHhwe6d+8uOgrRe8XFxaFnz544e/ZsqS5yO3fuHCZOnIi8vDyEhYXhq6++KrXvRe+2ZMkS\n7Nq1C9HR0ZDJZKLjEKmlhIQEODo6Ii0tjWUnEVEp4WQnERGRiuC5naQuMjIyMHDgQKxevbpUi04A\naNGiBWJiYjBp0iQ4OTlh0KBB+OOPP0r1e9KbeXp6QktLC4sXLxYdhUht+fv7w9vbm0UnEVEpYtlJ\nRESkIlh2kjqQy+Vwc3ND9+7d0atXL6V8T4lEgsGDB+Pq1aswMzPDF198gYCAADx//lwp359ekkql\n2LhxIxYtWoTLly+LjkOkdhISEnDy5Eme1UlEVMpYdhIREakIc3NzbqAmlffDDz8gPT0dixYtUvr3\n1tfXR0BAAM6fP4/4+HhYWVlh+/bt3BKuRHXr1kVwcDCcnZ3x4sUL0XGI1ErxVGeFChVERyEiKtN4\nZicREZGKuHHjBtq2bYvbt2+LjkKkVtq2bYuwsDB88cUXoqNoBLlcjt69e6Nhw4ZYuHCh6DhEaiEx\nMREdO3ZEWloay04iolLGyU4iIgC5ubkIDQ0VHYM0nKmpKR48eMBLc4n+pQEDBsDR0RGjR4/GX3/9\nJTpOmSeRSLBmzRps3LgRp06dEh2HSC1wqpOISHlYdhKRRvr7UHt+fj68vLyQnZ0tKBERIJPJUK9e\nPaSlpYmOQqRWRo8ejStXrkBXVxfW1tYICwtDfn6+6FhlmpGREVatWoWhQ4fyZyfReyQmJuLEiRPw\n8PAQHYWISCOw7CQijbBr1y6kpKTgyZMnAF5OpQBAYWEhCgsLoaenB11dXcXtRKJwSRHRx6lSpQrC\nwsIQHR2N/fv3w8bGBpGRkaJjlWm9evWCg4MDJk+eLDoKkUrz9/fH5MmTOdVJRKQkLDuJSCNMnz4d\nTZs2hYuLC1auXIlTp04hIyMDMpkMMpkMWlpa0NXVxaNHj0RHJQ3HspPo01hbWyMyMhJBQUEYO3Ys\nevTowf+nSlFoaCgiIyNx4MAB0VGIVFLxVOeYMWNERyEi0hgsO4lII0RHR2P58uXIycnB7Nmz4ezs\njAEDBmDGjBmKX9CqVKmCBw8eCE5Kmo5lJ6mq9PR0SCQSnD9/XuW/t0QiQY8ePZCUlITWrVvD3t4e\nU6ZMQVZWVikn1TwGBgbYuHEjRo4cyTcMid4gICCAU51ERErGspOINIKRkRFGjBiBI0eOID4+HlOm\nTIGBgQEiIiIwcuRItG7dGunp6VwMQ8Kx7CSRXF1dIZFIIJFIoK2tjfr168Pb2xvPnj1D7dq1cf/+\nfTRp0gQAcPz4cUgkEjx8+LBEM7Rt2xbjxo177XN//94fSldXF1OmTEFCQgL++usvNGzYEBs2bEBR\nUVFJRtZ4bdu2hZOTEzw8PP5xJjaRJktKSkJ0dDSnOomIlIxlJxFplIKCApiYmMDDwwO//vordu7c\nicDAQNja2qJmzZooKCgQHZE0nLm5OVJTU0XHIA3WsWNH3L9/Hzdu3MC8efPwww8/wNvbGzKZDMbG\nxtDS0lJ6pk/93iYmJtiwYQMiIiKwZs0a2NnZITY2toRTarbAwEAkJiZi27ZtoqMQqYyAgAB4eXlx\nqpOISMlYdhKRRvn7L8oWFhZwdXVFWFgYjh49irZt24oJRvT/atWqhSdPnnC7MQmjq6sLY2Nj1K5d\nG4MGDcLgwYOxZ8+e1y4lT09PR7t27QAA1apVg0QigaurKwBALpcjODgYZmZm0NPTw+eff44tW7a8\n9j38/f1hamqq+F4uLi4AXk6WRkdHY8WKFYoJ0/T09BK7hL5FixaIiYmBp6cn+vfvj8GDB+OPP/74\npK9JL+np6SE8PByenp78b0qEl1OdUVFRnOokIhJA+W/NExEJ9PDhQyQkJCApKQm3b9/G06dPoa2t\njTZt2qBv374AXv6iXrytnUjZpFIpzMzMcP369X99yS5RadDT00N+fv5rn6tduzZ27tyJvn37Iikp\nCVWqVIGenh4AYMaMGdixYwdWrFgBS0tLnD59GiNHjkTlypXRtWtX7Ny5EyEhIdi2bRs+//xzPHjw\nAHFxcQCAsLAwpKamomHDhpg/fz6Al2XqnTt3Suz5SKVSDBkyBL169cLChQvxxRdfYNKkSZg8ebLi\nOdDHsbW1xfjx4zFs2DBERkZCKuVcBWmu4rM69fX1RUchItI4/BcIEWmMhIQEjBo1CoMGDUJISAiO\nHz+OpKQk/P777/Dx8YGTkxPu37/PopOE47mdpCrOnj2Ln376CR06dHjt8zKZDFWqVAHw8kxkY2Nj\nGBgY4NmzZ1iyZAl+/PFHdO7cGfXq1cOgQYMwcuRIrFixAgBw69YtmJiYwNHREXXq1EHz5s0VZ3Qa\nGBhAR0cH5cuXh7GxMYyNjSGTyUrluenr62PevHk4d+4cLl68CGtra+zcuZNnTn4iPz8/ZGVlYeXK\nlaKjEAmTnJzMqU4iIoFYdhKRRrh79y4mT56M69evY9OmTYiLi0N0dDQOHTqEXbt2ITAwEHfu3EFo\naKjoqEQsO0moQ4cOQV9fH+XKlYO9vT0cHBywfPnyD3pscnIycnNz0blzZ+jr6ys+Vq5cibS0NADA\nd999h9zcXNSrVw8jRozA9u3b8eLFi9J8Su9Uv3597Ny5E+vWrcOcOXPQvn17XL58WVgedaelpYXN\nmzdj9uzZSElJER2HSIjiszo51UlEJAbLTiLSCFeuXEFaWhoiIyPh6OgIY2Nj6OnpoXz58jAyMsLA\ngQMxZMgQHD58WHRUIpadJJSDgwMuXbqElJQU5ObmYteuXTAyMvqgxxZvOd+3bx8uXbqk+EhKSlK8\nvtauXRspKSlYvXo1KlWqhMmTJ8PW1hbPnj0rtef0Idq3b4+LFy/iu+++Q8eOHeHh4VHim+Y1haWl\nJebMmQMXFxcu/iONk5ycjGPHjmHs2LGioxARaSyWnUSkESpUqIDs7GyUL1/+rfe5fv06KlasqMRU\nRG/GspNEKl++PBo0aABTU1Noa2u/9X46OjoAgMLCQsXnrK2toauri1u3bqFBgwavfZiamiruV65c\nOXTt2hVLly7FuXPnkJSUhJiYGMXXffVrKpOWlhbGjBmDq1evQltbG1ZWVli2bNk/ziyl9xszZgwM\nDAywYMEC0VGIlIpTnURE4nFBERFphHr16sHU1BQTJ07E1KlTIZPJIJVKkZOTgzt37mDHjh3Yt28f\nwsPDRUclgrm5OVJTU0XHIHonU1NTSCQS7N+/H927d4eenh4qVqwIb29veHt7Qy6Xw8HBAdnZ2YiL\ni4NUKsWoUaOwceNGFBQUoGXLltDX18cvv/wCbW1tmJubAwDq1q2Ls2fPIj09Hfr6+oqzQZWpSpUq\nWLZsGdzd3eHp6YlVq1YhNDQUjo6OSs+irqRSKdavX49mzZqhS5cusLW1FR2JqNRduXIFx44dw9q1\na0VHISLSaCw7iUgjGBsbY+nSpRg8eDCio6NhZmaGgoIC5ObmIi8vD/r6+li6dCm++eYb0VGJYGJi\ngpycHGRmZsLAwEB0HKI3qlmzJubOnYvp06fDzc0NLi4u2LhxIwICAlC9enWEhITAw8MDlSpVQpMm\nTTBlyhQAgKGhIYKCguDt7Y38/HxYW1tj165dqFevHgDA29sbQ4cOhbW1NZ4/f46bN28Ke46NGjXC\n4cOHsXfvXnh4eKBx48ZYvHgxGjRoICyTOqlVqxZCQ0Ph7OyMCxcucNs9lXkBAQGYNGkSpzqJiAST\nyLlykog0SF5eHrZv346kpCQUFBTA0NAQ9evXR7NmzWBhYSE6HpFCcHAwhg8fjqpVq4qOQkQAXrx4\ngaVLl2LRokVwc3PDjBkzePTJB5DL5XByckKtWrWwZMkS0XGISs2VK1fQpk0bpKWl8bWBiEgwlp1E\nREQqqPjHs0QiEZyEiF517949TJs2DYcPH8b8+fPh4uICqZTH4L/Lo0ePYGNjgy1btqBdu3ai4xCV\nikGDBuHzzz+Hn5+f6ChERBqPZScRaZzil71XyyQWSkRE9G+cPXsWEyZMQGFhIZYtWwZ7e3vRkVTa\ngQMHMGbMGMTHx/N4Dipzrl69CgcHB051EhGpCL4NTUQap7jclEqlkEqlLDqJSONERUWJjqD27Ozs\nEBsbiwkTJqBfv35wdnbG3bt3RcdSWV26dME333wDT09P0VGISlzxWZ0sOomIVAPLTiIiIiIN8uDB\nAzg7O4uOUSZIpVI4OzsjJSUFderUgY2NDQIDA5Gbmys6mkpavHgxTpw4gT179oiOQlRirl69it9+\n+w3jxo0THYWIiP4fy04i0ihyuRw8vYOINFVRURGGDh3KsrOE6evrIzAwEOfOncOFCxdgZWWFXbt2\n8efN3+jr62Pz5s3w8PDAgwcPRMchKhEBAQHw9PTkVCcRkQrhmZ1EpFEePnyIuLg4dOvWTXQUok+S\nm5uLoqIilC9fXnQUUiPBwcGIiIjA8ePHoa2tLTpOmXX06FF4enqiWrVqCA0NhY2NjehIKsXX1xdX\nr17F7t27eZQMqbXiszqvX7+OSpUqiY5DRET/j5OdRKRR7t27xy2ZVCasX78eISEhKCwsFB2F1ERs\nbCwWL16Mbdu2segsZR06dMDFixfRt29fdOzYEWPHjsWjR49Ex1IZc+fOxc2bN7Fx40bRUYg+SWBg\nIDw9PVl0EhGpGJadRKRRKleujIyMDNExiN5r3bp1SElJQVFREQoKCv5RatauXRvbt2/HjRs3BCUk\ndfL48WMMGjQIa9euRZ06dUTH0QhaWloYO3Ysrly5AqlUCisrKyxfvhz5+fmiowmnq6uL8PBwTJky\nBenp6aLjEH0UuVyOyZMnw8vLS3QUIiL6G5adRKRRWHaSuvD19UVUVBSkUim0tLQgk8kAAE+fPkVy\ncjJu376NpKQkxMfHC05Kqk4ul2PEiBHo1asXevToITqOxvnss8+wfPlyHDt2DHv27EGTJk1w5MgR\n0bGEs7GxgY+PD1xdXVFUVCQ6DtG/JpFI0KRJE5QrV050FCIi+hue2UlEGkUul0NXVxfZ2dnQ0dER\nHYforXr27Ins7Gy0a9cOly9fxrVr13Dv3j1kZ2dDKpXCyMgI5cuXx8KFC9G1a1fRcUmFLV++HJs2\nbUJMTAx0dXVFx9FocrkcERER8PLygo2NDRYvXgwzMzPRsYQpLCxEmzZt0KdPH07HERERUYnhZCcR\naRSJRAJDQ0NOd5LKa9WqFaKiohAREYHnz5+jdevWmDJlCjZs2IB9+/YhIiICERERcHBwEB2VVNjv\nv/+OgIAA/PLLLyw6VYBEIkGvXr2QnJyMli1bws7ODr6+vnj69OkHPb6goKCUEyqXTCbDpk2bMH/+\nfCQlJYmOQ0RK8vTpU3h6esLU1BR6enpo1aoVzp07p7g9Ozsb48ePR61ataCnpwdLS0ssXbpUYGIi\nUjdaogMQESlb8aXs1atXFx2F6K3q1KmDypUr46effkKVKlWgq6sLPT09xeXsRO+TlZUFJycnLF++\nXKOnB1VRuXLl4Ofnh6FDh8LPzw8NGzbE/Pnz4eLi8tbt5HK5HIcOHcKBAwfg4OCAAQMGKDl16TAz\nM8OCBQvg7OyMuLg4XnVBpAHc3Nxw+fJlbNq0CbVq1cKWLVvQsWNHJCcno2bNmvDy8sKRI0cQHh6O\nevXq4cSJExg5ciSqVq0KZ2dn0fGJSA1wspOINA7P7SR10LhxY5QrVw41atTAZ599Bn19fUXRKZfL\nFR9EbyKXy+Hu7o727dvDyclJdBx6ixo1amDTpk3YuXMn7ty58877FhQUICsrCzKZDO7u7mjbti0e\nPnyopKSly83NDSYmJggICBAdhYhK2fPnz7Fz504sXLgQbdu2RYMGDTBnzhw0aNAAK1euBADExsbC\n2dkZ7dq1Q926deHi4oIvv/wSZ86cEZyeiNQFy04i0jgsO0kdWFlZYdq0aSgsLER2djZ27NihuMxT\nIpEoPojeZN26dUhMTERoaKjoKPQBvvzyS0yfPv2d99HW1sagQYOwfPly1K1bFzo6OsjMzFRSwtIl\nkUjw448/Ys2aNYiLixMdh4hKUUFBAQoLC/+x2ElPTw+nTp0CALRu3Rr79u1TvAkUGxuLS5cuoXPn\nzkrPS0TqiWUnEWkclp2kDrS0tDB27FhUqlQJz58/R0BAAFq3bg0PDw8kJCQo7sctxvR3iYmJ8PPz\nw6+//go9PT3RcegDve8NjLy8PADA1q1bcevWLUyYMEFxPEFZeB0wMTHBihUr4OLigmfPnomOQ0Sl\npGLFirC3t8e8efNw9+5dFBYWYsuWLTh9+jTu378PAFi2bBmaNGmCOnXqQFtbG23atEFQUBC6desm\nOD0RqQuWnUSkcVh2krooLjD09fWRkZGB4OBgWFhYoE+fPpg6dSri4uIglfJHOf3Ps2fP4OTkhEWL\nFsHKykp0HCohcrlccZalr68vBg4cCHt7e8XteXl5uHbtGrZu3YrIyEhRMT9Zv379YGdnh6lTp4qO\nQvTR5s2b99oVGJr6MXjw4LcetxMeHg6pVIpatWpBV1cXy5Ytw8CBAxXH9SxfvhwxMTHYu3cvLly4\ngKVLl8Lb2xuHDh1649eTy+XCn6+qfERERJTa320idSKR88AvItIwM2bMgK6uLmbOnCk6CtE7vXou\n59dff41u3brBz88PDx48QHBwMP773//C2toa/fr1g4WFheC0pApGjBiB/Px8bNq0CRIJjzkoKwoK\nCqClpQVfX1/8/PPP2LZt22tlp4eHB/7zn//AwMAADx8+hJmZGX7++WfUrl1bYOqP8+TJE9jY2ODH\nH3+Eo6Oj6DhEVIqePXuGrKwsmJiYwMnJSXFsj4GBAbZv346ePXsq7uvm5ob09HQcOXJEYGIiUhcc\nByEijcPJTlIXEokEUqkUUqkUtra2SExMBAAUFhbC3d0dRkZGmDFjBpd6EICXlzefOnUKP/zwA4vO\nMqSoqAhaWlq4ffs2VqxYAXd3d9jY2ChuX7BgAcLDwzF79mz89ttvSEpKglQqRXh4uMDUH8/Q0BDr\n1q3DiBEj+LOalI5zQMpVoUIFmJiYICMjA5GRkejZsyfy8/ORn5+vmPIsJpPJysSRHUSkHFqiAxAR\nKVvlypUVpRGRKsvKysLOnTtx//59xMTEIDU1FVZWVsjKyoJcLkf16tXRrl07GBkZiY5KgqWmpsLT\n0xNHjhyBvr6+6DhUQhISEqCrqwsLCwtMnDgRjRo1Qq9evVChQgUAwJkzZxAQEIAFCxbAzc1N8bh2\n7dohPDwcPj4+0NbWFhX/o3Xq1Am9evXCuHHjsHXrVtFxSAMUFRVh3759OHfuHObOnfuPoo1KVmRk\nJIqKitCwYUNcv34dPj4+sLS0xLBhwxRndPr6+kJfXx+mpqaIjo7G5s2bERwcLDo6EakJlp1EpHE4\n2UnqIiMjA76+vrCwsICOjg6KioowcuRIVKpUCdWrV0fVqlVhYGCAatWqiY5KAuXm5sLJyQn+/v74\n4osvRMehElJUVITw8HCEhIRg0KBBOHr0KFavXg1LS0vFfRYtWoRGjRph4sSJAP53bt0ff/wBExMT\nRdH57Nkz/Prrr7CxsYGtra2Q5/NvBQUFoWnTpvj111/Rv39/0XGojHrx4gW2bt2KRYsWoUKFCpg6\ndSrPwlaCzMxM+Pn54Y8//kCVKlXQt29fBAYGKl6zfv75Z/j5+WHw4MF4/PgxTE1NERAQgHHjxglO\nTkTqgmUnEWkclp2kLkxNTbFr1y589tlnuH//PhwdHTFu3DjFohIiAPD29kaDBg0wevRo0VGoBEml\nUgQHB8PW1hazZs1CdnY2Hjx4oDii4NatW9izZw92794N4OXxFjKZDFevXkV6ejqaNm2qOOszOjoa\nBw4cwMKFC1GnTh2sX79e5c/zLF++PMLDw9G9e3e0bt0aNWrUEB2JypCsrCysWbMGoaGhaNSoEVas\nWIF27drxCBAl6d+//zvfxDA2NsaGDRuUmIiIyhq+bUVEGodlJ6mTr776Cg0bNoSDgwMSExPfWHTy\nDCvNtXPnThw4cABr167lL+lllJOTE1JSUjBnzhz4+Phg+vTpAICDBw/CwsICzZo1AwDFZbc7duzA\nkydP4ODgAC2tl3MNXbp0QUBAAEaPHo2jR4++daOxqrGzs8Po0aPh5ubGsxSpRPz3v//FtGnTUL9+\nfVy4cAH79u1DZGQk2rdvz9dQIqIyhGUnEWkclp2kToqLTJlMBktLS6SmpuLw4cPYs2cPfv31V9y8\neZOX3GmomzdvwsPDAz///DMMDQ1Fx6FSNmvWLDx48ADffPMNAMDExAT3799Hbm6u4j4HDx7Eb7/9\nhiZNmii2GBcUFAAAatWqhbi4OFhZWWHkyJHKfwIfacaMGfjzzz+xZs0a0VFIjV27dg3u7u6wtrZG\nVlYWzp49i23btqFp06aioxEJdevWLb5pTmUSL2MnIo3DspPUiVQqxfPnz/HDDz9g1apVuHPnDvLy\n8gAAFhYWqF69Or777jueY6Vh8vLyMGDAAPj6+sLOzk50HFISQ0NDtGnTBgDQsGFDmJqa4uDBg+jX\nrx9u3LiB8ePHo3HjxoozPIsvYy8qKkJkZCS2b9+Ow4cPv3abqtPW1kZ4eDgcHBzQoUMHNGjQQHQk\nUiPnz59HUFAQjh8/Dg8PD6SkpPCca6JXuLi4YNKkSejVq5foKEQlSiLnNSFEpGHkcjl0dHSQk5Oj\nlltqSfOEhYVh8eLF6NKlC8zNzXHs2DHk5+fD09MTaWlp2LZtG1xdXTFq1CjRUUlJfHx8cPXqVezd\nu5eXXmqwX375BWPHjoWBgQFycnJga2uLoKAgNGrUCMD/Fhbdvn0b3333HapUqYKDBw8qPq9OQkND\nsX37dpw4cYKbsumd5HI5Dh8+jKCgIFy/fh1eXl5wc3ODvr6+6GhEKmfbtm1Ys2YNoqKiREchKlEs\nO4lII1WrVg1JSUkwMjISHYXona5du4aBAweib9++mDRpEsqVK4ecnBwsWbIEsbGxOHDgAMLCwvDj\njz8iISFBdFxSggMHDsDd3R0XL15E1apVRcchFXDgwAE0bNgQdevWVRxrUVRUBKlUiry8PKxYsQLe\n3t5IT09H7dq1FcuM1ElRURE6duwIR0dH+Pr6io5DKqigoADbt29HcHAwCgoKMGXKFAwYMIBvbBO9\nQ35+PurWrYv9+/ejSZMmouMQlRge8kVEGomXstP/sXefUVHdi9eA94CgVFHERlGQAZTYwFiIXWOw\nGxuIojQx1rFXVDR6ExQFbBELEBWUqIkmavBasXdBIkiRYldsSFPKzPvB1/mHa4lR4EzZz1qzllPO\nOXu4WVxmz68oCw0NDaSnp0MikaBatWoAXu9S3KpVKyQmJgIAunXrhlu3bgkZkyrJnTt34OXlhaio\nKBadJNerVy9YWVnJ7xcUFCA3NxcAkJycjMDAQEgkEqUtOoHXvwsjIiKwYsUKxMfHCx2HFEhBQQHW\nrl0LGxsb/PTTT1iyZAmuXbsGd3d3Fp1E/0BLSwvjx4/HqlWrhI5CVK5YdhKRWmLZScrC0tISGhoa\nOHv2bJnHd+/eDScnJ5SWliI3NxfVq1dHTk6OQCmpMpSUlMDNzQ0TJ05Ehw4dhI5DCujNqM69e/ei\na9euCAoKwoYNG1BcXIyVK1cCgNJNX/87CwsLBAYGwt3dHa9evRI6DgnsyZMnWLx4MSwtLXHo0CFE\nRkbixIkT6N27t1L/d05U2Xx9ffHbb78hOztb6ChE5UbxVyUnIqoALDtJWWhoaEAikcDb2xvt27eH\nhYUFrl69imPHjuGPP/6ApqYm6tatiy1btshHfpJqWrx4MbS1tTmFl/7RsGHDcOfOHfj5+aGwsBDT\npk0DAKUd1fl3I0eOxJ49e7BgwQIEBAQIHYcEcOvWLaxcuRJbtmzBt99+i9jYWNjZ2Qkdi0hp1apV\nC4MGDUJoaCj8/PyEjkNULrhmJxGppWHDhqFv375wc3MTOgrRPyopKcFPP/2E2NhYZGdno06dOpgy\nZQratWsndDSqJEePHsWIESNw5coV1K1bV+g4pCRevXqFOXPmIDg4GK6urggNDYWBgcFbr5PJZJDJ\nZPKRoYouOzsbzZo1wy+//MJRzmokISEBy5cvx/79++Hl5YXJkyfD1NRU6FhEKiEhIQHffPMNMjMz\noa2tLXQcos/GspOI1NK4ceNgb2+P8ePHCx2F6KM9f/4cxcXFqFWrFqfoqZGHDx/CwcEBP//8M7p3\n7y50HFJCcXFx2LNnDyZOnAhjY+O3ni8tLUXbtm0REBCArl27CpDw3/v9998xefJkxMfHv7PAJdUg\nk8lw8uRJBAQE4MqVK7h//77QkYiISAkox9e3RETljNPYSRkZGRnBxMSERacakUqlGDlyJDw9PVl0\n0idr0aIF/P3931l0Aq+Xy5gzZw68vb0xcOBApKenV3LCf69fv37o0qWLfIo+qRapVIo9e/bAyckJ\n3t7e6N+/PzIyMoSORURESoJlJxGpJZadRKQMli1bhoKCAvj7+wsdhVSYSCTCwOCaFL0AACAASURB\nVIEDkZiYCEdHR3z55ZeYN28e8vLyhI72QUFBQTh06BD27dsndBQqJ69evcLmzZvRpEkTLF26FNOm\nTcONGzfg6+vLdamJiOijsewkIrXEspOIFN3p06cRFBSEqKgoVKnCPSWp4uno6GDevHm4du0asrKy\nYGdnh61bt0IqlQod7Z0MDQ0REREBX19fPH78WOg49BlevHiB5cuXw8rKCjt37sRPP/2ECxcuYPDg\nwUq/qRYREVU+rtlJRGopOTkZaWlp6N27t9BRiD7am//L5jR21ffkyRM4ODhgzZo16Nu3r9BxSE2d\nOXMGEokEVapUQUhICFq3bi10pHeaPn06MjMzsXPnTv5+VDL379/HqlWrsHHjRvTo0QMzZ85EixYt\nhI5FRERKjiM7iUgt2drasugkpRMXF4fz588LHYMqmEwmg5eXFwYNGsSikwTl5OSE8+fPY8yYMRgw\nYAA8PDwUcoOYJUuWICkpCZGRkUJHoY+UmpoKX19f2NvbIy8vDxcvXkRUVJTCFZ0RERHQ19ev1Gse\nP34cIpGIo5XpvTIzMyESiXDp0iWhoxApLJadRERESuL48eOIiooSOgZVsFWrVuHevXv48ccfhY5C\nBA0NDXh4eODGjRuoU6cOmjZtioCAALx69UroaHLVqlXDtm3bMHXqVNy+fVvoOGrn30wUvHjxIgYP\nHgwnJyfUq1cPycnJWL16NSwtLT8rQ+fOnTFhwoS3Hv/cstLFxaXSN+xycnLC/fv337uhGKk2Dw8P\n9OnT563HL126BJFIhMzMTJibm+P+/fsK9+UAkSJh2UlERKQkxGIxUlNThY5BFejSpUtYunQpoqOj\noa2tLXQcIjlDQ0MEBATg7NmzOHPmDOzt7bF3795/VXRVpJYtW0IikcDT01Nh1xhVRc+ePfvHpQNk\nMhliYmLQpUsXDB48GB06dEBGRgYWLVoEExOTSkr6tqKion98jY6ODmrXrl0Jaf6PtrY26tatyyUZ\n6L00NTVRt27dD67nXVxcXImJiBQPy04iIiIlwbJTteXk5MDFxQVr166FlZWV0HGI3kksFmPv3r1Y\nu3Yt5syZg2+++QbXr18XOhYAYNasWcjPz8fatWuFjqLy/vrrL/Tu3RtNmjT54P/+MpkMM2fOxIwZ\nM+Dt7Y20tDRIJJJKnxoO/N+IuYCAAJiZmcHMzAwREREQiURv3Tw8PAC8e2To/v370aZNG+jo6MDY\n2Bh9+/bFy5cvAbwuUGfNmgUzMzPo6enhyy+/xMGDB+XHvpmifuTIEbRp0wa6urpo1aoVrly58tZr\nOI2d3ud/p7G/+W/mwIEDaN26NbS1tXHw4EHcvn0b/fv3R82aNaGrqws7Ozvs2LFDfp6EhAR0794d\nOjo6qFmzJjw8PJCTkwMAOHjwILS1tfHkyZMy1547dy6aN28O4PX64sOGDYOZmRl0dHRgb2+P8PDw\nSvopEH0Yy04iIiIlYWlpiTt37vDbehUkk8ng6+uLHj16YMiQIULHIfpH33zzDeLj49GnTx907twZ\nkyZNwtOnTwXNVKVKFWzZsgWLFi3CjRs3BM2iqi5fvoyvvvoKrVq1gp6eHmJjY2Fvb//BY77//ntc\nu3YNI0aMgJaWViUlfbfY2Fhcu3YNMTExOHLkCFxcXHD//n357U3B06lTp3ceHxMTg/79++Prr7/G\n5cuXcezYMXTq1Ek+mtjT0xOxsbGIiopCQkICRo0ahb59+yI+Pr7MeebMmYMff/wRV65cgbGxMYYP\nH64wo6RJec2aNQtLlizBjRs30KZNG4wbNw4FBQU4duwYrl+/juDgYBgZGQEACgoK4OzsDH19fVy4\ncAG//fYbzpw5Ay8vLwBA9+7dYWxsjJ07d8rPL5PJsH37dowYMQIA8PLlSzg4OGDfvn24fv06JBIJ\nxowZgyNHjlT+myf6H+8f90xEREQKRVtbG6ampsjIyICNjY3Qcagcbdy4ETdu3MC5c+eEjkL00bS0\ntDBp0iQMGzYMCxYsQOPGjeHv74/Ro0d/cHplRRKLxVi8eDHc3d1x5swZwcs1VZKeng5PT088ffoU\nDx48kJcmHyISiVCtWrVKSPdxqlWrhrCwMFStWlX+mI6ODgAgOzsbvr6+GDt2LDw9Pd95/Pfff4/B\ngwdjyZIl8seaNWsGALh58ya2b9+OzMxMWFhYAAAmTJiAw4cPIzQ0FOvWrStzni5dugAAFixYgPbt\n2+Pu3bswMzMr3zdMSikmJuatEcUfszyHv78/evToIb+flZWFQYMGyUdi/n1t3MjISOTl5WHr1q0w\nMDAAAGzYsAFdunRBWloarK2t4erqisjISHz33XcAgNOnT+PWrVtwc3MDAJiammLGjBnyc/r6+uLo\n0aPYvn07unXr9onvnqh8cGQnERGREuFUdtVz7do1zJs3D9HR0fIP3UTKxMTEBD/99BP++9//Ijo6\nGg4ODjh27JhgecaOHYuaNWvihx9+ECyDqnj48KH831ZWVujduzcaN26MBw8e4PDhw/D09MT8+fPL\nTI1VZF988UWZovONoqIifPvtt2jcuDFWrFjx3uOvXr363hLnypUrkMlkaNKkCfT19eW3/fv34+bN\nm2Ve+6YgBYD69esDAB49evQpb4lUUMeOHREXF1fm9jEbVLZq1arMfYlEgiVLlqBdu3bw8/PD5cuX\n5c8lJSWhWbNm8qITeL05loaGBhITEwEAI0aMwOnTp5GVlQXgdUHauXNnmJqaAgBKS0uxdOlSNGvW\nDMbGxtDX18evv/6KW7duffbPgOhzsewkIiJSImKxGCkpKULHoHKSn58PFxcXrFixAnZ2dkLHIfos\nzZs3x7Fjx7BgwQJ4enpi0KBByMjIqPQcIpEIYWFhWLNmjXxNO/p4UqkUS5Ysgb29PYYMGYJZs2bJ\n1+V0dnbG8+fP0bZtW4wbNw66urqIjY2Fm5sbvv/+e/l6f5XN0NDwndd+/vw5qlevLr+vp6f3zuO/\n++47PHv2DNHR0dDU1PykDFKpFCKRCBcvXixTUiUlJSEsLKzMa/8+4vjNRkTcWIve0NXVhbW1dZnb\nx4z6/d//vr29vZGRkQFPT0+kpKTAyckJ/v7+AF5PSX/fJlhvHnd0dISdnR2ioqJQXFyMnTt3yqew\nA0BgYCBWrFiBGTNm4MiRI4iLi8OAAQM+avMvoorGspOIiEiJcGSnapkwYQLatGmDkSNHCh2FqFyI\nRCIMHjwYSUlJaNmyJVq1agU/Pz/k5eVVag5TU1OEhITA3d0dhYWFlXptZZaZmYnu3btj79698PPz\ng7OzM/7880/5pk+dOnVCjx49MGHCBBw5cgRr167FiRMnEBQUhIiICJw4cUKQ3La2tvKRlX935coV\n2NrafvDYwMBA/PHHH9i3bx8MDQ0/+NqWLVu+dz3Cli1bQiaT4cGDB28VVW9GwhFVNjMzM/j6+uKX\nX37B4sWLsWHDBgBAkyZNEB8fj9zcXPlrz5w5A6lUisaNG8sfGz58OCIjIxETE4P8/HwMGjRI/typ\nU6fQt29fuLu7o0WLFmjUqBG/kCeFwbKTiIhIidjY2LDsVBFbtmzBuXPnsGbNGqGjEJU7HR0d+Pn5\nIT4+HhkZGbCzs8O2bdsqdROWYcOGoXnz5pgzZ06lXVPZnTx5EllZWdi/fz+GDRuGuXPnwsrKCiUl\nJXj16hUAwMfHBxMmTIC5ubn8OIlEgoKCAiQnJwuSe+zYsUhPT8fEiRMRHx+P5ORkBAUFYfv27Zg+\nffp7jzt8+DDmzp2LdevWQUdHBw8ePMCDBw/eO0J13rx52LlzJ/z8/JCYmIjr168jKCgIBQUFsLGx\nwfDhw+Hh4YFdu3YhPT0dly5dQmBgIH799deKeutE7yWRSBATE4P09HTExcUhJiYGTZo0AfC6xNTT\n08PIkSORkJCAEydOYMyYMRg4cCCsra3l5xgxYgQSExMxf/589OvXr8wXAjY2Njhy5AhOnTqFGzdu\nYMKECYKM5id6F5adRERESoQjO1VDcnIypk2bhujo6Lc2ISBSJWZmZoiMjER0dDSCg4Px1Vdf4eLF\ni5V2/bVr12Lnzp04evRopV1TmWVkZMDMzAwFBQUAXk91lUql6Nmzp3ytS0tLS9StW7fM84WFhZDJ\nZHj27Jkgua2srHDixAmkpqaiR48eaN26NXbs2IGdO3eiV69e7z3u1KlTKC4uxtChQ1GvXj35TSKR\nvPP1vXr1wm+//YY///wTLVu2RKdOnXDs2DFoaLz+WB0eHg5PT0/MnDkTdnZ26NOnD06cOIEGDRpU\nyPsm+hCpVIqJEyeiSZMm+Prrr1GnTh38/PPPAF5PlT948CBevHiB1q1bo3///mjXrt1bSy40aNAA\n7du3R3x8fJkp7ADg5+eH1q1bo2fPnujYsSP09PQwfPjwSnt/RB8iklXm16tERET0WUpKSqCvr4/n\nz58r1A639PEKCwvl692NGTNG6DhElUYqlSIiIgLz5s2Ds7MzfvjhB3lpVpH+/PNPfPfdd7h27VqZ\n9RvpbTdu3ICLiwtMTEzQsGFD7NixA/r6+tDV1UWPHj0wbdo0iMXit45bt24dNm3ahN27d5fZ8ZmI\niEgIHNlJRESkRKpUqYIGDRogPT1d6Cj0iaZNmwY7Ozv4+voKHYWoUmloaMDLywvJyckwMTHBF198\ngWXLlsmnR1eUnj17olevXpg0aVKFXkcV2NnZ4bfffpOPSAwLC8ONGzfw/fffIyUlBdOmTQMAFBQU\nIDQ0FBs3bkT79u3x/fffw8fHBw0aNKjUpQqIiIjehWUnERGRkuFUduW1c+dOHDx4EBs2bHjvLqhE\nqs7Q0BDLli3D2bNncfLkSdjb2+P333+v0JJs+fLlOH36NNdO/AhWVlZITEzEV199haFDh8LIyAjD\nhw9Hz549kZWVhezsbOjq6uL27dsIDg5Ghw4dkJqainHjxkFDQ4O/24iISHAsO4mIiJSMWCzmbpdK\nKD09HePHj0d0dDSn0hLh9e+yP/74A2vWrMGsWbPg7OyMxMTECrmWvr4+tmzZgnHjxuHhw4cVcg1l\nVFRU9FbJLJPJcOXKFbRr167M4xcuXICFhQUMDAwAALNmzcL169fxww8/cO1hIiJSKCw7iYiIlAxH\ndiqfoqIiuLq6Yu7cuWjVqpXQcYgUirOzM65du4ZevXqhU6dOkEgkFbLRjZOTE7y8vDB69Gi1nmot\nk8kQExODLl26YOrUqW89LxKJ4OHhgfXr12PVqlW4efMm/Pz8kJCQgOHDh8vXi35TehIRESkalp1E\npJYKCgrw/PlzoWMQfRIbGxuWnUpmzpw5H9zhl0jdaWlpQSKRIDExEa9evYKdnR3Wr1+P0tLScr2O\nv78/bt26hfDw8HI9rzIoKSlBZGQkWrRogZkzZ8LHxwdBQUHvnHY+ZswYWFlZYd26dfj6669x8OBB\nrFq1Cq6urgIkJyIi+ne4GzsRqaXIyEgcOnQIERERQkch+teysrLw1Vdf4c6dO0JHoY+wb98+jBs3\nDlevXoWxsbHQcYiUQlxcHCQSCZ4/f46QkBB07ty53M6dkJCArl274sKFC2qxc3h+fj7CwsKwYsUK\nNGzYUL5kwMesrZmcnAxNTU1YW1tXQlIiUnQJCQlwdnZGRkYGtLW1hY5D9F4c2UlEaunZs2fQ09MT\nOgbRJzE3N8eTJ09QUFAgdBT6B3fu3IGPjw+ioqJYdBL9Cy1atMDx48fh5+cHDw8PDBkyBJmZmeVy\n7qZNm2LmzJkYNWpUuY8cVSRPnjzBokWLYGlpiWPHjiE6OhrHjx9Hz549P3oTIVtbWxadRCTXtGlT\n2NraYteuXUJHIfoglp1EpJaePXsGIyMjoWMQfRINDQ1YWVkhLS1N6Cj0ASUlJRg2bBgkEgnat28v\ndBwipSMSiTBkyBAkJSWhWbNmcHR0xPz585Gfn//Z536zVmVwcPBnn0vRZGVlYdKkSRCLxbhz5w5O\nnjyJX3/9FW3atBE6GhGpAIlEguDgYLVe+5gUH8tOIlJLz549Q40aNYSOQfTJuEmR4vP394eOjg5m\nzZoldBQipaajo4P58+cjLi4ON2/ehJ2dHaKioj7rg7ampiYiIiLw448/4q+//irHtMK5du0aRowY\nAQcHB+jo6OCvv/7Cxo0bYWtrK3Q0IlIhffr0wZMnT3Du3DmhoxC9F8tOIlJLLDtJ2bHsVGzp6ekI\nDw/H1q1boaHBP7eIyoO5uTmioqKwfft2rFixAu3bt8elS5c++XxWVlb44Ycf4O7ujqKionJMWnlk\nMhliY2PRq1cvODs7o2nTpkhPT0dAQADq168vdDwiUkGampqYOHEiQkJChI5C9F7865uI1BLLTlJ2\nYrEYKSkpQseg97C0tMSNGzdQp04doaMQqZz27dvjwoUL8PLyQt++feHl5YUHDx580rm8vb1hZmaG\nRYsWlXPKilVaWopff/0Vbdu2ha+vLwYOHIiMjAzMmjUL1atXFzoeEak4T09P/Pe//+VmmaSwWHYS\nkVras2cPBg4cKHQMok9mY2PDkZ0KTCQSwcDAQOgYRCpLU1MT3t7euHHjBoyNjfHFF19g+fLlePXq\n1b86j0gkwsaNG7F582acPXu2gtKWn1evXmHTpk1o0qQJAgICMGvWLCQmJsLHxwdVq1YVOh4RqYnq\n1atjxIgRWLt2rdBRiN5JJOOqskRERErn7t27cHR0/OTRTEREqiQlJQVTp05FcnIyVq5ciT59+nz0\njuMAsHv3bsyePRtxcXHQ09OrwKSfJicnB+vXr0dISAhatGiBWbNmoWPHjv/qPRIRlafU1FQ4OTkh\nKysLurq6QschKoNlJxERkRKSyWTQ19fH/fv3YWhoKHQcIiKF8Oeff2LKlClo2LAhgoKC0Lhx448+\nduTIkdDX18e6desqMOG/c//+fQQHB2PTpk3o2bMnZs6ciWbNmgkdi4gIANC3b1/069cPo0ePFjoK\nURmcxk5ERKSERCIRrK2tkZaWJnQUtZOUlIRdu3bhxIkTuH//vtBxiOhvevbsiYSEBHzzzTfo2LEj\nJk+ejGfPnn3UsatWrcK+fftw8ODBCk75z5KTkzF69GjY29vj5cuXuHz5MrZt28aik4gUikQiQUhI\nCDiGjhQNy04iIiIlxR3ZK9+ePXswdOhQjBs3DkOGDMHPP/9c5nn+sU8kPC0tLUyZMgXXr19HYWEh\n7OzsEBoaitLS0g8eZ2RkhPDwcHh7e+Pp06eVlLas8+fPY+DAgejQoQPMzMyQkpKCkJAQNGzYUJA8\nREQf0q1bNwDAkSNHBE5CVBbLTiJSWSKRCLt27Sr38wYGBpb50OHv748vvvii3K9D9E9YdlauR48e\nwdPTEz4+PkhNTcWMGTOwYcMGvHjxAjKZDC9fvuT6eUQKpHbt2ggNDUVMTAwiIyPh6OiI2NjYDx7T\nrVs3DBo0COPHj6+klK+/JPnzzz/RuXNnuLi4oEuXLsjIyMDChQtRq1atSstBRPRviUQi+ehOIkXC\nspOIFIaHhwdEIhF8fHzeem7mzJkQiUTo06ePAMk+bPr06f/44YmoIojFYqSkpAgdQ20sW7YMnTt3\nhkQiQfXq1eHt7Y3atWvD09MTbdu2xdixY3H58mWhYxLR/2jZsiViY2Mxd+5cjBw5EkOHDkVWVtZ7\nX//DDz/g6tWr2LFjR4XmKi4uxrZt29C8eXPMnj0bo0ePRmpqKiZOnKiQmyQREb3L8OHDce7cOS6t\nRAqFZScRKRRzc3NER0cjPz9f/lhJSQm2bt0KCwsLAZO9n76+PoyNjYWOQWqIIzsrl46ODgoLC+Xr\n//n5+SEzMxOdOnWCs7Mz0tLSsGnTJhQVFQmclIj+l0gkwtChQ5GUlIQvvvgCDg4OWLBgQZm/N97Q\n1dXF1q1bIZFIcPfu3XLPkp+fj1WrVkEsFmPz5s1YtmwZ4uLiMHz4cGhpaZX79YiIKpKuri58fHyw\nevVqoaMQybHsJCKF0qxZM4jFYvzyyy/yx/bv349q1aqhc+fOZV4bHh6OJk2aoFq1arCxsUFQUBCk\nUmmZ1zx9+hRDhgyBnp4erKyssG3btjLPz549G7a2ttDR0UHDhg0xc+ZMvHz5ssxrli1bhrp160Jf\nXx8jR45EXl5emef/dxr7xYsX0aNHD9SqVQuGhoZo3749zp49+zk/FqJ3srGxYdlZiWrXro0zZ85g\n6tSp8Pb2RmhoKPbt24dJkyZh0aJFGDRoECIjI7lpEZEC09XVxYIFC3D16lWkpqbCzs4O27dvf2u9\n3S+//BJjx47Fli1bym0t3sePH8Pf3x+WlpaIjY3FL7/8gmPHjsHZ2ZlLYBCRUhs/fjy2bt2KnJwc\noaMQAWDZSUQKyNvbG2FhYfL7YWFh8PT0LPNBYOPGjZg7dy4WL16MpKQkrFixAgEBAVi3bl2Zcy1e\nvBj9+/dHfHw8XFxc4OXlVWbqmp6eHsLCwpCUlIR169Zhx44dWLp0qfz5X375BX5+fli0aBGuXLkC\nW1tbrFy58oP5c3Nz4e7ujpMnT+LChQto0aIFevXqhcePH3/uj4aojNq1a6OoqOijdxqmzzNx4kTM\nnz8fBQUFEIvFaN68OSwsLOSbnjg5OUEsFqOwsFDgpET0TywsLLB9+3ZERUVh+fLl6NChw1vLUMyf\nPx+TJ0/+7CIyMzMTkyZNgo2NDe7du4eTJ09i9+7daN269Wedl4hIUZiZmaFHjx4IDw8XOgoRAEAk\n47ahRKQgPDw88PjxY2zduhX169fHtWvXYGBggAYNGiA1NRULFizA48ePsW/fPlhYWGDp0qVwd3eX\nHx8cHIwNGzYgMTERwOspa7Nnz8YPP/wA4PV0eENDQ2zYsAEjRox4Z4b169cjMDBQvuaMk5MT7O3t\nsXHjRvlrunfvjrS0NGRmZgJ4PbJz165d+Ouvv955TplMhvr162P58uXvvS7Rp3J0dMRPP/3ED80V\npLi4GC9evCizVIVMJkNGRgYGDBiAP//8E6amppDJZHB1dcXz589x8OBBARMT0b9VWlqK8PBw+Pn5\noU+fPli6dCnq1Knz2eeNj4/HsmXLEBMTg9GjR0MikaBevXrlkJiISPGcPXsWI0aMQEpKCjQ1NYWO\nQ2qOIzuJSOHUqFED3377LcLCwvDzzz+jc+fOZdbrzM7Oxu3btzFmzBjo6+vLb7Nnz8bNmzfLnKtZ\ns2byf1epUgUmJiZ49OiR/LFdu3ahffv28mnqU6ZMwa1bt+TPJyUloV27dmXO+b/3/9ejR48wZswY\n2NjYoHr16jAwMMCjR4/KnJeovHDdzooTHh4ONzc3WFpaYsyYMfIRmyKRCBYWFjA0NISjoyNGjx6N\nPn364OLFi4iOjhY4NRH9W5qamvDx8UFycjKMjIzg7u6OV69efdK5ZDIZjh8/jp49e6JXr15o3rw5\n0tPT8eOPP7LoJCKV1rZtWxgbG2Pfvn1CRyFCFaEDEBG9i5eXF0aNGgV9fX0sXry4zHNv1uVcv349\nnJycPnie/13oXyQSyY8/d+4cXF1dsXDhQgQFBcHIyAi///47pk+f/lnZR40ahYcPHyIoKAgNGzZE\n1apV0a1bN25aQhWCZWfFOHz4MKZPn45x48ahe/fuGDt2LJo1a4bx48cDeP3lyYEDB+Dv74/Y2Fg4\nOztj6dKlMDIyEjg5EX2q6tWrIzAwEM+fP0fVqlU/6RylpaX47bffMHjwYOzZs+eTz0NEpGxEIhEm\nT56MkJAQ9O/fX+g4pOZYdhKRQurWrRu0tbXx+PFjDBgwoMxzderUgampKW7evImRI0d+8jVOnz4N\nU1NTzJ8/X/7Y39fzBIDGjRvj3Llz8PLykj927ty5D5731KlTWLVqFXr37g0AePjwITcsoQojFos5\nbbqcFRYWwtvbG35+fpgyZQqA12vu5efnY/HixahVqxbEYjG+/vprrFy5Ei9fvkS1atUETk1E5eVz\nvrSoUqUKgoODueEQEamlwYMHY8aMGbh27VqZGXZElY1lJxEpJJFIhGvXrkEmk71zVIS/vz8mTpwI\nIyMj9OrVC8XFxbhy5Qru3r2LOXPmfNQ1bGxscPfuXURGRqJdu3Y4ePAgtm/fXuY1EokEI0eOxJdf\nfonOnTtj165dOH/+PGrWrPnB827btg1t2rRBfn4+Zs6cCW1t7X/3AyD6SGKxGKtXrxY6hkpZv349\nHBwcynzJcejQITx//hzm5ua4e/cuatWqBTMzMzRu3Jgjt4ioDBadRKSutLW1MXbsWKxatQqbNm0S\nOg6pMa7ZSUQKy8DAAIaGhu98zsfHB2FhYdi6dSuaN2+ODh06YMOGDbC0tPzo8/ft2xczZszA5MmT\n0axZMxw6dOitKfMuLi7w9/fHvHnz0LJlSyQkJGDq1KkfPG9YWBjy8vLg6OgIV1dXeHl5oWHDhh+d\ni+jfsLGxQWpqKrjfYPlp164dXF1doaenBwD48ccfkZ6ejj179uDYsWM4d+4ckpKSsHXrVgAsNoiI\niIjeGDNmDHbv3o3s7Gyho5Aa427sRERESq5mzZpITk6GiYmJ0FFURnFxMbS0tFBcXIx9+/bBwsIC\njo6OkEql0NDQgIuLC5o3b465c+cKHZWIiIhIoXh7e8PKygrz5s0TOgqpKY7sJCIiUnLcpKh8vHjx\nQv7vKlVer/SjpaWF/v37w9HREQCgoaGB3NxcpKeno0aNGoLkJCIiIlJkEokEeXl5nHlEguGanURE\nREruTdnp5OQkdBSlNWXKFOjq6sLX1xcNGjSASCSCTCaDSCSChsb/fTcslUoxdepUlJSUYOzYsQIm\nJiIiIlJMzZo1Q9OmTYWOQWqMZScREZGS48jOz7N582aEhIRAV1cXaWlpmDp1KhwdHeWjO9+Ij49H\nUFAQjh07hpMnTwqUloiIiEjxcU1zEhKnsRMRESk5lp2f7unTp9i1axd+/PFH7N27FxcuXIC3tzd2\n796N58+fl3mtpaUlWrdujfDwcFhYWAiUmIiIiIiIPoRlJxERkZITi8VIpODrbgAAIABJREFUSUkR\nOoZS0tDQQI8ePWBvb49u3bohKSkJYrEYY8aMwcqVK5Geng4AyM3Nxa5du+Dp6YmuXbsKnJqIiIiI\niN6Hu7ETkVo5f/48JkyYgIsXLwodhajcPH/+HObm5njx4gWnDH2CwsJC6OjolHksKCgI8+fPR/fu\n3TFt2jSsWbMGmZmZOH/+vEApiYiIiFRDfn4+zp49ixo1asDOzg56enpCRyIVw7KTiNTKm195LIRI\n1dSuXRvx8fGoV6+e0FGUWmlpKTQ1NQEAly9fhru7O+7evYuCggIkJCTAzs5O4IREVNmKi4uhpaUl\ndAwiIpXw5MkTuLq6Ijs7Gw8fPkTv3r2xadMmoWORiuE0diJSKyKRiEUnqSSu21k+NDU1IZPJIJVK\n4ejoiJ9//hm5ubnYsmULi04iNRUSEoKff/5Z6BhEREpJKpVi37596NevH5YsWYJDhw7h7t27WLZs\nGaKjo3Hy5ElEREQIHZNUDMtOIiIiFcCys/yIRCJoaGjg6dOnGD58OHr37o1hw4YJHYuIBCCTybBx\n40aIxWKhoxARKSUPDw9MmzYNjo6OOHHiBBYsWIAePXqgR48e6NixI3x9fbF69WqhY5KKYdlJRESk\nAlh2lj+ZTAY3Nzf88ccfQkchIoGcOnUKmpqaaNeundBRiIiUTnJyMs6fP4/Ro0dj4cKFOHjwIMaO\nHYtffvlF/pq6deuiatWqyM7OFjApqRqWnURERCqAZeenKS0thUwmw7uWMDc2NsbChQsFSEVEimLz\n5s3w9vbmEjhERJ+gqKgIUqkUrq6uAF7Pnhk2bBiePHkCiUSCpUuXYvny5bC3t4eJick7/x4j+hQs\nO4mIiFSAWCxGSkqK0DGUzn/+8x94enq+93kWHETqKycnB3v27IG7u7vQUYiIlFLTpk0hk8mwb98+\n+WMnTpyAWCxG7dq1sX//ftSvXx+jRo0CwL+7qPxwN3YiIiIVkJubizp16iAvLw8aGvwu82PExsbC\nxcUFV65cQf369YWOQ0QKJjQ0FIcOHcKuXbuEjkJEpLQ2btyINWvWoFu3bmjVqhWioqJQt25dbNq0\nCXfv3oWhoSEMDAyEjkkqporQAYiIiOjzGRgYwMjICHfv3oW5ubnQcRRednY2RowYgfDwcBadRPRO\nmzdvxqJFi4SOQUSk1EaPHo3c3Fxs27YNe/fuhbGxMfz9/QEApqamAF7/XWZiYiJgSlI1HNlJRCqr\ntLQUmpqa8vsymYxTI0ilderUCQsXLkTXrl2FjqLQpFIp+vTpg6ZNmyIgIEDoOEREREQq7+HDh8jJ\nyYGNjQ2A10uF7N27F2vXrkXVqlVhYmKCgQMHol+/fhzpSZ+N89yISGX9vegEXq8Bk52djdu3byM3\nN1egVEQVh5sUfZyVK1fi2bNnWLJkidBRiIiIiNRC7dq1YWNjg6KiIixZsgRisRgeHh7Izs7GoEGD\nYGlpifDwcPj4+AgdlVQAp7ETkUp6+fIlJk2ahLVr10JLSwtFRUXYtGkTYmJiUFRUBFNTU0ycOBEt\nWrQQOipRuWHZ+c/OnTuHZcuW4cKFC9DS0hI6DhEREZFaEIlEkEqlWLx4McLDw9G+fXsYGRnhyZMn\nOHnyJHbt2oWUlBS0b98eMTExcHZ2FjoyKTGO7CQilfTw4UNs2rRJXnSuWbMGkydPhp6eHsRiMc6d\nO4fu3bsjKytL6KhE5YZl54c9e/YMw4YNQ2hoKBo2bCh0HCIiIiK1cunSJaxYsQLTp09HaGgowsLC\nsG7dOmRlZSEwMBA2NjZwdXXFypUrhY5KSo4jO4lIJT19+hTVq1cHAGRkZGDjxo0IDg7GuHHjALwe\n+dm/f38EBARg3bp1QkYlKjcsO99PJpPBx8cHffv2xbfffit0HCIiIiK1c/78eXTt2hUSiQQaGq/H\n3pmamqJr165ITEwEADg7O0NDQwMvX75EtWrVhIxLSowjO4lIJT169Ag1atQAAJSUlEBbWxsjR46E\nVCpFaWkpqlWrhiFDhiA+Pl7gpETlp1GjRkhPT0dpaanQURTOunXrkJGRgeXLlwsdhYgUmL+/P774\n4guhYxARqSRjY2MkJSWhpKRE/lhKSgq2bNkCe3t7AEDbtm3h7+/PopM+C8tOIlJJOTk5yMzMREhI\nCJYuXQoAePXqFTQ0NOQbF+Xm5rIUIpWiq6sLExMT3Lp1S+goCiUuLg7+/v6Ijo5G1apVhY5DRJ/I\nw8MDIpFIfqtVqxb69OmDGzduCB2tUhw/fhwikQiPHz8WOgoR0Sdxc3ODpqYmZs+ejbCwMISFhcHP\nzw9isRgDBw4EANSsWRNGRkYCJyVlx7KTiFRSrVq10KJFC/zxxx9ISkqCjY0N7t+/L38+NzdX/jiR\nKrGxseFU9r/Jzc3F0KFDsWrVKojFYqHjENFn6t69O+7fv4/79+/jv//9LwoLC5ViaYqioiKhIxAR\nKYSIiAjcu3cPixYtQnBwMB4/fozZs2fD0tJS6GikQlh2EpFK6ty5Mw4dOoR169YhNDQUM2bMQJ06\ndeTPp6amIi8vj7v8kcrhup3/RyaT4bvvvkPHjh0xbNgwoeMQUTmoWrUq6tati7p168LBwQFTpkzB\njRs3UFhYiMzMTIhEIly6dKnMMSKRCLt27ZLfv3fvHoYPHw5jY2Po6uqiRYsWOHbsWJljduzYgUaN\nGsHAwAADBgwoM5ry4sWL6NGjB2rVqgVDQ0O0b98eZ8+efeuaa9euxcCBA6Gnp4e5c+cCABITE9G7\nd28YGBigdu3aGDZsGB48eCA/LiEhAd26dYOhoSEMDAzQvHlzHDt2DJmZmejSpQsAwMTEBCKRCB4e\nHuXyMyUiqkxfffUVtm3bhtOnTyMyMhJHjx5Fr169hI5FKoYbFBGRSjpy5Ahyc3Pl0yHekMlkEIlE\ncHBwQFRUlEDpiCoOy87/Ex4ejri4OFy8eFHoKERUAXJzcxEdHY2mTZtCR0fno47Jz89Hp06dULt2\nbfz2228wNTV9a/3uzMxMREdH47fffkN+fj5cXV0xb948hIaGyq/r7u6OkJAQiEQirFmzBr169UJq\naipq1aolP8+iRYvwn//8B4GBgRCJRLh//z46duwIb29vBAYGori4GPPmzUO/fv1w7tw5aGhowM3N\nDc2bN8eFCxdQpUoVJCQkoFq1ajA3N8fu3bsxaNAgXL9+HTVr1vzo90xEpGiqVKkCMzMzmJmZCR2F\nVBTLTiJSSb/++itCQ0Ph7OwMFxcX9O3bFzVr1oRIJALwuvQEIL9PpCrEYjGOHj0qdAzBJSYmYtas\nWTh+/Dh0dXWFjkNE5SQmJgb6+voAXheX5ubmOHDgwEcfHxUVhQcPHuDs2bPyYrJRo0ZlXlNSUoKI\niAhUr14dAODr64vw8HD58127di3z+tWrV2P37t2IiYnBiBEj5I+7uLjAx8dHfn/BggVo3rw5AgIC\n5I9t2bIFNWvWxKVLl9C6dWtkZWVh+vTpsLOzAwBYW1vLX1uzZk0AQO3atcuUqkREyu7NgBSi8sJp\n7ESkkhITE/HNN99AT08Pfn5+GDVqFCIjI3Hv3j0AkG9uQKRqOLITKCgowNChQxEQECDf2ZOIVEPH\njh0RFxeHuLg4nD9/Hl27dkWPHj1w+/btjzr+6tWraNas2QfLwgYNGsiLTgCoX78+Hj16JL//6NEj\njBkzBjY2NqhevToMDAzw6NGjtzaHa9WqVZn7ly9fxokTJ6Cvry+/mZubAwBu3rwJAJg6dSp8fHzQ\ntWtXLF26VG02XyIi9SWTyT76dzjRx2LZSUQq6eHDh/Dy8sLWrVuxdOlSFBUVYdasWfDw8MAvv/xS\n5kMLkSqxsrJCVlYWiouLhY4iGIlEgubNm8PT01PoKERUznR1dWFtbQ1ra2u0bt0amzdvxosXL7Bh\nwwZoaLz+aPNm9gaAt34X/v2599HS0ipzXyQSQSqVyu+PGjUKFy9eRFBQEM6cOYO4uDiYmZm9tQmR\nnp5emftSqRS9e/eWl7VvbqmpqejTpw8AwN/fH4mJiRgwYADOnDmDZs2aISws7CN+MkREykkqlaJz\n5844f/680FFIhbDsJCKVlJubi2rVqqFatWoYOXIkDhw4gODgYIhEInh6eqJfv36IiIjg7qikcqpW\nrYr69esjMzNT6CiC2L59O2JjY7F+/XqO3iZSAyKRCBoaGigoKICJiQkA4P79+/Ln4+LiyrzewcEB\n165dK7Ph0L916tQpTJw4Eb1794a9vT0MDAzKXPN9HBwccP36dTRo0EBe2L65GRgYyF8nFosxadIk\n7N+/H97e3ti0aRMAQFtbGwBQWlr6ydmJiBSNpqYmJkyYgJCQEKGjkAph2UlEKik/P1/+oaekpASa\nmpoYPHgwDh48iD///BP169eHl5eXfFo7kSqxsbFRy6nsqampmDRpEqKjo8sUB0SkOl69eoUHDx7g\nwYMHSEpKwsSJE5GXl4e+fftCR0cHbdu2RUBAAK5fv44zZ85g+vTpZY53c3ND7dq1MWDAAJw8eRIZ\nGRn4/fff39qN/UNsbGywbds2JCYm4uLFi3B1dZUXkR8yfvx45OTkwMXFBefPn0d6ejoOHz4MX19f\n5ObmorCwEOPHj8fx48eRmZmJ8+fP49SpU2jSpAmA19PrRSIR9u/fj+zsbOTl5f27Hx4RkYLy9vZG\nTEwM7t69K3QUUhEsO4lIJRUUFMjX26pS5fVebFKpFDKZDB07dsSvv/6K+Ph47gBIKkkd1+189eoV\nXFxcsHDhQrRs2VLoOERUQQ4fPox69eqhXr16aNOmDS5evIidO3eic+fOACCf8v3ll19izJgxWLJk\nSZnj9fT0EBsbC1NTU/Tt2xf29vZYuHDhvxoJHhYWhry8PDg6OsLV1RVeXl5o2LDhPx5Xv359nD59\nGhoaGnB2doa9vT3Gjx+PqlWromrVqtDU1MSzZ88watQo2Nra4ttvv0W7du2wcuVKAICpqSkWLVqE\nefPmoU6dOpgwYcJHZyYiUmTVq1fH8OHDsW7dOqGjkIoQyT5m4RoiIiXz9OlTGBkZydfv+juZTAaZ\nTPbO54hUQUhICFJTU7FmzRqho1SaSZMm4c6dO9i9ezenrxMREREpmZSUFLRv3x5ZWVnQ0dEROg4p\nOX7SJyKVVLNmzfeWmW/W9yJSVeo2snPPnj34448/sHnzZhadRERERErIxsYGrVu3RmRkpNBRSAXw\n0z4RqQWZTCafxk6k6tSp7MzKyoKvry+2b9+OGjVqCB2HiIiIiD6RRCJBSEgIP7PRZ2PZSURqIS8v\nDwsWLOCoL1ILDRs2xL179/Dq1Suho1So4uJiuLq6YsaMGWjbtq3QcYiIiIjoM3Tv3h1SqfRfbRpH\n9C4sO4lILTx69AhRUVFCxyCqFFpaWjA3N0d6errQUSrU/PnzUaNGDUybNk3oKERERET0mUQiESZN\nmoSQkBCho5CSY9lJRGrh2bNnnOJKasXGxkalp7LHxMQgMjISP//8M9fgJSIiIlIR7u7uOHPmDG7e\nvCl0FFJi/HRARGqBZSepG1Vet/PevXvw8PDAtm3bYGJiInQcIlJCzs7O2LZtm9AxiIjof+jq6sLb\n2xurV68WOgopMZadRKQWWHaSulHVsrO0tBTDhw/HuHHj0KlTJ6HjEJESunXrFi5evIhBgwYJHYWI\niN5h/Pjx2LJlC168eCF0FFJSLDuJSC2w7CR1o6pl55IlSyASiTBv3jyhoxCRkoqIiICrqyt0dHSE\njkJERO9gbm6O7t27IyIiQugopKRYdhKRWmDZSepGFcvOY8eOYf369YiMjISmpqbQcYhICUmlUoSF\nhcHb21voKERE9AGTJ0/GqlWrUFpaKnQUUkIsO4lILbDsJHVjYWGB7OxsFBYWCh2lXDx69Aju7u6I\niIhAvXr1hI5DRErqyJEjqFmzJhwcHISOQkREH9CuXTvUqFEDBw4cEDoKKSGWnUSkFlh2krrR1NRE\nw4YNkZaWJnSUzyaVSjFq1Ci4u7vjm2++EToOESmxzZs3c1QnEZESEIlEkEgkCAkJEToKKSGWnUSk\nFlh2kjpSlansgYGBePHiBRYvXix0FCJSYk+ePEFMTAzc3NyEjkJERB9h6NChuH79OhISEoSOQkqG\nZScRqQWWnaSObGxslL7sPHPmDFasWIHt27dDS0tL6DhEpMS2bduGPn368O8BIiIloa2tjXHjxmHV\nqlVCRyElw7KTiNQCy05SR8o+svPp06dwc3PDhg0bYGFhIXQcIlJiMpkMmzZt4hR2IiIlM2bMGOza\ntQuPHz8WOgopEZadRKQWnj17BiMjI6FjEFUqZS47ZTIZvL29MWDAAPTv31/oOESk5C5evIiCggJ0\n6tRJ6ChERPQv1K5dGwMGDMDGjRuFjkJKhGUnEakFjuwkdaTMZeeaNWtw69YtBAQECB2FiFTAm42J\nNDT48YeISNlIJBKsXbsWxcXFQkchJSGSyWQyoUMQEVUkqVQKLS0tFBUVQVNTU+g4RJVGKpVCX18f\njx49gr6+vtBxPtqVK1fwzTff4OzZs7C2thY6DhEpufz8fJibmyMhIQGmpqZCxyEiok/QuXNnfPfd\nd3B1dRU6CikBfrVJRCovJycH+vr6LDpJ7WhoaKBRo0ZIS0sTOspHe/HiBVxcXLB69WoWnURULnbu\n3AknJycWnURESkwikSAkJEToGKQkWHYSkcrjFHZSZ2KxGCkpKULH+CgymQxjxoxB165d+a09EZWb\nzZs3w8fHR+gYRET0Gfr164cHDx7g/PnzQkchJcCyk4hUHstOUmc2NjZKs27n5s2b8ddffyE4OFjo\nKESkIm7cuIHU1FT07t1b6ChERPQZNDU1MXHiRI7upI/CspOIVB7LTlJnyrJJ0V9//YXZs2cjOjoa\nOjo6QschIhURFhaGkSNHQktLS+goRET0mby8vBATE4O7d+8KHYUUHMtOIlJ5LDtJnSlD2Zmfnw8X\nFxcEBgaiSZMmQschIhVRXFyMLVu2wNvbW+goRERUDoyMjODm5oaffvpJ6Cik4Fh2EpHKY9lJ6kwZ\nys5JkybBwcEBo0aNEjoKEamQffv2QSwWw9bWVugoRERUTiZOnIgNGzagsLBQ6CikwFh2EpHKY9lJ\n6qxu3booLCxETk6O0FHeKTIyEqdOncK6desgEomEjkNEKmTz5s0c1UlEpGJsbW3x5ZdfIioqSugo\npMBYdhKRymPZSepMJBLB2tpaIUd3pqSkYPLkyYiOjoaBgYHQcYhIhdy9exdnzpzBkCFDhI5CRETl\nTCKRICQkBDKZTOgopKBYdhKRymPZSepOLBYjJSVF6BhlvHz5Ei4uLli8eDFatGghdBwiUjEREREY\nMmQI9PT0hI5CRETl7Ouvv0ZJSQmOHz8udBRSUCw7iUjlsewkdaeI63ZOnz4djRo1wnfffSd0FCJS\nMVKpFGFhYfDx8RE6ChERVQCRSASJRILg4GCho5CCYtlJRCqPZSepOxsbG4UqO3fv3o0DBw5g06ZN\nXKeTiMpdbGws9PT00KpVK6GjEBFRBXF3d8eZM2dw8+ZNoaOQAmLZSUQqj2UnqTtFGtmZkZGBsWPH\nYseOHTAyMhI6DhGpIA0NDUyYMIFfphARqTBdXV14eXlhzZo1QkchBSSScUVXIlJxjRo1QkxMDMRi\nsdBRiASRnZ0NW1tbPH36VNAcRUVF6NChA4YOHYpp06YJmoWIVNebjzcsO4mIVNutW7fQsmVLZGRk\nwNDQUOg4pEA4spOIVB5HdpK6q1WrFqRSKZ48eSJojnnz5sHExARTpkwRNAcRqTaRSMSik4hIDVhY\nWKBbt26IiIgQOgopGJadRKTSZDIZtmzZwrKT1JpIJBJ8KvuBAwewY8cOREREQEODf34QERER0eeT\nSCRYvXo1pFKp0FFIgfDTBhGpNJFIhD59+kBTU1PoKESCEovFSElJEeTad+7cgZeXF6KiolCrVi1B\nMhARERGR6nFyckL16tVx4MABoaOQAmHZSUREpAaEGtlZUlICNzc3TJgwAR06dKj06xMRERGR6hKJ\nRJBIJAgODhY6CikQlp1ERERqwMbGRpCyc/HixdDW1sacOXMq/dpEREREpPqGDh2K69ev46+//hI6\nCimIKkIHICIiooonxMjOo0ePYtOmTbhy5QqXkiCicpOdnY29e/eipKQEMpkMzZo1w1dffSV0LCIi\nEkjVqlUxduxYrFq1Chs2bBA6DikAkUwmkwkdgoiIiCrWs2fP0KBBA+Tk5FTKLsUPHz6Eg4MDIiIi\n8PXXX1f49YhIPezduxfLly/H9evXoaenB1NTU5SUlKBBgwYYMmQI+vXrBz09PaFjEhFRJXv48CHs\n7OyQlpYGY2NjoeOQwDiNnYiISA3UqFED2traePToUYVfSyqVYuTIkfDw8GDRSUTlatasWWjTpg3S\n09Nx584dBAYGYujQoSgpKcGyZcuwefNmoSMSEZEA6tSpgwEDBnBkJwHgyE4iIiK10a5dOyxfvhzt\n27ev0Ov8+OOP2LdvH44fP44qVbhiDhGVj/T0dDg5OeHy5cswNTUt89ydO3ewefNmLFq0CJGRkRg2\nbJhAKYmISChxcXHo27cv0tPToaWlJXQcEhBHdhIREamJyli38/Tp0wgKCsL27dtZdBJRuRKJRDA2\nNkZoaCgAQCaTobS0FDKZDGZmZli4cCE8PDxw+PBhFBcXC5yWiIgqW4sWLWBlZYVff/1V6CgkMJad\nRKT2Hj9+jLt370IqlQodhahCicVipKSkVNj5nzx5Ajc3N2zatAnm5uYVdh0iUk+WlpYYMmQIduzY\ngR07dgAANDU1y6xDbGVlhcTERI7oISJSUxKJBCEhIULHIIGx7CQitXf16lW0atUK+vr6aNq0Kb79\n9lvMmDEDoaGhOHr0KG7dusUilFRCRY7slMlk8PLywqBBg9C3b98KuQYRqa83K2+NHz8eX3/9Ndzd\n3WFvb49Vq1YhOTkZKSkpiI6ORmRkJNzc3AROS0REQunfvz/u37+PCxcuCB2FBMQ1O4mI/r+8vDzc\nvHkTaWlpSE1NRVpamvz25MkTWFpawtraGtbW1hCLxfJ/W1hYQFNTU+j4RP/oypUr8PT0RHx8fLmf\nOyQkBNu2bcPp06ehra1d7ucnIsrJyUFubi5kMhmePHmCXbt2ISoqCllZWbC0tEROTg5cXV0RHBzM\n/18mIlJjK1aswJUrVxAZGSl0FBIIy04ioo9QUFCA9PT0t0rQtLQ0PHz4EA0aNHirBLW2tkaDBg04\nlY4URm5uLurWrYu8vLwy0z4/16VLl9CzZ0+cP38eVlZW5XZeIiLgdckZFhaGxYsXo169eigtLUWd\nOnXQvXt3DBgwAFpaWrh69SpatmyJxo0bCx2XiIgE9vz5c1haWuL69euoX7++0HFIACw7iYg+08uX\nL5Genv5WCZqWloZ79+7BzMzsrRLU2toalpaWHAFHla5u3brv3Mn4U+Xk5MDBwQE//PADhg4dWi7n\nJCL6u5kzZ+LUqVOQSCSoWbMm1qxZgz/++AOOjo7Q09NDYGAgWrVqJXRMIiJSIOPHj0eNGjWwZMkS\noaOQAFh2EhFVoKKiImRkZLyzCL19+zbq16//VglqbW0NKysrVKtWTej4pII6dOiA77//Hp07d/7s\nc8lkMri6uqJmzZr46aefPj8cEdE7mJqaYsOGDejduzcAIDs7GyNGjECnTp1w+PBh3LlzB/v374dY\nLBY4KRERKYrk5GR07NgRWVlZ/FylhqoIHYCISJVpa2vD1tYWtra2bz1XXFyMrKysMgXo0aNHkZqa\niqysLNSpU+edRWijRo2gq6srwLshVfBmk6LyKDs3btyIGzdu4Ny5c58fjIjoHdLS0lC7dm0YGhrK\nHzMxMcHVq1exYcMGzJ07F3Z2dti/fz8mT54MmUxWrst0EBGRcrK1tYWjoyOioqLg5eUldByqZCw7\niYgEoqWlJS8w/1dJSQlu375dpgg9efIk0tLSkJGRAWNj47dKULFYjEaNGkFfX7/S30thYSF2/r/2\n7jy65jv/4/jrhiYiC5ImgkQTSaR2RaQtY1+CnlEZo7a2EZRiukyj7fip5TA6VctQFCVVCWpIi9LS\nSlGG1p6mSCWIWEOqilgSud/fHz3u9DbWJnHjm+fjnJwj3+/3fj/v73VOllc+n8972TIlJyfLw8ND\nHTt2VHh4uMqW5dtMSRMaGqqDBw8W+j7ff/+9/u///k+bN2+Wq6trEVQGAPYMw1BgYKACAgI0d+5c\nhYeH6/Lly4qPj5fFYtEjjzwiSXrqqae0ZcsWDRs2jO87AACbMWPG6PTp0/whrBTipwEAKIHKli2r\noKAgBQUFqX379nbn8vPzdeLECVsImpaWpu+++07p6ek6dOiQKlSoUCAEvfHv386MKUrZ2dn67rvv\ndOnSJU2dOlXbt2/XggUL5OvrK0nasWOH1q9frytXrqhmzZp6/PHHFRwcbPdDBz+E3B+hoaFKSEgo\n1D1ycnL0zDPPaPLkyXr00UeLqDIAsGexWFS2bFl1795dL774orZu3So3Nzf98ssvmjhxot21ubm5\nBJ0AADvh4eH8flFKsWcnAJiI1WrVqVOnbCHo7/cJLV++/E1D0JCQEFWqVOkPj5ufn6+TJ08qICBA\njRs3VsuWLTV+/Hjbcvvo6GhlZ2fL2dlZx48f19WrVzV+/Hj9+c9/ttXt5OSk8+fP6/Tp0/Lz81PF\nihWL5D2Bve+//169evXSvn37/vA9+vXrJ8MwtGDBgqIrDABu4+zZs4qLi9OZM2f0/PPPq379+pKk\n1NRUtWzZUh988IHtewoAACjdCDsBoJQwDENZWVk3DULT0tJsy+pv1jne29v7rv8q6ufnp+HDh+vV\nV1+Vk5OTpF83CHdzc5O/v7+sVqtiY2P10UcfadeuXQoMDJT06y+sY8eO1datW5WVlaUmTZpowYIF\nN13mjz/u8uXL8vb2Vk5Oju3/514sXLhQEyZM0M6dOx2yZQIA3HC+sajvAAAeUUlEQVTx4kUtXbpU\nX3/9tRYvXuzocgAAQAlB2AkAkGEYys7Ovuls0LS0NBmGodOnT9+xk2FOTo58fX0VFxenZ5555pbX\nnTt3Tr6+vtq2bZvCw8MlSc2aNdPly5c1e/Zs+fv7q3///srLy9Pq1avZE7KI+fv767///a9tv7u7\n9eOPP6p58+ZKSkqyzaoCAEfKysqSYRjy8/NzdCkAAKCEYGMbAIAsFot8fHzk4+OjJ598ssD5n376\nSS4uLrd8/Y39No8cOSKLxWLbq/O352+MI0krV67UQw89pNDQUEnS1q1btW3bNu3du9cWok2dOlV1\n6tTRkSNHVLt27SJ5TvzqRkf2ewk7r1y5oh49emj8+PEEnQBKjMqVKzu6BAAAUMLc+/o1AECpc6dl\n7FarVZJ04MABeXp6ysvLy+78b5sPJSQkaPTo0Xr11VdVsWJFXbt2TevWrZO/v7/q16+v69evS5Iq\nVKggPz8/paSkFNNTlV43ws578dprryksLEwvvPBCMVUFALeXl5cnFqUBAIA7IewEABSZ/fv3y9fX\n19bsyDAM5efny8nJSTk5ORo+fLhGjRqlIUOGaMKECZKka9eu6cCBA6pZs6ak/wWnWVlZ8vHx0S+/\n/GK7F4rGvYady5Yt07p16/TBBx/Q0RKAw3Tq1ElJSUmOLgMAAJRwLGMHABSKYRg6f/68vL29dfDg\nQQUGBqpChQqSfg0uy5Qpo+TkZL388ss6f/68Zs2apcjISLvZnllZWbal6jdCzczMTJUpU6bALFEU\nXmhoqDZt2nRX1x4+fFhDhw7VmjVrbP+vAHC/HTlyRMnJyWrevLmjSwEAACUcYScAoFBOnDihDh06\n6OrVq8rIyFBQUJDmzJmjli1bKiIiQvHx8Zo8ebKaNWumt99+W56enpJ+3b/TMAx5enrq8uXLts7e\nZcqUkSQlJyfL1dXV1q39tzMK8/Ly1LVr1wKd4wMDA/XQQw/d3zfgAVSzZs27mtmZm5urnj17asSI\nEbZGUgDgCHFxcerdu/cdG+UBAADQjR0AUCiGYSglJUV79uzRyZMntWvXLu3atUuNGjXS9OnT1aBB\nA507d06RkZFq0qSJwsLCFBoaqnr16snFxUVOTk7q27evjh49qqVLl6pq1aqSpMaNG6tRo0aaPHmy\nLSC9IS8vT2vXri3QOf7EiROqVq1agRA0JCREQUFBt22yVJpcvXpVFStW1KVLl1S27K3/7vnaa68p\nLS1NK1euZPk6AIfJz89XYGCg1qxZQ4M0AABwR4SdAIBilZqaqrS0NG3atEkpKSk6fPiwjh49qmnT\npmnQoEFycnLSnj171Lt3b3Xp0kWdO3fW7NmztX79em3YsEENGjS467Fyc3OVkZFRIARNS0vTsWPH\nVKVKlQIhaEhIiIKDg0vdbKHAwEAlJSUpODj4pudXr16tIUOGaM+ePfL29r7P1QHA/3zxxRcaPXq0\ntm/f7uhSAADAA4CwEwDgEFarVU5O/+uT9+mnn2rixIk6fPiwwsPDNWbMGDVp0qTIxsvLy1NmZuZN\ng9CMjAz5+voWCEFDQ0MVHBys8uXLF1kdJcWcOXPUtm1bhYSEFDh3/PhxNWnSRMuXL2d/PAAO95e/\n/EUdOnTQoEGDHF0KAAB4ABB2AjCl6OhoZWdna/Xq1Y4uBX/Ab5sX3Q/5+fk6duxYgRA0PT1dhw8f\nlpeXV4EQ9MaMUA8Pj/tW5/1w/fp1tW7dWp06ddKIESMcXQ6AUu7MmTOqWbOmMjMzC2xpAgAAcDM0\nKALgENHR0froo48kSWXLllWlSpVUp04dde/eXS+88EKJaDJzo9nOjh07inSGIe7sfu8PWaZMGQUG\nBiowMFDt2rWzO2e1WnXixAm7EHTx4sVKT0/XoUOH5OHhUSAEvfHxIHYvt1gsGjlypNq3b+/oUgBA\n8fHxevrppwk6AQDAXSPsBOAw7dq1U3x8vPLz83X27Fl9/fXXGj16tOLj45WUlCQ3N7cCr8nNzZWz\ns7MDqkVp5eTkpICAAAUEBKh169Z25wzD0KlTp+xmgi5fvtwWjJYrV+6mIWhISIi8vLwc9ES3V6ZM\nGXXs2NHRZQCADMPQvHnzNHfuXEeXAgAAHiBOd74EAIqHi4uL/Pz8VK1aNTVs2FB///vftXHjRu3e\nvVsTJ06U9GsTlTFjxigmJkYVK1ZUnz59JEkpKSlq166dXF1d5eXlpejoaP3yyy8Fxhg/frwqV64s\nd3d39evXT1euXLGdMwxDEydOVHBwsFxdXVWvXj0lJCTYzgcFBUmSwsPDZbFY1KpVK0nSjh071KFD\nBz388MPy9PRU8+bNtW3btuJ6m1CCWSwWVa1aVS1atFD//v319ttva9myZdqzZ48uXLigH374Qe++\n+67atGmj3NxcrVq1SkOGDFFQUJC8vLwUERGhPn362EL+bdu26ezZs2KHGQCQtm3bJqvVyt7BAADg\nnjCzE0CJUrduXUVGRioxMVFjx46VJE2ZMkUjR47Uzp07ZRiGLl++rMjISIWHh2v79u06d+6cBg4c\nqJiYGCUmJtrutWnTJrm6uiopKUknTpxQTEyM3njjDU2fPl2SNHLkSC1fvlwzZ85UWFiYtm3bpoED\nB6pSpUrq0qWLtm/frqZNm2rt2rVq0KCBbUbpxYsX9eyzz2ratGmyWCyaMWOGOnfurLS0ND388MP3\n/01DiWSxWFS5cmVVrly5wC/qhmEoOzvbbo/QtWvX2maIWq3Wm3aNDw0Nla+v731f5g8AjjBv3jz1\n79+fr3kAAOCe0KAIgEPcroHQm2++qenTp+vy5csKDAxUvXr19Nlnn9nOf/DBB4qNjdXx48dtzWE2\nbtyo1q1bKy0tTSEhIYqOjtaKFSt0/Phxubu7S5ISEhLUv39/nTt3TpL08MMP68svv9Sf/vQn271f\neeUVHTx4UJ9//vld79lpGIaqVq2qd999V3379i2S9wel27lz527aNT49PV1Xr169ZRBapUoVQgEA\npnDx4kUFBAQoNTVVfn5+ji4HAAA8QJjZCaDE+X0n7t8HjQcOHFD9+vXtumA/+eSTcnJy0v79+xUS\nEiJJql+/vi3olKQnnnhCubm5OnTokK5du6arV68qMjLSbqy8vDwFBgbetr4zZ87orbfe0oYNG5SV\nlaX8/HxduXJFmZmZhXlswMbLy0tNmzZV06ZNC5w7f/68Dh06ZAtBN2/erA8//FDp6em6ePGigoOD\nbQFov379VKtWLQc8AQAUztKlS9W6dWuCTgAAcM8IOwGUOPv371eNGjVsn/++UdHvw9DfuttZbVar\nVZL02WefqXr16nbn7tQJ/vnnn1dWVpamTp2qwMBAubi4qG3btsrNzb2rsYHCqFixoho3bqzGjRsX\nOHfx4kVbEJqWlma3Ry0APEjmzZunkSNHOroMAADwACLsBFCi/PDDD1q7du1tf8GpXbu24uLidPHi\nRdvszq1bt8pqtdrNYktJSVFOTo4tLP3222/l7Oys4OBgWa1Wubi46OjRo2rTps1Nx7mxR2d+fr7d\n8S1btmj69Onq0qWLJCkrK0unTp364w8NFBEPDw81bNhQDRs2dHQpAPCH7du3T8eOHVNkZKSjSwEA\nAA8gurEDcJhr167p9OnTOnnypJKTkzVlyhS1atVKjRs3Vmxs7C1f16dPH7m5uem5555TSkqKvvnm\nGw0aNEhRUVG2JeySdP36dcXExGjfvn366quv9Oabb2rgwIFyc3OTh4eHYmNjFRsbq7i4OKWnp2vv\n3r2aPXu25s6dK0ny9fWVq6ur1q1bp6ysLFu395o1ayohIUH79+/Xjh071LNnT1swCgAACmf+/PmK\njo5W2bLMywAAAPeOsBOAw6xfv15VqlRR9erV1bZtW61atUqjR4/WN998U2Dp+m+VL19e69at04UL\nF9S0aVN17dpVTzzxhOLi4uyua9myperUqaPWrVurW7duatOmjSZOnGg7P27cOI0ZM0aTJk1SnTp1\n1L59eyUmJiooKEiSVLZsWU2fPl3z5s1T1apV1bVrV0lSXFycLl26pMaNG6tnz56KiYm54z6fAADg\nzq5du6b4+HjFxMQ4uhQAAPCAohs7AAAAgBJh2bJlmjVrljZs2ODoUgAAwAOKmZ0AAAAASoT58+dr\nwIABji4DAAA8wJjZCQAAAMDhjh49qkaNGun48eNydXV1dDkAAOABxcxOAAAAAA63YMEC9ezZk6AT\nAAAUCmEnAAAAAIfKz89XXFwcS9gBAPfs9OnT6tChg9zc3GSxWAp1r+joaD311FNFVBkchbATAAAA\ngEMlJSXJ29tbjz32mKNLAQCUMNHR0bJYLAU+Hn/8cUnSpEmTdPLkSe3du1enTp0q1FjTpk1TQkJC\nUZQNByrr6AIAAAAAlG40JgIA3E67du0UHx9vd8zZ2VmSlJ6ersaNGys0NPQP3//69esqU6aMKlSo\nUKg6UTIwsxMAAACAw2RnZ2vdunXq3bu3o0sBAJRQLi4u8vPzs/vw8vJSYGCgVq5cqYULF8pisSg6\nOlqSlJmZqW7dusnDw0MeHh6KiorS8ePHbfcbM2aM6tatqwULFig4OFguLi7KyckpsIzdMAxNnDhR\nwcHBcnV1Vb169Zj5+QBgZicAAAAAh0lISNBTTz2lihUrOroUAMADZseOHerdu7e8vLw0bdo0ubq6\nyjAMPf300ypXrpy+/vprWSwWDRs2TE8//bR27Nhh29fzyJEjWrx4sZYtWyZnZ2eVK1euwP1Hjhyp\n5cuXa+bMmQoLC9O2bds0cOBAVapUSV26dLnfj4u7RNgJAAAAwCEMw9D8+fP13nvvOboUAEAJtnbt\nWrm7u9sdGzp0qN555x25uLjI1dVVfn5+kqSvvvpKycnJOnTokAIDAyVJixcvVkhIiJKSktSuXTtJ\nUm5uruLj41W5cuWbjpmTk6MpU6boyy+/1J/+9CdJUlBQkLZv366ZM2cSdpZghJ0AAAAAHGL79u26\ncuWKWrZs6ehSAAAlWIsWLTR37ly7Y7daEXDgwAFVrVrVFnRKUo0aNVS1alXt37/fFnb6+/vfMuiU\npP379+vq1auKjIy06/Kel5dnd2+UPISdAAAAABxi/vz5iomJsfslEgCA3ytfvrxCQkLu6lrDMG75\nfeW3x93c3G57H6vVKkn67LPPVL16dbtzDz300F3VAscg7AQAAABw3126dEnLli3Tvn37HF0KAMBE\nateurRMnTigjI8M2A/Pw4cM6efKkateufU/3cXFx0dGjR9WmTZtiqhbFgbATAAAAwH23bNkyNW/e\nXFWrVnV0KQCAEu7atWs6ffq03bEyZcrIx8enwLXt2rVTgwYN1KdPH02fPl2GYehvf/ubGjVqdE+h\npYeHh2JjYxUbGyvDMNSiRQtdunRJ3377rZycnPTCCy8U+rlQPAg7AQAAANx38+fPV2xsrKPLAAA8\nANavX68qVarYHatWrZqOHz9e4FqLxaIVK1bopZdeUqtWrST9GoC+995797xtyrhx41S5cmVNmjRJ\nL774ojw9PdWwYUO9/vrrf/hZUPwshmEYji4CAAAAQOmRmpqq1q1bKzMzk33PAABAkXJydAEAAAAA\nSpf58+frueeeI+gEAABFjrATAIBSaMyYMapbt66jywBQCuXl5WnhwoWKiYlxdCkAAMCECDsBACjB\nsrKy9PLLLys4OFguLi6qVq2aOnXqpM8//7xQ942NjdWmTZuKqEoAuHurV69WWFiYwsLCHF0KAAAw\nIRoUAQBQQmVkZKhZs2by8PDQ22+/rQYNGshqtSopKUmDBw9WZmZmgdfk5ubK2dn5jvd2d3eXu7t7\ncZQNALc1b9489e/f39FlAAAAk2JmJwAAJdSQIUNkGIZ27typHj16KCwsTLVq1dKwYcOUnJws6ddu\nkzNnzlRUVJTc3Nw0YsQI5efnq3///goKCpKrq6tCQ0M1ceJEWa1W271/v4zdarVq3LhxCggIkIuL\ni+rVq6eVK1fazj/xxBN67bXX7Oq7cOGCXF1d9emnn0qSEhISFB4eLg8PD/n6+uqvf/2rTpw4UZxv\nEYAHzIkTJ7Rt2zZ1797d0aUAAACTIuwEAKAEOnfunNauXathw4bddAZmpUqVbP8eO3asOnfurJSU\nFA0dOlRWq1XVqlXTf/7zHx04cED//Oc/NWHCBH344Ye3HG/atGl699139c477yglJUXdunVTVFSU\n9u7dK0nq27evPv74Y7vANDExUa6ururSpYukX2eVjh07VsnJyVq9erWys7PVq1evonpLAJjAggUL\n1KNHD7m5uTm6FAAAYFIWwzAMRxcBAADsbd++XREREfrkk0/UrVu3W15nsVg0bNgwvffee7e935tv\nvqmdO3dq/fr1kn6d2bl8+XL98MMPkqRq1app0KBBGjVqlO01rVq1kr+/vxISEvTTTz+pSpUq+uKL\nL9S2bVtJUrt27RQcHKw5c+bcdMzU1FTVqlVLx44dk7+//z09PwDzsVqtCgkJ0dKlSxUeHu7ocgAA\ngEkxsxMAgBLoXv4W2aRJkwLHZs+erSZNmsjHx0fu7u6aOnXqTff4lH5djn7y5Ek1a9bM7njz5s21\nf/9+SZK3t7c6duyoRYsWSZJOnTqlDRs2qG/fvrbrd+/era5du+qRRx6Rh4eHra5bjQugdNm4caPd\n1wYAAIDiQNgJAEAJFBoaKovFogMHDtzx2t8vB126dKleeeUVRUdHa926ddq7d6+GDBmi3Nzc297H\nYrHc9ljfvn2VmJioq1evasmSJQoICFDz5s0lSTk5OerYsaPKly+v+Ph47dixQ2vXrpWkO44LoHS4\n0ZjoZl9rAAAAigphJwAAJZCXl5c6duyoGTNm6NKlSwXOnz9//pav3bJliyIiIjRs2DA1atRIISEh\nOnTo0C2v9/T0VNWqVbVly5YC96ldu7bt865du0qSVq9erUWLFqlPnz620CI1NVXZ2dmaMGGCWrRo\noUcffVRnzpy5p2cGYF4///yzPv/8c/Xp08fRpQAAAJMj7AQAoISaNWuWDMNQkyZNtGzZMv34449K\nTU3V+++/r/r169/ydTVr1tTu3bv1xRdfKC0tTePGjdOmTZtuO9bw4cM1adIkLVmyRAcPHtSoUaO0\nefNmuw7s5cqVU1RUlMaPH6/du3fbLWGvXr26XFxcNGPGDB0+fFhr1qzRW2+9Vfg3AYApLFq0SJ06\ndZK3t7ejSwEAACZH2AkAQAkVFBSk3bt3q3379nrjjTdUv359tWnTRqtWrbplUyBJGjRokHr06KHe\nvXsrPDxcGRkZdqHlzbz00ksaPny4Xn/9ddWtW1effvqpEhMT1bBhQ7vrnn32WSUnJ6tRo0aqVauW\n7biPj48++ugjrVixQrVr19bYsWM1ZcqUwr0BAEzBMAzbEnYAAIDiRjd2AAAAAMVm165d6t69uw4d\nOiQnJ+ZaAACA4sVPGwAAAACKzfz58xUTE0PQCQAA7gtmdgIAAAAoFpcvX5a/v7+Sk5MVEBDg6HIA\nAEApwJ9XAQAAABSLxMRERUREEHQCAID7hrATAAAAQLGYP3++BgwY4OgyAABAKcIydgAAAABFLi0t\nTc2bN9exY8fk7Ozs6HIAAEApwcxOAAAAAEUuLi5Offv2JegEAAD3VVlHFwAAAADAXAzDUIMGDRQR\nEeHoUgAAQCnDMnYAAAAAAAAApsAydgAAAAAAAACmQNgJAAAAAAAAwBQIOwEAAAAAAACYAmEnAAAA\nAAAAAFMg7AQAAAAAAABgCoSdAAAAAAAAAEyBsBMAAAAAAACAKRB2AgAAAAAAADAFwk4AAAAAAAAA\npkDYCQAAAAAAAMAUCDsBAAAAAAAAmAJhJwAAAAAAAABTIOwEAAAAAAAAYAqEnQAAAAAAAABMgbAT\nAAAAAAAAgCkQdgIAAAAAAAAwBcJOAAAAAAAAAKZA2AkAAAAAAADAFAg7AQAAAAAAAJgCYScAAAAA\nAAAAUyDsBAAAAAAAAGAKhJ0AAAAAAAAATIGwEwAAAAAAAIApEHYCAAAAAAAAMAXCTgAAAAAAAACm\nQNgJAAAAAAAAwBQIOwEAAAAUEBgYqEmTJt2XsTZu3CiLxaLs7Oz7Mh4AADAvi2EYhqOLAAAAAHD/\nZGVl6V//+pdWr16tY8eOydPTUyEhIerVq5f69esnd3d3nT17Vm5ubipfvnyx15Obm6tz586pcuXK\nslgsxT4eAAAwr7KOLgAAAADA/ZORkaFmzZrJ09NT48aNU/369WW1WnXw4EEtXLhQ3t7e6t27t3x8\nfAo9Vm5urpydne94nbOzs/z8/Ao9HgAAAMvYAQAAgFLkxRdflJOTk3bu3KmePXuqdu3aqlu3rqKi\norRixQr16tVLUsFl7BaLRcuXL7e7182umTlzpqKiouTm5qYRI0ZIktasWaOwsDCVK1dOLVq00Mcf\nfyyLxaKMjAxJBZexL1iwQO7u7nZjsdQdAADcDcJOAAAAoJQ4d+6c1q1bp6FDh8rNze2m1xR2GfnY\nsWPVuXNnpaSkaOjQocrMzFRUVJS6dOmi5ORkvfTSS3r99dcLNQYAAMCtEHYCAAAApURaWpoMw1BY\nWJjdcX9/f7m7u8vd3V2DBw8u1BjPPPOMBgwYoBo1aigoKEjvv/++atSoocmTJyssLEzdu3cv9BgA\nAAC3QtgJAAAAlHKbN2/W3r171bRpU129erVQ92rSpInd56mpqQoPD7ebMRoREVGoMQAAAG6FBkUA\nAABAKRESEiKLxaLU1FS740FBQZJ0287rFotFhmHYHcvLyytw3e+XxxuGcc9L452cnO5qLAAAgN9j\nZicAAABQSnh7e6tDhw6aMWOGLl26dE+v9fHx0alTp2yfZ2Vl2X1+K7Vq1dKOHTvsjm3fvv2OY12+\nfFkXLlywHdu7d+891QsAAEonwk4AAACgFJk1a5asVqsaN26sJUuWaP/+/Tp48KCWLFmi5ORklSlT\n5qava9OmjWbOnKmdO3dqz549io6OVrly5e443uDBg3Xo0CHFxsbqxx9/1CeffKI5c+ZIunUzpIiI\nCLm5uekf//iH0tPTlZiYqFmzZv3xhwYAAKUGYScAAABQitSoUUN79uxRZGSk3nrrLT322GNq1KiR\npkyZoiFDhujf//73TV83efJk1ahRQ61atVL37t01YMAA+fr63nG8Rx55RImJiVq1apUaNGigqVOn\navTo0ZJ0y7DUy8tLixYt0ldffaV69epp7ty5Gjdu3B9/aAAAUGpYjN9vhgMAAAAAxWjatGkaNWqU\nfv75Zzk5Mf8CAAAUHRoUAQAAAChWM2fOVHh4uHx8fPTtt99q3Lhxio6OJugEAABFjrATAAAAQLFK\nT0/XhAkT9NNPP8nf31+DBw/WqFGjHF0WAAAwIZaxAwAAAAAAADAF1o0AAAAAAAAAMAXCTgAAAAAA\nAACmQNgJAAAAAAAAwBQIOwEAAAAAAACYAmEnAAAAAAAAAFMg7AQAAAAAAABgCoSdAAAAAAAAAEyB\nsBMAAAAAAACAKRB2AgAAAAAAADAFwk4AAAAAAAAApkDYCQAAAAAAAMAUCDsBAAAAAAAAmAJhJwAA\nAAAAAABTIOwEAAAAAAAAYAqEnQAAAAAAAABMgbATAAAAAAAAgCkQdgIAAAAAAAAwBcJOAAAAAAAA\nAKZA2AkAAAAAAADAFAg7AQAAAAAAAJgCYScAAAAAAAAAUyDsBAAAAAAAAGAKhJ0AAAAAAAAATIGw\nEwAAAAAAAIApEHYCAAAAAAAAMAXCTgAAAAAAAACmQNgJAAAAAAAAwBQIOwEAAAAAAACYAmEnAAAA\nAAAAAFMg7AQAAAAAAABgCoSdAAAAAAAAAEyBsBMAAAAAAACAKRB2AgAAAAAAADAFwk4AAAAAAAAA\npkDYCQAAAAAAAMAUCDsBAAAAAAAAmAJhJwAAAAAAAABTIOwEAAAAAAAAYAqEnQAAAAAAAABMgbAT\nAAAAAAAAgCkQdgIAAAAAAAAwBcJOAAAAAAAAAKZA2AkAAAAAAADAFAg7AQAAAAAAAJgCYScAAAAA\nAAAAUyDsBAAAAAAAAGAKhJ0AAAAAAAAATIGwEwAAAAAAAIApEHYCAAAAAAAAMAXCTgAAAAAAAACm\nQNgJAAAAAAAAwBQIOwEAAAAAAACYAmEnAAAAAAAAAFMg7AQAAAAAAABgCoSdAAAAAAAAAEyBsBMA\nAAAAAACAKRB2AgAAAAAAADAFwk4AAAAAAAAApkDYCQAAAAAAAMAUCDsBAAAAAAAAmAJhJwAAAAAA\nAABTIOwEAAAAAAAAYAqEnQAAAAAAAABMgbATAAAAAAAAgCkQdgIAAAAAAAAwBcJOAAAAAAAAAKZA\n2AkAAAAAAADAFAg7AQAAAAAAAJgCYScAAAAAAAAAUyDsBAAAAAAAAGAKhJ0AAAAAAAAATOH/Ad6o\n3TM5BbM0AAAAAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "show_map(romania_graph_data)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Voila! You see, the romania map as shown in the Figure[3.2] in the book. Now, see how different searching algorithms perform with our problem statements." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SIMPLE PROBLEM SOLVING AGENT PROGRAM\n", "\n", "Let us now define a Simple Problem Solving Agent Program. Run the next cell to see how the abstract class `SimpleProblemSolvingAgentProgram` is defined in the search module." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
class SimpleProblemSolvingAgentProgram:\n",
       "\n",
       "    """Abstract framework for a problem-solving agent. [Figure 3.1]"""\n",
       "\n",
       "    def __init__(self, initial_state=None):\n",
       "        """State is an abstract representation of the state\n",
       "        of the world, and seq is the list of actions required\n",
       "        to get to a particular state from the initial state(root)."""\n",
       "        self.state = initial_state\n",
       "        self.seq = []\n",
       "\n",
       "    def __call__(self, percept):\n",
       "        """[Figure 3.1] Formulate a goal and problem, then\n",
       "        search for a sequence of actions to solve it."""\n",
       "        self.state = self.update_state(self.state, percept)\n",
       "        if not self.seq:\n",
       "            goal = self.formulate_goal(self.state)\n",
       "            problem = self.formulate_problem(self.state, goal)\n",
       "            self.seq = self.search(problem)\n",
       "            if not self.seq:\n",
       "                return None\n",
       "        return self.seq.pop(0)\n",
       "\n",
       "    def update_state(self, state, percept):\n",
       "        raise NotImplementedError\n",
       "\n",
       "    def formulate_goal(self, state):\n",
       "        raise NotImplementedError\n",
       "\n",
       "    def formulate_problem(self, state, goal):\n",
       "        raise NotImplementedError\n",
       "\n",
       "    def search(self, problem):\n",
       "        raise NotImplementedError\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(SimpleProblemSolvingAgentProgram)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The SimpleProblemSolvingAgentProgram class has six methods: \n", "\n", "* `__init__(self, intial_state=None)`: This is the `contructor` of the class and is the first method to be called when the class is instantiated. It takes in a keyword argument, `initial_state` which is initially `None`. The argument `initial_state` represents the state from which the agent starts.\n", "\n", "* `__call__(self, percept)`: This method updates the `state` of the agent based on its `percept` using the `update_state` method. It then formulates a `goal` with the help of `formulate_goal` method and a `problem` using the `formulate_problem` method and returns a sequence of actions to solve it (using the `search` method).\n", "\n", "* `update_state(self, percept)`: This method updates the `state` of the agent based on its `percept`.\n", "\n", "* `formulate_goal(self, state)`: Given a `state` of the agent, this method formulates the `goal` for it.\n", "\n", "* `formulate_problem(self, state, goal)`: It is used in problem formulation given a `state` and a `goal` for the `agent`.\n", "\n", "* `search(self, problem)`: This method is used to search a sequence of `actions` to solve a `problem`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let us now define a Simple Problem Solving Agent Program. We will create a simple `vacuumAgent` class which will inherit from the abstract class `SimpleProblemSolvingAgentProgram` and overrides its methods. We will create a simple intelligent vacuum agent which can be in any one of the following states. It will move to any other state depending upon the current state as shown in the picture by arrows:\n", "\n", "![simple problem solving agent](images/simple_problem_solving_agent.jpg)" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class vacuumAgent(SimpleProblemSolvingAgentProgram):\n", " def update_state(self, state, percept):\n", " return percept\n", "\n", " def formulate_goal(self, state):\n", " goal = [state7, state8]\n", " return goal \n", "\n", " def formulate_problem(self, state, goal):\n", " problem = state\n", " return problem \n", " \n", " def search(self, problem):\n", " if problem == state1:\n", " seq = [\"Suck\", \"Right\", \"Suck\"]\n", " elif problem == state2:\n", " seq = [\"Suck\", \"Left\", \"Suck\"]\n", " elif problem == state3:\n", " seq = [\"Right\", \"Suck\"]\n", " elif problem == state4:\n", " seq = [\"Suck\"]\n", " elif problem == state5:\n", " seq = [\"Suck\"]\n", " elif problem == state6:\n", " seq = [\"Left\", \"Suck\"]\n", " return seq" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we will define all the 8 states and create an object of the above class. Then, we will pass it different states and check the output:" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Left\n", "Suck\n", "Right\n" ] } ], "source": [ "state1 = [(0, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Dirty\"]]]\n", "state2 = [(1, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Dirty\"]]]\n", "state3 = [(0, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Dirty\"]]]\n", "state4 = [(1, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Dirty\"]]]\n", "state5 = [(0, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Clean\"]]]\n", "state6 = [(1, 0), [(0, 0), \"Dirty\"], [(1, 0), [\"Clean\"]]]\n", "state7 = [(0, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Clean\"]]]\n", "state8 = [(1, 0), [(0, 0), \"Clean\"], [(1, 0), [\"Clean\"]]]\n", "\n", "a = vacuumAgent(state1)\n", "\n", "print(a(state6)) \n", "print(a(state1))\n", "print(a(state3))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SEARCHING ALGORITHMS VISUALIZATION\n", "\n", "In this section, we have visualizations of the following searching algorithms:\n", "\n", "1. Breadth First Tree Search\n", "2. Depth First Tree Search\n", "3. Breadth First Search\n", "4. Depth First Graph Search\n", "5. Best First Graph Search\n", "6. Uniform Cost Search\n", "7. Depth Limited Search\n", "8. Iterative Deepening Search\n", "9. A\\*-Search\n", "10. Recursive Best First Search\n", "\n", "We add the colors to the nodes to have a nice visualisation when displaying. So, these are the different colors we are using in these visuals:\n", "* Un-explored nodes - white\n", "* Frontier nodes - orange\n", "* Currently exploring node - red\n", "* Already explored nodes - gray" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 1. BREADTH-FIRST TREE SEARCH\n", "\n", "We have a working implementation in search module. But as we want to interact with the graph while it is searching, we need to modify the implementation. Here's the modified breadth first tree search." ] }, { "cell_type": "code", "execution_count": 14, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def tree_breadth_search_for_vis(problem):\n", " \"\"\"Search through the successors of a problem to find a goal.\n", " The argument frontier should be an empty queue.\n", " Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n", " \n", " # we use these two variables at the time of visualisations\n", " iterations = 0\n", " all_node_colors = []\n", " node_colors = {k : 'white' for k in problem.graph.nodes()}\n", " \n", " #Adding first node to the queue\n", " frontier = deque([Node(problem.initial)])\n", " \n", " node_colors[Node(problem.initial).state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " while frontier:\n", " #Popping first node of queue\n", " node = frontier.popleft()\n", " \n", " # modify the currently searching node to red\n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " # modify goal node to green after reaching the goal\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", " \n", " frontier.extend(node.expand(problem))\n", " \n", " for n in node.expand(problem):\n", " node_colors[n.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", "\n", " # modify the color of explored nodes to gray\n", " node_colors[node.state] = \"gray\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " return None\n", "\n", "def breadth_first_tree_search(problem):\n", " \"Search the shallowest nodes in the search tree first.\"\n", " iterations, all_node_colors, node = tree_breadth_search_for_vis(problem)\n", " return(iterations, all_node_colors, node)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, we use `ipywidgets` to display a slider, a button and our romania map. By sliding the slider we can have a look at all the intermediate steps of a particular search algorithm. By pressing the button **Visualize**, you can see all the steps without interacting with the slider. These two helper functions are the callback functions which are called when we interact with the slider and the button." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "a, b, c = breadth_first_tree_search(romania_problem)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=breadth_first_tree_search, \n", " problem=romania_problem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 2. Depth-First Tree Search:\n", "Now let's discuss another searching algorithm, Depth-First Tree Search." ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def tree_depth_search_for_vis(problem):\n", " \"\"\"Search through the successors of a problem to find a goal.\n", " The argument frontier should be an empty queue.\n", " Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n", " \n", " # we use these two variables at the time of visualisations\n", " iterations = 0\n", " all_node_colors = []\n", " node_colors = {k : 'white' for k in problem.graph.nodes()}\n", " \n", " #Adding first node to the stack\n", " frontier = [Node(problem.initial)]\n", " \n", " node_colors[Node(problem.initial).state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " while frontier:\n", " #Popping first node of stack\n", " node = frontier.pop()\n", " \n", " # modify the currently searching node to red\n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " # modify goal node to green after reaching the goal\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", " \n", " frontier.extend(node.expand(problem))\n", " \n", " for n in node.expand(problem):\n", " node_colors[n.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", "\n", " # modify the color of explored nodes to gray\n", " node_colors[node.state] = \"gray\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " return None\n", "\n", "def depth_first_tree_search(problem):\n", " \"Search the deepest nodes in the search tree first.\"\n", " iterations, all_node_colors, node = tree_depth_search_for_vis(problem)\n", " return(iterations, all_node_colors, node)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=depth_first_tree_search, \n", " problem=romania_problem)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "## 3. BREADTH-FIRST GRAPH SEARCH\n", "\n", "Let's change all the `node_colors` to starting position and define a different problem statement." ] }, { "cell_type": "code", "execution_count": 18, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def breadth_first_search_graph(problem):\n", " \"[Figure 3.11]\"\n", " \n", " # we use these two variables at the time of visualisations\n", " iterations = 0\n", " all_node_colors = []\n", " node_colors = {k : 'white' for k in problem.graph.nodes()}\n", " \n", " node = Node(problem.initial)\n", " \n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", " \n", " frontier = deque([node])\n", " \n", " # modify the color of frontier nodes to blue\n", " node_colors[node.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " explored = set()\n", " while frontier:\n", " node = frontier.popleft()\n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " explored.add(node.state) \n", " \n", " for child in node.expand(problem):\n", " if child.state not in explored and child not in frontier:\n", " if problem.goal_test(child.state):\n", " node_colors[child.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, child)\n", " frontier.append(child)\n", "\n", " node_colors[child.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " node_colors[node.state] = \"gray\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return None" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=breadth_first_search_graph, \n", " problem=romania_problem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 4. Depth-First Graph Search: \n", "Although we have a working implementation in search module, we have to make a few changes in the algorithm to make it suitable for visualization." ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def graph_search_for_vis(problem):\n", " \"\"\"Search through the successors of a problem to find a goal.\n", " The argument frontier should be an empty queue.\n", " If two paths reach a state, only use the first one. [Figure 3.7]\"\"\"\n", " # we use these two variables at the time of visualisations\n", " iterations = 0\n", " all_node_colors = []\n", " node_colors = {k : 'white' for k in problem.graph.nodes()}\n", " \n", " frontier = [(Node(problem.initial))]\n", " explored = set()\n", " \n", " # modify the color of frontier nodes to orange\n", " node_colors[Node(problem.initial).state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " while frontier:\n", " # Popping first node of stack\n", " node = frontier.pop()\n", " \n", " # modify the currently searching node to red\n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " # modify goal node to green after reaching the goal\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", " \n", " explored.add(node.state)\n", " frontier.extend(child for child in node.expand(problem)\n", " if child.state not in explored and\n", " child not in frontier)\n", " \n", " for n in frontier:\n", " # modify the color of frontier nodes to orange\n", " node_colors[n.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", "\n", " # modify the color of explored nodes to gray\n", " node_colors[node.state] = \"gray\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " return None\n", "\n", "\n", "def depth_first_graph_search(problem):\n", " \"\"\"Search the deepest nodes in the search tree first.\"\"\"\n", " iterations, all_node_colors, node = graph_search_for_vis(problem)\n", " return(iterations, all_node_colors, node)" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=depth_first_graph_search, \n", " problem=romania_problem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 5. BEST FIRST SEARCH\n", "\n", "Let's change all the `node_colors` to starting position and define a different problem statement." ] }, { "cell_type": "code", "execution_count": 22, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def best_first_graph_search_for_vis(problem, f):\n", " \"\"\"Search the nodes with the lowest f scores first.\n", " You specify the function f(node) that you want to minimize; for example,\n", " if f is a heuristic estimate to the goal, then we have greedy best\n", " first search; if f is node.depth then we have breadth-first search.\n", " There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n", " values will be cached on the nodes as they are computed. So after doing\n", " a best first search you can examine the f values of the path returned.\"\"\"\n", " \n", " # we use these two variables at the time of visualisations\n", " iterations = 0\n", " all_node_colors = []\n", " node_colors = {k : 'white' for k in problem.graph.nodes()}\n", " \n", " f = memoize(f, 'f')\n", " node = Node(problem.initial)\n", " \n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", " \n", " frontier = PriorityQueue('min', f)\n", " frontier.append(node)\n", " \n", " node_colors[node.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " explored = set()\n", " while frontier:\n", " node = frontier.pop()\n", " \n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", " \n", " explored.add(node.state)\n", " for child in node.expand(problem):\n", " if child.state not in explored and child not in frontier:\n", " frontier.append(child)\n", " node_colors[child.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " elif child in frontier:\n", " incumbent = frontier[child]\n", " if f(child) < f(incumbent):\n", " del frontier[incumbent]\n", " frontier.append(child)\n", " node_colors[child.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", "\n", " node_colors[node.state] = \"gray\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return None" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 6. UNIFORM COST SEARCH\n", "\n", "Let's change all the `node_colors` to starting position and define a different problem statement." ] }, { "cell_type": "code", "execution_count": 23, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def uniform_cost_search_graph(problem):\n", " \"[Figure 3.14]\"\n", " #Uniform Cost Search uses Best First Search algorithm with f(n) = g(n)\n", " iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, lambda node: node.path_cost)\n", " return(iterations, all_node_colors, node)\n" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=uniform_cost_search_graph, \n", " problem=romania_problem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 7. Depth Limited Search\n", "\n", "Let's change all the 'node_colors' to starting position and define a different problem statement. \n", "Although we have a working implementation, but we need to make changes." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "def depth_limited_search(problem, limit = -1):\n", " '''\n", " Perform depth first search of graph g.\n", " if limit >= 0, that is the maximum depth of the search.\n", " '''\n", " # we use these two variables at the time of visualisations\n", " iterations = 0\n", " all_node_colors = []\n", " node_colors = {k : 'white' for k in problem.graph.nodes()}\n", " \n", " frontier = [Node(problem.initial)]\n", " explored = set()\n", " \n", " cutoff_occurred = False\n", " node_colors[Node(problem.initial).state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " while frontier:\n", " # Popping first node of queue\n", " node = frontier.pop()\n", " \n", " # modify the currently searching node to red\n", " node_colors[node.state] = \"red\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " if problem.goal_test(node.state):\n", " # modify goal node to green after reaching the goal\n", " node_colors[node.state] = \"green\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " return(iterations, all_node_colors, node)\n", "\n", " elif limit >= 0:\n", " cutoff_occurred = True\n", " limit += 1\n", " all_node_color.pop()\n", " iterations -= 1\n", " node_colors[node.state] = \"gray\"\n", "\n", " \n", " explored.add(node.state)\n", " frontier.extend(child for child in node.expand(problem)\n", " if child.state not in explored and\n", " child not in frontier)\n", " \n", " for n in frontier:\n", " limit -= 1\n", " # modify the color of frontier nodes to orange\n", " node_colors[n.state] = \"orange\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", "\n", " # modify the color of explored nodes to gray\n", " node_colors[node.state] = \"gray\"\n", " iterations += 1\n", " all_node_colors.append(dict(node_colors))\n", " \n", " return 'cutoff' if cutoff_occurred else None\n", "\n", "\n", "def depth_limited_search_for_vis(problem):\n", " \"\"\"Search the deepest nodes in the search tree first.\"\"\"\n", " iterations, all_node_colors, node = depth_limited_search(problem)\n", " return(iterations, all_node_colors, node) " ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=depth_limited_search_for_vis, \n", " problem=romania_problem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 8. Iterative deepening search\n", "\n", "Let's change all the 'node_colors' to starting position and define a different problem statement. " ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "def iterative_deepening_search_for_vis(problem):\n", " for depth in range(sys.maxsize):\n", " iterations, all_node_colors, node=depth_limited_search_for_vis(problem)\n", " if iterations:\n", " return (iterations, all_node_colors, node)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=iterative_deepening_search_for_vis, \n", " problem=romania_problem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## GREEDY BEST FIRST SEARCH\n", "Let's change all the node_colors to starting position and define a different problem statement." ] }, { "cell_type": "code", "execution_count": 25, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def greedy_best_first_search(problem, h=None):\n", " \"\"\"Greedy Best-first graph search is an informative searching algorithm with f(n) = h(n).\n", " You need to specify the h function when you call best_first_search, or\n", " else in your Problem subclass.\"\"\"\n", " h = memoize(h or problem.h, 'h')\n", " iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, lambda n: h(n))\n", " return(iterations, all_node_colors, node)\n" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=greedy_best_first_search, \n", " problem=romania_problem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## 9. A\\* SEARCH\n", "\n", "Let's change all the `node_colors` to starting position and define a different problem statement." ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def astar_search_graph(problem, h=None):\n", " \"\"\"A* search is best-first graph search with f(n) = g(n)+h(n).\n", " You need to specify the h function when you call astar_search, or\n", " else in your Problem subclass.\"\"\"\n", " h = memoize(h or problem.h, 'h')\n", " iterations, all_node_colors, node = best_first_graph_search_for_vis(problem, \n", " lambda n: n.path_cost + h(n))\n", " return(iterations, all_node_colors, node)\n" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [], "source": [ "all_node_colors = []\n", "romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n", "display_visual(romania_graph_data, user_input=False, \n", " algorithm=astar_search_graph, \n", " problem=romania_problem)" ] }, { "cell_type": "code", "execution_count": 29, "metadata": { "scrolled": false }, "outputs": [], "source": [ "all_node_colors = []\n", "# display_visual(romania_graph_data, user_input=True, algorithm=breadth_first_tree_search)\n", "algorithms = { \"Breadth First Tree Search\": breadth_first_tree_search,\n", " \"Depth First Tree Search\": depth_first_tree_search,\n", " \"Breadth First Search\": breadth_first_search,\n", " \"Depth First Graph Search\": depth_first_graph_search,\n", " \"Uniform Cost Search\": uniform_cost_search,\n", " \"A-star Search\": astar_search}\n", "display_visual(romania_graph_data, algorithm=algorithms, user_input=True)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## A* Heuristics\n", "\n", "Different heuristics provide different efficiency in solving A* problems which are generally defined by the number of explored nodes as well as the branching factor. With the classic 8 puzzle we can show the efficiency of different heuristics through the number of explored nodes.\n", "\n", "### 8 Puzzle Problem\n", "\n", "The *8 Puzzle Problem* consists of a 3x3 tray in which the goal is to get the initial configuration to the goal state by shifting the numbered tiles into the blank space.\n", "\n", "example:- \n", "\n", " Initial State Goal State\n", " | 7 | 2 | 4 | | 1 | 2 | 3 |\n", " | 5 | 0 | 6 | | 4 | 5 | 6 |\n", " | 8 | 3 | 1 | | 7 | 8 | 0 |\n", " \n", "We have a total of 9 blank tiles giving us a total of 9! initial configuration but not all of these are solvable. The solvability of a configuration can be checked by calculating the Inversion Permutation. If the total Inversion Permutation is even then the initial configuration is solvable else the initial configuration is not solvable which means that only 9!/2 initial states lead to a solution.\n", "
\n", "Let's define our goal state." ] }, { "cell_type": "code", "execution_count": 30, "metadata": { "collapsed": true }, "outputs": [], "source": [ "goal = [1, 2, 3, 4, 5, 6, 7, 8, 0]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Heuristics :-\n", "\n", "1) Manhattan Distance:- For the 8 puzzle problem Manhattan distance is defined as the distance of a tile from its goal state( for the tile numbered '1' in the initial configuration Manhattan distance is 4 \"2 for left and 2 for upward displacement\").\n", "\n", "2) No. of Misplaced Tiles:- The heuristic calculates the number of misplaced tiles between the current state and goal state.\n", "\n", "3) Sqrt of Manhattan Distance:- It calculates the square root of Manhattan distance.\n", "\n", "4) Max Heuristic:- It assign the score as the maximum between \"Manhattan Distance\" and \"No. of Misplaced Tiles\"." ] }, { "cell_type": "code", "execution_count": 31, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# Heuristics for 8 Puzzle Problem\n", "def linear(node):\n", " return sum([1 if node.state[i] != goal[i] else 0 for i in range(8)])\n", "\n", "def manhattan(node):\n", " state = node.state\n", " index_goal = {0:[2,2], 1:[0,0], 2:[0,1], 3:[0,2], 4:[1,0], 5:[1,1], 6:[1,2], 7:[2,0], 8:[2,1]}\n", " index_state = {}\n", " index = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]\n", " x, y = 0, 0\n", " \n", " for i in range(len(state)):\n", " index_state[state[i]] = index[i]\n", " \n", " mhd = 0\n", " \n", " for i in range(8):\n", " for j in range(2):\n", " mhd = abs(index_goal[i][j] - index_state[i][j]) + mhd\n", " \n", " return mhd\n", "\n", "def sqrt_manhattan(node):\n", " state = node.state\n", " index_goal = {0:[2,2], 1:[0,0], 2:[0,1], 3:[0,2], 4:[1,0], 5:[1,1], 6:[1,2], 7:[2,0], 8:[2,1]}\n", " index_state = {}\n", " index = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]\n", " x, y = 0, 0\n", " \n", " for i in range(len(state)):\n", " index_state[state[i]] = index[i]\n", " \n", " mhd = 0\n", " \n", " for i in range(8):\n", " for j in range(2):\n", " mhd = (index_goal[i][j] - index_state[i][j])**2 + mhd\n", " \n", " return math.sqrt(mhd)\n", "\n", "def max_heuristic(node):\n", " score1 = manhattan(node)\n", " score2 = linear(node)\n", " return max(score1, score2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can solve the puzzle using the `astar_search` method." ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# Solving the puzzle \n", "puzzle = EightPuzzle((2, 4, 3, 1, 5, 6, 7, 8, 0))\n", "puzzle.check_solvability((2, 4, 3, 1, 5, 6, 7, 8, 0)) # checks whether the initialized configuration is solvable or not" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This case is solvable, let's proceed.\n", "
\n", "The default heuristic function returns the number of misplaced tiles." ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['UP', 'LEFT', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'RIGHT', 'DOWN']" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "astar_search(puzzle).solution()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the following cells, we use different heuristic functions.\n", "
" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['UP', 'LEFT', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'RIGHT', 'DOWN']" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "astar_search(puzzle, linear).solution()" ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "astar_search(puzzle, manhattan).solution()" ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "astar_search(puzzle, sqrt_manhattan).solution()" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['LEFT', 'UP', 'UP', 'LEFT', 'DOWN', 'RIGHT', 'DOWN', 'RIGHT']" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "astar_search(puzzle, max_heuristic).solution()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Even though all the heuristic functions give the same solution, the difference lies in the computation time.\n", "
\n", "This might make all the difference in a scenario where high computational efficiency is required.\n", "
\n", "Let's define a few puzzle states and time `astar_search` for every heuristic function.\n", "We will use the %%timeit magic for this." ] }, { "cell_type": "code", "execution_count": 38, "metadata": { "collapsed": true }, "outputs": [], "source": [ "puzzle_1 = EightPuzzle((2, 4, 3, 1, 5, 6, 7, 8, 0))\n", "puzzle_2 = EightPuzzle((1, 2, 3, 4, 5, 6, 0, 7, 8))\n", "puzzle_3 = EightPuzzle((1, 2, 3, 4, 5, 7, 8, 6, 0))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The default heuristic function is the same as the `linear` heuristic function, but we'll still check both." ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "11.3 ms ± 2.28 ms per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], "source": [ "%%timeit\n", "astar_search(puzzle_1)\n", "astar_search(puzzle_2)\n", "astar_search(puzzle_3)" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "10.7 ms ± 591 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], "source": [ "%%timeit\n", "astar_search(puzzle_1, linear)\n", "astar_search(puzzle_2, linear)\n", "astar_search(puzzle_3, linear)" ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8.44 ms ± 870 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], "source": [ "%%timeit\n", "astar_search(puzzle_1, manhattan)\n", "astar_search(puzzle_2, manhattan)\n", "astar_search(puzzle_3, manhattan)" ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "91.7 ms ± 1.89 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], "source": [ "%%timeit\n", "astar_search(puzzle_1, sqrt_manhattan)\n", "astar_search(puzzle_2, sqrt_manhattan)\n", "astar_search(puzzle_3, sqrt_manhattan)" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8.53 ms ± 601 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], "source": [ "%%timeit\n", "astar_search(puzzle_1, max_heuristic)\n", "astar_search(puzzle_2, max_heuristic)\n", "astar_search(puzzle_3, max_heuristic)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can infer that the `manhattan` heuristic function works the fastest.\n", "
\n", "`sqrt_manhattan` has an extra `sqrt` operation which makes it quite a lot slower than the others.\n", "
\n", "`max_heuristic` should have been a bit slower as it calls two functions, but in this case, those values were already calculated which saved some time.\n", "Feel free to play around with these functions." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## HILL CLIMBING\n", "\n", "Hill Climbing is a heuristic search used for optimization problems.\n", "Given a large set of inputs and a good heuristic function, it tries to find a sufficiently good solution to the problem. \n", "This solution may or may not be the global optimum.\n", "The algorithm is a variant of generate and test algorithm. \n", "
\n", "As a whole, the algorithm works as follows:\n", "- Evaluate the initial state.\n", "- If it is equal to the goal state, return.\n", "- Find a neighboring state (one which is heuristically similar to the current state)\n", "- Evaluate this state. If it is closer to the goal state than before, replace the initial state with this state and repeat these steps.\n", "
" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def hill_climbing(problem):\n",
       "    """From the initial node, keep choosing the neighbor with highest value,\n",
       "    stopping when no neighbor is better. [Figure 4.2]"""\n",
       "    current = Node(problem.initial)\n",
       "    while True:\n",
       "        neighbors = current.expand(problem)\n",
       "        if not neighbors:\n",
       "            break\n",
       "        neighbor = argmax_random_tie(neighbors,\n",
       "                                     key=lambda node: problem.value(node.state))\n",
       "        if problem.value(neighbor.state) <= problem.value(current.state):\n",
       "            break\n",
       "        current = neighbor\n",
       "    return current.state\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(hill_climbing)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will find an approximate solution to the traveling salespersons problem using this algorithm.\n", "
\n", "We need to define a class for this problem.\n", "
\n", "`Problem` will be used as a base class." ] }, { "cell_type": "code", "execution_count": 45, "metadata": { "collapsed": true }, "outputs": [], "source": [ "class TSP_problem(Problem):\n", "\n", " \"\"\" subclass of Problem to define various functions \"\"\"\n", "\n", " def two_opt(self, state):\n", " \"\"\" Neighbour generating function for Traveling Salesman Problem \"\"\"\n", " neighbour_state = state[:]\n", " left = random.randint(0, len(neighbour_state) - 1)\n", " right = random.randint(0, len(neighbour_state) - 1)\n", " if left > right:\n", " left, right = right, left\n", " neighbour_state[left: right + 1] = reversed(neighbour_state[left: right + 1])\n", " return neighbour_state\n", "\n", " def actions(self, state):\n", " \"\"\" action that can be excuted in given state \"\"\"\n", " return [self.two_opt]\n", "\n", " def result(self, state, action):\n", " \"\"\" result after applying the given action on the given state \"\"\"\n", " return action(state)\n", "\n", " def path_cost(self, c, state1, action, state2):\n", " \"\"\" total distance for the Traveling Salesman to be covered if in state2 \"\"\"\n", " cost = 0\n", " for i in range(len(state2) - 1):\n", " cost += distances[state2[i]][state2[i + 1]]\n", " cost += distances[state2[0]][state2[-1]]\n", " return cost\n", "\n", " def value(self, state):\n", " \"\"\" value of path cost given negative for the given state \"\"\"\n", " return -1 * self.path_cost(None, None, None, state)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will use cities from the Romania map as our cities for this problem.\n", "
\n", "A list of all cities and a dictionary storing distances between them will be populated." ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['Arad', 'Bucharest', 'Craiova', 'Drobeta', 'Eforie', 'Fagaras', 'Giurgiu', 'Hirsova', 'Iasi', 'Lugoj', 'Mehadia', 'Neamt', 'Oradea', 'Pitesti', 'Rimnicu', 'Sibiu', 'Timisoara', 'Urziceni', 'Vaslui', 'Zerind']\n" ] } ], "source": [ "distances = {}\n", "all_cities = []\n", "\n", "for city in romania_map.locations.keys():\n", " distances[city] = {}\n", " all_cities.append(city)\n", " \n", "all_cities.sort()\n", "print(all_cities)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we need to populate the individual lists inside the dictionary with the manhattan distance between the cities." ] }, { "cell_type": "code", "execution_count": 47, "metadata": { "collapsed": true }, "outputs": [], "source": [ "import numpy as np\n", "for name_1, coordinates_1 in romania_map.locations.items():\n", " for name_2, coordinates_2 in romania_map.locations.items():\n", " distances[name_1][name_2] = np.linalg.norm(\n", " [coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])\n", " distances[name_2][name_1] = np.linalg.norm(\n", " [coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The way neighbours are chosen currently isn't suitable for the travelling salespersons problem.\n", "We need a neighboring state that is similar in total path distance to the current state.\n", "
\n", "We need to change the function that finds neighbors." ] }, { "cell_type": "code", "execution_count": 48, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def hill_climbing(problem):\n", " \n", " \"\"\"From the initial node, keep choosing the neighbor with highest value,\n", " stopping when no neighbor is better. [Figure 4.2]\"\"\"\n", " \n", " def find_neighbors(state, number_of_neighbors=100):\n", " \"\"\" finds neighbors using two_opt method \"\"\"\n", " \n", " neighbors = []\n", " \n", " for i in range(number_of_neighbors):\n", " new_state = problem.two_opt(state)\n", " neighbors.append(Node(new_state))\n", " state = new_state\n", " \n", " return neighbors\n", "\n", " # as this is a stochastic algorithm, we will set a cap on the number of iterations\n", " iterations = 10000\n", " \n", " current = Node(problem.initial)\n", " while iterations:\n", " neighbors = find_neighbors(current.state)\n", " if not neighbors:\n", " break\n", " neighbor = argmax_random_tie(neighbors,\n", " key=lambda node: problem.value(node.state))\n", " if problem.value(neighbor.state) <= problem.value(current.state):\n", " current.state = neighbor.state\n", " iterations -= 1\n", " \n", " return current.state" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An instance of the TSP_problem class will be created." ] }, { "cell_type": "code", "execution_count": 49, "metadata": { "collapsed": true }, "outputs": [], "source": [ "tsp = TSP_problem(all_cities)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can now generate an approximate solution to the problem by calling `hill_climbing`.\n", "The results will vary a bit each time you run it." ] }, { "cell_type": "code", "execution_count": 50, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "['Arad',\n", " 'Timisoara',\n", " 'Lugoj',\n", " 'Mehadia',\n", " 'Drobeta',\n", " 'Craiova',\n", " 'Pitesti',\n", " 'Giurgiu',\n", " 'Bucharest',\n", " 'Urziceni',\n", " 'Eforie',\n", " 'Hirsova',\n", " 'Vaslui',\n", " 'Iasi',\n", " 'Neamt',\n", " 'Fagaras',\n", " 'Rimnicu',\n", " 'Sibiu',\n", " 'Oradea',\n", " 'Zerind']" ] }, "execution_count": 50, "metadata": {}, "output_type": "execute_result" } ], "source": [ "hill_climbing(tsp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The solution looks like this.\n", "It is not difficult to see why this might be a good solution.\n", "
\n", "![title](images/hillclimb-tsp.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## SIMULATED ANNEALING\n", "\n", "The intuition behind Hill Climbing was developed from the metaphor of climbing up the graph of a function to find its peak. \n", "There is a fundamental problem in the implementation of the algorithm however.\n", "To find the highest hill, we take one step at a time, always uphill, hoping to find the highest point, \n", "but if we are unlucky to start from the shoulder of the second-highest hill, there is no way we can find the highest one. \n", "The algorithm will always converge to the local optimum.\n", "Hill Climbing is also bad at dealing with functions that flatline in certain regions.\n", "If all neighboring states have the same value, we cannot find the global optimum using this algorithm.\n", "
\n", "
\n", "Let's now look at an algorithm that can deal with these situations.\n", "
\n", "Simulated Annealing is quite similar to Hill Climbing, \n", "but instead of picking the _best_ move every iteration, it picks a _random_ move. \n", "If this random move brings us closer to the global optimum, it will be accepted, \n", "but if it doesn't, the algorithm may accept or reject the move based on a probability dictated by the _temperature_. \n", "When the `temperature` is high, the algorithm is more likely to accept a random move even if it is bad.\n", "At low temperatures, only good moves are accepted, with the occasional exception.\n", "This allows exploration of the state space and prevents the algorithm from getting stuck at the local optimum.\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def simulated_annealing(problem, schedule=exp_schedule()):\n",
       "    """[Figure 4.5] CAUTION: This differs from the pseudocode as it\n",
       "    returns a state instead of a Node."""\n",
       "    current = Node(problem.initial)\n",
       "    for t in range(sys.maxsize):\n",
       "        T = schedule(t)\n",
       "        if T == 0:\n",
       "            return current.state\n",
       "        neighbors = current.expand(problem)\n",
       "        if not neighbors:\n",
       "            return current.state\n",
       "        next_choice = random.choice(neighbors)\n",
       "        delta_e = problem.value(next_choice.state) - problem.value(current.state)\n",
       "        if delta_e > 0 or probability(math.exp(delta_e / T)):\n",
       "            current = next_choice\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(simulated_annealing)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The temperature is gradually decreased over the course of the iteration.\n", "This is done by a scheduling routine.\n", "The current implementation uses exponential decay of temperature, but we can use a different scheduling routine instead.\n" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def exp_schedule(k=20, lam=0.005, limit=100):\n",
       "    """One possible schedule function for simulated annealing"""\n",
       "    return lambda t: (k * math.exp(-lam * t) if t < limit else 0)\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(exp_schedule)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we'll define a peak-finding problem and try to solve it using Simulated Annealing.\n", "Let's define the grid and the initial state first.\n" ] }, { "cell_type": "code", "execution_count": 4, "metadata": { "collapsed": true }, "outputs": [], "source": [ "initial = (0, 0)\n", "grid = [[3, 7, 2, 8], [5, 2, 9, 1], [5, 3, 3, 1]]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We want to allow only four directions, namely `N`, `S`, `E` and `W`.\n", "Let's use the predefined `directions4` dictionary." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'E': (1, 0), 'N': (0, 1), 'S': (0, -1), 'W': (-1, 0)}" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "directions4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Define a problem with these parameters." ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "collapsed": true }, "outputs": [], "source": [ "problem = PeakFindingProblem(initial, grid, directions4)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll run `simulated_annealing` a few times and store the solutions in a set." ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "collapsed": true }, "outputs": [], "source": [ "solutions = {problem.value(simulated_annealing(problem)) for i in range(100)}" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(solutions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Hence, the maximum value is 9." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's find the peak of a two-dimensional gaussian distribution.\n", "We'll use the `gaussian_kernel` function from notebook.py to get the distribution." ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [], "source": [ "grid = gaussian_kernel()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use the `heatmap` function from notebook.py to plot this." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHwCAYAAAB+ArwOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzsvW3ofW2b13Wse+//dd3JqFP4ImYa\nNUmxEHqazIhqyKIaCpUgSwos4oYsdMIeyBcW9CYIhMAI7hypIErC6IGoQAhMCPMBfWETIY4x04hm\nMYyS13Vfe/93L/Y+9z7Wsb7H0/mw1vr9fuuA//+31vlwnOd+Wp/1Pc6HNd1uNzrssMMOO+yww9a1\nb23dgcMOO+ywww77iHYA+LDDDjvssMM2sAPAhx122GGHHbaBHQA+7LDDDjvssA3sAPBhhx122GGH\nbWAHgA877LDDDjtsAzsAfNhhhx122GEb2AHgww5byaZp+rPTNP0DIu03T9P0hzr4vk3T9De0+jns\nsMPWswPAhx122GGHHbaBHQA+7LCd2DRNPzBN0++fpun/nqbpJ6dp+q0s71dP0/S/TNP0s9M0/blp\nmn73NE1fPPL+4KPYn5ym6S9P0/Qbp2n6kWmafnqapn9tmqa/8Kjz66dp+tFpmv6PaZr+32mafkfE\n/yP/Nk3Tb52m6c9M0/QXp2n6d6dpOq4fhx3WYMcP6LDDdmAPmP23RPQniegHiejXEtGPTdP0Dz2K\nXInoXyaiX0REf9cj/7cQEd1ut7/3UeZvvt1u33e73X7f4/yvJaJvP/z9TiL6D4nonyaiv52I/h4i\n+p3TNP0yzz+z30BEP0xEfxsR/Toi+ud6vPbDDvuoNh17QR922Do2TdOfpTvgLiz5CyL640T024no\nv7jdbr+Ylf83iOhX3G63fxb4+jEi+vtut9tveJzfiOiX3263P/04/xEi+u+J6Ptut9t1mqafT0Q/\nR0S/5na7/eFHmT9GRP/27Xb7r4L+/5Hb7fY/PM5/CxH947fb7dc2vCWHHfah7bx1Bw477IPZr7/d\nbn+gnEzT9JuJ6J8nol9CRD8wTdPPsrInIvqfH+V+BRH9Lror0J9H99/uH3Pa+n9ut9v1cfxXHn//\nPMv/K0T0fQn/P8WO/08i+gGn/cMOO8ywIwR92GH7sJ8iop+83W7fz/79/Nvt9qOP/P+AiP53uqvc\nX0BEv4OIpo7tR/z/EDv+xUT0Mx3bP+ywD2cHgA87bB/2vxLRz03T9K9P0/RXTdN0mqbpV03T9Hc8\n8ksI+S9P0/QriehfEPX/PBH9Mqo3zz8R0b86TdNfPU3TDxHRbyOi3wfKHHbYYUE7AHzYYTuwR6j4\nHyOiv4WIfpKI/iIR/R4i+oWPIv8KEf0mIvpLdJ9MJeH3bxHRf/yYxfxPVHTB809E9F/TPSz9J4jo\nvyOiH69o57DDDnvYMQnrsMMOc01O8jrssMPa7VDAhx122GGHHbaBHQA+7LDDDjvssA3sCEEfdthh\nhx122AZ2KODDDjvssMMO28CGbMQxTT/vRvT9I1wfNrPoMtCjXFu5FhvVRovfkVGv0RG1jP9I2ai/\n3uWiZbdq97A2+1m63f4/90c6aCes7yei74xxfRizT8Fy0Y854i/zlXkv/cv6rW1jTZ/fdPDRy+/F\nL1LVRtRvxF9PXxmfvV9rxudh9fbdUKkjBH3YB7URYBzdxqeOPnv6arW3sCNuz5vEjPW+iT1sT3YA\n+N3be7lwbAmLmotbz/6OhGVv37W+RgDkgNJh+7YDwG/W9qJe9mQjYL4lfNdUqZ+oX3uj+/1ebhbf\nws3nYSPtAPBh9D4uQHuAbw/w9ARhax96+MnY3ucX7N0+0mt9H3YA+E3anseFtlInvX29h/eu1T4a\nhHv62vNv9LC92PHpf3jb6kIR8dezb6OVb63tDbrSZP9qZtAWH9G6Z4rP6v2U8Lumr97+evftsD3Y\noYDfnH2Uu/63AN/aUO0ewsy11tLvTN0z9R+i6PVd2eJmlGi7oZjDRtkB4A9tW4R3e14Ee4M8c/HK\nvndvGbrIWl5P9oZojzdsW/Qrakdg863Y8Um9KdviIhOxPfoaceEbDRvPRvxcs5tgIOOvMRomHRGW\njvqM+or07SP4OmyUHQB+d9Y7JNvD1x7hOxK8Pd7ftX6aWju1YM7COFO+9LUHiCO+PgI4DwhvaQeA\n34ytPTbl+dqjGt9yacqeNqDoYahfWSjXwrgniFvVcG9V3dNXDz+HbWnHGPCbsL0q1h5+1la9UV/R\n97x2HDQz5rwXa+nziJuZPX6/IvYWf4OHjbC3dgU4TLW1LiJrXhz3eGHMlKvpQ9ayfekRbqxVxxlF\n3FMN9wxJ9/BTfO1NnR+h6LXtAPDubU938B+1L5lymbZ7ttfTb82FmL/enjCOlusJ0LXCv2v6idgB\n4bXtAPCubS3IrOWjh581wTtq/XBtG2uZ1qfMjGVu0bFRr421lOzaqnoNCEfHgw8Ir2kHgHdre4Hv\nXvrRw0dvtbvmjlkZy6rRqKH+R2f2couAzfIdKbM3EO9BmfcMjx/Www4A79L2EqLdAzR7+Oipdkev\nG65tq6ePDLTla8wCuReMPYhabfUC8V6U+TE7+q3YAeDd2VozJN8CfNfow5ZLl2r8r2EtS5CyS496\nqbJeSvStKNke65db+nBYD9vTr/6wXSjfPYSsR/dhi5nTWb97sxooZ9RxRqlavlpV5Bph6V6KemT9\niI/DWu2tXg3eob0FcO25/lrQXWNiVrad3lY72YooHlK22ukBYy/fa2MPID4g/N7tAPAubGv4fmTw\n9oTuXidlZc3qV3RdLrcIRDXfPcZwW0AYBfkoEO5F0R8QHmEHgDe30fDdqu6Wbe8hjJ7117O9GqsZ\n4+UWDS9bbfVSrVr9VphaMIvWHdF2qb9lSPuwGjsAvKntWTlupZhHqd29LLeq9TvavD5kx3uJYiFm\nzbenjnvBeBSIvfojwtIHhN+a7eGX/0Ftr/DdAtqj1O4eZllnfPVqK2s1a3m5tYSYpe8aBdkyntsC\n0x6h7RqYjgK4126k/mEZOwC8ibVeSLcIOe+tzb2GzjN+Wnz3tJqwMree63pbx3xrodcKxJa6veuN\nrBupf1jUDgCvbnsM374H8G451h3xkfUXsZqfb8smG9yi4WWtzR4TsGpVsVVvlNKuvTHYQkV7dSP1\nD4vYAeBV7S3Bd+0w9Qi1u0WoPeOn1m+LZduIhpeLeSDV/GbGfL36Wt0R4em9g3gUwEv9A8ItdgB4\nNdvbmG1NvTXbWrPvLe1F6md99WgnYiPGfqOTsTJART5qFO5IVbwmUNcMZ7eOKR9m2QHgVWxP8N0D\neHuHmNe8YfDqRn3U+OxtmTajypbIhyny10PhWvV61BnhzwPxHuAdqau1eZhlB4CH24gL/VpAXAt6\nW/e5pZ5XN+OnxXcPy+xixc2DKfLdEnK26mogrAF4RBVnAFmjpPcC71L3CEn3tAPAQ61F1dTUXQOk\nWyverW8WInWjPrL+RlvNUiOiPrObPR814KiFWqaNEYDspWxrQ9KW1dY7DNkefvXv1EaEndcA6Rrg\n3ePrs+p49by6UR+1fntaZnZzMUudIr+eQo4qXKteiyquCSe3KOLsuPIa4NbqWPWs/h2G7ADwEBsx\nE3h0nTVAvdVNwl5memf9jPDhXRw9f7Vjwd44cA1YZb01YayV7xlm3hLcVp1IPdS/w6QdAO5uIy7q\nI4EzGmZ7gu6an02kbkvZWmsFdstYcGYcWKvbc/x3NBBHg3VLcJd6x5hwix0A7mq9L/B7gtRI8O7p\nRqK2jlUvmp9tb4RFZjBz09QfKtMr9Nxbufb2vQWIe4wN9wxje20dRnQAuKPtEb5rg20vr2Xr8eJI\nvue/1bdnNWO9xbJjvlb4uWa2c0Qd1wIzC1cExWx4ugbEa0O7to5V77ADwM229XjvHsqOAv3eAe3l\nWT6zfnpbSyi6x5hvFq6yjgfNPZTl5SOqOAPiHmDtPZas1bHqfWw7ADzUat7eNYHaA1p77Ve0bG/o\nRj7zDPzW/Ilm1gG37m4V3W2qx7hujXptVZ2ZceJI/UzZTL80v5bVwvSAsLQDwE22Rth5axi1Kt61\n+jRyvHjUmPDeQtCZ8LPVh8iYr6WQR43r1ijdNULZa6rhHmW18qXOEY6O2gHgKusddt5a9baAd8v+\nrKnqNR9Wea9exkfUvFBgbXsWVItF4JqB8jdKGvJjQbYGxtlytWVbQDxCpfeazEVKHavex7MQgKdp\n+oeJ6N8johMR/Z7b7fbvDO3Vrm1v8N0TeHsDei049wpNt0zaivjIWA8/kclWRO2KNwLTUj4C5B4w\nbinHy44E8dbA1vx6dbx6H8fcX+k0TSci+veJ6B8kop8moj8yTdN/c7vd/rfRndufvYWQc225NcA7\nur9bh9Ct8l49aVOw3Ai7Pf56ffXC0d8oPrw1vRl1uyZkewF2KxCvGb7mdQ4Iaxa5GvxqIvrTt9vt\nzxARTdP0nxPRryOiDwbg2hDhiIv9aODtBby9yrT0wSprlbfqEG0LWM+8vnmA7gFYrfxoGFvA2grs\nGjhbVG7vkPQB4RqLAPgHiein2PlPE9HfKQtN0/QdIvrO/ewXdujaW7IeYee9qMi1Q8Mj4dzSh0wb\nVvliewZu1tBrubHjFsBq5WthHFGFPRVmDdiivmrrjYAwsgPCWYsA2Pu13RNut+8S0XeJiKbpBxb5\nb9tqLrp7CiX3Ur2jYVnTXgS6a4xXF3tPoM2YdZkYpXgj5SL1sr6zk7ZqoV6rhrdSzFpZr45X7/1a\nBMA/TUQ/xM7/OiL6mTHd2ZvVjueNuLiPAtZIEI4KM4+GbrTcR4Vt1DQoZ4CMynrlamCcAeiIEHYW\nqDVquFUxo35Kf1pZy7fVl/dtEQD/ESL65dM0/fVE9H8R0T9JRL9paK92YbWhxjXguxa01oRzzWsc\nOWa8E+BGfqE9zVu91GzyPURALh2pBW0NjCNw7FWGl/P8WCDupYazcG1VwweEi7k/79vtdpmm6V8i\nov+R7suQfu/tdvtTw3u2qe0FvnsG16gwc1axj1Trg4EbhetaEL4E2uoO6IhKbgFtBIge/DKqOBtS\n9mAYUa1bqOEDwj1sut36D9fex4C/093vOjYaviNDziNUb482e/e7VwRAlhkAXA9oe4BwBqpW2SHq\nGV2fZEPyYo064pWR+dnyNf0a4WPEexH1o5XTylrlrTpvwb5Lt9vPuBeUtQNc79S8sWLL9qIca3z2\nUMW9FW9NnzqDV/tV9YJxbT3tWmfVl3W04Vsvr9r4ZyMndWXDwBl1GlXFnprtoYgz+V75Gp9RP1o5\nyz62Ej4APLMa9avVGTVJqQbOa6vetcPM2fyOwEUf4R4BHAkv9zStvSYoSxhL0Fpjxt5s514gtvqU\n9VGbXxPGHg1hC6YfF8IHgJ/WC749w857BtlotbtD6PaA7QgIR+pkhckIQ1Cu7pP8PL2xXg+MXn62\nPO9TC2hHquEeCh35yZSzykfqvW07ALyLMd/RIec1wdvzJmFj6EaBu6UK3vIXbKnc2n51AbLVeAbG\nvVVxTf5oNRyBZ01Y2ypHoKxW3vL/9u2DA3iP8PX89FS9ewFvz340QFe62juAa2C9lQrW1K/3Gqr6\nq4WqM8q3RRX3BHEvtWxBtMdYNCqjldPKWuWtOm/XPjCA14bv2iHnUXBtAfqodgZCtyeUrXQvr6Us\nqtcDxFsAPd2epow95ZsBNVEM3DUg7gnp3iFu9GU6IJyxDwrgtw7fXmHcEXle/zaGbitwR6jiaH60\nTMSi8FwTslIRR85TFoWx7FQG1DVQj6jabJ70q6nhVtUu+xItg/rC7WNA+IMCuMZaws5emZqwdKTs\n1nkj2hgA3hrI7kUJR8uja1k0/IvKaXnRUHMNbLXz6jC1taypVnFaoNOUopdX276EtBWSbrXIndoW\nIZN92wcEcI36XXPMtzak20NZ9gDmiDBzB+j2Vr61QLbSvbyacqh89Bq41+ulNXac6m/NWHGtIq4d\nb65Rw9Gx3p5jzLVltHKoT7IO79/btA8G4PcC3x6gXBO8NX0iqgJvFLpbAbgVvj1+sU3KkfnYI5yl\nhfsYCU97YWMrLwJtD7ZRNZyBZ2bctzYcfcyO1uwDAViDbya8q5VvhW8GzCMB2wrejdRuDXRbABsB\na2/4jvilRkBslUHXxWjaGlYdpi7fQUsVy4YyalaDag3oe8A7q3Zb81EZq6xV3qqzf/sgAI6My0bq\nRODrgVeWqR1T7QnYKBwj4K250egI3R4AXlv9tqriVouCOArhNS2ylAnVCVmNKs4o3YiC9VRvzbh1\nNCR9QHi0fQAArxl2zqheL78Gvj0BOwq8ndRuDWjXAnArkL08yyQnaupq9aKwjZSTZXqAfBUYt6pi\nmY7UJy+XAXR0bNhTwzWTvGryURmrrFXeqrNfe+cA7gXflnJae3uCb2u4uaYfSfi2AHbPELbSvTzP\namGk1es1w1mmyXYzeZk6XnrINBAT5dWpB+IsVDPpVl60nMyryUdlPo69YwD3hK8HT69MLXx7hpZH\nq94B4B0N3VoA18B2tAK2ymdmPVvl0XUykuZdX0defzVVbKWHLKOItdB0RIG2wFZri4w6e4Lw+1fB\n7xTAa4adZblM2NnKy4Z6W9JHg7ez2l0bwHtRw5kyXvm1J15lICvV6lbiKNSup4iRQ5SuqWFNMUfS\nS1u1Y8l7gTAFy3p19mfvEMAfBb490rU+bADeHiB9CzDW0qx0L6/GuL/smG8Uwl77vceAW80LaZuW\n3WWLj/FqMK0Bce9QdVQxy7yafFTGK0tK+bdh7wzAW8LXy4sq2pGQzaher552s9FB7W4N4FEwzqRF\n8nqZBWPtGofSPajWQjdzI5A1b+JWGsREfnhaLlWSaR6ILYBG4ZxJ19oq6aTkyXqRfFSm1vYfjn5H\nAF4Tvl6ZteHbo6wHWa+NSvD2BOwIAG+hhL28SL5lNeFnK70XdHneSOj2sKbwNAJqRO16ijkD55p0\nDcKZvEg+KqOV08p6dfZh7wTAveBbW64Vvi3jtBmlisrW1OFpg8A7AsCjlHAmz0qz0r28jFmKV5bp\nMd5rnfcCasYPUr1a+Nmr3wXEBNI0oHoKtxbO0fQDwj3tHQA4CtKIWfDMlEF50bfaK9dTDa8I317A\n3KNKrjnPpGXyM5YBTcZP5rz3caSs1q9W/65JEKOJUtbkKQ+EHkDXgDC37N1VFJTvB8JvHMAefLWX\nlx3P1cpYoemoKm4N/fL0DJCzdRrB2wu2o6EdSbeOa861tEheiyH4oPyI4uXl0HlEAWePkWWv+aWf\n2RuRZhDXqmEUkiaR70GYgmWt9EiZTB4ZZShQzvLp1dnO3jCAR8PXG/ftCd8MZHl6TVqLn5XBuyWU\na457nHvp2TLIasLOMl1Law01ZwBaA9uoRRWzlu/2ywpLR8PL2gSt7Ljw3iGcKaeV9epsY28UwDVj\nvlq9teAr69TAtwXILeAlCsG3Fwh7ALgVujXAzeRl0iJ5GeN+0HUqC+IaCEfgXANwrX6t9VDHpiEQ\nF7NmS2tqOApuEn7eAoSRvW0Iv0EA1475rg1fq04LUL36KM3y7fkYDN63BGWtnlU+cq6lWenZcp7q\nReU0UGegK89bgKz5j9TpabXq2DQ0PmzBEkE1qoZbVbNMj0KYWwTC0rQybxfCbwzAbyXsHOnL2vC1\nyjeEm0cAckSel5bJjx57eZm0SJ5lqF6L+o2cR+bmeODN5O/B0NhwWhFbajgzNoxg2JJGRnpWRcu8\nSD4q49m+IfyGANwTvi3lvPZknjb+itK8q3EWpgPhuxZUe/pqhW0rgCPnWlomf5TVhGO9ctqxVdZL\ns/ojy1u+vDxKlJdpphUI8waisCQjzyrfA8KeP5mO6tdCuBam20L4jQC4N3wjL1uWsUAZGfcdqXIj\n8I2EoRvBuzZIe/qO1o0eZ/KsNCu91bjf6HgvSouo4Oyx5l+DWDRNWgiIScvcDKimhaSlAwnLrBL2\nQs8ZCEdDzt6b3hvCXnvbQfgNALgWvtHykfD03uBr+YuAtlH17gWuvfx5aZn8bB4619Iy+Z5pwJV5\nHnS9857gRTYCoBmzVH9EgZc01crvkhfWIEqgjDVmHAWuBmFkUdBmfEbLWOX2CeGdAzgbFvbqRl5u\nBNAobwR8o3Vrxnt3Dt6asiP65aVZx5k8K81KrzUNuDzPAnHkvOa4B3gjUO4N7giIPSCbxseGJUQJ\npCEIk1K/FsKobSIdwla4mStxmUesTGTiVguEeR/G244BHIGv1v0ofGU5D74aZDPwRf6yoEXteaCt\nUL29gZnxs1adXmnWcSYvku7leWapX56PID0KvLI/Wlo2T1oNeC2AamVr/blqGIWkEXRlGQqUpYo0\nAv60fJku86RtAWGrbn/bKYBbws57h2+ryl0ZvqNhl60zCtAt5aPHNedeeo15F30JVZS2NniRZYBb\nA17NeoFYlg31s2dIOqqkyUkj4E/Ll+nSMoDOlMmWXwfCOwNwi+rV6kfg6+VrkNXqZMLOkXIWUKPw\nrQQvShsJ3DXbyJbJ5FvHkXMtLZLnWasCjo73lnoehFFZrdxIpTvCMuoZ1VXNCklr0PQgTIo/AmkW\nTLMQlh+WB2HUJvrALYjuA8I7AnDLeG9r/dq3wavn5SNVK+taZTrDVzY9AqQ9fY3oQzav5jhyrqVF\n8jxbC041KtDKa1WV8oYik59pw/pLlXWgRSAsLQJhWRYZasMDs9YX5K8Gwl4bNTYWwjsBcBSe2e5a\n0NLK9Aw9W/VqJkzxtMHK9z2Atkefo+VrjiPnXrpWNqIQi0VD0Fb4uZxr5RCAon0OAylRp8YntxpF\nK+sOhzBqmMiHMAIpArWVhtqR+dJa7wy1+i3jwaU+KT7abGMAZ1Sr1dU9j/v2hm8mRN0AXw1AHqDW\nArBsZ0S/onmZ/Oi5lmalZ8pIuKI8C7TauQwpy/RMmgXqLLCy13atfAt4W03tvxwXLqaNC0fC0b0g\nTMKHzLeUbkQFk1MGtc8t88Xor4Y3+iplw8VZ+EbK9YCvVj8CX1Q3Cl8N3MnJViMBOervKN+1Zbw0\n6zhy7qVH8jUgaWVqwRs5roVwFqBZq/XvhbJluWj9ISHp7JhwDwi/l0lZvD9EvUC8MoBrxmmz8EXl\newIf+Y1OsEJpmbCzln6mZb0OIWcJji1A27PtDGwjZb206HHk3Eu3TKujqWAJ2pJmgdg6zkIY9b8G\nUKOhbZkGZA/UUd+qbQVhEmW0tD1PyiJQR7M+IB4M4NaJVVn41vq1ABoJPVv5EqwozTsvx5qvBvju\nBY577lc2L3ocOdfSMvnFUDgX5aNrkQbYkteieknJqwWoBuJWv6PMg7QFc2gjISwtAmqeJo+RLwJt\neuHfHhDW6lgmOZAD8iAAT7QNfFGdbOhZy9Pga4WUkWmwtSzyeivgq6X1BmNPnyP91/Tfq28d15xL\nG/QLftMWBRqq4ylXq73av8VHsWhd07IQLhaFtQdc+WI063WXlbH+Y7lz30TRFSc7/fnWdCsCXy9f\ng6xWp2XSleZX1omo5Ar47gGMvdsZcXNg/fXSao6zaRlD9a0wtDwvZSIh6IwKjlxLtbKRa36Lf2Qt\n4eOMr2j4ulkJE81DqhJQGWWMfGvtbRWK1sp6dfrbDgHsdaln6LlHHs+Pwjcaeu4E3zUBNwrAW/QL\n/Y3mRfK9PCKi8w0kEtG54QJxYQ3JNi/TPN2DbclDcOXlrbQatedB1mJDr+trBsQ1ihqdpxVxBMLF\nMZEPxgjMSdTR0nqEokdCmJR6/WxnAK6FL6q3VugZXjWNNnrANzHmOwJqa8B1jb7JOpqPiB8vzTwW\nkEVwPV+XacK+Bcp8vpx8X7zM87pzFucAzNZxjQKu/Tt7bSLNglMvEGcsEv6uzauGMNH8AySljGaW\nX288WPqw/G9hY9veCYAj3RgJXw2yHnyRzwiQe8C3WAf4toJ0DwDuDeXM31Qag60ErQAjAioR0SkA\n40jZawEvK/NZpj3PHwU4mDmUowrYu8ZqZTN1a8ug8q2WUboteU0QJsIh54zqtSBMogy3SCg6k4fy\ntba1stLGQXgHAB4N30z7Gnw1/xKQqFxP+Mp2g/DdEn6j2xl5Y5D5q6Y9gGvAVoJWQvNkhJvPCRhf\nhBrmfq8PsPK2r5fTEs4czBzKz+NJB7KnYiPXbA/UqIxn2fKt1kMFe2nQNAgTza9hPK8m9FzMKpMd\nD5a2BYRJqV9vGwN4jeZlGxHISkOARXUtIGfMg3TSDT8OgwP8HQ3AaPk9gRjmAZWrADcCWw2yGSVc\nyl9RSPrRhgS0ZZ/VnPImBPcd51YzploLM698tK7mIwNLqz8E/KK0aggTqCDB6YWjM+PBUcAiy94h\nZfxHy/a9S9sIwC3gs3xkZz1reWclPTOhCqV551Zb/DwZdt4qrbff3tCWeZGyBMoT0ULpBoDLYSsh\ni+AaAe7pxBTsdQlU6YMDueSVtNKnAubS3+vlPC97vs5D10gdc2Xc+peSedz6Xj/zNwCWj5obgGYI\nE+WWJ5EoQ4Qb2kMoGplVZn0IrwzgXs1F4auBNNqX6Lgvslr4oqu7Nb4Mio+A2kgAr1Un0ldZRq2j\nq1wEXA22SwUszk8AxMEf/+mkl7s+Xoj0f72eFmFoBGYO5TCQa2BcLAtYVB6Vi+T3sCiUs+DVfIch\nTGQr2HLtsZYUIR+eX62tLUPRXlvSBxl+YrYCgGubyIz7trabCUuj/ChstfKonuZDUb9bQK4XBFvr\n9L45kHnPczCeK6BrAfekKWEBQQTYM+nq92TkcbvSS+1Kf5dHXoG2BDQHs4QyV8omkLMwJnGMzrW0\nGusNXc9aFK92nIawBCE/L06KRceDs4DTIKyVyX5QoyBc/BTLf3kGAbh8sLWWHUNda9Yzyvdgq/XD\nm3SF8gLw3QJma4K+Z1krbfaXgTegcjPA5bCVUERgjcIWGapboMzzrnR69gWBWUL5+lTD1yeQkUJO\nwZgoBmYL1jItWkeztQAdBWumbBWECeRlIRxRxppF3/CaULRXLjs+XfwVe7M7YfUe97V8aHVbQs+y\njAVoq0wQvsXO4HgkfEcBeA0wh9LwmO63zlc4jiuhi4CrwfakHMs63CxF7NmFKWHu/6l6H76vdIJg\n5lDWgCwVslTHJowpqIo1kLaJA0fHAAAgAElEQVSCtqdlYFrjK9OG+folMIl0mGrhZ8+ndYeUDUVL\nXzWhaM9q6uRsZwDOwjdSLgpoD+4Skigte26V4cfOpKsWQPWA4xoAXg3CNwhdIl/pPv8awNVgK0Eb\nUcORvGLXGXSvMI+3eaHTs08czBzKUil7QEYwfr1gPm5MvirmlgFtpGwtrDMw9er3OA5DGC1PIsLw\ntCCIymiWCUVHIexZNhSt1elnOwJwVsmiOt7L4fmR0HNPy9wYBPuAWB05PgfSM6CLtLMmfKsArIeZ\na8GLVK4GXQ+4GmTDE7Lo8gRp1rjqTVlFleXypvMLwpplFGWkbCS9Bn7SF7GypNTLpmvAPYO0mVnL\nkyxYamUy48O1dzzSRoSix9oOAByBDepmJgys+cjWbVG/Eb9nUD857rvnYy1fKxNJ7wFeI8xcC10L\nuC3h55bQM6rLlS4RDkOX84XiZQqZq2OuqKUyluPGcv3xIjx9dzRXxM800o+1a+p219q7RVRy9MZA\ngz0p6e5rRzOjuWmw1T4MzSJgl8fcb0YFy3wvXI5MzgTvZxsDuCd8Zbmowjwr6Vb7WdjKfG+C1w7g\n2wK/iJ+sz57QJgqBtxW6NUpYKy+tZTKWFo7mgCXCkC3lZBi6lEXlZmU4jM8nPzwtx4kpCGJue4Dx\nCLXd6geanJTFzdtIIzohi4w6yK9n2bo1EK7pl28bArgWvjWmQVZLtyZeRfqEYIpmPVsADy43KseR\n9Bq4tQKxZ3vNNxXLiVUozIzAWwvdTOjZVsPWGLBPER5+1saAkeot51L5onHhxSQtBmRY5kQLVTyf\nVT2ftPWZKA/iKHwjdbLWAkt5Hj0mevU/mg4NvQlInfaYFR1tMwraSCh6HxDeAMAtk6K0+rJs79Cz\nVU7CE8FUmgXoM1U911ee7xGAI9t3fcwVLwcvDzNbarcWupnQs6WMpY+MaeFn2Y5UsLxPEqLFBwJt\nKY/UsReiJqIZiJ/vRwuI0flezFK4WQjzc/4+aOnueDCRvj5YmxXtWUYZy+PoHVXteHDE+oWkVwRw\nZnJTL/ha9c9KupWvwTUKY01lB9V1BkI1dboCb4N2O4EXqd1W6CLI1k7I0tKipq395W2jsWEEWARk\nTR3z13p9vKuWKibS1hYnQSzPe+VlrQa0UR8SttE6LoSJsGpF8JRp2rllvIwH9lY1WquCeX1q6sMK\nAB41qzhikZfnhZ5b/Uvfko7SnNCz5wJBCNXx8nrDN3pzMAK+gTFerngRPCPgtZYd1Yai0bmsmzU0\nI1pCssWqZ03POxS258zpy/n+mdOUA1wmj5Sy2THbSF5pC7Xr5XHTbiJCnEGgrZkVnfGPrGZCVosK\nzpStB/EgAE9UD16tS6PUr9eHXupXS0uGnrsCarAfLU+mZyAeamOperPgRYo2onYtpZsLRc9//Fro\nOaOEta0oZShaC0NboedSVhvv5dBfhKBpOaZMRG5omk/WMtXwvbHtQtMtynct1eyGoi2CW/CUZaw6\nGaXcyyJ9z/gq9iZ3wsrAN+NLqx+deOX518yb9VwRepbFI3k94VsL4F4+zfJ2uDkL3qwSxvC1Q9W8\nDC8n/WjnyCQ8tbqRbSj9WdD2WDAKQZc2EahL/dPjfy00vXjNPCz9tDPNdtUqSdY1tTW/xqIg9fJb\nVLMLYSKsgnnFaOjZy0dlZPuoXZku81A+KoP6McZ2BOBsV2T51sldVn5Ji6pdBH+LkkRm6NmDGT+3\n8r2yI+Hcs10EXiJC4eZW8HpAfuXlgdsyAzoSgtbKyLW+9zQ84aocZ2dBIxifHm1cgfItNp9FvZyw\n9QTxbAkTGB+Wa4it39caYqtF6Xq+SJSvCam7EEZ3MZFZ0dxqlwh54W9pNXdR/ZcYRWwnALa6URN6\nRgC0/GbVr+VPwlhLSyw5KscRqGn1miGXrD+67WcaHueVE6ws8GqhZCvEXBuiLobBLMHbNwyNtpwk\n0idclTo1s6C18DPvM1K+C+CSA2KmiOWmHrPNPOj8uO4qYWl0rqVploFo1hfR3J81Hu3V18qGxoOJ\nYhOyivValoR8e/myD55Zk7II9K/dNgaw13wEvpl8lOeBUqZp58i8mc5GXQQgeR7Ji5RvAmCwfPbc\nLTNXvWicV85sjipeD7wxMGMlPC/TZ0KWNG3bSS8Ebc2EjsyCjsC4+JKhaVnfAzF7Ufc/YtmSOT4s\nw9K1lvWRBbQFVa080bwNeZ7Jm1mPULRn0fJbLUvq8aVZetzIauCbLVe77Eim1U7E0vx+YunOgxb4\nscZuD1qyfgR0Xp3ewI208TzXVa8MN8t1vBK82vguTvfC0Hb4uS0MHVPDkfzM+l8ESF4+MvEKjwHr\nYWye/0qfg7gEtYlek7WevhcwFuPDZ7LD0rNyRn5Plav5Q2WIpXkhaFkmOjasvm5U0ApFo7oZQCOw\na5aFLMr32ugL4Y0AXNusVy/rtzX0rMFV+glOtkJuZRULylr5SJ0o0GtvAqw2IjcBQfhq63mz8EXw\n9MLMHnhrn46EYBoNO9eYNit5TZvDXj4W8Yxf/6Ob/HGI9/Pz8/wz0UMJEz2XLOmdeJQTabWws8rL\nOrxeNAQd8eOVN/kSXRvMLQssBOVe0GsNRRfrB+ENABxpcm31i0zrp6d+NR/lOKF+PXjJ8xTIOqVl\ny6DyIT/+0iI01hsBbyTU7M2E9qBrh6Lbws/ZMWAUipYTsrQtJXn5SOjZGuvlylZCf6ZwFzcERlg6\nMDYMQ9IjLRtKtupRwFfNTQHKD6ngYp4Kjo4FRy0yIzpitTDtA+EVARxtSgOkVz/7UryxX1lO+kft\nWepXHgdmPctmMqDV6si03vDtCeBn+kv1oqVF3lhvNtwcAW/LTOjarSl5Xcv4GK5V13vyEU+vmXSF\nQsvu2l8S4WQjT274MYOzMzY8X7JkQLjPdbbeasLSkXoZhTyzlh2ySDkvZkG5FtSyrV4quPguVvcl\nGQjgGtcZ+K459ivry3zUhkVRxTSQ1oA2CtRM2R6QRnXUdDzRCs1wRuFmK6yM07wwtB2evr+EnBKO\nhKB5PVRWM60MmmzF28zOgi51IjDWxno11ftKfeWV1zY/B3A+nQhNRuOWHheutZrxXs8fAZ88rSac\nbfl4mnxiUmSHLJRvzYCOWFQFexD2bggiVgfjQQAeHNIxlx3V1NfSMv49nwH1W5qyeO2BtzYtW3Y4\ngHHI2VK9NeHmjOL11G4Wur1C0NIHMu1pSFr4mcieBS3Vsh5iluHs+bpgNL5sjTujELTmh1WyTS5X\nImU/6VaLKtdImubTSuM+PNUcet2S2BEV7EE3q4JHh6Jr1gfHb+QGAbjGakPPlp+zkm75Lmk91W9g\nEpYFWguIWh2ZVgNTKz0K10iZRbo/0Uob60XQ1MB7LzduXLjk4b+ZMLSthiOG1v5K39o4b6kf234y\n8PQjwuO9HOIlzxrvlSFo/n4t1h2fLnQ9nRc7aS2WKz08p0RERrlG61sg1tKjZa1ylmqeWc2yJGQR\nFVwDQWnSf8Znj/ax7QTALaHn0S8h4j86nkyUUr+RMhHAeumaHyu9pi+oD4s8f7zXCjlr478y7V5X\nh29kGVIuBF03KYuXleU0sxRkpkym3J5MbixS0ojo+b15prPx4W+dr3MI8ycrzZ0t0yMK00tHv7GM\nHw/QJV1yTutzekKWWZDlZ9cFI/NC31Z6TXtjbAcAziz7qfXlLQmKbrJh5XsK23irLSXrgRGl1aTX\nADyqesMAnsNXm+WcmWiF1XE8PM3L4zwrBL1Uy1r+6y2OTcaS9TJ51uSrcm7Ngn5tKYl3u9JC0NHd\nrlCeG2Z+vm5cdqamhZsyS7pZCSOzwBqFs5UXha7lxxs7Tk3I0o5b1wVHx4szELX6FCnbbhsDODvu\nmlG/0ZcWuQHITvhKjP1KMKE8EmVqoBhWoAPrqL5yk63ioJXquC48jfP8EHXJl3la/isvH362VLGE\nkTX5qvjiY8NoXNga643OgLZAbMFWhqpf9ZYhaVT2UeH+R8ySLlY9OSszuSoL1do8L6ws02RdVGdm\nHFrasSy7hQrOwNlrr49tCODWSU9RfxoMtTZb1a82Dpzc8QoBS9ZB6dE6EZCvAmB7shURQfh6IWcE\nxvhELRu8LbtkafnF0NiwLIPOLZNlpeItadbkq1JGwjYz1iuBbO12VepoM6P5+yXTrPRikVnS8MlK\ntWaNE2cnWbXkZSZolTSTWR9JBWvl620jANeEnVvVb2ac1mpXq++1abgpxxrzZRkPrNE8lL8qmGOT\nrazxXh/G8XFepJBf+flxYe6Lp8n8UneZ50M3si64WO1TkFAo2oJxJPwsQ87c0GQsPaycG5+GYFZc\nLB9xGIRwBn4Ri4SmCZTxxnqtdJmm1Z1V2FoFa3VqVLDXJint5mxlAEeAVwGy1MznaJuofnSpkSRY\nctmRBUAvHeVFoRn1YeWHARyfbOWt442q3kxoWrYz94nD0K3h59YwNK+LwMTrZWZBIyBbm21EVPEc\nxDjPfo34gRPW63cczgzunvV4JautFUb53CwgZ/IiE7q6qWBkEsgRQKNO1QK9VtW2q+GVANwKwtpy\nVl0Lpp4U1ep7/g2XGkRRvQgwtTZb4ez50MrM0nOTrVonWnmqNzqhS/pd5uX2itbKvd7GiALOjQlr\n4efSXmT7SSsMLZcUWVD1FHEkLI3KeptvqBYdF26BcBaypbmsr1ZljMp3UcG1m29YUI6AsHY9r9fH\nNjW8AoB7znKutZ7jzRr9KnxHoFsL3IjKjfqrVc0wj435MrNmOiPTw9B2uHpe1wc6T5d+X3l2CFrL\n08rJPP28ZUJJf0MPSUBLguL+Tgt/KK2kF2t6X04E1woXCy1TIopPluLWA6bRNi21G0lbGFfB3Lyx\nYE31RlQwsmi4uZcK5vUp7WMQgCfKg1frijf22xp+luWlgkWK9pORJo8DjzyzgIfSRingaFlPNas+\n4mO+0c010HjvvWm7nOZP1r2X08PgvHxJ575fZedgtSZlST/zj6VtFrQVhs5uxLFUxb4iRttOIkOz\nl9UZzcQVu+03ZE71hRKOqtpeV1sL7qgMKqvla8O1XtqikRFPSiqW3ewj65dbto/l2v+mdsKKwrfG\nrMlXvdWvdgyqZJWulh6Gn1E2Wj6jjDvCNzvZKluOaAnje5qukLlfXhaly3xZZl4Oh6A9NWwZUpE8\nPRuCtmZAyzI8TbbxyrOXIekznQv8O0BXWm8IE9WFn0sTPep4NwLWWHBEdatjwZ55qtcKW3uAtCAd\nhWvtjULMs2nTNP1eIvpHiegv3G63X7VBF4yyGfVrtZNRv6iNRvUbUboRhYvK9VC5NXUQfB/WCt/I\nZKusOp77yoMXLz3SJ2XN/+J8eYzOX+n2BQLtBY1AzI8zM6CLH00583yerm07yftaC1fu88o+9YQD\n06ogXGMRxZup40G7WQUjp5ElSahui0Kuscis6n4W+Tj/IyL63UT0n3RvPQTFvZk3+Uoeg2KekI6W\nj0IzUqcFuCaA+yrfzGSrCFAz4WZP8ebC0GNnQkvzQs+8PQ5RBGQMY/3pR6V9bdcrNKPZW9/rqV5r\nlnTKaiBcTpF5Ys2zyExoq05ETWvADqtgTcmidAk2DXSZdcLyWCtjtYesP4Tdj+92u/3BaZp+addW\nXYso2Ij6jcx0js5mRm1Yfeqofr08y3cGmrV11b7WLTXKQjWqZjPlXnl99oq+/11CNxOG5mW8NGRS\n8Za00oamdksdpHw56JBa9UCMNtrQHj2Y2Y6yVjUbTlVbZYmSZq0TulCdyCzpkh6aEU2UB2ZmtrRX\nJgvO7PKneusWMJmm6TtE9J372V+zZtOd2vKArOUlNgixVG4mveRlFbBlrb4WdefKl6gOvkRostQL\ndMgs+EbKvfLqniOM0u9vkR6mRuV4WXks67xFk7OmtRnTaAMR2y+eKV1r6IlLRMbsaK6EpUUUaMZq\nQKvVzUzMiraxcKI5XPN73H9LyVrrRsHb7fZdIvouEdE0/RI0Hz3YbFb9aukRWHpmTdaSsjFoGtii\nyne0AkZ9SfsbF3ZGCvQL+noB2Yyv+0usUcL60iSezuvI/NJ2MRyKrp8JzZVgzQxoro4zM6B5fmmH\np5fcyAMXrNnP87rz8d7ulg1Hr2E1oNfqojpe+Bmys3ZjjuiSJHmOfMhjC/Iobx0VvKYMHdRkhEZa\nmjf5Clnl5CsPrFqeZq2QRX3L3AB48H3YKPhaZYiQarZ93etg//e3wQY3r4/T4xOuEJhlWXSOTIOy\nFYaWY8MSyN4M6PIa0JIjOTbL4Y3SLJiiusOtF4S9ZUKt1ntGdVQdP20SBbTjHutvazb2iIwFexCm\nZJu6lxUs0lSL+q3xXVtfU7/Oj84CYUQZZ2BqtYF81QDdgi94sMIa8O01cetern7Lylc6VsPzvzEl\nzMvO03wQc4h5k6/KsT3pSt8D+vW4Qn+8dw5vrHTnY8NtKvdEF/oefankXenrSJ0WCNdM0tLUp+VH\ns5pJYJHJWSaHIhOiNJVLwXzNb1QF11obiN2Pb5qm/4yIfoSIftE0TT9NRP/m7Xb78Y5NPCy7dEjm\ne+FnWSe69EhrgwLpzIXkdET9bgrT7L91ws6jyhDh2dF+er8JWfwvLyPTrRnQUtlqdS60VMEyHD0H\n8kshRx9FWPrjhZp5efR66kA7B/r36AuW+/UT6BK4X9L36EpX+noB6a8fNwZflAZMqwpHa8uYapYU\naVargLV8l2mygLWJRlaFWm3VbE/Z0n4diF063m63fyrlkYhe4YfeFlGx1sYbWUP1NZ+BH1pW/fK8\nzD+truWzti0B3zVmO39JX0M4fknfmwEuD+j8dpWyLG+b55X0+9tsK2ENtks1bCtflM/ByNPmIegC\nV+1xgvFHEfogRuuI50pXMw59r94Xj9cpYa4B90v6GkCY6CTqWyDedHa0Zi0KGJUzVbDcnlKqWM20\nGdHR8la+d8fQ4yaA6I3thNVT/fawqL/A26cpXK1sVAF7baK6XtudbLTyfbYDYHhP7w9fpHrRTcD9\nrdSVcEmTeTwdjQ/L89rZz3IM1i+PFShKr1WrPe0F/ItIf91IyDRefq7MUdpyIhuy8oCRxd7RlsJF\nYOPpGQVqpWsWHTeO9m1m0XW5suHaMHTUonAdM3N6BwCOwi4LWY1A3Jd27rUvj523EYEvCtqmsPAa\n/5ZPNloj7PwFfY+IXrD9gr4HIYpnSLdv3CHT7x8VBnU5n/+9mMCVqvj5dbgKKF/iy22u55dKLXY5\nLUPP93bLOC4f650rYx5OLmVK36Uibnm27zy8bavj+/cAKd2vF3VK2nxM+Gt1jFg1LxxdnqykgUxT\nlFYaz8umR0y7GUhbdjJWLVQz+0P3AHcf2xjAkV2lMvk9lh7JNiKTr4hCIYca0PYy7wbgjcD3i0eY\nuc+YsD/W66nj+1uJAc/Ll/SS5oWhieaw5aA9XV66itsJXFOuZ57/maV/a+b3emZh6FNk4tUcxq8y\nOAStg9h+6EJ5Z8fa1zSf1DWH8JnQmLAw0MXr5fGanmvhH+faU5Q0aGYtC2XNh7SIeg9PxmpdksQ7\nFYGppWCju2P1V8EbAjgDxuzmGMii6hcp3cjSI6VJCdIsaHspVa0/pJzvAL5c5X75BG9/+Fpl7m/H\nspxML/3Uws8R6BbgarDlgD0HhS8qdzlJGL/Or+dv0elyfQJZKmQLxnK8WIK0vGdIvaKynnHgS9V6\noquYeJW1OYS1MWHR6NOulxPeqONy7gdZIswKjR81ws9TwiHwysZ7qODWdbpemXUgvBGAI7OUs/ma\nUq0xVF9Tv8G2Ii8rCmate1HYR+Bs+loHvuXC3wO+rRO07vW0dJxWjs1Z0NcrBK4G20leEzIX1Mfn\n+elR5yYEWgEzB3IZy+RARsq4vLYCYp5eXq8GYk/lzlU2Vs18ZnPJLxOv+Gzn+/sfBfMcwqFx996T\nsrhq1cZeR17Fa5ZFuZOxohbZeIOcfE9po3LRfrXbBgDOwrdF/Xpju7J+1J+0wMYbJS2qfL06lh9P\n5UahLH2tDN8sJMt4LxEpPtpUbyt4kdJFCrcAcQZbfqypX28SDa93Ev7PdzDfzjqQX+r4ughTz8eC\n5VjxC7ASxK/u4BnQvR41WGY7FzCjJUjYyvKju49QnR4Q1sRixDRoS39Rk+1GZkWr5oWhI3DzgMzL\ntJjlow+EVwRwzVhsYp/lUBkNyBb4tT4kJl95ajYCQlk+Wj+saqM+5HKjbeD75eNSeFLr9Fs3fH+r\ncLnShxO99NwrjYFahJdPl886cDXYakD2zLsIn1/tTOxiz4EsYfxSxnMYS4VL9IKu/uAFezerF+Dn\nY7ElBO2GhhULA5XZmbS7H2FZCBdoZmBrqWPNT41ironULkw+JYk7RkBFX9Lasd7oZCxUzoMwKb5j\ntoEC1qylKz2XIWnU02zw+r6IMs368OqqEJ6HkU5igLHA93kOYWWDcF5Xn7Usy2wBX6l6LcWbAu9V\nnMtjXmawlW/38usCJoINnCvFwS3Ta5ZkFVXrAbWo+uwDIR6F574u59fypIvILNd5C5jWjZRUoSlV\n6ph1rdDUcLjN1jXB2dnTI5YT1ftcAcC91+hafs8g/yzOo/kyrWLylZaegaHmP+q3RnnLdgp8ndDz\nveh8rFPCKjNea4GyTNCSy4wyS5dk2DoD6OInAl4+rhuGrkwnka6de2aoXzrRUomJ/n46I1W8DE+j\nfaDvTeghaLTV5Kv+coz3Sme27CinhPESpKWV5VihSVjYARHNJ2VdLyeaz4xWbuKzqlibmNV6lfcU\ncLTss4I1g4woF4auKWMp7awK5vUI1PV7OMAmyoEXdcMKP7dAPfKSI8ujAn4ykE2HghW/KD/iwypD\n5MK3qF8UlkWqNaZCW5citc+evvd5WQ+Fm2WoWapdCF2kcj0FjK4FnjArvLNClbJ9CeQHrKfH8SxE\n/QhPE9EMxHc3LxDLhy5EQtBR42t941D21v2+xoBrlPaj4ixadEWbdKA9oyPKMwpoWaaXKrbmHZiT\nsbSlPwiOPVRuq/LNtE30hnbCisDXspa1v1L9Wgoa+Q5OvuJ5WZWq+dD8oXoppYv+3X80kUlXRGi2\nsL2pRQaukXwiem5X2Tcs3QBeBFdP/cpjbTw4YkgRSdCWPADdBYwfaQXGZ5qDuIwTcxDfm7o+3rH4\nrlmljpw4dSL88ARuMaV7h7DnLzz+K+xKr9CzvjzpUwymCKRIhWoqODPGbBn6/p2d/FlBT3VmZixb\ngK5RymN2vdJa3tCizUfKabQiioWbCeRp5Z3+RFWvVseCrNaFDNxNpSv/zR+ykJ90hScsaROqauH7\npZq3hDPyd3/pywldvM883KyFmk3wcsBq0EWh515jwREVjGBb8ng+0QzQCxCfiApeZGh63iW+dGke\nXkbqmM9mvtLZeHiCNBuy5WETFmS/YP9H7X7jcLEnZV1O99+ZtlVlsawq9q4/rSq4tKX5C4lGLQwj\n82smSNUuSYr0tY9tCGCt6cxSoB47X0W2oYzkEwZeDYy1JmsUdBTsMG857ktEqRnPRP6EqpJnzWZu\ngW8EzhHV64F3Nr4rwauBmGgJXaSEPfUbGafTVLAE6sXI4wqYpz/K8/C0DE3fm+VjxKewCvZMKl0M\n2q+f0F4+Bele34Ps4mEMwK702lVsVh7uluWMB8tohJZHIJ+XQ9bj6p8KQRPZYWhy0pFj7zxqURXc\nF8IbK+CIjeqi5VeDuBN+jjSZgaJMy/qW+VSR9zAeeob5Bsx4GVSe59nLfawtInW48vxX2/XwReHm\nxRivpXij4I2qYO96YF285TGHrlY32Mb8mWhi1vSAGdP8EYscgvP8C8wraXw/7JJeVPq927pCRnth\nL8qzSVlEr7HhxUMb2Onis4rkkShHwbKtFvYfAZ4VWvZmR1ttRepY1g/CGwG4h/r1/JW0lcPPpUhW\n9UbLegrYg3k4b/mIQTv0nB1jxflafWu28zJPKud+ytcNN0vQaoo3MhZsHWscQCpXlpehaKmiAmO/\nC2UmL/KP84l0NTwXh/OxYf68Xr5m2Bqj5eHoEy23orzn32dUo60ridBEq7tqvg9f6MoYQV0avwGQ\nS/g+FyVsbVVp3Qx5eUS2WrbgbEEV+ZH5i3raYwrVCg/LAjM7thxVwahsnW0A4F5U2jL8rEy+0u4D\nNNWpAdRTyl4bnj8vT1lyZIWeiSxlGQemVh+FnYnQMqQ4fOUTlMq5BV4iWqpeTfHycwldMtL4XyI7\n/GxdA7QLpoS0NetZgzFPI5FOy3pFDb9APJ+kpT0i8QVNfi73jZagfYWT9f2g5xAu21Zam3NY6jcS\nmi7fs+tJqO/Lmb51vj4gXN44sEEHf4s0SMo6Mo9EOV7fgrPmJ6K6TfN2xtKcjwhDe/3rbysC2Gtq\nhPqNnmvtJNb+RlxbII0o5oj6zShjqw5YckREqUlXGpCzwJzPaNbHdL01wV88Lq36mHBM9aoTrCLg\nlXUI/PWUMOKAd70pnyuHbamnQNOEMVLF3AfwySdq3Y0HXjmIcxOdylpgBE4Lwlf4Rr5AKc2CrObr\nlc/3z77M1T+aFU1nek7KQvC1YBgBNoH8MDQVH6gvbmXvLnFEGNoCfQbeNW8Y9jDYaprJqt9IOWvz\njsjDHIKvI6NekdsW9WvlWRB+pj/UL73Gp9BmG7XwnYeZ52pWA2akLTtEbW9VyduZ3QhYY70ctlHw\njhwH5ibHcWV5qXa05UiyX/LCLsFrgZj1bbrcN/Tgarg8HpFO9NyrWQtJa6apVw3C2uYaWrjZgqy1\nRvgJ3WUlul5Oi3kVn4n0ULQFXw/KWl7J9xQzMut7aN4AWGFoy6KKtPjroWA9H/WKeyCAM6577JYV\nDSdH29T8GeHnFgUbBXVW/Ubbe/59hZ6JCIaeNbgS0exvZJyVT7Lyws6WSq6BbyTknAo3W+BFateD\nrheOlnleOlLBUjWV48j4r6aAlaVKEhLqJC0jmivHeZfh5+89x41liPl79AWdaD47WoMwCjdbkLXG\nfzXlzNcHc4OhaCJb1TOhcfUAACAASURBVGpiDKlcBNpaBaxZikk1D2iQgI002KKCIxDO2yAAZ2YI\ne1tKyjIRpcrLSYVbo6wTNwg93tEaBSzb9wAN28EbbhAR2GzjoZIVmGbgu/S1DDtnQtTasiUUgq6G\nbw14tfCzVLkIuJ76jSiRjArmalcb/9XK8dcl2XOdl0dquIwNf33iS4r0cV6pjLXJVmWcV8ISgRVB\nsway95eshbQvi/fnOR5cEvgGHfJzlNeEiArWQJtRwAj8VhnV+AMaUCfQ3YTneMQuWDX2JnbCGrVP\ndNQknHmadRxwGwGoBsSMb5mOui19qtB+0IaWG24U42qXX5DkxhXz8kulrPmSQJa+UYgbtXNPW7bL\nbyC6w1dTxTyNRDpSx5nZ0MXsIcjdm1TD1/MrbIugyU3L58uS7uXOi+8gqivr8bq8XhnTJSLYzitv\n/jrkgyBKOaLXePDzYQ18gw4JSE3RRrmFgB4Bp6bCvfI9lHXKUjI8YP1BvjGAkdV0KRt+rrXE7Gdk\nFpA1QMt6XvsI5iFoz9Uv0WsMOLLkSB/3zS5HyreDlLEcE5Yq2YLvF199joGXjHwy0jQQkyjH//Iy\nBPIsQxdkKwxtqV8CaRII8nvG3wPjt8Ih/MVX34BZ0rEZzcXkmHBRzXO1uqyLYC5VclG1WqhaAvue\nfnqA++XrQic6abOiWY8Wu2TJz6mkES3f44gyRuWyYOaWhXQqDJ2ZfIU6VhuGzrYV681GVjORKhp+\n9tpCPjvMfs7AWNbV/GjqNaKALfU7K4O3m7wfeypUbnBhLU+yASuhiZYeefBFMLbg+wV93a56W8Gr\nQTc6ASuqfr31v2jcV8JYu/Aj6HKfnj3eH2tc+BVuRiCOQRiVlSFitBsWClsjyEbV+KIseGoSEVfC\nM2c2ZC1lHFHMBPJRe7JfKD9kslPRMLTML+e1kFw/VL0RgKNLimpD1JoijsR3veOASUhqsEQqFXXH\nUs2e0vXSiEiu+dWecmSFfGvOvYlUlh80czoDXz7TWYVvuXJzmH5FGKwczEQ2nBGIPSXM82S6laYp\nGu4vMu7L/3oKODD2O6srypdx4bstJ2fdoXqfUDWHLoYwAiKHbmQMWM6M1kLimaVNvOyVzvffGn9q\nEtqmUgOtl0ZOujQPoB68w+Vbt6aMNCyhHJX041XwBgBuhSrRvNu14edI+cCTjzLNRspbCjiifrU0\nFcKvpQBl4tXzGEy8siZOZWEslTFWu7kQtQXf1+YdDny/ppzqbQWvBt3IBCxP/fJ8pIDLuQVdFIaO\nKGAJ2qR9IppNzqJv0wzCV0K7Wi0fuoCWFfHZz0glI5ByBYsmXcnw8jx9qX552aeifgD3cnntlrWY\nkEVkw5dbVBlLa1W2mmIOW/RhCprqjUKydolRHwivDGALvr3Vrzw/g3wv/Bw0DYzZep4CjqR7cJ5B\nWN9ukmg5iQlNaOqvjPExV7eRMV8d6NcZfMt4LxHRxNVtFr5ybNgLTxNIL2lkpPM0ctKKoQttASuR\nvv5Xpkv1aoFXCztLMPPXy88fJseFOYRftoTwlc4z1amN1RbLzoz2AM0Nl+W+5qFouDa4PDFJquBi\nSNmSSOuhgKPXtzRw5Z0BOs76qbEMWNshvCKA157x3PLSEO2S1TW4RkGNFLCW7ilgDcwP48uOiF7q\nl5u8W+djwnd318UF6ATSZFltLTA/1vJkGxrQeT4RzZQvEXuIQg/4SpUrwawp4RYVrKW9BZPXS3D9\n5BAu24FKCF9ZJf5QhGJSsXLoSYWK8uSDHpaTsvB48L3ty+y89O0K+ilV8NPKPtFEmDFI2ZJIyyrg\nWgZaBn1lw9C1HdJ8tIC0DcIrAdiDr9cNL/ycNeTDUuBK+LmlWZRuwbklzKzVYROviHLq1wofZ0LP\nlmq12pB5OGTtj/l+KuFmBNivHm9MOeehaQ/aSPUiOJMoR0a6PPbCz6hc5kEMUmldRX2prs4gTapd\nqV6/EvW+Ivj9f0L4q8/0vW+L10JziKFnBEsVOh9/9fMsNS2BXAC+GONd3KDOVfA97QJV8GxzDvTc\n4F4K2Kor8y3TrnVmfQlWD27eJhyZTTpQPa1fXvm4DQZwBJCoC1mwFh/e5K7a/aYNt5rSzdTlXdR8\na/WIsB8XzMtNN4jm6tcLL9/TtDFiHKaOTbSqHfedb7pRDd+vlPSIIpaQRTDOKGCZz9O0c2TaRRdB\nlf9F48IyzYJBi4n3REL4dLnS1w/GlolZ3ObjvPMdr/i5VLMy2nP/e3p0yQbp/Zzt+Qx83l/SS1HD\n9cqzseALXc+n5RaVGlRbFLAGY5RvmfWdTAvYqFqtBW62D1rbRFkQDwLwRNtushEBbu3NQbCa98+r\nG0lHIJZ/NXWtbLpBNIfqvSoOA0sFi9b7toz7anlylys5Przs24rw9RQyKfkE/lpKmOdHTKpgTQFL\nuBI71hRwOUeqWRpSxt9m598GdfgM6eL+q/ujDc/n62J29LyqDsFyvlwv/Do/0zz8jCdZ2Up3NsbL\n/KLjZxtMBc8mZEkVjKBqgVlTwNIP0fJz7M20mWX3hi75WfU5Igwt/RO9kZ2wIup3ZPgZpQXekp7v\nmgXmWgWMzmdll5tuEMXUrwQsz5P1ahStVs5+0hEOOz/rsQlXRAC+MrSsQVWbHa2FmyPgjUK3lwIu\n5SMKWEuTdVBomavjqziXxsPOSgiamzUxKwO6SJ5Ut7Kcp3TvZVCdMp683GHr2fZZjFtrzwyOgFZT\nxVYdaZay9sxT1jPzNuXIWK8wNFX48G1jAPew6EtAwI5svqHcyXhK1jJPCUfUrkxLQdlXvxrk7mVs\niN6b1MLQc8BHx4cj64l52PmZx5Qv3GBDg28Uykgdk1GW5xFI539lunXsmVQ2UQWspREtweuBtvQD\nqdykaRCWm2jw89MDfEXdcvChMDLREp5auWIWoK80n3Rl5ckdsooKXowFE3sjLNAiZWspYATn+QvF\nbVppIdMg56lVqYgtWLasN+4L4Q0BHGk683CEmocvWPnBt0YqWE2tWtC1ICq7orUj8zXfypaTRf1a\ns5C1sV2Z502Ykmo1Mj6sgdnK+/L69RO+X37dGb58kw4PzATOLWVMohz/y8sQyNOMfye0UHJUASMQ\no4s/Ur9neqlc/jqscLqE9qMdbXb0EpLlfL48yVpWVPKWs535uO1F+EDjwxHI6yq4gLlMyIJjwfcO\nYbDKPJmPIIzKWMpYmsco1VftIwpbrAbUfVvfkWXWCY9oR7ZROfs5o44RZLV0C95RH0QkZz4Xs0Jp\nUv3yckgZyzzuh0Oclzsp56htBPNXOjt/jPkSEQajBswIVGvgK9N4v0ikkShPIk07rzWkhGrNWgcs\n25PHPJ+rb+BjerRVlpRdTsslRVxV3ovP1a0MI5cxXzl2W8qVdG1p0pW9+OKHt8v7YbVNRE8VfH0s\nSZqp4Au7jmnqVeahsp7glOmk5HW1SBhaql7PegG9343BRgDeivud2u3hxlLDEdDycuhYwreoXz7b\nWTzrl0hfVxtVv5nlSly18rIWVPFGHPLhCnzSFb1CzxKSaMKVN87L84mlkVHHA68HXQU+pmqUVspq\ny5Ak7CSMkZpCypf3k+ejsny8V/PD+1pMwP2Foc/3CVRsTw45oWru5vX94qaN/75mQsfHdLn/kofW\nH8snJPFZ10T0jFY9H9TAN+YgwjdOmsLVPk8iXF+7OZIm62o2DN7aG5B5RGHLgx7ytgEJtSatyVda\n+lmkRX3LtIaHL3hpPB2Fj4mda/4QaFFdBGnpV+x6RUTmlpP36hEF6oeU8XKlJWQ1oOuTuvByo9lT\njSRYvdnOCNZovDeqeqPg1ZQw0Ry4GRWshR+Lz5btJ2UfeN2MWVeigK/zs/7n2czoe3UM1AxorZnQ\n1r7SHMh39fw6jyjwMiOaiJ4PaljsES1nRL8cLT8vCVTELAL5EeWrgTxtEVkeWY7U2l7vOtjLilbb\nXLaeBeTIE5US7SGoWrBFdWWTFmhRmxZ4n8dL9VuOi0nlev+rAVFfD8zL8TwJ0rm/ZUhZg7tZR5t0\n5alaoiWUeXoUvqgcGedI7co0YmnyNx9RwVL9Fj/y4mzB2ANxFLr8Pcia/J4zP9NXROfHOLHcLYvf\nQHLTFe0StNqMaRl61lS2Fs6W/Srl4POH5ZIk/qQkBEkLvhLCZNTlFgGxZyaoa5cjbWHtba8IYKup\nqPod1T7K7/DwBaupCPs1uKPyWjmRbu35zI+XqnWpTl/pesjanjSllbOXLan1xVrf2VONOBwRUBGU\nLajKXbK0chHwSrhqKthSwFpaRP2WPKSAuVkgRn2R8JY+L5SbEf0VK1/C1+IpSmciul4+38eEHzOj\nX6DFypWDloORA1MLMXP1bG13qU3WKsdynHgxO/p0ne2ONVPB6CEN5ZhIhy+CqaaIUTlp3TmYWY7U\ncxw4E4Zug/BKAB7RTNRnZverRPg5Y5Yi1vK0crKOLIvSwfN+73+vs6UOUv2ipUX3fH3SFII2P8ag\nX8LdB/Ny3Fc+2WgGQQ2UCLQWfDnMiTDMyWiPRBqBOjKNn8tjdK7lWQq2tIWgK0PRsp5My4SgC1S9\nmwfehlbmdL9t/pKILqeXEr6K+Q3fEztgZUArFe18VvQrpMx9yZ2uuI+MCi7rgmdLkoho8ZAGSwHz\n900CmkA9EumeGOXtaRbildXBSD3vaUlEeEKXZmMgvAKAvSYyajez/KhXmwlDEPVC0JH0iAL2yj2M\nLz16FcWQndUTFwoOSJ4uw33cN68392WDWbZb/srQMxHhSVdES0BKVWpBUqpYouXvTVO6FpxRPzwV\njNqOhHTlTGJkIqxr1kf+5ASviHG4y7YtAJR6/Bp9Zcd0nxl9Pc8VbVk+JCEnZ0ij9bmyzlX4KuU1\nmL5eht6uHP+9ElPYTAU/J2MR0fMhDfx90t4/nq7BmkC+51uW6a6GkfPaCVIjOljncyCAa11LONb6\nGVxPKtcMeLVmPD+R8LN6rE++smCnjdsWCy0FYup1WQdvuIF8ayHqqnFfTaGW8LIWTo48K5iMfDLK\nk5Im8wmkeyYvtFb4GSlZpJrReUb9yv7JcDR6cINcD3xZli2haCJS1wdL0MrxWRQ6jq0NfvnRJm6h\nMHcBrYTzHOb3PaJnk7GI6LkkyQo9y3Si+edNII+fEyiHfGdMrSvHgSOOegO1JsydZ85KIWjNem4n\nGSmvTcCS/jo9/QjVt8LQ2rls3wo/L9p7Tb4iosXkKzRxSk6okiC11K8MWUNgsmO09tgCM9rYA477\nWqDlEEVAbYGvp3o1EBMri6DMz+UxiXLctC0i5bEWauZ5sg46r7UzLQGLTFPdIq1s0nG9PB9n/wxF\nE73Ggy3Qag9M0CZTSRXMzzlYZZhbW0+srUGGk7HQs4IlYC1Ao7JI/WoK2cqTloJ2ZivKlq0qS8eG\nSXdoGwPYM969EWHj5PgvUrvROkTLehHQyr8ucFG962LnK6IlWMvxK01Xv0iVzutpY7rzdiww42M7\n9AxBak26siDbA74ytK2dE0gnkUcij0CeNKRkLKCSkS7VraV2+Wv/tki3IIsu+tF88b2fiOh0IqJ7\noJZOp1fl1/dyORMaPYJQwlXuhCWXF83LvX5vVvia9wuFqMv2lDwMfe/co35RwREFnIGwBXFu0Ruz\nMOMswhdwZp6O1PLgBiut3jYEsLc2N+MDKdxebQRNwtkDtRaClsea0rWAO6snFC8LPxPNJ39okOXH\nHKqyDgemthtWDLKR0LOy5AiB1go3a3UivjLw1cLTxMoQ6eBFKpiIbtGL2YVo8i6Q8kKspWVNPmAh\nonR5nyI3GPyYpZX1wdcz3W/WlKVJWiTmlTYHtdwJC02s4u1o48Q8fF3a1MaWnyqahaGLPVUwf1aw\nBc+oekUQttJXMa/RSKc26TjsxRuzSJdRmcj2k4m34yz+ec1bKtZStlYXXQX82veZSA8/S2De//pg\nRuqX10Hq14O0DGujtFmeDD1H4WmFqMtxWWqEHl0o94KWO2RpfmUeAqwBXQ7cy+tteNo34prySSpf\nIjoz9TtZcC3pUuleQNrVKM+ttGNBWNY9if6dlOPLMo0vTXp29cRDvwboSF8eNB+b1ZYbLVXwPX0e\nbkZwXmxJKcD8CkNflk9JqoGnpZJlPeSHQPmIqXX5OPCaD0mI+OmngjcC8MBn8YbM8h17jmNVc9l7\nhwjYk/5R+PmZB1SBBmY0uxnV8SCLQs859Uvz0HMxCTEJQQ3OBI5lfelDgtCCumxbtofS6AVeDl0J\nW2QIyMXH+fTyC7/1/AJ7BemyLDdwc2CqLl5GtkWi3pWWF3/U10eaFopGG3TItcEItDzcrIGSH8uJ\nVk+IGqCV7czGi1kY+nJR7nSs0DLKl+nyGOVrbUbKFdtehFLfXbVytiMFbEG5JWzc4SV64eSa5j3l\nnAlBm39f6lcLP2tjvMUQmF95y0cRyjq2mr7AOrJfi7+P0DPRQ/0S2eoXwbYmBG2p5qKCySiH+kns\nL0uT0OUwvYALFwLyJ/Edu1xeYdlvLq/8UmwG4qJkpUK2FPPVyCd6qVNNIaNJY1Z9+f7x8gwG5+s9\nDE1EdL5eoQq+u10uUbq7wsuDpPLV1g+jCV0WaGU7i349wtBEtHxAgwZfTeV6EAbvpwvXVmWsWnRD\njtLJUXs79/GzAYB7jcFGn2gUqZ/c/zkCVa+cVk/Lt4618mi7SRB+fuYZKldTr/M0bUOOum0lVVV8\nveY23LDSJGRRuNk7lpO8yKij5dMrj4NXg66ELQpH83T+bHcO3kXa9VH2IsaMLSuvoWb5UcQ3N/6d\n52uREdhZWosKnpfT94mW478ItMWXB1oZukY3AOoDGi7sNkoLNyMIk1JG+tL8aia/RykgR2R1bYja\nCsOsI813pIC5ZbpVym40AQtBGXXfgyU61/wiBbw4no//yq0n738xTLMTpDxf1o5aqE4ps2z7aj/l\nKApf7R8KN19Jf2oSKW0Q6W1K1aso3gJYBF0J28h9+DdX/O1HMC52JhCajqrhiEVuUDVFbIFZSUMP\nbEDbVEq1eU+bh4vljlj3MvMnGCHQ8jaK33ud5Q2ABm0ehiYiPA5svUcWODMhaA3e3cxaD7weJONP\nTsrbigDuEWKu7W7nCVileLRKLXwjPlA+CD8XQ+Hn+zl+AtK8DA5PSzBLv7JcVP0u23/40jbcsP4R\nLSHIYYng7ClfIv/xhQi2om0LvAi6/Cdf+/NHQEYwnoWme8K31PfSpX+kdPm1mNcVac8JWef7EEZ5\ndvB8VvJ8i0lLBfNjTQVHxpIl0LkKRuk8DE1E860p+XOCvRCz97eUle9rLbwtc8v3nIjVc3lRG4R3\nqoC59Vay8iVzXwMnYFnp0RC0lz7z8fjhs7W/WvhZG+PlFwAN2Fp9pGqttmUbnvp92lX8lUqWp0WU\ncTRfg7qmelFZusOXj/Fq4C0/cflTz1zjVF5KRc1AXI5nIO5lkXHgiNI9sTSpyARUeChaquC7q9f3\nMzM7WZsFrc2olqBdrPcFftVxaL41JdqUIwNhme+do3T+3hPpnyE384tsgXXcgxLi7dRDeCUAj5pg\n5Rl/eZXtoBBzpEmrTgS2lg8Ugp61uww/F9OgG1sGZEOzlLHGfmUblvotKrn4Mreb1OCnQdWqq5XT\nQs0efDmwH+ea6uXgRUr3AtK4WeJRs7KdwbN/qAwDcTcIR6I5GgS0i77MA2klFM0f1oAnO+lhYTlp\n6t6Es3RI1EGg1aAt2y5haCJaPif4uUEHLSEr3x/5vloqNgphad1D1NkdseTErEi9LLzrIPytdI20\nZcHXck8w+H7CgjGCoszX8rS2vPqWL+PJR1qY+OXWV7nzGco6mHkaalv6smZHE9FL/WpKl5Q0LY93\nT1O2Mh/5LH6t36wC38vlBd/LdQ7fbx7/eLMlTXZJNo3yviHdJ/+rjUNfro/+ixsK9+YDvefoBoXY\nMc8nUQ59DpE8es2aP7G1wfObPfQd9I95ffuG9rIoz/uBTPZptnsWeMCKadHhLHTeenkedolea1vj\nvja49VZ1q+3dLNOyzxPuqLojXyovhKyde/WD+fLJR0Q2NLXj7NIha+MOqYpln+ZjxK+Zz0Rg2ZEG\nAE/VklMueyz9gnIo5IxUr1S8SAHz9B7GRRIRqWqYqFIJy1AxcoqOS+fQsfzuozwJ4TM9lyWdLtfF\nFpVoj+ZybE2acpcOAaWsqeOIaj7RhehEr4cyPF/345Msu2KVD1Z7z/kHfwHpsj7y1UPlhkRnz7By\n1iLKm5wycxsE4Ik2fSxgug3lbTAVppPv+bBCzV4Y2wxBvx6+IO+IrfCzHL9F6bKuDeZ5+ciSJrSz\n1rOMtukGUrpWqBmpL6SyWkBMOK/AV4ac+TivB94hY8CWsa+QnKRVDsMgtkKgMnogy/DJVwgY8m8p\nx8uzPDkWfD2dH125En9QgzejGY3lWqCVvpZhaw5wLTQ+3yeaiJbjwOV9lRAlWr4f3KJ8iwC9Cyet\nHbFaGhm5wcYniv4qttXfVdYL2iu89NYxYJSugVrkoUcPzt05oV6QjsLHHJZyuZEVykMTrlAbafXL\nL+QS0giYFkS1NK0eb8uAL59oJVWvB96RCti0K9H5hDf7CKlhtGa3GLpgy7LlfdWUrgSNV15Rwdcn\nEM+z7+W9K7FJU6UuAu2rDVsdRzcCIaLlIwrRwxmQgtVg6aXzc/neyvooX1qzekZjtz0AiwD/rh/G\nMLo70v+AGdBeuDkKXwu0ZvsXQuO/xbRxWqx6/WVFWLUud8dCx3K50TL/pX6JCG+6QbSEY+YfCZ+a\n/wi0FUhL+MqQM4frSAXcbCAkXba2dCHMv8PcDwczL8thgcoiWGt5SDU/9pc+XWj2oAa+LhhPjsKT\npu7d42p1DnBvTbFUxy8/WDWXtNIH/ojClwIWm3Ig82CphaaRD68N6bNY6EssnURB6N1FyLSxW09K\n27ECrlW68glJLb4oF2r2QBlN99qzQtDC+OYbSPUiNaulexOrMEyX64OhytWO2eMGJ+0CK4FJ7Fj+\nlWmWyuXHXphaAXMEvhyuWyrgc9SfADHcyMO75vE8ra524Y6qOQ0uj5sA/qCG61nOXL6KEPALlpHt\nJYmWM5rl5h2aOi7taaqZ94eI8CMK5Xss34dsCBm9r6ieZrxbq941FlsXrFFbYRZ0D4sScJRvekEP\nATkCTC9NK2OBdpH32jVGmxGZgSjKlxOrMuZtUKAeP5YeEdESnsU0eEbzyjEKV6N8AumVypeUYwu+\n1kxo9E+rx9NKWU2Ry8sXf12z2dHyPUI3KTzP+yy9zyyaZ6SfLtfXzZ74HqLZykTzm9SMyaEZ6UdL\nl+1qv9Vvna+vMHRy6KrJhsk5S8VvoSH7zV3aSAH3eAGl67XPEO5krfCNhKqTlh3/9cLMxTLrgNFY\nsPTphr3lxhvowowu0OXYChkjRasde6FnWZbalK+nguVLlXkt9gn4hqawxwxFF5Ukw84lLI3gWX4H\nV3EeAUrxK/2zCVrT5T4ZqzyoYT42q81otidH3bu/DDF7m3rc/cXS0a5Ys3HgFsuoYK2Mp4i1dilS\nT3OeVblrPuZQ974T21FXIhYJTWdfkhei5n/Vi464mz4vIUeUU8JnWM9+hjAqg7e3vKjliQhPvrLC\nyQiu/K9Mk/WkLwLHKPTM6ykWhW9UAZNxzg1tSyC7idJ4SFoNTwMQQwjzcdirku5d3OXMZl4W5V0U\nX+X384Dz+UrP5wXL7Sk1oKIwtBdiluFjOd4r61rp87d2/ozgp6GnI2nviwY/FL5Hx7JOLYQ/mL0x\n6rWoXUt2AmuNaEeUrQfcdNsMZmf8zUdhYxlORmFmLRRnqdmXD3l+WdSFs6f55CuimGq14KupX2LH\nUlVbbSMlTFj9WvCNhHyRCo5MyAqP61ZY+XXJh0OU5ww/ISyhOysMztFnI9VssRPI49Dgvk7imIHi\nHmV5LUl6gRMv/7HGe19dw+oYbU3JZ1VH0/nNAbdy0w2fjuRZRP1qdbJ5VZZRrVpZr1ORNvqMKW8w\nBryX9cHclC9o79sTDb6ams6OAT9M7owjoSvDxjI9cpzZvYqXR8Dmdefh58/z8LMGzStIR2FjS8ly\n0KJ8WU7261HWg28xDt+LckziXP5DL4toCW5ZhvcFtUOBY94naWU3r0Un5PtJIp1AHoF66HPWbsi0\ndtjxxPydLvOZy0T6mK01X2JxMzn7bSyPz+ImOJI+a/MxzHRW5n6Y140ekTrLhyZGovVD1sqMzAvo\nZ29kEpa0nQp3T/22+HDLz/d/Lsa3n/TGc3n6y33sAgLHcEFdlI7Kn9gVfJIXXCJdyaKLMa8ny5Y8\nDdISzhda+gzCV4LWC0Uj8PJuEciXW1hm6pZ83l95TKzuLF+8biIxKUu+l/z9LCZvcNDnq0UkeBq6\nmdL+PsqcrzR7yMf8+3xRgWqBVttwBrXBLZuuTgazJmJZFrmOtUL7LP5VOcnWW1vY+bYTAPe6+0BL\nkLyynawGstF61hiwVkW5E/bGc2X6/Ny+IHhLl6yLD5ywdTHCz+hv5AKs5ck0pOBI5Mt0IrhRxSyf\nYvAtx/wvgjJPt/6RqKelE9n90tIQhBf7RhdDNzqWCtY+b5RmfTf4X+Sf6DHj3gadHsVZftf1mc7L\n30wkfZ4m1tGz9f/qvtDq3BHSrylZcFv5XbXT1kBtb39lAI96w6xPtbFN9KXJKNxaMGdMmYD1yvZ/\nzDLdK5MJv3lrjVH4eWbogmuBlJ9HL9paOQvELJ3v8aypXxSuzcCXn1vdQaFhWTaytInAsexn2CwV\nzBvRGs7eTGk++Tnrx3SZ/3y0YRtpFmi1OtpcCqRkZbqmdtUlgcpckLBFoJopX20DHhW7A1sRwCPg\nOzLuD4pGYOzlZSZhRceAhWk7YGkTsOZN+3fk3mxmlI7AjNo3Zz8TOObn3oXWCmnKNA3EUv2y+nyb\nSQTfiziOwFcqVQJpKJSM8rS6KK2URa+BRH5IBUtDNz3oc4p+ZrI8grN2oyWYxoc/lkvkLix9fuPI\nYYyjPRcIZQ32LK1rSQAAIABJREFU1k2AekPQOgbshauj0bsWEKfr8gq9JupKP1qn2hi0kxD0Wrby\nU5DW9OU8gGHZJL7I3OvEwmBeiBrV0yZszZQDmv1c/krVql28LWVlqSmZpoQqeTpXv0R2GFobT+XH\nHHpEPih599A/6Vu+HKSyNSXsjQc/09jNyLMyunGx3mfl/VbLeX+LGQAv48DnK54zcT/2fyvFtAlb\n0TkYyFRgi/X+z/kgbIOeaquZZFVzTes2HrzTeULCdgBg+UZpkBwVvu4c2rAmMGTUr9eG8yX3dsKS\nx/dz/OP3drC6d2OpErJhbDn+OzNDsbgKOHLRtvzIkClQYtbEKy0EjZSx7IoHRw2yGpyRD55mKWHe\nBlLEzzz5vnAVbIX0NeVqhZq1PPTXAb33nGAiHai8vDzWFa6MUAUiQ4sb5+Vv9ny+4mWIgevGonwm\nfc2yzdazsXo2rQTgrR+W/DbuhmaWCQs9TM6ALmaBNgJd6SO7XKmcZ8d/J0kO7WJNtLywygu+Fmou\nf7U0TQE/8qX69cxSkURLCJJy7kFXS9eUL0+zIGwp4gurI5/8NHshFnhlOS0Nhaa1Gyfthg3kRcaB\nI8uUIBiNdNROOcZha3wDvHTufDmt4S6tbDbvMNV2oIB7mzflPPBNaZ4MlfDXY6xECTHxkJQ203lR\nJ3FXzn1b6XFIP8ozBfI0pH7kuaeM+YU+o4BlGZEfVb/oXeIgjsK3nEfC0KSU56rbm3jlhZs94888\nRjcxixdA4q8F2ojSJZEn64K+nC46FOfpy+84qufNqJbp8thqY1YmMgacNW8uS039JvukHHtl92cr\nAHjfb4BqI+/oeoR2FDudL/pifK2OA1o8O/OSSpdlPDNfgqZ0Sh6q6120IxdscPHOqF8iHWBIDWvw\nlQbuCcw8bTa2dezdQCBFL98bGIbWOinLRULTqHPoWNYReXI9cOQmFOVHbnJrrAbMwsG2Zd+sWu6/\n2uYNKuAVP70eX76WiQjeLOhZHfwjjO52hcpm/EWWaWjLLGbn/KptqRmkngica3XQxVu7KEtAP8rJ\n2b2e+tXGgC0FGhkD5qaFo5Eilm1KBS77gPrupS/C0FqHiPThAi/ULOtbSleeizy+6YtcDicnYlnL\n7bhFlg5pM6ctH94cDlUNv5zO/2ppqI527rWVrZcyC4L7pP5gAHt3Bft8U1azHi8/OQkr7jYO7poy\nZqjbEsjWeF7kgq7V1epZ/okWuz95ZoWjiTD4EAit8LKVznmmgdwKRWs3EtIWfXmEoRcbc3jDBlYj\nqLyndK0Xysd/xTBIZC3usy7p+6ZnQVoFZvnbLxOyel9us/60iandN+iwbGRENu/7DSpgzTYMdbcq\n5ZovcqJO7TiTnDgVWdKE0qNjx4sJWNwiapdoCc1o/eSFXJt8JWHnzRi2ZhrzblgTsKRpQLRmWaN2\ntb4RSEevE4WhnxYBo/U5os9MKyvbc/IyG3JoE7GkRTf2iJZx+9V7LDirdIcNs60p2sYzZSCA9zb2\nmxm472S9x0+cMt4a4Naxp3lX8OxMLV2WQcdEQnlYCrRGSXmgrbmQlyJXH1iaRdSnNG+pkTzn9aR/\nS2kjQGdfn9ygZNEBdI6iENGIhqeeg30owyGRzTOQxcrEx3Mj/qRpKyNCKyve/ZhusZ48yPkaBOD3\nuW3Y06K7wWh1IuUybQS2m2tRui0TS/j4WPTisrhmWBdMK89L1wypLMVPJvxMlJuEVY4tQCrdWuRr\nqlmDMDq2YCzzYfmHw5v1nmbvETUoe1GQTN7DNFhGZ0K/zpeNReZfaP5meafsG/jsQAzKkfw3bT1e\n3CeKMnBnIejM3UPkwQsDlO4bWJrcOv6baisYclvm+1CfWebi6YUm5UX7AtKcNso610hXLOhG1W8G\nvmg8WJb1FKylgi3TQulmZ7RIh5WG5H3xpbWD2lXy5DyE7EzomrW71uM8m5Vxj92wotayE9YHs50B\neOfWvF1kl16Y/rwlSNaPtTVE3RqWW8yA1szqpgfdqBnl4d7G5CtAzVpgJ/14vrywdm3bZtnoe5+P\nsMbrWSCubbfCeg4DfTx7f5HVA8CeWbP03sAdXu2dc+YOvNaafUYunJnxwgi8A/C1QJa51kdnQVtt\nWn3R1hdbb4mmrj0r0YJZ1CDy8fPohBfZaA1nP8xaiiQtsy64powVmnYVtTY0NXoi1mFhOwA8ykZN\nYNjBj6D2UW1Vpl2wMxNteJkateQVT17otXW60eaj8NXys8OjmTJam0SkrwdG59HGIj4b7/NiW7fm\nGslA1wpN78Z2cF1ax/q+UBfA0zT90DRN/9M0TT8xTdOfmqbpt3XtwWFdTJ3tuEMzVfmI0GCv0CZa\ndtTp3qK2TE2Y20r3dsTiJse3vXuiZ/oaX9XonIHO4efsZhyt1gTkdwVN/mL2tgJHt4gCvhDRb7/d\nbn8jEf0aIvoXp2n6m8Z2aw0b9O3byZe6ejaksJoLR+aisEoYeoD/FvBGzAJjD0uN4SbKWpuMmNb6\nde31efA1wGhP8rdorTfnW1zTdnIdHW0ugG+325+73W5//HH8l4joJ4joB0d3bPd3NGvvkdrxC2k/\n9oznza9qkT1oh4TIooolshSFp5e/V5AW6RYo6y3VscpHIJuZyWy1lWmnxbQ2zaVIxdCQQ/brlR1z\nNmz5DG37XRqlertbzXXnTawR3j/FU2PA0zT9UiL6W4noD4O870zT9EenafqjRD/Xp3dP633/T9R8\niRkhIaJhs0a70gkeL8vZX2BU1/JXbdE10bJp7+JR/p5AWqRboKy8Vfz0cFn+euXdNhvq1rbTYlof\np8hnegJlsl8v7rvxq3kRDrzfhyy/W6u57vS4pg23TRsPWRjA0zR9HxH9fiL6sdvttiDs7Xb77u12\n++Hb7fbDRL+gZx/flu3kM79e6378FkBHXFCagb3/m9ywWXu19YAt9zHyaXJVH8leWMX6cT3rl8c3\nA1ciokvzncdhgywE4GmaPtEdvv/p7Xb7L8d2qdjxqWfsc+uPTLGaC40HVVN1jwBqy7ILRUF9Os//\n1rpvLRMFs1auBexSjRelj/KH2ypP2/HtbYF56w4Ylu5by+DMdhaZBT0R0Y8T0U/cbrffNb5L78RG\nfbl3+KPRgNpF3daOQaGmow+xWOHiLcGX2nnU8VVjxaemwi2AR0PrJWR/RqFl7dyzyPp8a2gi0J4X\nao7YMnwd/23w9mW9IUM+NbbD69JbsIgC/ruJ6J8hor9/mqY/8fj3o4P7tS9rHQep8b2C1V5YsvW0\n8umLR+OFFNatHYvkSYmXIVWiZXKzVaueBUgL9si0tyTT90U/shED/vmcQJpVp9FuzM/lZI/7lu9w\ny02oLMNhbSlqqx4R0fWivCEHLBus75vnfmVvt9sfove4B1jULnR/l8r73vIjL756GfB3uZxme0Ff\n6TSbmXylszo7k5dd1ju5sz4t36H2z6fX0o8z6bNWT6T/Ds4ir5S16iTbmEDfCpguNIdUpMlP9Aqa\n8WPLysfO/Zd2vxHnqB7PjwCem6Z6NVNvUKKT5twGAv4tpb1iuHo3irXGNgf3ivtZr2Q72wkr9ZCz\nx99eu9sGbfMvoW/XQePBqT4krmqhi1JmqURNeNrLQzOekRoG52h8FJW3mJCBJFK90qfnp+XhnaG6\n1uzkyIz06HBCxpg/ORchunKg5EdWCGRmVb8pcFcs6fuoNgjA7+9ORbXa6fjZ/QbNsv6VyBqDWo4r\n4TCbVdYLwXljYLzNxf2DpWQiKsdTSDzMKesrVCyqDi1FipiEZGbsVU50ahnWlmCP3hCUOvIGg7/l\noSVIsgHvBsj7LL1hCg38DTCP/gYsy4wRW78ddfXDxQli8m1aD3A22jcUZeBABby3mWi1z5wBNnIN\nnLW3bdKfBVKvrGfa2FRkzMoa45ot/bCuW5mJNjxNXsgRZSxFDfr06TwPs1rvJArfetBDcETjusiv\nTOfg11S1dTOQDT8/+3Jevk+zTkjjQJVwPoFy0qd19xAMTV/POhSvdA4oYfziaidV1czZcFdH9FgD\n/OaBbT3mZKztLATdYhsCv3VTjuhDApzyNaFnTxnPLxYY6JqPkq4rA/2CckMwjISaTxSDqmeBi7aE\nCYebpQ5lHe+Yn2sw5V3TVDFaIqQtG4qoX81mdU/KxCu0+Un2s/LqRcLcII//jCRotTDyazKWD92o\nZWCcDlFvtIXr24J11XO/UqUHA9jrzJv6NPrbwFnUHMbe2FPWes745CZnnM4sAmJPFWvlkTIu9ZV2\nSxj10zkXhpZQBq5ncDzTEpayOW3Ml+dF4fvJOJY3EegG45Moz+15w4Lg591wRWHr3TgFlbHchCM6\nM1la5LfSMgQEfV9OdEE349kbfVm3Ns3zm6qzZ2bkgf2OFPAA67HdZEsYOjMuE1S/kbt5eczLRseq\n5PKMK51ndZdKm51HlIx14bbqRMKZ3jiiEYbmoNLgNKtHc7BqkEUQ1sLLCLokyntA9tR4Rs+V8DOR\nswUlCg2jmyNPnsvPyPpuCJ8tS5C4Gka/JZkeUbHexCzL36sDzqeVeTpUS/hZttP9qVSRJ3Hva2h0\nBQBv+RyXnTbTAmunzPVynt39Ru7WFwAMKGYNqDIdt2eMgT1k0qXAUrso87+yjFVH86OlaRO1zneY\nZNYAE+khaQS8Us4bs9VCzjxPawuBHR0j6Fo3Gp9oGX6e+OclPw/rJgulnUGad+PEzQA0vwHUfhs1\nytZK92AcuTle+NRuyiM39TXzTqLjyXsWsab1X3HzDhVwz+nFlU2v9QVLtGMpUL1OVO3iyz+aHZoJ\nvc0sAjrtAhyVaxE1DXzJMHRkGdCsfqCMzPfGfxGUvVC0JyxLWU3NWwbDz9Z57WfmfXZRZSzM++7X\nbr/afXjIg26N9Qg1d7WOE2o3tncI4GINM9t6f7lGP+XoscRAznjUliREJlZp51qaTNdC1s8uizv6\neQj6/rU0J2JFL7wy/OyFrjNh6PM8pIpmQyNgIRVshaI1JczrWUBE4NXgi2Y9a9CNqF8efl5UlmpW\ni0JEP2tNYVufpfi8y0/oej65N5Za+v37vAQzT28d7gmDOzMxc5R22Q2s92crAbhmgw2i+Sc36o3s\nvGbZUsGRMAyqL9MCExesSVhaegTM0ZnQqC2siOf+yrjbVbsYE+njwLJcFs5am1oYuiQz2DzPKTYT\n2oOwBkikctEYsFae9w/5tiaIpceAT48bFQTa7A2QB1mZFlXGzPgELD7Oah0j82dGz3+j2s1uNmp0\nuZzwNpRoTknkehOxHnNgVgV1z8bq2bQDBbzmu94R4jWz/ay81rtLZaJFZKLHQoEqP3JtiZKXLlWA\nbKdczJ7ncmA1Ejb0LsiemtKUMYIFgsnDvL2ONRhrECblXIMrerkI0sgfV9u8r7Lf2mtx1a92IxO9\nAYpCVr5o+R1RbtyiE7CsSE92bDi6sQ26OV4o5NpNOLIWVcq99kFoK7hrWxHAIxRsq8/GD7EmZJNV\nwZE7VWZX5e5XrunVLhhaaFgLmWnjyi//rwsKB27kQnM5zS+KswsnumCXMhpc0QXYKy/9gwt4mYzF\noaOpYO5mAa5HHoIrUqy8rDWOrAGbCMO4/JXw1fqO4Pssy9Wv7Jx8Mdpn4d1hyPLcP/oM+bm4Gbie\nXzeAy5n8OJyMZvyj3w1Pt6JNWnoI7izypW7CkbymmOleXo2l/aFIadRJNOI6BvgrK+BRYeT+s9Nm\nrtE/mV/TtZayqJ4cA774Y0laenR50Ssdg1a2j28C5heyy+k0X4dpXWgllEmUsy78SDFZ6kvrx3k+\nI9qDMFKR6HiLEDS6GZDHkRA0VL/8PUWAJZq/59rNl7yRQtELSxkDWN/OtNiAg2h5o+oNzWgRHm7o\n5lcLaVtLmub9UD6RcjNeG7Gzlh2ha9+wiah73d64jS87CEETvZdwQthWmMwAF+ILi48Naz96HbTZ\ntlEbV3FRNFUMT7MULBl5llqy4M6sNQTNjz+Jv0gh8+5p3UaQ9vzxvsp+o9eCQs8L9Ys6J9PkMbrp\nQXWsMkThGfJy/JebF2ZGpoWLpU8vXVu6BNMv574PZOl5ef5gl3rPdgJgyzJz4DPhh85qvFYFR+4g\nUZlFGAmP88hxIak6y3E2HR3P2gXhueV42fwCMlMPbBz4hpRoMaScZDqvZ4U5Sxovp7UNFFkkFM27\nh0LQSIGSSEeKNaqMCfiQ/sk4ln0PWUT9Wu8xgTre0IEGcEUZX06viX+XEx4uKef3v8swM/qua+mR\nMeHs0qXQul9rEpanXr1Q9ah5LmoD2Wt47whsu7+dAnjtqeOdwhstX+BOExs+X07PH6KcCV3749cm\nnXgXGQxv3Id5CPtxfP7WfFcsBEmiOQyRYrLUlKaevboapIlCs6KLedDjUCZagtgCciQELctkQ9Bh\n9SvfLy1ddtb6TMjI02Ar653m8wz4jZ8MJ0fCzGiIRZq3RCmajmwW+Wp5EEMkP1pWExDasF6VRXbB\nqrVxsn0DALfAtdcdT+ANrf1SRMZOvO5Elxst7mKxJtEU62UGzVz6vBs+aGeznNkFRZ0VzWahXtCF\nVIOtVEhWqFlTZujCj+qAevJRezIkrUHsLNI5qC0QI8CifxqcZRkS5dGx9GfCV0YsinmRiOhnROJv\nRBkDKN8nX90vh3KylK9m52BGN7vFT3ZM2UqftcMiXdfL6TUBq0TGojf/0bHfqHVnV4QBpdEML7Id\n7SMS8RV7E7vQ2O509h9xh8rwNJmv+Szp/C+JNGHXy5nO5ytdLyc6na50oROd6PrKpxOd6PL4m08v\nF4KTSC8XmFLmTNdn3ZefV3+ujxL3Opd5+vmRfvlMtzPRVG5ITuw9KBfVK3hvruwv0fw3dmV/z+DY\n+2zQZ/GwiZSvxhUlvuwbVo8f9zJtprQ10Use87QwfOWxBCaJPFmOQB3Nf8Sv8DMXjThShG4gSzov\nO4f1HMyvdD10jdK1tmQ7zSFora4GXw/Wux3v9Tq2XgR2IwB/Q/PLwZq+OrYNLr6wTA2Es/cLz3on\n+kxEp/OVLpcTnc4SonP4nRkVoulLOMdAS1TAvIR2KXNi/i+nE50uV7qeic4SphyqCIQc1Cdavuc8\nj7+HRPi9l+dXpdzDVAjzvj8sAtsL4W+tlo5MtmGBt5zL4zB8eaNa1ACF8PmxBVj5otBf6YvY8aNc\nCT/fhzuWYeaiMqMqt5xrcLWWLmnpWIELhfwcdmLp3kMYpNWAsyd8w3V6kX37XbJ2pIAt8yimlan1\nrRTjlmm6tvtI6SJ4P/9Oz7zr5USn8wOG1xOdThyMc4VbftSR9Bcsy4XgGgZtUbtIHfMLzyy9PJzh\n8pk+IXBKpcvVLPpr5aELPH+f+bkzvEaEIfzN5Q4qTQ17QM0AF5k221k7R8ch5csdIvgiRYvKa2UR\nnLVhB+SXpZe1v89d2AT8LKWqLVeSflAZXSEv09H4rxzCKfb5cnrJegTEjPrVzlGdHlyEPqw5OrzC\nCKCiDvVrZ6eTsIj6vpkNvqJjwZExkpoveqM974wJP6XIW6PL071ZmdbFR5vIhfo2S2djwXBvaCJd\n5WTywIX5afyiTqTDhOcLQztDaROeJPhkWe5ejgUji8yC9uDLfcnNNqBJGEtDihYpVk/hZvKAfxm1\nRd/lebr+fY6CWWsPlUFjzYsy13KTGrgr9Cxyjaq9PtXOq3nHtqEC7hmGRn4jsrNzH6yxWUvBat3T\n6lrKuISdztfFOHAxTX1y5SvT+RgyV8koPH3vGgslM9XMj5HilmFoors6uZ4/z8PQ8gJrhaat950r\nUZ7ufXWsPKaQiwq+XJfQulzxt08LSdeqX+krqoJlnlS+RMlxX3ku1SrKJ9IVLpF/o8XriRd9O9Nz\n8tV97HcJTQumaGcrC8xy6VJkTFlLX9wggJUPiwlY3hhwZHxXM6scAm8axrJwVFSVetYS1e3uCjYE\nMLJIOHgUuG90v1x2tMjLyY4BmyHoV95nMf5brGYcmMNSghaFp+d+5qFqPulKg/bLN0s/f4sul890\npsdkLPn6UWga/eXHMpSMwtSyDs9HEAdmjgcH6hf7RPlYDvqlSEXL07SQMxHBPZ6r4IsiD0gFS3hK\nNRv5x+sJIPMnHxXjY74aTGVYOgLmSDg5O17Mbw5mdjnRYgesDFyjoWfNTyZUfWH/qm3NaGnfMPfO\nADzCNGBbUtROdvO8cpk0IhvIXvMPEF+vJ6ITV6b+TGdtRvNcDWM1fc+7PutzX1IRL9NfKpiI9MlY\nmgqW75l875BqLuWIlmDmdYiV0coCK7d26kcYhHDWUHtRBczBS7Qc8yWqhC8CpVSr2rGV5pVnUOaT\nr4r6tWBaYKdBVoKZCKtWXJ//ZnS1jdKJlAlYGfMAa+VpZYaEmyP7M0vF22LjlfEgAN/o9QZYatVT\nszzfopb0M0olg+aLWe+kFwb1QtGpEPRDb5XQ8/ny+KuHjFuWDhWf93KvTkvQzn3NJ2ZxFfxSx/fJ\nWMVvWZIUUsHlvZGAvijnF8JA56Yp4iQ4I2pYKl3+kVtpSCHXKuASbiZiavcsQs6lYg18I1DWYEri\nWFO6Mo3llZ2v+IMXMHTtvc01YHMVzeHN/Zbypb4bZkZtifHf2QMYrDCz9lfWRedR5dzFRu0BPWoG\ndPEb6/cKCjgLw0qpl6pbCWgLuJ5a9SAszyOhaSMETZcTyXFgIqLTCS//wWO2d2fa0qFXngbt5brh\ne17xu/TF275wyCMVTOCvVME8LTreK6GKVC5aWxy0AuHziejy8HM+E124rw6KGP0SvLXAMtxc+kak\nLDXqCV8Ues7CWWuf9ZmrXyILuMvvLAerDFXbYWlf5c7Lz8FshrTl+O/lTHD8l0hPs8r2gq+nikO/\nJa1QLVAzP+D+4ekdz4LubSvMhC5l+d9oeXQeaRfe5d5/fOVuODI70r5g4DEpfoxmNC/HsPT6qO35\nhez8WpLEX06F+nnmyWNUDuVznxkFyHzzHbOkwiSi2faVRHOlemZpcga0YA0sh3yU4/NpCd9P5wr4\nctPK8U7LdOSDlyVRTn7WKI19rmjfZyIMx8hTiqK/m9olTZotws+eAkZWC9XotW5IODpj0WcErLlL\n493QTfIAsxRnJgwdrVMsMtjKfYGJWK2CnAJdQKFRmX8Wf5HfgKExWzm7OTaj+d64NaOZq1srjC2V\nhhoCP5VQ+n1G9POTQhdtmYaUMXoPtXIov9EmuoPt5l0XHm1ak7D410KmS/sEjlG4uZzD8d7iXLvp\nKPlfOuUy6drNTlT9nl+PHUQbb8zHav3w8avscrZ0VuUu83wwywetLLafRBYNPVvDq9FyGngvRh40\nWTCqRFuo31MZ67YSgInaIDzKWuha0YwVYpZpWtfCIegzyXFgIpptSxkB7b0Ze+kQ8kUkZjFTCTPr\nm3rIMen5mPIjTY4F3wvqNyfWNpS8HDnlUH4nk+PCn873DTvguQHjyC9oppbZ9dsFL5Gp6BfgI4rB\nVwOnpZq9crwPLO0FX3puvPEKJesTsfgxgiyaZCXTZZ0eS5qKwQiXBVov1Bwpi0zzYVkaxtL4ryDq\npAaYY8aMVwQwUZty1dJLWgTwVpkkjOVnjRQrcp+FMCn1ZDoCkBgHJqLnrlhR0BLNoalBu9QvhsaL\niebjv/dzfTLX6dk+3p6SiF67Y/GLM38vT0r6q0Nz08oV+zYRfQXSI8Y/H3E+PY4tEMu0M9FzDDnU\nvLhOS+iWNBW85RidW9C04GtB2gOsBn6ZR+wvzcd+ieYwjKhfOQ4sfcn6xfezfQDmYpklTVf05LPZ\nVpTgbxao2bJdjU9kisyAbrFtoLwygHuat7woE9pOKHArrEwsz+I5gimJNAT0SGj66eO+LWVZD1zu\nkk9nfRtIBFoiGRa+wguGVef+0pZriuUNgLU95b2NuQqehaK9LSf5+2ZB1gtBW+maFThcRBqAJwIx\nEYaxlY7KcZPQJQqCt/Rdwq4Gvt6x5Uemke0non6JEACdCVCEJm8tjz0wyzqyHSv8vBj/RaDVIKqV\n80LQvJ2s2k1ZhP69J2BlQ971tgGANdiNClF3CjNr4K2tkw1BZyBc2hRhaCJaPB1Jm518d61fALJw\nrlXB/Ph5YeKPKkTLkkgcZyAr1fGZdMVrAZorcxQtcS5EBcRojFhCdzGDWjYH+imh+2yz9E9GDhCM\nJZB7wffboG4EzkbaC77Ldb+ZpUNS/aKx3yhkNTCjdqDfy2m5/IiP/1oKWMsnpwzyQ0reRfzrbgiM\nMk2OB/eC6Zt+HGEEqJ3AmfbdeSIWr6/BU2tLAhxBVvP/THuFoYtdzyei0wt83tIhbalSyUNjZvP6\nMn2ucC048+OyLOlK5ycMrufPRMQUHn8/UVp5b14Nzk1+Pqi+rAeG4FRDyrekKWAu30YOY76EqeQR\n4ZC1NBW6pS/8HEG2pMu0LHwlaLUQs0zPKOPzfMvJMvFqCdU4ZIkwTMtxMVT/nr4EM68j20Hql8N3\nEX72FHAkXStjgTRTrhrK2S0oW32OfWLSG1yGFHljM29+9FvTaJkfQuRHgcqVtKfP+XKkiMWWGi3z\nssdyuVJsGRTIe4znzR7UII95WkkvLhBYJHzkhZ1oCV2tHQ9UvIz0c1rWnc4vaJYlQ+Uf0WvJUPmH\nyhUfk+xzsA+L90K+pqjytd4j9J7L90z2h2jZJ6LZlpPoiUdEL/VajnmZcszB/ErH9bXfkbXDlQVm\nzWD4uVg0wmqVjZapvXSGQByB4MBr98L6QRnd269kLcuLZPki91onYiVM+7ylikHvcEbBEjifhZlF\nmwufZyK2EQd/OENkB6u7S/xowWJySdLL17y+TM8ug7q/rIAK5u8RP7ZC0ShfszIRi1/4uZXPA/mT\n349IXkln6nkCZd0nFP3/7Z1NqC1detf/9e7d770BCUHMIKZDIihiCNgBCYFMJGTQJiFOFeJI6IlC\nRCXoSBw4cCKZZNKoKESU4AdIQCRgmiBotKMxJLRCEMUYoRUJGqTv+57zloPaa++nnno+11r1cc6p\nP1xO1Vpx+L3lAAAgAElEQVTP+tj7nFu//X/Wqtqlr6KLUK7BuBzzcg7IKHzpuRbjuWNeJqSupS9c\nkNxvkbQOq7lfbe1Xuv+dp5h5f8vx52CW0s9Fi/SzlWqOpqAtE0BjVksvR7+CsFaZTyfraUcAZ1UD\nzhU2YllpyVJvgVOr0+IBv70L5wtwv33n9h/8loaWb0Oag3F57+/jP7/2HGgtxQw8Ut92uvlRNt/o\ndZm3ucC+N5geS+81Fd/hXKAn6T1rL0AypBLPP0RpfdG4MrfoeJJrpz9LDC/XwMvPuTP14KuloKVy\nLdaAvXTPr7apKrMO6639Tn1fFudFkpsOg/n5Mnv4hph+LpJS0Va5FufBmNdpfaRhHbHzkht9YnW1\nUI2sMbdpZwB70JMIVSPPIfNxlHVgVE5HgiIf2gM1by/9hNAH2Q1dxF2wBFruWul6MYfzVP9wwfzc\nc9h0E5b2cI6p7RLEAPR7g+8v+N7RdPwNVg4hFlhCtkUFDk/KOR1fGpPCmMdobWi9Vma5YAm0dO40\nhoOQtnnH2r8T2mnH79iYViwr03Y9c/drQ1Zzu/LjKCXIe+5XcuMSmPnmqwd8Wfo564C9Oi3Gquvm\njD8NHFtlXv26a7yeVgRwLTy32qCl9dGhb6+LaAoaTlzYAV+B6/PslqTyDUnlnmBAd61zaOouGJjD\nlJ5f8HTr48LK5Z3TUsqaflED1X1d75aKvoLsip4akGDyXrXc0xtV+T1YwNQ+SGllwNIdR/9kJeDS\nYw5mCbTauQfHKHB5uQRZrY/bTz/1vExFL4/lh2PwOFpeju0Utdw3ILvpUg5g8ehJMf38aOQ7Xc/h\nWu1rU9Dd09e9PiV7/fRfi14RwEDMNmZcsLVuzF2uRcEO68Ce45AAKvXB66S3zHPH/CLNy6/AYzf0\n/BuS9LXc+fcBTz/nLvgxhYczlcBd+pYA/8ziJcCXcaU16/s5SUUDwPU9MBS48t9Vr8dNXiEDnLpb\nz+GWc8nhWulpOvfo/3kJuPxYSkF76WepLAPf97e2HL7S7UjcPdMYAl8p9Uz/fjhktdQzUKCog1lq\nr23KKudT2yW0yzHtm6afAcxvPdK++9dywBJUJSBacZaaeRhd/13zCxiyfde96JUBXNQrlVzT50oP\n5MhIgySv06DLzzXYan3e0tBF9BuSLpfY9wFP3S4f0jG1mz9AQ9vEVcTT3HQT1lRfuQZ9v7/mM/l7\ng6l7lN63UnaBLB7PH/DRImtcr110DjyOA5aWcajSMsn18vOM8/XG4POhfWB+LD1wA5hvrvJSvcv0\n8HXRB48r4tmZzLjlnPbNyxdPviqKOF2pXKrLlPF6zymHOeVNMNIu07aH+81rIwADOUe6Bgg7pZaL\nsl3Vulh+ztuVei89XVJWwCINXf6vL8E4Txt7KWpg6XSXrth2waWPKXbpgvmxtCsawHw9+NFw7lqz\nKWhp41UNNGl7K+WsxXK3DKUNWEyRl4bmQJXKaLkG1Ah8i6sF7I1WXhr69tN+4IbseLU1YWDuQjXH\nrLlfCeDerupyzsv55qupg5v7lb56MJJ+1uoiKWhpPKufKmnQyzyAg5/3cNBc9S90QwAD9RDMtos+\nVcuiorARK6pI5t2K8UALck7jpdTmvfz2yH/lCxqA4oBlmM4dKE9dy06X1j3Ol31E1pOl9bB5/x/j\n46mzqVxbD+bvbe3/AArB0g9PJUOo11LJVhoakFPRIOfRDwLaa5fcLi+3XCoHJLAE6HtW7gH3vVBu\npKk/fQfxgRscrD487c1agLTZSt6gxevo+TLNvYS2++SrKSjmgDW48j6ktrzcArOnKjhvuVnKg3lR\n8yeMrQEM6DCNut7IOrA3ltdnoF3EcUhApPVSP1pbaVqSewKLXVywL6BPxlq6YC1tvHTBPI6nzfi3\nIEmbsPixDtqre0xvTcJ74ONvTP9x0vfHRso9FWjwC58GYsnhepCm8/OuBREXLEGX/9TAW86jrteL\ni8CX/ORPu6K7nj/gYwZj+9aiDJi1uOlXYvcPyHAWy7Vbj6R7fyMOuMa9RsCZgasYx9d/tU8M1i1G\n26zf9tAOAI6q525oCdA1z6RuEDfbgDx16SW1OODZ8fyWJOqCASy+JeleDvrFCA8HOw39SDXzzVEc\noFoKOwba5YcBfjxz25f5pqzFb5S7VG3jVSnPpJr570Iq5yDmMZYrlqBb44DpuQXdUs/BW44liAJ9\n4au56ety09WHy5TT9kD6Ae9EOE5t48975sAtY2sOl/av9Tkr1zZfFUVcbdQBa2URiFtttX5E1QJR\ns/CZ24+2c7/AbgCuccFR2Ea08v3AkRgepwGal1sOGAj0cTtgLhiYb6aamkr39C4d7FR3Yec8Ze2n\noqfyCGgfY38A8A6f3F4yuwVK+takVmkQ5Y6X6qK0k/qgztdyx6UthPG0efM5SXUaZKUyC7Zg5xp8\n35E+JIdL14cpfInzfboAn7xfOl+eQo6s+3oOV3OwUh+0nh4v2xrp7Nvar/i1g0+D7GQt0HqxWhup\nrRXXrMj9vxZgJfWabL8XfWAH3Ko1vns4KQuK0lASYDUIa2CWxpw5svnXFAKYrQXrtxTJD+Ao57Su\nnNN2VNrTs3jKWj623Pl8HPFbk+4FkF2jVp6NiarnTmpLfL4SdOkxd7xSmeV0wc41J8vnJjlprW/g\nvulqOn64R+DhQgHZgZYYno3hQORxVh+eMy7ttGUbLQM0PXiDvGgqD7b02IOn5VJ78mu/rC+TNZH1\n1513BHAEcJE0cemn9zqwI+v3JgGWlnspaK8PD8L8fOGmruDPhwZwXwvWbhuajrnTlV1qEU9LT9O5\niHVaKvoTvMPkdfVNXVJ/dGf0bFPWYkYVmn2oMeqpYwU7j7hfXl7aQTjPzF069hxv+Sm53NLec720\nX+k+30g6+h2/3egjfHj3WOf9MG3Hm51TqGqp5+iasLW2S8dtccZ05zN1v7MHb2hOlqd7tRQylHip\n3HLRXmxY2fVfSS3Q3P5LH3Z2wBIcrVuSWlyptQ7M+6VjNuyG9qSliWkdSAxIHHe2HAhS3eznZXZL\nUhF3wYDsZq26xxSWqWcL5loqmtblPgCQndFkU1YIwldMtyhdyHFUEpx5GloCsQZdWg7WDsJY2pz4\nfKQ6ywFrQLYcsFbvuWMpHX075vC1djxb6eWa1PPyeAlRWqY54wjgAZDHThL3y7920Eo9S1COpJ8z\nKWirD+mfKR5Qm14u52veftSulQBsPcmklyLrxdHbkaS2hrwQ6Y9McjC8Pw5QbUzNAUM5X4B5fktS\nEd0RbbtgfU13PuV5qpjugp7a6OvIGmjpmi8/53Wzfm4Qvjw9A98Q7hGWfp/0vt9yzN9LClYOWQhl\n9Ly0t9Z9aT0g/86z6fCMA74KdZLj5eeSS+4B3/dL+H64PBwtd7uRHcvFFQPyuqx1a1Lknl/JGdNz\nsY7c9wso7rfIcr+AfD2KuNcIrLuJMiOyQYoDtkYWlK0vefD0KaIMXNEB0xeQ/cKF2p3IHlQzT8XS\n5iZ0zSU1kS6cYGWaA9agKkHdcsGLPh4uGJDXgou024amrmynO7W5Ltpmxqit+4CPH1C+DffJeywh\nnN3tzFPLvK6899rvQ3LAHoyldkDsupB1wBHwlnIO4lrXK9WRx1RKzpfCVwLsJ7d0czkGINZx18r7\nBGA62KltvTMu6uJ+tbJaByyZS6tv7+8xxLEa2ke+/ehIj69cFcBUrd965KWhA6BU4yPrzJ2/HUnr\nx3LItFyCrwfnoAsGcP+qwiK68YlvgpqmYzvdqfyyiLXWgK0xrLoPeIcLnphLDkKY6gr7O3+BOTQ0\nB0xBLMVY6WZeDuGYvKaQ+N+WBF8NulIZd8sWnGvgeyu31nw5UDNrtpk67dahFmcsbfqSvnJQdL+W\n27UgqzldLVZrx+ulMaJQFjvz0scecGthm21X78I3AjCwzv21PW9bsq5yybcp+uFN61aCabbchC89\nvtzulL0VESBfLlNguTBEnS5fD5aepkX7pW2lY6+ObtIq4uno2VgChHElX95QZH3nL39fqaIOOAJd\nWs77oG+D9Tcn/Z3RMskN8w8evcAr1b9jfbEvXKDw/eT952aPmLTg+wk+nh23g9laO65zxvT43u62\n8YruzRDdL5XmSHm9B1Srv1ap/dSmnzMDW314AF3DUU/aEMBADpi9gF2zDlyprCv23K8EU16uxWuf\nH2ZjPlzwvZrenkQachdc9Hwvm8OatpPWh/ktR7St90hL657jRxn/xiaWL75V3XdHb3U7UK0k15xp\ny6VBl9bzcskFS4C1nK1UDyFecb4ABNjx9LH+wIsSJ4FQq5McbBEfT5qf1hc/BnB/6AYguN8pcH7s\ngVKDnuZkI7D1AF8Fa8nG8+OjqX0z1w6XnB7ru5IrLWU168DaNyI5c+V/G7XvpuZmtfEkp6uVS07N\nccHPT+TqflkCMXq7kRbL09hWKlrqh6/zTrud55uvuCuWXDJuac6Pv/Epnq/A5dL4cayAg0+PumHJ\n+ba4XwrlyPy08wsrk6BbfmpO2AKx5YqVutia79Ltlnp6u5HkWqlr/gD56VmWu+Wg5h8ItPuBdSd8\ngzx/5rP0pQuWk80AkgMcRl0W8N3ZGbn9qHVQPobWX5+d1Dt95o/uQI7AuhboFsS14+DtSJm/Ac+p\nWrHaxVgq81wwsLgtqeyKpg+0kG43ugiOVYudynV3C8iwnD/96h3esXoJ9BKEn2+XwdmacNkdXb5L\n+ErS0RSEXLSOf9CR0tCai9WgK2Uzyjz4RiyQGD5HLsn90mMNxi3gBTsPwveT95PrldZ8Nfg+7gN+\ngNG691eD5nINOJZ6foy9bFvqxHGeL7ONV7O9Gdp9v15KOQpIr99apZyx9sQrK9YDpGf/a0Da7zam\nnQAM1IEzek8wv79Xu983Mo+KB3Rk3lXNqUYdMC/nsVLfvOwKSA/neC5fWXjrWEsnLx1pKZffCO8x\nllJbDt2n24XLugUJUJwv5I1Zk24Qfn/7FiXtfdMuKBy6vIw7YM35cvBrtyKV8yLNCUu/iogDlqAc\nBbHmeoHlQzhIf/xbjbQ1XwAifDn4JPhG1oR5P/4tTXbquZyLaXLtoRuRnc/ZsqgD5mVSP9q/sEZh\nEH7csv5bFIFm1P32044A1lTjgrW2mjJp6MCQVNbwEiij/dJ23AFDOOfxvJy74OsI7eEcAICLDFqe\nTp7XyeXS7UfPuMzSyFJb2u4TvLt9IFg+F3rqC7NYDcJXPONjAM+XKy6Xsns6+NQsyQHzD0meA7bK\nFr8nEgfoLtiT54AtJ6yVWeAFUq7Xgq98n68O3wg0I+nrTFo6k7a+g5lsvBK/79dyqGBlPBZKucU9\nCeAZpdtEHS8fhNZJwNbaRMaMzqNeOwN4i41WlrhDpmXacSANrf3haUDU4iL9Si5YAzTvZxbzSEXz\n25IALO4N1m83kp/zTKWt+drrvLKj5s74AwBpE1eBMHXND32MsrHsw7vJ/V+envH89BkuF0wpaQ5a\naa0XpD7qgK24UgYs/xRpHS2T5LnfiBOOOGDucjloJRgH1nsB3OCqg02D7/xe36meAzd6S5EEagmo\n2gM3eJqapp6LxNuOpmDf0Wpu1ivPgjbjdKtcsZeKXuPLFyLut/8TtA7ogAHbBa+Rhj6YLNBKsfxC\nfFXKeV8StDH/usIi+oQsYHm7Ed3JLKWqH8CWn7DFH3PpbcR6gD7zweD2AUMk5yx4+vH02f1B/8GP\nXnJf3o7lSDbDirfaaH83EnRpeQa85WflWrDmfIH5/oD8ZigGOgWKdBzrnt3HPORxeL9W6vk+Lkk9\nm7cdlZ+Wo/XKIcRokiBvOe8q0FpPi5I6ytrwouM8epJrJRLRvL43RO/7g6OA7bgbugxbFHWwEjij\n/UuOiNelyx8umH5d4WwalyUYAX29F7DhJ8Hwk/IM58UY83TzFc+L2JKalh5ZWS590iYuYdLLzVkQ\nHl/JXe0Tae/9DqiT5nXWRqzS/+ONefTvvSY+f+lYgi59TbzOAm+JrUw5081WGnytdHEkLS255Ppz\neR7Tr2kJdgCLjVfiFy5kHK1WbvVVDVFBqfbSJweutdPPvdwvbbf7oyiLIiCWAJd1qrU7prlD5mPz\neShPxeJTjbgRz/XQMs3l8r5r4DvT4+sKueiGrPk05V3QRdbjJ7X1Y6k/DZwasLWNWaWvC55wXwPG\nFc+YP0ELl+kDh5qS1n7HGoglsHrQLeUgdUXRz7jSHMlrXJRz91vKOFB5eQS8t/IW+GrApPUAFvAt\nu6Ol9rU7nrNwBogjZ0+8AiBvvCo/OWAlaHqwlfrSFIG11zYE9E9J0B7pZ0/rfUvSBgAu8oCa2Y2c\nvSeYx2ThXsZErF1N914/2u/Xqvfq1PLbxYAW00dWMjZqEJXqOcAz9w9bY1kQniArg3gSWQMGyKXz\n9h3HsyGZG6aQoZC1QMw/WD0JPymMAflvQXLBkqS3LOJ+pZ9S+jmxCctON8ubrYAlTCVgWrcaae21\ndV2tLyk+sgOaul9ATj0/83t+uZuVYCuVU2ltpHrPJUuqdtB89zPvtMi6nahmZ7OnLEjbQL8hgIH6\nj+ySvBRypg96dZNAHyCq5EatmIg0lxsdV3PBVt0TcN+QdX3GZ7dbkfiu6MuFruna7w2t52At4HzG\ndbGZKrOj2epr0se3y+E0YzcFzUWm/XzFww0/K2lpfk6hyR2w5nzp76qHC+YxWkpac8KeA6bgZecF\nvEB7yrkXfC0XXet0p1/RA7bmvcLR1LPmcIH531oEohlQhmHaosijJ7mkTxG0jfZJROq7Zve1No+8\nNgawJ+/biKIP8MiModVxF83HMrbkeG41Ksm4W/1a9dx5eXVXTFdM4csagOm2HSCwoQl8I420u/mR\nmpuXz79zuMja0fzJDbTeOi9NQT+2hj3OpxJ6+bzg+fKMy+UJ1+fyGj67P0FrlpaWHDB9f6U4DXYc\nxJYLjkpzvxEn7K0Dl3ICXkB2vRxcUfiWFDLgO+Oa25asFLf3QYCmmgFl45jwwA3znl8Lwlodj5Nk\nud8IvKN9L8TXRzlANfX4koReQO3zyWQnAGeAmYmV2tWkoSu/ISkypYwiDtjqtyk9PX9CFlV5Qpb0\ntYWSqOu1djdLD9+YdlfLj5qcQOuv82r11WJrwzQtjQLiW5zodIE5eLm7pR+IJOcr/elaf1vS340E\nW15+Feq89DMBsZRuBtDN9bbAWd+cVeeMedn0KxHqvAduSN/1W35KYPTqeH3U/WZU1TcPsr75SOqQ\ng7QGrLXA7/fm7eiANQBm0shrpaElBT4IULfTQ1kHnJnPwu1CgPLyMZUAu094dvh8a365HwMPByul\nq8vtR8WDzuumeGmTV4m37jem/a8itjb8fAUuT25+JHZrUlZSdoPWSXOQ6q20s1bPUtKW6wUkVxhL\n63rw5eus5VjvU4enNt6j36vaP4BFPID7/b6LB25wSa42UsfrIzCMuGutvJlDPdPP2nlUPT+RxLVz\nCjrqbmlcSxqau2JJmTS0MxSXx3cpLgL1GgfM69X0tP69wXddMINkBnr27UvFySzTyY/bkPQ1YaDs\neH2s+T4jtwZcEtLLlPTtw8jtCVrUDd/T0s9soxZ3uNbab9T90t+Z95bzt5qfZ6HLyrR1XkB2vdNL\n6+N8y4aqSB/UKevx+ngfiMuOjveM6+z/j5h61p54lUkLS9Jio+yy2KSNq85HSz9bAwDrp5+jsX1B\nvTOANbXeG6w9hIPLqm9IQ2t8jqYJJRh7v/ea8aL1V4B/Y9JiKOX+YE80/axBFsD9gi2JQ1YSXfPl\n55eZB1+uC0t6wmUGYghpaQpiXNkasbURC5hfiGkZ3/lc8z/Yc7/02NuABRm803FurXd6STropDRz\nDKaPtDMAN74Fzur5wv0q8I24Tgt4GZcadboRpdrwACv9LKn23l+pD2s+0b7qtRKAYzchT4q6YKrK\n5zZXzYVfAa2FOKMLyOFmO6ut5YS4tOlb8TP4LteDL9en+bcmVf4p0TVcD7KW0536mpxyca1efETF\nMfMNWgXMDxA/blkSQfzE1oipy5WgKwGZx2l/Z1zSr0YDrwRnxe0CuKeZAd3xAmDwksrrXG/UGXvx\nUThXnbNbjtRnPWtApL/fqDP24jWIS6qBuyjKBe3hFy2bpGrdckTZF7v7gzjom+ABUqJPRdrXBKjn\nij2od/yCBul3qTlSDZhWPL9APwl1UhsTzvJTsqz7g6Mqu50j6eQIhAscizOmG7EoUOnmLOpouRuW\n5zwH8aPs1pqlpsutS4DgiimMI19D6GVLNGkpZ17PgXsro9AFluDla7zT8Ry8pYwDax5bD98CW0B+\n4IYGX2tuveEbuuVIAinYuQdiCG2sPqxyTVqc2s6apBZrPQkrKu3Wo4j7jYxVB/2NUtAReGWdcC9g\nSlaynGsbtCp3Q0ecsNamKOKCsmlrCgFTy6dkSd+alBWFpuekabq5QFB6AMdyDMxTxrOy+aYxLupy\nOZgfpU/3Pp5Jf3cQPz/j+XqZwfhyA6sK46kz2wW33obEz4X0MiBDd/opb66apvg49tLNFiSn2Hla\nmkLb/65fH75R4EcfxOHCl95yRH+fnmvV+JVpYzldrTzigKucsbdW6+12jt77a43Xqvo+N1wDLpOs\n2aFclIW0119NLL8KOvOJOhTtj9ZLZ3vOuGZM3v/s88kjFf2R8rzoKBQk6D07jUubAsVIm0NInOJ8\nVf1KDgbvIhb6wKS00+ZF6iLgneplZ/s4lx0uj/du6aH9lnMAszJtJ7IFV6k/b0e2JWn3M4Xv/U3l\nqWfAZ0jEHduTW55XQbNG2fRz2FIztW6+4vLGbQP6hgAusiAoAS26Y9nqQ3O5kc1alV/QYDlUSdpv\nQmN8xAFb4/GxNbAvLvT6/cEzBZhI13+ni5u/Zvt4tOTkoFa5z/emR5pZ/qDAN2nRtHQ5LrvDZ6lp\nPM2fMV3gVlLUzBkDxB0DtvulU7V+BwJsgQdwgTh0y08O3sexD16tvDYtnb1vuCbVPf0qloCmG64W\n9/ve32gn9WxBVqvP9KXBPuJ0tTauNPtOlXnucqub5XOIfCmDFlunHQAM5CEcqY/cPhSVB3HpOPg9\nwRZoJWXXhjOyUpum+kGYPhkrssb70Pz5zROUC8wnyBVQz8d7gJOCm7aRdkA/EtXLFLSelr5CSk3f\nf97S0wAWKWr6VYgFyFMcFn9DM7es/H2NQjlfPdCAO8XK67tAgZC1/qs5ZN+d9oRv+ZKGVvhqr2H2\nWrVNVwDcp11FQHr/xQjnnmvWxrYUnYt7/dDSy5Zz9YCrfZqwxs7UtcTa2gnAQJ90cMu4miuWYitd\ncOm2yHKmETB7zjazPqz1EZYM4Su/X9iBML/HNwdhro/vl8t52RKSwHxdWHK5wBzMVjl3xLN7hQmI\nS+pchDFuzvgGYwAzh0yhPJ2Xg/g79Hzl5x+x84fLLXMvr4/+fGLnGjgf740NXl4eTR979+jSslJu\nfX1hdGzVzbubrkjquSgCxyycPZcrKet+EagHsPziBc8J116YMrczdXlhzdoRwED9QzVofXQzVsQ5\ne/GaCwZCX1NoORXLAUfa0/ro+nCt7v0vn5S12JQFhCBM3SaF8DMuoU1WrXqkj+ewpmCe75R+wFVy\nvzyellswBoDnyxRXgAxgAWVgCdOp7vFxiMN19noFd1teD31P6E8JuuU8C95Sv7brXS9GeA2RTVdS\n6vn+iwier/VPU9T5NrtfqYy7X88NR8bO1LXE+toZwEDc3WZdsAVQ6xakmnGdDwyWI4VSJ8WsJQnM\nEsRFsA/3cvVJWUB6t+7cCU8uljvjZ6HME3WqWrqZanGfL+lHA3GJLmnoefkzaftYKy6QkoBcHPJ0\n/LR46MnjyyHmYJ29DuFBKXyzEAduef3zOmvtV9401Qpe3seW8P1A0tYlhj8IpAm+rW5WKqu9ZmTA\nHB7HevKV5FSzk7eA3Nv99t9BfQAAA/HNVFp9r7VeDdB8DOqSYY/d6oJrfkMe8CPlVhmfm/D9waIq\nIEyhJz3xSr7Xl67nLl2tJ+qGl9CdA1sDMa2j5XPX+wDs9FMHcomjcLz3fYn/kdD2UpkG3HnZHIyl\nbOmUdfDSNlJZBJBlrB7w5aAtZXzu9N7i+2tcA75RQHvQXsMBS3WmntD3uc/ZW48sRaG6xu1LqwG4\n5Pz34HvjQzRmkoCsva5S7nxNYXa3s9WXJisFrbVtSk/PU9EfXZX11OfLAsIUVo+pLL/IgZbRW084\nICXxNPJrEQV8pg2VdGvPdHwVyuQ0c/mpQVmCJW2T3QlN597L+fL58vdFur2oCr6PycfAZpVb/dWo\nxf2mxvRg5t37m5V1exOXVJ8d/wkHeBJWmUh0mIgLzt4XLNVzqGrn3hwbb0nS4KjVc3kvW4rV+uyy\nNhzcGQ3Mv9xeeCHS1wjSZzfP14TLxivL5T5iNGD5qeZlWwrA5Xqvn4KWXTF3vI/Us+R+az9QSLDl\ndZKj9eo5SEt9DXil2Ihj1m4RagG0eF7jfAH5/xp3tLxOA6JX3uqAvTpT0c1Xtelnq30Emj1dbd3c\nN7KoGRBLbbMA7+GCI0CW5mc8GYv+jjzgWpusPEVTzzXzMlUD4Y9VMNIvY5hLbxMVv+1I6oumkx9l\nc9BT2AIPENPUNG2j7oImoAX01DNNaVNpa9j0tSzLLuL53P350H28L8uYyG1JWjrZSlfHHO1URp9e\npfWlQbsLfIs4ZCUwr/3PUtSRS87bVObWI9oxjdHOM+Ot4X7bnItLtmEY3gP4RQDvbvH/cBzHv1I3\nnEeCCCR7bMbSYqKbsbT46IcF1gRKs55Q9uSlrSWJY9c54a1EwSjVSTug+ZryI56v986dLR2v1E9l\nSxgD9DuO531I68Elns49+vqpuIP2Us9SjARRXp8Br1QmxdQ42tJOuhWpvDZaxu8dDsN3/iavB1lp\nHOuakIFzrTMGUL/5qufu5ky77eELxGjxAcAPjuP4O8MwfA7AvxyG4Z+N4/iv64e1QJXdkEXrsrck\neRWupIcAACAASURBVLdBSS5YKiu/COP50FI4lDJep9XzGE+9YO1qXwg/PC2F6eNcUoGh3Jd+K9Iz\n65eOxEHL5yeBVkpFA8t0dImXVMay0tNa2pkeR5ywBl6vXAOj52Y9YLaknAGIz3qmryPsfKdG27pW\nrbxnX1KbhUZS2cP98jbhiSTqs+rTn3v5HsdxBPA7t9PP3f5lvm9QUYVbvOsILlgrM8bS3K7WRAK1\nVBdV2s0G+lPbrQ9hnkbO7HSegzS621leHy7HEnAlR0shO738+Zpv6aPEln4eMfM3jLv5SLpZKreA\nS48lR8whyvvQ3C1t02t3dNRFR/qq3u08TaAPaHtCu9VNR2G+aCQd87LsbUPerUfRnddZ99sP5iEC\nDsNwAfDLAH4/gJ8ex/GXhJgvAfjSdPa7G6eV3ZCluWBLWRfszY+XB74lSQKyBV2tjdV3VJH14Wi7\ne5vY7mhAhoYnKY08De8TXdp9XcRTvVrZS5I0dy39TOOjqWgvBS251lLnrc9q5bRP6bVl4au/dw58\n5Qm0OdC1QOuN36Pcr7wp8nCM3s61VX3nE7rqjeP4DOALwzB8C4B/MgzD94zj+Gss5ssAvgwAw/Cd\nQYfc4oIjWuOWJK1MO1a6AmTwZjZnWX8LvdaLa8A8S6sfb01Ycri0TnoOtPbFC8DDTdNyPwW9TGvz\n1DM/ntrO09Clfe716+lnei65Y2tTVmZt2AJvGac25RyN81LdobQzsHS/HjB7QdbqKxNv1UvlprRv\nPco+9zlTLzlobfNVi/vt/2EgRb9xHH97GIavAPgigF9zwoPSYNVrLTjS1lsbltaWI7chJR5PGXXB\nnkPmMVQ9U9Bm+pnHrAdhDlO+UWoZv9zZDDwgyNsu4Sk/8YrG8tQ0rQe0tPL8liTedgliOw0tvU9e\nmQVcWh9xwp7jpeVaypjGe7Gaa86knelrCK/5Aj58qXq6WatdTaxWl4lfNNKOrbKI1nkwxpbwBWK7\noL8VwKc3+H4TgB8C8Nf7TiMD4Uy9FlN7i1HEBSPWNwevBlbNAWfdb7ZNr7+3FSGsbZySVGDmgWoe\nL9/n68XyMXk9hfgybr7ZyoI2HysqHiut/fI4C7rlpxSTAS/tpzU1TfuNwFeEdit8H29w3OnWuOMM\nnDPzlMpNZdxv5rnPljwHm3W/0TH6KOKAvw3A372tA38E4GfHcfw5u8mIdTZKZeJ6uWCpjeeCAw/m\niHAdiXIphiviWmms1Vc0Zjbu9uloKX38qFveXiTDUd6kRZ2rVs4d7fTSlulk7Zakx7G/A1r6MLLn\nTujyM7P2a7nhls1Wkbj0hivAhm8UoHDiLXltWhywNUdzQt6xVSYpcqtSD0fcy1V/im5PwhrH8VcB\nfG/9RIC2rxLMuOAaJ50FuueCpXLnwRyWC651wBaErblk+srM6a4+EKbpWanO2hEtuWHL4Ur98jno\n9/7On4ZF+5peon7vb3YHdGQjm5eK9txwJg2dcbzl2Esj0zY1KWctjrpeAO23Gnl1cGJq+rL6tcaT\n6qS+TK3lfrO7kaMP3uB1rannOnivuQOKKAriKAxbxB1urbzd08FpWM08rkf7puWaeqw1WyCegXwJ\n4QvZIR35PmFrVzJ3mJG2NN2rSQJgRNTBAnO4bi1p/pkUdCQVrUG55fakFvjy12+tAQMB+D7euHbQ\nZWFq1UXirP4jZaasAVrV2kcNINeFL7AZgIsi0JPo4d1r2/uWJO9cmxuNByl3bkmiU+7hgjXXmlnn\nTbnaGslO+PnpisuVDVq1MUt2s1pKWnLUtIw7ZKmOlvMUtJRS5qnnZUz/HdCP1+ann/lx7U7oKHhp\nnbUuXPqKxHpp7K7O1yrX6no4ZknR9lIdL7POF6rZzZy5yEjtswCMut/oXOq1MYCBPmlpIO+Wa29J\nstaSI+lvY57l7+DKjr3mViwCdVJMDWgt0If6q/0CB3nTU604fCM7nS+sbtlGT0Fr9XTDlQ3i3A5o\nqY1WbgGX1tekoKX66EatKFA90NI58M1WANoesiGVa7ERsHrtI9Dn9VzeBwUI9QtpX7oQvfWIn0vt\nI4puvorIu4D1WS/eAcBF2XXZ2rVgzaFqpNNirPpGFywNVSTBzHO4NVCs6dNrF5o3gfDTBTAe1oHL\nfK2VywKz5Hx5meWcaT3wADEv15xtqZtehv8NSHyzFU+bzz8w5Fwwj1+maXXg0vio2y0/LcdLyzXw\n0njrfuHIzmltpzOA7eBbC2ar3msX6YuXSceiJChJIJQ6yjya0oOrNVFel22vtanTjgAG2iEsxfSc\nQ7Y9hzRYefAZ0dbasBZD5aWupTqrXaTO/c9p6QFhQHbDz08XXK7P01qxwJvM/b3ypqh5e83dPurs\nbz/S0tC0veZ8I+nn6C5oLZb2SV+zdBzZCa253fIzsi7MYb3G/cKRnc4A7O/zbQEwnD68OqtPXscV\njffOZ8q6XwumkXoqz2Fb5bXq29/OAAbaAaj1RckVvSWJAzR6bo0BoVyQBGJgCTdrrZgPG4G0VZeB\nbcapS3oabuPm1oW13cuaG+bpZl5mwVZPJVs7oO1nQWvumcY9XvJxdkHTWG1HM4+xUs28fc2GLKnM\ncr2AkXIGlvDNwFaKscq3aiPNE6Scn5v/f72dz09KPVcEalHwWRPmdVn32//hHwcAMJDbUdzqgrNr\nwZH+O7lgDZyWA44CzoJhdi131Q1a83Xhz54u6jOkn3HB5RL7Hl/gAWvaXrutiMdrII6knzUY1977\nK93OlJXkirPAleIst8v7yIKXxoYcbsD1AkbKeRpgGwDXlEtjRsqtOG0MVV5gb/fLY/ixNnZE28IX\nOAyALWUBm2lr1XOAZndES+XGeFHQWulqqR+rnP69WWvQvEyT5c61DxdiHElJ3+A7uzXppsv1edq9\nGmQQv9VIcpQvQdY6eKaP+bm8GctKP9NjbX23/PTccuae4RBoHfje5y8536IM3CKAjvTJpf2as9CV\n5uBpE/cbGawH/CLud83xZR0IwJlUtOWCPQhqMQFIitLIdjXqnQ1ZgA+uzKYtrdxbK/ZA3LL2677N\n/uassi4MwIUwT0lbtxXxcynFTI8jO6AtVzxNX38EJU9Dl7GptI1jUqxVl30QB20jrf9G1oY1YLfe\nLxy5xQgQ1nunQWJuNFJW266mHEI5L9NiurlfyaVq7tbbCa2Nx+N5fS/3ux58gdUAzBfmo8O0pKK1\nOg/OERfMXS8/p7HaLuikC9ZAXMpqXWYUzlq5NHabGXto8dYMwNPngOv0aTtyq5K0mar2e32Xdfpa\nL63XYWunnqUPA9bmq5pUtJd65n1Jx5H7gbX6iFO2XHJkN3Q65QwgtNmqpizaJts/L+dlMOIioJX6\nuSvy1CurjMu6gNT2afXP2/eAL++j06Mo+0gig6baTVkWSKPjtLpgrU8I9cHbkjQQZ1yq166U9wJp\ndy3vF565X17GNmhZ0twtreP3/vKvGSztcs537nYz9/5yONdIArYG3uwuaKk+sjacSU+7O6QV11vK\nXNfLzzV4ZWOkNh4Ys2W1oDWhy6V1Wo6P6n57O9q2i+bGKegoiKNOdU0XzKHqnUtjc5JaaWknLAti\nD7AtKWXPBdfA3P3Mo6ekyy7p65W5WrZBiwJ2mYJegpg7U+uJV/OyvPNdK/1MX3uk3EtB0+MIdLW4\nKHijbWZlbK03dIvR1HE7TNdoky2Dc+6B2QQxzW5q7vdToUwaiJ5HnW7PjVVWfatzj2mnNWD3alvZ\nLttvdke0NR4HcsPDOShcLfBaQG0BcwSmuzjmZUpa2iXN14atW4v4ubfeCzxATEGrueIW50sByDeQ\nteyEju6A5scRJxyFbqnznHIqBa3cXlTO3VuMAPs8C9jW9tl++Nje3LS5qpJSzxrFeZnmdiPxUr9r\nul8vrt+Fb8dNWB4soyDccy04Mget38CHBc53YMl7GPUQYnq1KXFeHy0fGCRdMV04S4Pr83RhNXS5\nzGH2GlS7E1p6HzjAo9ClxxFXHL1v2HtKltSf5nqBTvCFE8PrvfZef1Ybb1yrjRUvHS8kBda6X97G\nG28r99u7ja6dr0oBCKXbZPusXQu2IN7JBbc64BDMjPNIm2w9lQR371d3j7lB+OkKXJ/UDVr8CVry\nE6/8FLO31jtvk0k9Lx0vT0OXvou0VHRGUlst/Uzj+U/aLrM+HAFz6OlZ0bVeAKldzjxGapOJt2Ij\n8ZHxW88laN+lbbyiHfF6CdBSvdSHpb3cb1/4ArsDGMhDLhJH+1xrLVirl+YkxdDNWQ6EyzHYuZdm\nrklLZ6G8Syr6JuHpWTQlzZ+gRTdpWWlpafOWt9ZLU9DTjJagBqKpZz0NXebH5W02q3kcJT/nQKXt\ns9DlMdEU9L1cAO90Hry9iB73gGambY/z2v6ltmDHqqQGkQdiSPHauVemzSdTp9VvC1/gEAAG8hC2\n4mvG8mCpydtsxfuW5lCOA+vB/DxSF63fG7rWZx8rBoDkhvna8NPT5b5JS9stPcFSd77AA8R8rXeq\nk9eSCxwzm64oiKXzUlaUSbFL7rdHGjqzKSu7Nqztbgagb7ICYN5eRI9bz6N1Pcesga1XJ6rmoRsS\noCPy4rV6a804ctvR9vAFDgNgoB3Cazycg/flpaattWKpLLHhS4KtBVpvTTUD2T1dbpH3mYu6YZaW\nppuyliC+3NeIrXt/+a1IUopZcrK5+3/lb0EqcyptilpS0Fr7ml3QNDYKXamfjOMFUJduts55XS1k\nawGcmWstbKU4XjfTSAI+VY4BGYCe243edhRNeUs6LnyB1QA8ou5+3t4QrhmH1lsAjZ5DKaPxQDoV\nXZQBreV0Jci2tG2V9FaF6sv7d0tLK0/RoiC+i60R81TzNJT9kI3lGnLdLujH+TwFXZN+LvPWFH0Q\nx9obsqS6MHgBhNLN9HgtyNLz3v31nBePW4jCF8axtfEKrM66UHi3HW1za1B7X5/iIA/ioG9Yza09\nrZIgyOU50podzlJ7aROWRJHgrUne2nAUlkdzuhFZcL6fs1uWni747PqMj67PoiO+0HICYmtjlnY7\nEhD5zl87FV3GK/H0nJZN5bn/L5EUNAd2BLilnfYISw5w0yWzW4qAAHgBqPf1Qjleo27N/loBK7U3\nxSHLj3kZj9cGiThoKZ7Xr5V6zlwIs2n2hzZMQZdJtjjUVhfce0MW75fXW4DWdkg7vxINPhqgM23Q\nWJc53qIOwH19+PoEPF0Wu6Uv16f7Bp6F2jK81eI7teVNYcuvVYz1Lb8oDbi8TWbtl8fwPsUU9PMc\nuuYGKwBp10uPt4QvyDmSdV4chHOpjQZoUZKDkxp6rpWeZ6Cm9X00tc1xhzXgXmniqLL9RF1wdD2Y\nHnup6OCtSfRYgmMUWN0g55RHFP3QEK2blRM3rKwP0x3TjzLdEUduOdJuV8o8epKuDxdZu6Gj0lyz\nBlt6Hln7pXGhFLSSap7KjA1WAEKbrLTjaF20Ta/jNdpIr8UUhawEXJ561j4NcGXWj7V6Xq6NYc2l\nxf32+XCwA4CBnBuW2u7hgrMbsHgfHMJam3LspKKLNDi2ulXpXFJLTM1nrDR86TlZH3664rPrE8qD\nPPitSyU1Te8jfsZ8w1YNjIHYNx9ZaWfJxVpu2Nqs5aWjM6loDlVaJ6agBbcLYJFqBpSdzdOgj5+9\nodkC0bXm1LO9Ku9xk9p/Zikmsys6Aj4+F6nty4AvsBuAizw37MHOitVAm52X1Ta7Icvb1AWEUtEa\nhKS/nYhbjawDZ91tr/Xk6K9Oi5PeK2XHdAGx9UUP958VMJ5GtHdBT+XyYye1NWBe5ymShs5uzErd\nnuS43VI3SzMDNnjp8dYglI6z7daYM5xyUdHHTVobryL/8TVA8z69teHoeBF5/fRPie8MYKAvhC3R\nfiIuuCbtrI3HZfXD6wLfG8yPNffbmkqOgLqHIjDNltPXfy8TQEx2TfP0NHfFGRgDgJeKfsSsm34u\n6vFYShpjpqizbhfAYnPV1Hkb6LY6XrO/KGSfhBjebibtliNAhqLnbrMbs7jWSD3XOt911qMPAGDA\nT0lHIczjrPreG7L4OZ8Dr7dS0YH14DIFIJdetlLWGRhrMWuCmcqDrgRfrX0BMds1TdPTLTAGHs7X\nSkVP01o65RIL5NPPRdk0dOZ+YBo/izWgO50/1nYBY313GqAP7LT6KOx6ATjTV+8PAqKsW44sl6rF\nRODrud+IrLbRC9E+8AUOA+CItCvumrJSxlKcB2WpDy2G1hkQpmH02IMwnPJMf/wYRn1tX9GYaKza\nnnzRw03Sc6bN3dP3oGWR9h3F3q5m67uNpYd0SPVW3/P4XPqZtuHQpcdSmhkION7yMwuZVmAdDb5I\nHEfrxWBr3TcCox4xNbcdtY7Zq01cBwNwNq0steGgbnXBtanoyGuxwMzrEl/a0Ao6SWu7XO0DQDYm\nGkvfIy01zXdOs/Q0ANcV32Pw+H5iyR1P5ctd0eW8tKPi34YUTUtHdkDzc9URPy9BS+Ebgi4A9T5e\n/rMVvF59z357jkXLWuYlStp0JTXwUs+8TaRPCa41kF3D/a4LX2A1AJdfaE33FriifXoQjrTL7oqO\n7oLm55bzDa4594DwHmnkHpLeNg2+FnR5f/efenq6HGspagAmkIH5VyV6j6GcYrZ7FOUUw9yw4XCB\nJXBpvQndafDHzyyErbq9YNur715zEmVtuuqZeqaqTT1HwWx9ePDiMvOxxj/Ek7DoC8wMlYVwdN1W\nqss4Va/fllR06RtOG2M9uBbCMOoz4Jb66aUMaKNteJwWcz9n9xMDM2cs7aLm7ngqo/UylIH45qve\nj6IE5s6WzpMfP83KFZcLxKDr/TwiBLcYu0cbUZFNVxJINbhGnK4FZG0cq1zrM1PfGl9/sdswBZ2F\ncQ8IW/UahLXybCo6CuHSD4SxJFA7m7Jq3G0vYB7BOXsg5mUWfDUQ33dPA1qausCHu2MAC4cM8JQ2\ncbxXefNVgfRUl/tvzOF6L3/SoQvIsOVxC5cLtEGX/2yB35ptesxvrTmLkjZdFWnwze4gjkBcirf6\ntNpk2nlzbukjrg0BTCVdESW1pqN5jNVf7a5oz9VK7SywW+DG7bgRwmB1Wtke6WkJgBYUvTKrP+tP\nyAP07P0Q1owBE8gAFlAGoIK5xBdxONZK6odvLtNgCwSBC7RBl/+kf38RYFl1RwRwz7mJ4vD9lB3z\nOqvcO5dEJ+fBnddJbaU6LUaL8+YQaZ/XTgAG5lcwS5mNWZFUdDSdLPXrtbXgKb0GXh9JWQPNEO4N\n2T2cbxS6NXXRn2IfujsGCLAUKANzME/nczhTLb7RyZC1a5uO9yhTYAvIwAWwcLn02PtZjlug3Bt8\n2ba1Y6/RhygLvhDq6M8a+GoxPE4aX+srqmPDF9gVwEURCHoAi8RGFIGzlYqW5EE5CmGpz0YI87je\n8TwGLFZSD/eerVtV869HlCTd5kQlPZnrUfd4hrXdh/1/THLCn/EyD7qADtXIT15WA+a1QFwbL/3s\n0adXJkqCL5W3PkvPI/+Jov/Rog5Xa9N7Pmu1X+oAAAbWhzCPsUBbm4rmZZE1Yw/CtB2UNgkIF0UB\nuLcifxZSvPVr0WKi5VY/5oeS4VEGgO6qpilrYO6SiygMP7ouH5OZ1QKuRQvosjdSgm3kuAXMLbDb\nA7JrzClTJ0qDr3cOVs615q7nyPiaMv17setdEA8CYCB/td1qbA/wEnA1wFr9av0Ayyt8JYRr09Kt\njrIV6hGgWu2yv15eHoEwhLG0+vuxAGVgCeYiDmhJFM5RMEvu+In9PWmA1eqyZT1+rgnlzBj8dW45\nZ1G18O2ZeqbK7nq22vN2WlvvA4Sm9eALHArAwBI4XK0umPYd3RWt9VkLYcndSm2AJYgt91wB4aIt\nYdqiDEgj0I7+tMaLAJfXQ4gBPR/m5/cx2d/kVbjX0Ek1TzHOo02tMg3E3nELfMvxWnBeC5iZNj3m\nIGor+FJFgRyBrwfXlwtf4HAALrKufD3Xg6MQ1sqj68HR1LM0P5BYfkzPAxAuigBXBIMSG20T6cP6\n1UdiNRB7cK2BslXG6yEca/Pl9WBl91jj8aRRRaDLyyJQ7lHWAjt+3guqR52bqC3hmwXy23a+RSsB\neETbZihgPQjzGGueGQhL9RYhMlC2nDcQhjBtUuSlmy3HHD3vLQ2e2nmmLyumBcLSMSC/dwiUQaj3\nFPnw48VrIPaOI6C16tb4uRY0a+dRO4aoveEb3axl1dfWeVoTvqXvQzwJi77QFhhrfffuE8hdvSNt\nJaAWZZ2xVp5IR/NpanCxfgI6SDQYe+UZV17zoeGtK/J+7AVgqcyLiZavDegeP1vbLtQbvpa8NV6p\nTOs3k3qOjCm9SWvAN7uh7KENU9A1MOZXe6nPyM7krAum9WumoqV5axCOwjoBYUtZkHrte4i/bS2f\nlaz++U8rxioD5u+D9wFGOqdlEOqk+qi0dhnwWnUWaKT6HkBqAS0/P+JP93e9Bny9tpmymtQzV+QP\nvuY/RbZNPXiLNgQwFd9k5Mm60q4FYa2tB2Gp3irLbNxaAcJbu8ke/Wkgbv0pjZEBrgZYLwVtnYOV\nS3VSjBcbibNAy89rj1ugq9Vp9UcBbev4qlrhK6kVvlRR+EbrMjFSXKRNtp+cdgJwUSaNbEE4Gp+B\ncLTO+wAQhTCEsloIU10RhjDXlu52b2Vg7JV5xwic0zKrnM8zKivWg3EvEGcgbNUd9edafYrq5Xwj\nbam8siyssheWLeHbD7xFOwMYyLthrY/opqxMX1kIe/VeGZ+3BWFLUlvA3SHdax33CJLm5bnfTB0v\nQ+IYgXNaZpX3kNZfbxDX1O8BuSOANgxeYHv4Zsv4sRbDX6wH1ygQW+HbH7xFBwBwUcQNW0CNumnJ\nBcPo1xpTqrMAzsta0tFWe+28IiVdoy1BbEEz29aK0eJrjhE4p2W8nNdl5f1ueoGXnnvwlWJbAFfT\nZosxatuI8sArldWs+VIdGb7SG3Zc+AKHAjCwDoQ9SEb6kaBptbFAqs1JiuN9WzFcnSAslUV+orJN\nVi19Zsf34o6UAbBkzVGrq4Fu5LgVwFbdlnBeM1aU91xnWqbBV1ItkLWymk1XNdDL/sfbH77A4QAM\ntEM4Gr/Vpiyvned6IZTxdDR/OAeU2ASEqVrgtpesPxEN2FKdV8br4cRo8+NtaRkv53WtikJXKmsB\ncY+ynnBdu002VlU05SyVZVxyaxmE+h51rannY8AXOCSAgTYIa2vKEWhbEI7WWSlirV0NmDmEodTR\nc6oynw63Klmw7eFyLVkwreknU1ZzDOOcllnlvC4r7/eQBS8/73EcgVZt3VZtatubOjJ8uTSIZVLP\nkT4zkD4OfIHDAhjQQUqVvdpaEI3EtEIYqAOuVMbB6u2Q5mOXGMcN06GjsK3VVpCW6rQyqW1v8Eag\nu6YDtvrzwMvLIsf0/Egg7hXbUqfKSjlrMKZla7lcaywrhpd77aR6KUaL02KjbdfRgQFc5LlhDcJa\nuwiErb4s6HsQ9vrskaKuTUkDVWlpSUdJP1twjcJYq+8JXi8VTculuhpZv59aGG8J32hZb1ivVaeK\nPtIwAloJklvCl+ulwHdb8Ba9AAAD/SHsxWWuxNG1Yq9tLYSlMi8lLSnhhnkzCjWpziuTprIlwCWA\n1sDWAu2W67+175/UJlK2Noil2FoQb1UXjTfFXS9Ql3KOxktlEYBKsLdiuDz4SsrA19M+8AVeDICB\nvhCWYj0IW/UchhDqJChKbS248vZemZWu1sAcWBumL5OrJ4i98VtWH3hZpj5yHKlDoIyWS3WSou+r\nFafV9YavdlxTvzWcW+JN1bpeWpaNj5ZZ5ZEY/gas7Xy1+Ei79fWCAAzEHW1Ea0I4O34Uwt78rdck\njWeNFXDDNJz+RGMZOtVlyjL1XjtrzEz9FspCOANgft7juEfZ3vGmesIXQp1UpsFSUgt899De/8Fs\nvTAAAzboJABZbbR4KybjhL314AiEgdjDOqS4UmatGVt9BNaGyzSoekExoujnEK+t10/kWKpD4hxO\nOa2jiv4vjryvWkwrjI8I4payaDw/VmWBN1PW2+W2OF8uXue1e53rvlQvEMBAPYRhtLP69iCste8B\nYVpuwZLHAXPQRtPP/I+yAcRHkgfbSGwNhKPnRdF1YD7fFmWumZGynmB+SVC2jk1F1nq9shp4rg3f\n2jpen43TYiPtttULBTBQB2EtFvABa0E4WtcTwrysvAbPNfM2YPGADudEWro04cNstUa8hVohDCz/\nTL1yKPVZee+tVp+BKz9vATE9XqO+F2xTf7MWeGl5i+v1+mmJjaadLfhKWhO+xwBv0QsGMLBuOvro\nEAbstWLLNXspa62sjAk0g7hGNf14n8U0iEaOM3XlHE6MFSvV95TVp1TXC8Za3JaA7tmnq5Z0My3f\nwuGuDd8InF8nfIEXD2Dg9UEYiIGVlmug9ByytzYstSljBtPS9GVRvQSHS9ULwlpMkeV81/jf6v0O\nIuCVynrA+EgAjsS6ksAL1K3RrpFyjpb3WPON1Gv9vw74Aq8CwEBfCNfGaeNlIayNnXHImT4iQLcc\neALEdAjujjnApHpelqnXFP0gYPWZGc+Ksdqu+YElcw21yqOQra1bA7w9+gop6nppuQfADDi3gK8F\nuV7wfV16JQAG+kFYiuVxnlPWxuN10XQ0ELt/mJZn3LTloKkst13hiHvBsUXWryrahn+AgFGvxVjl\ntE6rzyryvvaCr3ceOabnkfKeMLbGdhVd59XKs2nfKNxryqPwXcv5arFWvNVmf70iAHvaE8LROg22\nNE4CpARnXu5BNvKwEGvsUt4I4qOmprOgtiDt9WmBmNZTeevcGWXAK5XXwteqW/O45sOAKS/VXFPe\n28me8D2CXhmAvXTx3hAGfJdL++FX4ozr1cqjIK5p1wjiiNYGNHezLWu9Vt+0DEpbD8RSbIusPiKu\nVyp7aTCmx9VulzdeA3xrut7oHDJ1kXopxoq14q02x9ErAzCwhBnXnhDm9VZdy/ovB2TNJq8sKxPM\nhwAAEv9JREFUcDuAmE/Rc8V7p6g9CGddb8Tx9v4f671/GTfslb1EGIe0N3jXKs/EZeEr6W3BF3iV\nAC468ppwDwgDNgRpm0i55Ya9GKmci77Gzq64VRH32rNvC8Jw5tIK4+j7+tLdMD2PlDdBl3dwBPD2\nnIcV540r1UdjpDgv3mpzPL1iAAMvC8LAHLDaurAWF3XJUl+9Qez1W+mKqfZaK+7lejPO2poLl7TZ\nK6st4OvF9ARwpo0rze0C6wAvCsIad7sHfM+0M9UrB3BPrQ1hXh/98JCFcE0by5UDtsu22iRBTLvl\nrKfDPbFy6zhTV3OeKYvUSbFUXru1HLBU/lIgHFY21WzVZV1vdMzWvrgyfwg1aWdNrx++wJsAcC8X\nrMVvBeEawGXcs9dGcsNenFQu1TU44r2ccKt6OOAS21s94CuV9TzfxO0CMejW1q2VPu4xn0wfkXop\nJhOnxXptjq03AGDg5UMY0B2oFpcFdG2bmrVgK21d1JCeLl1tAWb+q5T+PLQ/MQ/CMOrX0lrwlcq2\nBnBKreC1ANUK3tpxrf5O+O6hNwJgYAkOKgvCUptaCNO+WiDd6mx5/zWuNQri2v7pBXBFGK8B6l4Q\nLvVwYnrIew+yYD4KgFOqWd/N1K0J3pa66Lxq6qWYTJwW67V5GXpDAPZkXQklN1wDYR5jgUqrp/3X\nuuFSFwWlVRcBsRSbqatcK34p8iAcjWkZvzamFr5SWU8ghxXdzdxS1wPeawC7Fa418NV+UW8PvsCb\nBHBNOlpr1wPCUkx0XZifR93wGnXczUbcc7auwhXTaZZujgjnPSAcfR/WcL9SWet5Smu73V79tIx/\nwvfoeoMABuohHI3fAsLA3HVGgZ2po2N4dTD6bYF9GYfXVbhiaQgNzl69FcPLpLY8XmqTiemhPdLQ\nUtlq4LXcLrAOeNcaZ6v51dRLMZreLnyBNwtgoA7CWps9IMzra4FpOU7e1qrz+q1xvbzeSk8DTSnq\nvZzx3unn0n9LXO/0dFenC2yTZm7pi9e3OFur7Vau9lzzjeoNAxjYB8JAPWQj9dk1Zq2vCIhLfcQR\ng8RE+uL1EVBXwphOWdPeqes1IXw0AFt9hhVNMXv1e7rJI82zpo9MX1as1+bl6o0DGKiHMIR2EQhL\ncRHI0vE8sPYCbbbeAyRvX+O+o2M1wBjwAbA3kHsp8xqyKWitvLvDLap1utl6z+FFHGCt462p791f\nNEaKy8Z6bV62TgADqF8TjsA1GueBT+qntxves74FtivDGGiDxJFhfQQAV8tb0wX6gm7ttdO9wVsz\nZrQfK9aKt9q8fJ0AvusIEJbiIm4ZyLlhK36t+hLjwbMVthvAGJCvFzWgPQKcW1PQVl3315bZSKVN\nwIIyr+8Bqd7p3y3mXBujxWmxVrzV5nXoBPBMR4YwoENP6kdyw7TNViBu6SOaoub1Jcaqp/0UNQAZ\nQvdliB4QWhPUa7vgJnHgSgOtsX65hXtco4+11nJP+K6hE8AL1UI4Gt8Ca66sW65p0+rAtT5oTKQP\nKZ1utYnOi8Z0csdUGpSj9VbcmoqMt+qcjgremj4jMT366AXWSMwJ3x46ASyqBsJamzWdcCTGg1mk\njec8M320jJMZt8RYrliKKXEcAJ2ADGE4PvTeKemiTecRAS6wHiB7p4l79pMFb6RNbUwmTou14q02\nr08ngFXtBWHAd7Geo4zE9HCqkZge0LTmL7Up7WpioMStCGSqVujxP7OjwHyhWuBG49aAbm3MmmNt\nvZZ7wrenwgAehuEC4KsA/vs4jj+63pSOJA/CgAxWCO0i8KKxEcBK/WVjom3o+JkYGtcjRgJmDeS9\nvr15bgTkrA4JXAm2QPwCL8XWAmNvt9grZg9He8K3tzIO+CcAfA3AN680l4Mqshabadd7XbinG6Zl\nvUAsxbUC04rJuGmpbxobSVeXWA0yBwHzZsrAFshdqPeGrhS3pmvX+tra9faIteKtNq9bIQAPw/B5\nAD8C4K8B+POrzuiQqnHCVru1U9JSXBSWLY6YxkUcpxSXjSlxEixr2vWIpW00IAEvE87W6wHqLrKt\nF/0IpKS2PUHZu79e4F0jLhurxUfavW59FIz7KQA/CeAzLWAYhi8Nw/DVYRi+Cvy/LpM7lrb4I4mO\n8akQu7Vj2CLuSYhreU2R/mtjtXlp7YAJZvTfERWZo/c6vfcnEq/9LdT+nqOAjv4/q53va4GvpRO+\nmlwHPAzDjwL4+jiOvzwMwx/V4sZx/DKAL09tfu9RryaN8pyw5oIhtLPWkGtja1PCUlxtWprG0dis\nI65NYXtxkbSy1F6LteK1+Wnta/7bZFx0y3/LyEW3xgH1cMV7fGDcInXe2rb3nLXYmnirzdtRJAX9\nAwB+bBiGHwbwHsA3D8PwM+M4/vi6UzuqaiBstYumozOxWhywBFukv9qUM43tuU7cGkdjvfZWH6WN\nlYK2LjIROEt9UrV+1s26mchFc+00tFa+lyvcK4W+RpwW2zPeavO2NIxj/D/wzQH/RW8X9OSAv9Q4\ntaPL25ilgVhrl4lvjW2J69G+95zWeD+scu9za+3fRk1fPZW5KG7tiLdynNF5rbVZac8PAj1ivTZe\nu9eiL2Mcf8tNT533AVdLSy0XWSnpqLvV4lvT19m0NI9tbR+NbXG8tX3S2Izj1cblffI5SPL62kIZ\nZ+zNseZi3MOFvSRwrbEuu0fK2WrjtXt7SgF4HMevAPjKKjN5laqBMIQ21jpy79jMHKLrvzSWxnux\nrevKPWL5PLQ6Kw0ttePKAHoPtaaevT7WTHseOXarlHa235p4q43X7m3qdMDNstaEa9tZa8nR2B7O\nOdpvBvqZufX64JHptyji5Hmd1yfv1+pH629NZS+QrWnoninqI8C01fFm+zjh+9J1AriLPJgCOSdc\n2rVAxovPuGHet9ZvqyOm8a3uOTIPC57ZjVjS+JF+ubTfyx7qmYbufeHeGtC94o8+v5p4q43X7m3r\nBHA3eU7YcoNQ2u61jizNJ+Mkax3mWqlsq2/apgbIUjve1roAeY45I+l33zOdHb2QrrEmbLVby032\n6rtnP3uA2mrT0u7UCeCuqoWw1bYHKHvHWy5NA08G6Dy+FsY0PgpXC6yek41unorCWWujqRa2tRfJ\ntdeFezqxPSDda1wtfgsHWwter+0p4ATwCrIcLVAHYatdjRuW5pcBsQYsq/8ecI3Ms1f/VNH0s7cR\nSxrb6i/aZi31XhN+ic64Jr6nw9zrtVltvHZe21NFJ4BXUw1Ma9tloWqN0xvcUputPgRE21hOl7fz\n2kbaS/1Y/UUl/T57Xwh7rgtvmfLcYh30iODt3cZr57U9RXUCeFW1QBhK2z3T2L3b1K4V8zatMLbG\n8ebnjZnpR1Lmv2jrhW/NFPYe7niLVOzeHxR6t2lp57U9xXUCeHXVQthq23Nnde9xeoLY6q/nB4Fo\nO6+t1l7qR+vL6vsIylxgX0pKurbNVs7yKJumTvj21gngTbQGhK22NQ66JwStNla77KYtq02NK+bt\nvLaR9lo/Ul+StrwPGKi7iEY/JLQA12u/VQp2S7Ad4fVG2kban5J0AngzeSAF+q4LW+1aXGItvKXx\nrHbZ9DRtw9ttnW723geujGveUz3XfyP9Hckhb+0oj+J6vbaR9qc0nQDeVBZIgbbNWVDabrWeTMey\nxpPaRjZsSXU9XG4Ph1u7Bmz16Y3RU61p7ugFODLOWinQLd3uGnM5Wjuv7amITgBvrlYIw2i/tRsu\nWmO9NeOKo31KbaOvQ2vP+9D6kfqy+vTG2FrZi+1LTUuv1WdL2z0AesJ3C50A3kUtEPbar7kJaY8x\npba9gJpNN/P2Uh9SP1pfWp+a1loP3mr3dI+0tNfPGtBt6bel7R5jem0j7U9FdQJ4N60JYa997zXl\naFso7VvWwFv71dpG2tM+rH5oX1TZ/35HufD1XguO9rmWYzuii2zJeOzV9lRWJ4B31ZEhDKVtK7TW\ncMTRfmv7bkkxZ6HsjbGFWi7CWwE30ofX/qiblo7qfCN9nMroBPDuikAU2N6VemNvAeKasTMwXXvN\nV+pP69Mb42h6iWvCrf3vCV6v/dpjR/o4ldUJ4EPIgyiwHkij7fccW2sfdcVavQfjSB+8H68/3ifX\n1vf9Wqq94G59u1Kknz3h9dLbR/o4VaMTwIdRK4Qjfay1uau0RaC91sfaIG+dH+2jKJNejv5Xi1zo\nekC65wU169aPAN3IGC+9/RZzONWiE8CH0tEhHG2Phj56gVjro8bRrgFkr29Le14Ua1LjW64LR2L2\nBudrmcOpVp0APpy2gjCMPnruDl4LpBnH6rliKyY6Fu/P61Pqm2uv/55bbMLKjtXqdiNjHQF6R5nH\nCd8tdAL4xaoVwhG1uuGj9BFx5ZGYMhac8XifkX6tsSS1/tftvclrDfBG+3wpwHop8D21lU4AH1JR\neK7thHv2AaOfHm62xzxojBcXdcVSv5H+Pe15Ea1xR703Zr0maPaay1av51QvnQA+rLaCcLQPOP1E\nnWxrP703U/WGsTWu1X9knK3VeiFe44Edrw2aL20up3rqBPCh1SONHO2nVyoYG/UThXmPfjJxdNyi\nzH8z7wLYE9C9L7Zr7IbOxL1G2B2tn1M9dQL48OoJTzh99YBw6QdOXz0ButX7Q+MisXR8qpb/dke6\nSK65IzoTezRIvdZ+TvXWCeAXoV6QifTVC3rROW2ZIi/q8WznbGzNXI6mrXZHv2bw9uzrhO9L10v6\n33/KVRTCPZTZNbwFhKP9RPvK9FdikYinc6E60n/JHhu99gJvtL/XDN9TR9eR/refMtVrPTjaV09I\n9UyRw+mr9+1EWbCucevRFv9Ne+6qzsIhE98TTq8dvifIj64TwC9KRwRnpi8E+juyG0awz5Y2kiIX\nUu81rH3bUs2FvDd4M32+VPhGdd7r+xJ0AvhV6qgQjva39caqmodr1IA42y6jPS64te7pNYA32le0\nv6P2dWpNfbT3BE5l1fvisHVf0f72uNA8JfusdX21bY+glvln270V+Eb1Uv9mTmk6AfzmdeT1pCiE\ne88t+wCJFif4UmDc43VGlf0gFO2zl97S3E6tqRPAL1J7/MeO6rU4iLUeKmG1P9pFsccHhGzbNZ6e\ndeT07gnMt6wTwKewj3PtrTUuZFtDuPSx98W21xzWfB2v4W+2t06YvzSdAD6V0B5rwcC+bqIGwj1B\nvOXFsud4Nf2skbE58rrvCcy3rhPAL1bnf/LttPYjFyN9rfX7WQP0a8P3yEswp07FdQL41Eo6+geE\nl/iB4wigXKPPE5Sn3qZOAJ9K6rxYxrWma21t/xI/gAD7zfvoHxTP/5cvUSeAT70yrXUhOtoF7ogA\nPeKcPL3EOZ96LRrGcezf6TD8TwD/tXvH6+r3APhfe0/ilet8j7fR+T5vo/N93kYv8X3+znEcv9UL\nWgXAL1HDMHx1HMc/svc8XrPO93gbne/zNjrf5230mt/nMwV96tSpU6dO7aATwKdOnTp16tQOOgH8\n0Jf3nsAb0Pkeb6Pzfd5G5/u8jV7t+3yuAZ86derUqVM76HTAp06dOnXq1A46AXzq1KlTp07toDcP\n4GEYvjgMw38ahuE3hmH4S3vP5zVqGIa/PQzD14dh+LW95/KaNQzDdwzD8AvDMHxtGIZfH4bhJ/ae\n02vUMAzvh2H4N8Mw/Ifb+/xX957Ta9UwDJdhGP79MAw/t/dc1tCbBvAwDBcAPw3gjwH4bgB/chiG\n7953Vq9SfwfAF/eexBvQE4C/MI7jHwLw/QD+zPn3vIo+APjBcRz/MIAvAPjiMAzfv/OcXqt+AsDX\n9p7EWnrTAAbwfQB+YxzH/zyO4ycA/gGAP77znF6dxnH8RQD/e+95vHaN4/g/xnH8d7fj/4vpwvXt\n+87q9Wmc9Du308/d/p27WTtrGIbPA/gRAH9z77mspbcO4G8H8N/I+W/ivGCdegUahuG7AHwvgF/a\ndyavU7fU6K8A+DqAnx/H8Xyf++unAPwkgM/2nshaeusAHoSy85PsqRetYRh+F4B/BODPjeP4f/ae\nz2vUOI7P4zh+AcDnAXzfMAzfs/ecXpOGYfhRAF8fx/GX957LmnrrAP5NAN9Bzj8P4Ld2msupU80a\nhuFzmOD798Zx/Md7z+e1axzH3wbwFZx7HHrrBwD82DAM/wXT0uAPDsPwM/tOqb/eOoD/LYA/MAzD\n7xuG4WMAfwLAP915TqdOVWkYhgHA3wLwtXEc/8be83mtGobhW4dh+Jbb8TcB+CEA/3HfWb0ujeP4\nl8dx/Pw4jt+F6br8L8Zx/PGdp9VdbxrA4zg+AfizAP45pg0rPzuO46/vO6vXp2EY/j6AfwXgDw7D\n8JvDMPzpvef0SvUDAP4UJrfwK7d/P7z3pF6hvg3ALwzD8KuYPsT//DiOr/I2mVPr6nwU5alTp06d\nOrWD3rQDPnXq1KlTp/bSCeBTp06dOnVqB50APnXq1KlTp3bQCeBTp06dOnVqB50APnXq1KlTp3bQ\nCeBTp06dOnVqB50APnXq1KlTp3bQ/we5egeI3ld27AAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "heatmap(grid, cmap='jet', interpolation='spline16')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's define the problem.\n", "This time, we will allow movement in eight directions as defined in `directions8`." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "{'E': (1, 0),\n", " 'N': (0, 1),\n", " 'NE': (1, 1),\n", " 'NW': (-1, 1),\n", " 'S': (0, -1),\n", " 'SE': (1, -1),\n", " 'SW': (-1, -1),\n", " 'W': (-1, 0)}" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "directions8" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We'll solve the problem just like we did last time.\n", "
\n", "Let's also time it." ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "collapsed": true }, "outputs": [], "source": [ "problem = PeakFindingProblem(initial, grid, directions8)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "533 ms ± 51 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], "source": [ "%%timeit\n", "solutions = {problem.value(simulated_annealing(problem)) for i in range(100)}" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "9" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "max(solutions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The peak is at 1.0 which is how gaussian distributions are defined.\n", "
\n", "This could also be solved by Hill Climbing as follows." ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "206 µs ± 21.6 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)\n" ] } ], "source": [ "%%timeit\n", "solution = problem.value(hill_climbing(problem))" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1.0" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "solution = problem.value(hill_climbing(problem))\n", "solution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As you can see, Hill-Climbing is about 24 times faster than Simulated Annealing.\n", "(Notice that we ran Simulated Annealing for 100 iterations whereas we ran Hill Climbing only once.)\n", "
\n", "Simulated Annealing makes up for its tardiness by its ability to be applicable in a larger number of scenarios than Hill Climbing as illustrated by the example below.\n", "
" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's define a 2D surface as a matrix." ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "collapsed": true }, "outputs": [], "source": [ "grid = [[0, 0, 0, 1, 4], \n", " [0, 0, 2, 8, 10], \n", " [0, 0, 2, 4, 12], \n", " [0, 2, 4, 8, 16], \n", " [1, 4, 8, 16, 32]]" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeAAAAHwCAYAAAB+ArwOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJztvX/MdV1a13et93ned4AMZZpIUueH\njka0NSRCO1Ia0taMNB2RiqZJiwYTf2WSWuPQ0FLxD9umfzVNiH+UNHkLRBONaIttLdUaGiGUhCIz\nCAYcNRMYwxTiSA2BSWfeee9ndv84977vfda5fq9rrb32Ptc3eXKfvda11tr3eZ7nfM73Wj92WZYF\nUqlUKpVKjdVre99AKpVKpVL3qARwKpVKpVI7KAGcSqVSqdQOSgCnUqlUKrWDEsCpVCqVSu2gBHAq\nlUqlUjsoAZxKpVKp1A5KAKdSg1RK+WQp5eursj9SSvnRgL6XUspvae0nlUqNUwI4lUqlUqkdlABO\npSZRKeXdpZTvL6X8s1LKz5dS/vSm7mtKKT9WSvmVUsovlVL+u1LKG491P/IY9tOllM+UUv7DUsrv\nKqV8qpTy7aWUTz+2+f2llG8opfzjUso/L6X8WU3/j/VLKeVPl1J+rpTyy6WU/7aUkp8fqVSD8j9Q\nKjWBHmH2vwHATwPAewDgdwPAt5ZS/t3HkFcA8J8AwK8DgH/jsf5PAgAsy/JvPcb8jmVZ3rksy199\nvP6XAOCLHvv7cwDwPwDAtwDAvwYA/yYA/LlSym+W+t/oDwDABwDgXwWAbwKAPxbxu6dS96qSZ0Gn\nUmNUSvkkXAD3sCl+AwB+EgC+DQD+x2VZfsMm/jsA4Lcuy/JHkb6+FQD+7WVZ/sDj9QIAX7Esyyce\nr38XAPwtAHjnsiyvSilfCgC/CgBfuyzLjz/GfAwA/utlWf4XZf+/Z1mW/+Px+k8CwL+/LMvvbnhL\nUqm71su9byCVujP9/mVZ/s/1opTyRwDgTwDAbwSAd5dSfmUT+wIA/q/HuN8KAN8JFwf6JXD5v/sx\nYaz/d1mWV4+vP/v4859u6j8LAO809P8Lm9f/BADeLYyfSqUYZQo6lZpDvwAAP78sy7s2f750WZZv\neKz/7wHgH8LF5f4LAPBnAaAEjq/p/32b178BAH4xcPxU6u6UAE6l5tDfBYBfLaX856WULy6lvCil\nfGUp5Xc+1q8p5M+UUv5lAPiPqvb/FAB+M/gl9Q8A8J+VUv7FUsr7AOAjAPBXkZhUKqVUAjiVmkCP\nqeJ/DwC+CgB+HgB+GQC+GwC+7DHkPwWAPwQAvwaXxVQ1/P5LAPiLj6uY/wPHLUj9AwD8r3BJS/8U\nAPzvAPA9jnFSqdSjchFWKpUSVS/ySqVS7UoHnEqlUqnUDkoAp1KpVCq1gzIFnUqlUqnUDkoHnEql\nUqnUDupyEEcpX7IAvKtH16lUKnUA1VuoLdfaOq4N1r61X889cvfDxWvLvGNGxVL6JCzLL4sddToJ\n610A8OE+XadSqdT0er26rj9qufrXiXKuTtPGM6am3FKH1dfXWBsqjovXtrX2pdHvlEMgU9CpVCp1\nYlnAM4usAIyE71glgFOpVGpX7X0k/7yAGq+xfxcJ4FQqlbo77QV9L+zP+SUhAZxKpVKhOics+qj3\nezV67temBHAqlUodQtxCqyhxi6k0bSx1qQRwKpVKdZW0CjjlVxTg9/mikABOpVKpaeRxuTM549Yv\nF5btR1Grn/dz6QngVCqVCpMVQD0//F8nXu+lGe6h1r4p8gRwKpVKdVNU+jkSXp55Xk1fljrt2L3d\n777KGfJUKpUKUeuH/t4p01Yw94S5RaPfR//RlQngVCqV6iLL8ZNSW0qaoyIjwTjSwXvc7wj4RpwV\nfVGmoFOpVGp3jUqZas+PtvZlleXLSLTmgC9AOuBUKpUKUE+Aah+I0Hs8i0akyWtp3g/PfcVCd6sE\ncCqVSoXL+/QjqU4zHpV+bv24124/sj79yPrkI2l8Stbfvx94VyWAU6lUqknWx+95Fel+90w/e9Uy\npqVtf/CuSgCnUqmUWx4QjnK/HrUeBCLVed1vS+pZ+3uMA++qBHAqlUq5pAFF1GIjD2Q1c8fRp221\nztFa4Htc8K7KVdCpVCplltWladSaCp7d/daawf/tB1+AOd6BVCqVOpA8DhSAd8eWOuvYVHvP+c49\nn3wU5X7nd76rEsCpVCqllvZwiJaFWR4Yag/esK4WjrhP7FrzfvSC7/7gXZUATqVSKZV6wVfrKj2u\nWNM+YrEXVzcLfOcB76oEcCqVSrGyfOi3Pg2pdR6WGr/nimoLRjSxVvgey/VulQBOpVIpVFa35VkV\n7anzuF+q3DO/25J6luKtccdzvVslgFOpVOpGI+DrSelyfVpTzK1zzVJdROrZm3KeG7yrchtSKpVK\nXSlihW2Ped9aniMnW1dEa/ryxkb1dwz4AqQDTqVSqUd59622LrqKTgNr+m4d03reM3df1D140s7H\ngS9AAjiVSt29Wg6MiIQv17f2HkadeEW1wa6lLw4Rx1EeC7yrEsCpVOpOFQleLD7qIA5u7EjIRhwM\nYj16837hC5AATqVSdyXrQRTa9r3gG7HoqnUvsLZNxP5nC8CPC95VCeBUKnUH6gVerN2IU7Ba9/VG\nrMDeqkcqnhrv+OBdlQBOpVInVit4pT72OAVLGxd92hUo6xK+WiWAU6nUyRS1jaZ1L3CPfcD1dS+H\nG3E/Uj9YPRaz6lzwBUgAp1Kp02gv8GJtZoFvrehTsEbA93zgXZUATqVSB1bkoRE9wCvF9IZvrzaW\nPjz1qw4C3/r2H3zNUqlUanJpoQvQ5na59qO3Id0bfCcDbydSJoBTqdTksgAXoN3tcn2M3obUc/52\n9JzvQVLOA6mYAE6lUhNqD+hy/XjBK8UkfJ+1E3h3pGACOJVKTaQe4NX02+PwjTrG4oqtMMMU3caT\nuqbGngC+UfTD+nk19hZSqVTKIStwAcZAl2sfvQWpro8A3V5zvhPP93pp15GSCeBUKjVQHuACxEFX\n6qt17y8W1yPFOyrt7F3BrakfAF4r4QYTUfU84FLKh0op/6iU8olSyp/pfVOpVOoser36Y9HLzR/t\nON6+qPZUOyy+jqtjsHouth4Pq9P272nTsn1qR/ha/tm8BFt8sMQhSykvAOC7AODfAYBPAcBPlFL+\nxrIs/6D3zaVSqaPJ63BXRTpdqT+r26XatKakW0DXq03EPdV1AN3BGxET0e7zcd1+DQB8YlmWnwMA\nKKV8HwB8EwAkgFOpFLRB1/rJ1ppilvoYuf1Iit8rHd1rvrcTfKW/7onT0Jqh3gMAv7C5/hQA/Ot1\nUCnlwwDw4cvVlwXcWiqVmlejnK5lrD3Bi8Va4BsNWK7uJPCNAu+OK6E0Q2Pv3HJTsCxvAsCbAACl\nvPumPpVKHVUjYWsZrwW4XHsLdLH4HuD11mnbHCTlHAHdVuB6qens6lMA8L7N9XsB4Bd13adSqePp\nqMCV+vLMB7fMBXvBW9f3hLIlbkfXy/3VRaegvW06DfMTAPAVpZTfBAD/DwB8MwD8oa53lUqlBqoV\nuADHc7lc20joYmXRKWWuLiLdbBkbIAy8I6C7Y/pZNfyyLA+llD8FAH8bAF4AwPcuy/Kz3e8slUp1\nVLpcXTvvqucW9xjhhrl2k6ebqb+KPdPP1naBKWhYluVvAsDfNN5CKpWaRqOBaxnzqNDFYkeA11vX\nAlcO/B3B2+KCtTGe2CDtbMBTqVRfndXpSn1Ywduy2pkqiwJcRN3ErtfqeCPnfGdPQadSqaMpoatr\nExHfulCp98Ksg4HX63hnSj/P0XUqlRqrFvCeaREV167V6WLlmoVYo93wxOlmC3i9Llgb44kNVAI4\nlTq8vOBN6OpjJWhpYnpB8aCOd4/UcwTxNH1ELsJKpVKzaZTbPSJ0e6SWtWNZY6LqJgWv1u16oNsD\nuIOJmABOpQ6lEW53ZuiOnM+l2nv2A/eY+43sZyLwtkBX+8+8B/m2faYDTqXOpFnAe1ToalPLlvYt\n0JXqpbYR88RYfTB4ezpgTb02JqLNvMOkUimfZgGvps/ovbpndLvW+hOlmkelnidPO08ydCqVojUL\neI8I3T3cribmZI43Os3she6ItLO1baagU6kj6gjg9aaZZ4XurG44atV0XT+R251h8VU64FTq3nV0\n8PZ2u9pY7VizQre+nsTtYt3NAt2RC6+0faQDTqWOoBnA2yPN3Au6Z3S61nhL3Q6LqiKgO9IBe+KD\nlABOpXbRiH28ezjeiLSxNrYndD0xPaFb1x/Y7Vrnf6X6GR3wPt2lUilZR3a9MzjekVDVxCR4xRht\n24g6S0xEmwYlgFOpYTqy6+3leM8K3Tqm5x7hidPMoxZe7b3oyvlXkgBOpborweuP2wuonhjp/qPn\nkQO3EHmg2wrX3sBNB5xK3bNGgFczztHAO2ofriam1elKfe4IXaxsr7neVuCOnAfW9JcOOJXaU7O7\nXusCq2jw9nK7e6xgrssmcrpYd73mea1w7QVjbUxLfJASwKlUqGYHL9d+VvDuAVWp3vpl4Y6gGwnc\nSNhG0U7TTzrgVGqk7iXdHDUHq2k3W711DvjOodsDuCdyvzsPnUqdRQlfW0zvudmZtg1p6ncG797z\nvKPmf62xLX2mA06lRuhs8G1Zsbx32jYS2gndZrgexQF72wQoAZxKudQCXoB953tbXG8P8PbcI9vi\ndhO6zWVceUudpt4bO6KfPt2lUvegdL14zMjVwZFQ7pnO7rhtKAqoe6egpbromJb4YCWAUymT7mGV\nsxUyWEwUIKOgfFDoRgC1N4StsS11lhhLXHT7nANOpSJ1NteLxUe43hGu1Vt3Euj2grC2naU/Tz+9\nYlriO2mS20ilZlbrfO9s42jHOit8I1PdO4J3hhS0p7ylzhJjiYvuIx1wKhWhe3S+1rT0aLh6U83e\nPiaG7mgIR5ZLddExLfGdNMltpFIz6mzwjZjvjXK9PcEbPS7A1NCNdLR7gVhTr42xxEW3XZUOOJVq\nUcJ3zHxqJJSjoe6ErhWIo+Z4ZwJuBIwtcdbYFr2EBHAq5VeudO4D31ZnawWvB8hBTneP1LIXsBaA\n7gXbns53RwomgFOpK50dvhJ46xjvQRWRgI0Cb2e3e8ZU80jXGxnjiY3sJx1wKmXV7PDl2kbAV6rv\nlTo+GHhnh+4RgHvHrnerSW4jldpbs8PX2kazx5eTxflq+pgBvpOCd2S6WdtXZHlUvTXOGjuinzHd\nplJH0hHgG5l2rmM41xo5p6spnwy8FnBGxWLX3pgeZVLd6FRzOuBU6qiaHb6te3ylmJ7wjSifALxa\nkJ4h3Tw61dzDzbZSLYKKOQecSkm6B/hqnClW3wO+1HgW1zsBePeE8N7A7QXiXnHeeKvq/hPAqRSn\nUft8vX3NAl8NNK3lra43GLytoG2BqMfl7g3hljpLTI+4qHZBSgCn7lCj4CuNE/XfT7PPl6vrAV8v\nRLV9DQLvDC7YG2Mp85RLdZp6bUzv2Og+0gGnUnuqBb69D9nQ1mnisHLt4qy6TNvXAPhGuN+90s0W\nkI52vzPBdgL6TXALqdRIzTDvuyd8OSBa5lcj5oFbUs6B4J3Z/Y5IN/eAbY/U8VHcL0A64FTqVglf\nvM664CoS1No2ja43GrwjoTsKuHu73jtwvLUmvKVUqofuDb7WeizOA1RLe63DbXC9reCNSEVb+tG2\nby3zlLfUWWI8sZ741nYBSgCnUqyOCl/PXt/Z4Iv14Ug3t4I3Iv0c4XJngXBEvTXOEx9NN0t/mYJO\npVZ53e+I/x7W7UaauB7wpcaMgC8X3+B6PZCNTD/PlnqOLNfWa2N6x0a066CJbiWVOqr23G5kiWmB\nr7RCmWvfMt+7KgC+HuBSUNwbvHtBdy/na20TSTZPX+mAUymA/u53ptSzZcWzJE86OhK+RucbBVmv\nE7bUea61Mdq2UnlLnSXGEzu6TUdNdjup1L1oJHy5/lrTya3w5cZ3ut4e7rcVyBHXrWWecqlOU2+N\nGxUf3X6rdMCp1MzuVxvvWfHM9eFNMU8IXw6aLRBuAe+RIdxSZ4mxxLW260k4ru8EcCrl0Z6pZ400\nkKbAGrHiWRNnga9zpbMGoNY6bz0XH3HtjfGWS3Waem1MS7y3TUu7YE1yG6lUtFog17Pv1tSzFKOB\nL9Ve+lTHnGsdxzn2TvBthbFUpqm31HmutTHathF1mnprXGu7KKINImMCOJV6Uu//vXvO+0pxEmgt\nW4cGOt8oCLc64vp1j+vWMq68pc4S0xI/epwBmvjWUimv9nS/vT4drP1GzPtyZVh/VJ3GOU8GXwuQ\nufiIa2+MVN5Sp6m3xrW2m8n95hxw6j6156EbXB+W+2pNPVOi4Mt9mmv36dbul4Nvw4KrmSCsfR1x\nrY2JLNfWa2Na4lvaTUy5iW8tlRol7X8DL9xHp541c79YW+scb13GtafGEOCrgaYHtFrgWsBsqfNc\nW8o85VKdpl4bE9GmpV1rW0npgFOpker1X0mCb63RqWcOvpIb7gjf3u53NghbY1vqLDGe2Na2kf8V\nvX0lgFP3J49Dndn9Wj8FvaddtZxSRSkIvhT8ejljT1n92lKnuW4t48pb6jxx3viIthPSbsJbSqWO\npohPn+h5X8tpV1x/HHy1874Hge9MEPbGeMulOkuMJW7vdlHta6UDTqUk7eV+NbL+1/QAXCrTAJ7b\nXhQkDHxY+SwO2ALbSPD2gG4klL3xEe0nJd2kt5VKWdVz6xGnI7lfa1ndnwWyQe43+qc31lJvrdNc\na2M85VKdJcYSt3e7qPbHHDqVOoIi3W/UJ1hdbz3xSlOmgW3n1POon9Y67WtLnebaUsaVt9RZYlri\nI9r3pJvUd6agU/ejXouvog/d8IwhxVgPyeDKWlY9HxS+VuC2QliK1bS3lHHlUp2m3hrX2mbvtsGa\n6FZSqSOJ+6+jdb/Rx01aFl55z3XWyNhub+j2cMKWOs21NsZTHlXvjY1sH0W01n7SAadSlCLcb3S7\nvceKdL91O+bTiGqSENbHaNtq6zT12piW+Kg+JqbcxLeWSmm0x+KriE+eVvdb1/VyvxJ8pXYOK3AU\nCHtee661MZ5yqU5Tb42bqW1Ee0zpgFOp0dprJXarWu67oS0HOWubnvDlxudeW+o015YyrrylzhPn\njY/sY1LSTXpbqVQvaf7JR4LU+2kWOffL9YuNQbncDu63BZDePlqd72gH3Apirs7ypScqbqa2Ee0x\npQNOpWr1/Are8rQj6315j5zEylpWYTdstWoBqqfN3hC21LXEeMu19dqYlvjZxvX0nQBOnV89Ur4z\npJFncr/WbUerFAuvNIDiYGht0wJfL4QtdZprSxlXLtVp6q1xUe0i2k9CvkluI5U6gqzuF4u3ut+6\nvof7jbYoyq//2yYRLtfTZpQD7gHeSPc7q/P19BFJtc6ETACnDqoIEI1W66EbXGyL+61jWt0vIyvw\ntLEREPbGaMeX6jTXljJPubZeGxPZrrWPGT4CKk14S6nUXtpj8ZVFmiMnJfX+L+9wv1wdBWUuVtO/\nd0yvA7bUSWN7yrhybb02xhMb2U/0P3FPfzkHnEpFypp+9vTpXZxFuV/OoWrTz9R+Y0ca2+N+ufYW\n59r6UyrTvrbUYdeWMq5cqtPUW+Na20S0n4x4k91OKtVDo/+ZY+O1uusId869D1JaWfMeDnC/Hpfa\nA74zgDcy7Tyj+90zzdzaTzrgVMoi60MNWtViPzTbglpgK2mA+21xu9y4e8B3Rgcc4X73cqF7gjlY\nk95WKsUpeqtQ70cORi++ksbz9luDtRXURPdeJ+Z1zVR7y/1o4euF7ewOeKT7PRLYKaUDTqV6auTc\n74yLrwynXlkAh5VFO2MJUB5XzL221HmuqTJPubZeGxPRprWPiSk38a2lUhGa6WuxR9rUeHT6uWGx\nFSYrzDR1dYxlXE8qmrun1lS059pSxpVLdZYYS1xk+9n+m6cDTqVGy5t+7qWW9LNFhsVX2JDeOi+w\nLWNZxuReS2NGwJgq75163iNlvJf7DtaEt5RKjdTei68ijp2U2rfAlbsPxfujdbqaeGudFOuN04zb\nKx2tjfGUS3Wa+tb4vceL6mO+oVKpCM14VvPe47Tej/aTujH9zNV5nSNX1wJlb6pc+1qqk+K1baTy\nljpPXGubvcbrJPGWSinfCwDfCACfXpblK/vfUioVpZH/4zTp55H3Y3nwQt2GKsf6aFx8pS3rAWWL\ntI47XbA/NqL96PEoKWdlXlPE/AUA+FDDraRSk2p0+lka35N+ltLSvdLPRmndI1fG9eVJG1vcr0Yj\n4PtSEcPFYeVSnaa+jpFiuTbesTRfHLzjdZI45LIsP1JKeX//W0mljqDZ0s+9FbT6WVunjfeAlpMF\n+NJ97OWCLWVcuVSnqffGHmksTqNXQZdSPgwAH75cfVlUt6nUQTULQL3awQ7sqQc41q9s/fLS2rdn\nHO/9eNqNahOssFtYluVNAHgTAKCUdy9R/aZS86vVYo1UnZKe5b5SXWR1vy2uWBvTEj96HG/fuQ84\nlTqLrNuPWtz3QZz76lgx58rV9b6fvRSRep49Jd3beUe1n3OoVCr1rD1XSE+svUGmkeUeZ/t9IqGs\nqbfGzdZ3Z4mroEspfwUAfgwAflsp5VOllD/e/7ZSKUpv730DEynSrXZyvg99ujWp9R4eqp/e8fZ+\nL0bDt3U19F59W/vC/kSloJdl+YO+O02lUj5FwXCSr/lR4tzkXq50Noe7qtU9jkhH93KuIxd/NUqz\nDziVSgHAYeZHj6LRjrAej7q2Ot570l7wtbhia5+trrhBM353S6VS9y6vs/QswIpysdt+qD6pmJmc\ndC8H2WOh1ojFXx37muWvPJWaSK3/LaxOmRsvXfeNLJCNhis2tjSG5x6igWxZJW3pQ9NPNEx7r4Ye\nSMVMQadSpxIG7AkgzqV1vXV1jGV8aaGUd9yWtPUMKe8jLNSK6q+O3yEVnQ44lWpSz1UhKZNanGaP\nFLAm3awdd6YU9apZFmr1dsSevgIfxpBKTabcijSFq5Xkda2j3K5WXH89F2zN4IgB7OlrqS7a7Wpi\nvIu+qD9BSgCnUsPlhWdPCyR9qelEg6jUdAuYpZ9acYD2vNaMpb32KmqeWNtXBHg9ae2d0tAJ4FQq\ntVGH7EIUDDyQjZa2/9kc8Qg33ZqSjgKvRjtuPdoqAZxKHV49PkmoT+wa0I7nrkSnmC2x3kVYWocu\nLczSuF2PI45Qr7nUqJR0Sx8tDvflYv+Tc8CpVKpdlCN2kMGSJvXEemBlWe2sgTFVZoF0Sz97ybNK\nunX+NjIVDUDDtKMSwKkTa6ZPqBQpC9h6zvW2zCtTZZZUdetccK954K0s7rHXQq2oVPRA0JK3sMuo\nqVSz3oY5VwLPeE87qt4+o9lOo2lTbx/yjGMRNx5XhvWhfa1pO4OioNxar4WuVy8N32iKbpx0wKnU\nVDopwD2rdiPbRLpgrWO3rIrGFOGCuf56Ombvth9PvdjW6HJfPuB/OigBnErdtXZeWtuSYg68DdV4\nVhhjcZr6yMVZe8zCWOeDe7peD3QHKgGcSqUErQuxHqrrVR3mz1rmY3vMAXudcc/FWTOodeV0D9er\ndbxR0H356vZProJOpVIX7XxymDa92xOyUnttPRfrKZP6bn3N9bu3WhZpoeWdoIsBdvunQQng1IGV\nR1L6pXnvBn1aW+dtqXaWMTT1Hmes7VPqj3stjaFt20PWYyu1fazlHHzZPg3QDQSspARwKpWqZPli\nY/x07wHTnqlnaQyqThOP9U/VU7Ga8paxeilqnlhyvRrwDgRurQRwKrWrZtpP0pJREByIFhpR0LSm\nmKPngaV70brfKHfsgbMk7wlWVJkHvuS4AnidwH3t5SvVH+26iARwKnVX8loeaSFWgCLcWIs77OWI\nPWXYWFQ9FTujwtLRBOC04FUIB2usEsCpVGqMvO511E9OFhhr4y1lrWCObEvJm8yJcr7B4B2hBHAq\n1VUzpZg94j6da1e8w3F+kuONgLsnPS3dS09HbE1V91LLQxai4Suop8tlxx06WiqVmlDYh1enFea9\nXKvkZjVzuZ75X01MzzIgylpS8b3UvGcYgS+XchZcrxe6L16+Ev+UPIoydR/KrUix4t7P2vEO0p6p\nZo2jbYFwXRdVpqm3fFnpIcuWJQq+aKwOvBphcI1UAjiVUmnmM5q9dkf75SU4DT0CmD1SzVrQUjHW\nPrG+qDKtS6a0pzOWZIUvIS14e8EWvafuI6RSp9XR53e32vkTeKSbbUk1a2OjXLK2LzCU7fFXXf9X\nUW9PaoevBrwR0H3x8uHpTz4NKZW6S41KyXOf4g4X3HILFjhHttH2YxlDqx7paW8iJUId4cvJC90t\nbJ+g61ACOJW6C23BrP2wwGDOlTV+Uvd0rL3aRI1prQOkzlJmAbOnj5HJIQd8LeCNgi2mBHAqlaqE\nQdZqr4JdcC+Xq4FwFGCl2Mg6qWwmtbhfBKJcylkL3h6wxZQATqWGarbFXJ6UNdfG+YEV6VyjY6UY\ni6NudcK1IvjQG9Ca+d+r+jb4UpLAOwq6WyWAUyfXjF/5ZxX2XkmAXttgcQYXjJW1uF2uzupO9wC+\n5r48ddrxNPWj1AhfyfVaofvy5SvxT8nnAadSKb+0aWhMxk9ub4o4Eoxcf5r2lrGi7ivSGY+CseSG\na/cbAF9KWvDWcI1UAjiVSgmSFmNhLngtUx5PGeXwvDDnYnqAFZMlVtPG8p5IZbMoAL4a8PYCbq0E\ncCp1SLVuN/J+yg78dG51eFFOVtO3B/hRoLXICuM91TAXy8FXHHbgedAJ4FTq1Np+4FDQ9mxRovoL\ndMFS3V7p5Ii0cWQK2ut0veqWjhb+nSjdrwe+HsebZ0GnUilEUYdxvE28xiR9KjekoqPT01ydBnhS\ne21MT2fscfFcjLdeK83cbyUtfLmUswW6Pc6ETgCnUmGabYuRRRZoS67a66iZYeqyFtDu4YA1/Xp+\neuSFcqSLtqoCngW+ZJcTnAudAE6l7lbUhxMFWIsLdm5LqrvRwBEr88ZLgLWAUXq910+rwlxuTDet\n8JVcbz6MIZUK05kemBChqPQ0BVvJOg2GcKQ7toCOGkeCYXS51YGPEvffsgan4jzn2zIavlw/vnOh\nkUcW5j7gVCoVIwra0qd2YypIM4rRAAAgAElEQVRaYrk1XRoZT8VIwNOOEVVe188obvGVIvVcywtf\nrSLnghPAqdSV7tkxa4BpXUndkIredmVN52rLPC5Zajc6lWyFq/bLgOaLx86qAWiFr/5s6D5p6QRw\nKuXSHqD2fiL2/CS1WC5HKnrbzALhnmAeCd/6/rgyb5+WfwK9wbsFqOB+tTDk4MtpxFxwAjiVujtp\n54EpJ6txwVT5IAhjZRQ4rQ54JHwfkGtrHxHy9tfpe6p23tcD31ELsAASwKlU6kqeRVoUqDXlnSDc\n0wFT8S0/6365Oo07tt6nFK+RB9LS4RuPkuZ+tfDl4Gp6RvCLV+yfovx3nQBO3amOvGd3L1m2JK3S\nQNggDpDUa48D5oA1g9OtX0uxknqnljVi0s9baeZ9KfhS/anmgTeAjVICOJUSdURYew/WsNRZFl5x\nMrjgeiisTFsvxVniW1LDHpBaIDtberrz8gkrfCVFQ3erBHAq1U1HXVHNAZSrG5SK3jaVnLCmnoqL\ndsLbsVtAbfkiwKk3mIO0TT9L7jcSvj3BuyoBnEoNU7STbnG5ddsIF8zVdYTw9rUmHa1J63pgLf1s\nSTNb6ywx2jY9AU2kn7m5X82TjTzw9YD3BTxc/dH+W04Ap1IpRByg6zrt3O5ACFuATLXxuGLuJ3bf\nUfDl+sbUAlMPkAckg2r3i6+UZhZhKcFbw/ZFw5uZAE6lUg55UtFcXTCEt68lIEeUaYGqAbi2DpAy\nbTxVNzINrVwBverFVSpaTj1z7a/KFeCNgC2mBHAqFaIzLNSypqm5VdGTQXj7utXtetPP2P22wNTq\ndDVjTiTNsZOUbueKafiy/XSA7lYJ4FTqSUddNKVV70/ZCSDckoZuKYtOKUuQjEhL90pRc8L+iym2\nH1ncbwR8W8D7El5pn8WQAE6dWb2AenZQc5JcMifPgi0jhCmNhDA3fi9wtrha6/gTy3KQBlln+GVf\nwqubPxYlgFN3qFnSxb1B3nqqlacPS9paW7eA+cQsyglLALSknLkyTapaWxb15QGEsonEbT3aSpr7\nRRdiEfDVuN4W2GJKAKcOrt4wnQXWvaQBrHWuuAeEAboszrLWa2HNtbP0ifUl9UcpwjnvDO5t+tmT\nesbgK4E3Eri1EsCp1LTqAX/NJ6jnU7YVwg/Kus4rpKMcsPQzGrTS70nF7iVsBbThEA0pzgJfSr2g\nu1UCOJXqorPNE2NAjXTCdT1XN8HiLE06m/vpGZN7jSna9WN9t8IcOUyDWv3Mud/ruBj4WvQCXl39\nyYcxpFKHU6vj9X4aYmlorC/PnHJPCA84tMPigDXQle4Fq+faePs6kTRHSt6UEW+KxvXWsH3R4JIT\nwKmTyupAsXgtEDVxZ51LloDqaaOFsENeyNVl1G1409XSPVjgq9FsgBbSz173a4Uvp1bYYkoApw4s\nD9RaQXiG1LLW3XrjpFS0pk0N4aAV0nXzCCdsSTdHpqDBWO5JWWvG2FHaOeKneOSXkFxvD/CuSgCn\nUofRkeAfDeG6vq7baYV0K3wl8FP3TPXLlWP9TAZV6fSrl8z2JMn9UvCl1BO8qxLAqdShwNZTkS4Y\ni6udLNauZfX0TmdIa+Z6LcCV4N1SvqcM/824k6+keIA2+GrBi80FP7fNRVipU2uP9HOkRkHfs3Cq\nVnTKOhLCdX3HFdIaCEt1dUwdZ4Ev16c0lqcfr6h/6itYHWc+S48TvLo2wpcdN2Dh1VYJ4NQJFQG3\nFlgfwVFHfMqOhvAO88KtZaPmdFthOgrGAKanIGkWX1nngTH4clCNhu5WCeBUSq2WldJHEeWYqU/i\naAhzkMX67jwvjLli6/ywta0lNV2/xq4xWcE6IIWtffpRi/ul4Ev2l3PAqVRPjXCrZ4O0Rl4IY9oJ\nwly9NPcquVOre/XAdwSYOwgDrMb9RsLX6ni3zwt+AQ/5NKTUmcUBjQLqKAh6gT7TnHaEC6biPelo\nTUyHxVnaOWHPXC9Xr32tGctap5E2vvG7rbT4ypJ6tsJXUg1crxLAqdSNZnCsnnvYc+659bGEnqMu\nLfWd54Rb5ou519Q9adu0yNsn98+wnv99hGhr+plzv1r4Sq43Ari1EsCplEqR87+zLNLyfJBE2SVt\nOvpAEJbKpL6xWCnlrZHXGfeUYmvRU6jxIQ0SICn4cv1FQnerBHDqYPKkn6Pi70mco41IRVPxXgg/\nVPXcCmmDJLhSsdr23GstfGeBKiflf7UVrFj6WeN+pXlfC3yt4N0+tjAfxpBKPcniVKO3H93bOdEj\nIexdnBUI4WhnzJVjdVHOeFJZ3e9VWwG+VMpZA94tbFseW5gATqVcGg3NPdy6xwVz7aIhzI0ljR+w\nOpors6SgqZhWHQCwreLc71WcEpBa8EYpAZw6kPZKP8+Yqp7BNc8IYSwdTbVvWB2tKa/LNCllb50U\nS5VRioI3uyDregGWNf2MPenoedgtmLWLsPBfutXlckoAp06uGUC1lQbmI++59ZN2BIRbtykFQrju\noiUFTcVY67BrSQdIVVvSz9Kq5+vY2xXTnqck8co54NSpFOl+PWNIcWed/209SzpqT3HrNqUgCGtd\nZuRcrwRADSBHQFT6b7huQTKsgAaQ3S8HX2ze9/qadr3ifbEPY9ApAZw6sSi47ZV+3iOVHQF4CcLS\nB2ovCGN9tDxXWKnWFDTXB9WPN1Zq71HgP2Mq/dyy+Oop3gFf7bOB82EMqTvSXu53lrnfWe6Dk/dT\nfTSEubaOdLRnrrV3qjmijVbkk44UMQp53a8Xvug95MMYUimrItyvtt/IQzqOfrgHpch9xa3nR3Pt\nlRDWQC5yDpgaQ7qvCIUmgR5v0OpmMRAHwZdyvR7orm3yLOjUSTRijnSvedjRkG6RBnreVDTXVjsH\nbSUP9wCHhiGj5oBbYiPaeRUIa+vKZ7QP5Zyv1I6K8c79rkoApyaWBJojbT3y9je7s7UqCsLRx1YG\nbE+K1GypZo+u0tD0e6qZ/71po3S/VJu1nefxhDkHnEqxYOp18lXv9HO09rgPzSf8TBDW1ima9FqE\nNaP7DZjjtT6AQXK/XOpZ+2jCqMcTaiUCuJTyvlLKD5VSPl5K+dlSykfC7yKVulF0enY294vd51nn\nf61qhbAUo5kPHnhmdMRK5mjYtvyTErcjYSucr93vi+rnVaxiz68HvlQ/nucCa8+C1rzNDwDwbcuy\n/GQp5UsB4GOllB9cluUfqO8qlQrVLNt5ervflv61cZb38m1lvw+KfrV9aVT3pRmfUkvbgG41cZ1u\nkZUIVUW54QELN3GI+6VSzxb4ep8JHPV0JNEBL8vyS8uy/OTj618DgI8DwHtCRk+lUHm3HVnd70xb\nj2ZJW0ep9QMqelHWABeMDSvVj14kRcnzz17bZjv/q3j+r8b9auB7cxvKJyNJT0fa7XnApZT3A8BX\nA8CPI3UfLqV8tJTyUYD/L+buUneoGUHU4n5nniO2ynLfZ0uLM/LsBU51V69n+EZKDeBSyjsB4PsB\n4FuXZfnVun5ZljeXZfnAsiwfAPiSyHtM3Y1aVj1HuN+9tBfg7wiSKbvqfx6WNLThn5a0+tm69QjT\nyOcCW6QCcCnldbjA9y8vy/LXu9xJKsUqatUzFx8NvZndrxW+6X6nkTr129B2gOxHSyJzyMq5X7lv\n+SEPWl1gH7QIq5RSAOB7AODjy7J8p/luUilRvaB01EcO9gZ8T/hGaaa/j46K+jV7vV0tLviq3Ocg\npcVXGlkf0PBcrrvnlscUahzw1wHAHwaAD5ZSfurxzze4R0ylrtQKjJ4Lr0a439Fw6w1fbf+zZAIC\nZHGaM6xeHvV8EcM4mu1HtTzuV7ulSIJv1DOCxbdoWZYfBVAfbZlKGTQDfK19zyKP+50Fvi2K+ns5\nuMNuBWtL+8a3TnsAx1beOVjrs4E1Y7VCd6s8CSs1sSLnfT1jaGJb9uWOnDeeCTjRXxQ0fcz+hepR\nPf6aev/Va9PUzAEc+qH88Is4ySoSvpf+Uqnh6uV8uXYj3W/kf6s99ip7fv89P0pa/74C4TzybTiC\nC2bOgI4SlX6Odr/R8L30mUoN1Uzw7eF+W+Z+W/47Rj0zuTd8e2w166XAmbegudLw8TUQ1tyf8Xfg\n5ng1Zz97HhMotafg2wO8qzIFnRqoHit0ve16LLyKVgSkR+cfOY0CaM+DjANkXUkc9Vce/baoXfAz\n2LD533oBVi39IwT9e3X3gO+l/1Squ6IOhvA42b1Tz3u63yM5X6k/qr2m3zpm0Mde5C64nrcctVLa\neRCHvnv94RncIwq17tkC37pPbe4kAZzqrN7w9bQZlXrec4wzwdeinfY4a+BjAdSM25Wa/on7FmBJ\nh2+gQwnP89WMoYFvzKKuVKqLIo9DHDHv2yP1PGLfbwuoRyy2ioBvpPvV3scEOy81AOy939gK4asv\nGfoFWPX+X83xky0nX7W3i0lN5xxwqoMiIRO1uIiLH7XqeaanL3m0h7tsgS+m4Pd7tJPtsfK5RY7+\nrEdQXobxAc8DSs/qaa+O9L8/Nb2izwvey/lS8aPmk6NP4NK0k9QLvpGrnq00fJ2pc6j1+6AWrpay\nHq7Z+aWDW4ClVWT62Zp6jgTv83ipVLOiPyi9W1VmPpxjxLGWPeDr+YjoDd/eK9WD0889tiC1grX1\nk187n+08AxpAf6QkFRcJzB7wBUgAp5o1C3w9bUadCz3DKUwzuV5P354xuPE6Hb7xEinjbsNaL8W2\nQtgLa+NfJ7cAK+Lxgzd9NrjfXvC9jJlKmdXrw7zHIQ0RbrnH3O1I93sU1yv11Wu6wLn4ygtLKfXc\nuvrYCmFsvJYFYDdxG7eKrobm9wGvYLSkn63QjIDvNrZEPY4wlXpWTxc1A3xHrXpumWyz/h30hu+o\nef+Wv7OO7hcbgnLBIyFsVYTLNa6Ats7/rrKufpbcbyt8WxxyAjil1D3Cl1LkfGNE+6g58Vnha9EI\nt+9v1jRGj7lcy/gNsj4BaYWkZ/UzB0T9qVq5Dzg1hXpu92id7+0N39bU84iFV5axKc0O3sgsAjeW\nY/GVtBipdQGWF8LWFdDe8VmXr1+AZdn/+9RG8eCFllXT9Li5DSnVXb33WfZwvVy70XPEvVfqRvTZ\nc65X2791tbOlLwm+A+Z+63hLWtoyvgW4rXAWIYynn5/neh9uyiS9UM4D8320u9/oBVkJ4FSlEQcc\nHBW+PQDaMs5I+PZw1F74en5vCc4OYXO9mvlfqh8prm7TA7gtZZic87yXIXSpZGrxlcf9joTv5R5S\nqS7zj95xRsHXOoblQ7/3Xl5LXGu7HnOqnpQz13crXAPcrwVSUiwG79YlCty4mvGs97zRa1eroB/n\ndpGV0Wv6uXaqEeDTLLyixsltSKlOOgp4pT488LUAdRR8KWljPe9R65iW/jV99pgqCEo9Y11YwGRx\nuh4ItkjTt+aen177D+CgJIHQ4n61fUf1QykBfJcaBV7tWDPANyK2ddFWr9Rz9JclT99e18uNoXlv\nAuFrAZCnPy0EvWXUGJzMEObnf6Wymxjh6UW6pxbx7rcFvq3uOAF8d7oH+HrGaz0Vq8fBHhHzy73g\nG9nvHvBtUEt6VlzA5LyH1jKLtE7eMP9bp581YPXM/WpXPec2pFSgeqy0bR2vBbxc+97zxK2QGuWS\nLf3u5XqlmIgvS1R9gPv1zvtaIdw679zqmqWxb/p5dpza+V9JXthJK59xh51PQ0qFaEbwavr1ut7e\nK6T3nvfdG757g5dqZ3W+DfCl5n69Md5rTlZga8a2uHyFPI8kBMCB6nW/VvjmKuiUQbOlmrX9nhW+\nlEa5ZM0YLf1Z+uz5dzUAvt56S91aX/c/cq63w/wvdvwklX7m9v5a535b4JuroFNKjZ4ztIzZK+Us\ntY2Ar2Xc1rRpD5fs7T96/jhyWkHz3jXCl5LV/WqdrzYF3JJStqSZ6/vDrsl2FfCQVdFWF2xxv9pD\nN7C2mvIoJYBPo6OmmzV9eeAb2Ua76CpyzlKK7QnfmcFLxXeAbwtYLbGY06X6kcpHwJm9V3z+VxK1\n99frfrn424cztD6M4Rb2+TSku9LIdLNlvJ4pZ8t9aNq0wtc6nja21SVb40emm7nxJoQvVu8Fryb9\nzF17pE1Va8ZmIYwvsnopPHbw0hUFwxj3G/mEI6vLxpQAPrTS9ca0i4DvrPO+0a63N3i5tjuknSUX\nzA1tLdc44x5zwJr5XhHCOsdXy/LwhcuQ/njtvK+8CjrukJEE8CF1ZPBq+hs132ttEwHwkfO+EdvB\nLH1p4nqBF4sLPOVK64IpSG/LOahqU8C908yeexO2H11e37pgy+Kr5zay+5VgbV8FHX+6VwL4cJpx\ndbO275YPZ6l9b/hG9GGBb4tLPhp4ufY7wVeq5xyiJYaqk5wv1gcVaymTJEGZSC9zq58laQ/nsKSe\ntfPAUr+tSgAfRkd2va1AmGFr0lEWXUXBd0bwUvEd4Kt1txqX3DsFrZXm/rRjMOnn14S5Xqyccr/e\nfb9c6lm/CEsP3vrLQS7COpVmdL0j0s1S+6h0ptSmF3xboOr5rxvpekd/qdK+B53hi7XZOwVtSTVb\nvgxYwEw8fEF69q8WctLTizSPJ9Rca+/LOhdN95OaWGd2vS3g5dr3dr3WfkbCt3WB2IzgpdoEud66\nK9HtCT/rMq1bjkhBv0RiW+FscdzC6udt+Tb9TG0T4tyvZ95XA99R4H3uL3VSWf5qjzTXq70HbZue\n8KXU+sXK0ucR0s1c253ga3GP2vrW/jz3tI2L6k+Rfq6lcb+adLJFLY8njLoHud/UpPJ+SM/sejX9\nzDrf6+mnh6PV9sn1q2lridkLvADd4atJM2vipdR0HYfVczEWp2rtT8wKVCB9mgMm0tLI4qtbd3q7\n8Mrifq0PVKCcby/wPvefmlAj4Hsm15vw1fcrtbPGjPp7CXS9dXceF9ySgpbSxFoAasDpTWfXZeh4\nG/erWP3MLb56ijGcSuWZ97WknXXnTbc669Rk8sD3zK5Xat97sRXXV/SeXE+/1ri9HS/XfoDrrbts\ncb6aWCyeKueAisGU6lsDbK+TvrnW7/0FuH3wwuW17H6pWKneA1/P/mGvEsBT6UjwnRW8XDuuzR7w\nbXHJVkjv7Xi5tpbfJSjlXF974Outt7rdWl6Ycn1Z7uklkO5XWnx13Y3N/VoXXnHwtbreXg9lSABP\noZlSziNc7yxzilJdLzdL9R2519cSv9fcveW9CXS99bUFpJo4rcO21GmcrhamFjhz9xDofuuVz/W+\n4K00qWcrfKPAu8bnPuDTa1b49nS9Uvs94Wv5++jx3877ZWGmdDMVPxi+UqymP+0YotNkrrE2lDzp\nZW3MozTuV3uq1U3fwlORtCueo+Gbc8CHV++081ng22N1dG/49lhIFeWS91hgxbXrAN6628gUdE8I\nS/+NeqSgpb6urunFV5L7xeRxv1r4ck9J8oA3OhWdAN5VM8B3dvBK7T0f9r3TpSNje8DXC16urfXL\nyyD4asqpWGkMrp5LQdf1VNo4MgVtdd8vH57g+9rLVy73a32EoHRIRit8W58L7FECeDclfMeDl6uz\n9jcDqK3wne2L0ADXW197X2vdcA1N7rVUV/cttbe00/bFud9KGvcrPfFIcyY0DnD9nG/L1idKt18O\ncg74ZNL+VY1a5dyzfY+2vV2vNX4kfO8EvFjXo+Bbg9QyDlanAaPkbDXtNOMFul9MlscRtsBX63rz\necCnl9X9RsK3t+ud7cPe2+c9wHcG8AJ0gW8LiLX1GkCvr6Vy6p6tDpXrx+x26zb0sZOt7pdzpdp9\nwRb4zvAsYIAE8AEU7Xxb+2n5J5Pwtd1Ly4EcVHttPwdyvXX3rS6Yq8dAKsVqyjEnTckLZqovSzvi\neEkAm/ul5nU1W4Z0q5Nj4OsFr/ZfdgJ4uCygPIvzbfmwbxk3ar6Xa7O386Vie3yZmdz11tfRLtjq\nbuv6+l64txODstaxcu2ofiRnXq183j7z1+N+r4ePm/e1zvfm4wjvSrPCd8a0cUvbURAZuThL22+C\n9+Za40StEObqLUDWALO+d6y9Fs5cO/H6ee4XwLbv9/KaBqwmfdwC39ZHEebTkA6vM8J3Rsc8m+u1\nxrfM+Ub+7t52ncGLDRHlerevW4G8LZOcM9a2h5P1tjPM/UrP+6X2/Nb1dVscuDjora434klIdZ95\nEtbpNTN87831RsUfAb4Tgbcua4FvC5AxWHJtJAcMVX19rYEs1sbV7hEkiPtd4fuyWgm9PXKyJfUc\nDd8I8OZBHIdUtPvtDd8ebXumuaPv5+zwPZnrra81r7fXWvh6HTD1WqqTwKxpY4Uz2ub6zOeI1HNv\n+Fpd70joXo+bmkizw3d0O6ntyPsZPT/cAt/oL0EHAW997X3d6oCxsggH3ORkkXHEsfCFVwCX1PPL\nzUKsp/IXr9jjIr0PYvDC1wve1nOgMwU9jaK2B2nV0/l62iV842I1GuH4uTYHhy/X/7YMA3PLeFp3\nzMVIYMYkjVVtO8IeK7iWY+c96/fzao6i7A/fkedAX+4hNYki3O9ZnK8XvFy/e6ape8RGOd8JXS82\njBZeXGwP51v/pNpJ5dK1xrVyfXjc7wpfwf1KTzvCDtywH0WpHyMSvB7oWtokgLtK637vCb735Hqt\n8Vhsr7RzFKwHgle6toK4Bcga+FLu0upePVBtgfVVDL7war1+ek3s+W2Z942Gb9QZ0JFOOAG8u44I\n35nAK/V9lG1J0fDt/aVjMHjrsijXS732QJgro0BN1Wmu63G4NhZYr+6XOe/5xdYBC6uePfO+rfCN\nOwmr3wIsgARwR42a+z06fEeDl2vXG1qtsa3wjfoCcWDXu329lwP21PV0wFf98Ht+rauet9D0wtd2\nKIf+MA5L2XW9fDxlLsI6hCLcr7ftCAfoHadXn7O5Xio+Gr4nBG99PaMDll5b6rbX0bC++R0u7pc7\nbnJ74AYH2bX8qe0g+FrBu8eDGAASwJNrpoMyPP9UEr72+ISv+ZpzxNr4CAdsuTfp95F+JyuIqTGv\n2mwWXj2K2vMLgM/7AvBbjq6HHw/fqLOg63FqpQPeVb336krtZ04731PK2Ro/I3w7gxcr04KKi/W4\nXazMCmGqHeeGLe7YDFVFPy8BLHt+63nfp7hq0dWl62tXbHW+ONjtc715FvTdaMTc75lAJNVxfUpt\nR71PR4HvSV0vV6d1qBEOmCvD+rPUuaAK16JgrThu8vkaXxRFLZaithtty6LhawFvyznQEQu0EsC7\nqMX93hN8vb+rt21vp2+J9UL1AK63F4j3dsB1mfTaUre99sKaBfbtcZPcWc9ah7uWX35yW5H4uWEs\nhhqnfo1f51GUJ1SE++3hoD1/zb3hO5Pr7Q1eKt7y3tTtD+B6sSF6uFyubk8HrC2n6iwOV9OmHgcA\nsAM3uLOeuXlfDJ4R8G3bB0yvkK77ofqw1gPkHPDEannLjwQXLn6WRVbediPhq23bCt87c73b1xEO\n2ApiCpQRoFW3ked9uf2+1IpnDKyt8PU8H/j5euxJWBYlgIdKervP4uyoeO/v19J2RIqdatP63kTD\ndwfwYmU9XHAUcLVlGuDW9VjMaBd8c41vOeL2+0rpZaocg69mvtd2AAfteFsO5MD645UOeLBGHbwR\nMe4Mzk4zbmvb6Dlxzzia2JZ/OwnfrvD11FkcsFRX9yO1V7e5Pu0K4Bq06zW23xcAX/EslWM/a/kX\nZPUBb889wAAJ4IHqBRlrmyPBd5Z2o7MCJ3C+kddWKHuA3OKApf5ncMBXZbenXT2nmh/QRVfPQ8gr\nnqlyW2ral3JuOYyjbl/LshVJ+78rATyFjgQMa9+R6fHR7Xq/973hS93LwEcGSjFncMCUg9W8puq8\noKVinsqutxxh8F0lzftqVkK3wNfrem0HcfTZhpSLsIaqZUVv9JgJ35h2vTMIkfDdwfVaQWu9bgFx\ntAOWYinIamK0YMbirTEIfFdJh21wK54t8NUutuK3IdnAq4EuBdxchHV6zXYgBBXfCzBSPzO1S/ii\n3fe8jn7tdcCan1SZBGWsfQucWWeMH7ahge86v2uFLwdXTcq5F3itW5BsME4HPEi93G/vvxorNLSx\nkYd0eAHqbdvbKbd+sZHg2xm82BBRcPXWeRxwDwhHu2APnFlAX5/zvD1so4bvqtHw5ff/0qCmYuv4\nuk0dqynX1ucc8CG05wrm1r4t/Y6E78h2rfC1jKdxvrUmhi/Xd0/4Yv1GOGBuDO6epN+bi1e34Q/b\nAADypCuAa1heutTvAb68bn8kIRZ7W0873lmfCZwAnlJRfy0RQNXGzuB8Z3S9VLm2D+37X8ftuNCq\nhwuOeK0BLVfXwwFTdRKo1a7YftgGt7KZ2+srzfl64RvxVKQ6DruWyuv+OeUirCHqkQb1jGf5a9wb\nvrOA19uuF3wj44LgK4HWeu2NjXTAvSC8vqbgzMFaE1vXm4BNH7YhwZdatWxNO9tWQceBV14FTUG4\n7XGEOQd8WFk/4C3xCV+5XZRTbn1fNHFYzCD4WuHcCtvtdZTrxcq8UKbiuPvzulx1m+fDNqSTrrC9\nvq3wxQDrfRyhNB9MxWqusb7qPjXa9ptzwN012v1aZF2BrInV3nNvsO3RrpfrtcRK8D3IKucernf7\nugeE19eacovT5eq8cDbAd7viOdr5ahdbtYI38jGEe2xFSgBPpQh4RS/2oeIitipZ47k2PdqNdr1Y\n7I4p50iXy8Va46LqPU5Y44Kp19iYFhijoMXK8GMmsWf7RsK35WlImm1Iaz/bmNt63aKsug+qjbau\nVs4Bd9XILTAjF1KNgu9IiHLtItuMeu93gm/LtQfE3tfWsigYe143u1ysnX67kXTEpLTVyLLYCk9H\n6xZjcTHc6227bdvrehuE6z5pJYBPLMtf255/xQlfXWzCtxt8sbG5f0peByy95hwxV68tewmg3W6E\n7fWtYUo5zFtQ43VyOlq7Ejr2TOg6jiur+9FoHSvngHfTCPfbIzba/UakqLk2Pdp52hwYvhykPNd7\ngngv57v+1Dhdiwvm6g3MUpMAACAASURBVNG42+1G0gMWJPhiKWQKol74jjgPuo7Dr2MewmBVAtis\n3guoJLW637PDd5RTHrUqHYsZAF9rfStsqbojQFh6TdVpXLEKyPIZz9ijBTXw9aSdW07Fouq3P29f\n38Kai9+22SpyEVbYHHAp5YsA4EcA4B2P8f/Tsiz/hfmO7kIzud/Z4XvPrlcbOwi+kde9nS71OhrC\n2nItiDWwxa7VMfTTjVrgSzlYySljbdb6y69gT0djsdt4Kvb52r8Iq9dKaI2degsAPrgsy2dKKa8D\nwI+WUv7Wsiz/d5c7mlozul/tPZ0ZvmdzvVRcI3wlV2u9jnS61Os9IOz5aYWvxuVKMFY8WpCC76oe\n8OVWOUedBd3rHGh+FbR+PjjMAS/LsgDAZx4vX3/8o+v9rhQJjh77eL0aBd9oiEaPtSd8B7jeumwk\niC2Qldp5wdwLvsDUUfVYTA3sRvjWoJXdMA1Z76Eccp2clqbint9GzhFjAI6ZCw7dhlRKeQEAHwOA\n3wIA37Usy48jMR8GgA9frr5MeZupNo10pj37PxN8oxdlnTDlvL2m/jqOAt9tn1I5d611vVtVe30B\nAOpTrgBk+D7FbWC6jXu+boevfvWzdTGW9yhK/Vww1UeLVABeluUVAHxVKeVdAPA/l1K+clmWn6li\n3gSANwEASnn3CR3ynqcrRTpaqj/LwRJSTAR8jwZeKr4ldjL4RoO41e1i9Xs5YK0jphytKeb6oI16\nry92vjPlcuWyW+fLwVWa65UXYN3GrOXXP+d+HnCXgziWZfmVUsoPA8CHAOBnhPATadTc76iFV5oY\n7xeBFofMxUvtotvsfQBK8Hzv0UDc4oAtdVIbKX5H+FIPV6AWXGlgqpnvleaHL7eqB69tLljniLex\ndTweG7P4ah2zwBdU8eInainlywHg7Uf4fjEAfD0A/Demuzq1ot2YJjYy9eyFb48tSVT8yDYHX2iF\nddsLtlxs9OuIsh4/LfDVwJZtcw1fas53PeGqhiq2pcgz36txyWvdtvw2/rYe63OVdv7Xsh2JLuMX\nXElp6siDOH49APzFx3ng1wDgry3L8gPK/k8gr/u1ttsr9Rx1H63w3dv1Wvu6M9dbX2tee9pY4YrV\n94axFcQt8H0qv4XverZzDV89aHGYavcDa+Z5ow7iwCAqwZlq93zdby9w5Crovw8AX20a/TSSIOoB\npOXDHFPkgQ5Ri65aoLM3eLk6S18tsQdyvVGA1by2Aper88LYGtMCW6yMWO3MPdXIstKZc728E8ah\nvMbj5Zo54Fsob1/bUtD4Iq26PdaWKsOEgTwfxrCrIuaMW/5qerr2yIVZnM4IXyzuQPDlxu3xmqvn\n4jwxLW3X19L7iMVLZQA38N0Kc74ANvg+t7mO3ZZR/W7L6njt/PDabq27Ltc74tvXEXPAur2/df8J\n4GYd1f16nWdU33s4X+7voudcLxW/03zvWVxwRJnWAUswtThf6rXVCT+V6+d8JedLOVxubrgue+7b\ncoa0DF4rdCPngK3bkKypaEkJYFQt8N174ZVGHvhiioZv5Pt64hXOWLezwnZ73RPCHhh7fmpATIFV\nE8PAl5vzlVPM+GIry0Ir7dzwtp9tHVa+7evyuu04Si1sex5D+QJexa2CTlkUCYmo8TWQlNpg7TyA\n5sa3vke9wUvFt8Z2hu8eYI54HQnhKBh7QKyFLdamEb60y+WBKjlkrLwuq/u9/Ho+8GqgG3Uwh6UM\n65tSPo7QrR6pZ4u8zsrrYj1zuh5AjziIY5Z0MxY74Nm9vcBsHYOK8QA5CsJUmygwd4Yvt+BKcqhS\nGplOQ9PpaWnrUn0P2z7WOiy+/sm5XCtwpXlfCqyWIyhXpQN2aWTqudc+Wk4R874e+FKKAKDU5g5c\nb30dFeuBsgeylnoPhFt+auta4SusduZOt2p1s1pIY22x2G3Z5de1zAnbFmVhMfxrec6Xd786GKcD\nnlotqWcvpD2p517umIrjxrTGn2SRFdZ1D9hysVEgbgEuVtYLwtY6C2yxstX1ApDw5U63srhZ7aIs\ny57h27Fo8GJAtUJ35Epo/yrodMBGHWXhlbeviL49/1wSvk2SoKmN7V3XCl9sjL0csKWuLudgXJdt\nnS8ACd9VUtp5Kw6qT/0xK6Iv9T74tmxPWsuuf/pWQ2/bcPF1m/p9lISBOx2wSdGLoaxjaf8aNEDQ\nxESknkdsSZoJvFR8J/ha3Gp9HRXb87W2vgW0UozXDXMuWOuEt/Bl0s5W5yutdLY4ZMu88GXM2O1J\na911OT3/q4GtdCBHHa8px5T7gNXyrgqW2re+tVFfCnqlnq19pOtVqwdALbF7OOBoCK+vPS7YA2QO\ntliZEr7cuc6eeVzLPmDPyul63Ou28opnaVFW3X4VB+Y6to7Druv2t3U8jBPAYfLA1xLf8oHvWfwU\nsZ3Iu+hKuheuP+v2ol7gpWI7wHcEiKMAq3kdAWEPjHtBd/uauq7LjPCV4EhBFUADbQq0Nkg/t5PB\nq0lP4z/1Z0NrD+LAAIuB1bcKOgGsUK8tR1aAeORZIBWxqKpXahqLk+JPssIZ6zrCvVrqtH1Gwnc0\nhDEoSrEcdKnXXJkRvtK2IgmqFjdribv8apq0NJeGjlmUhcXcvn5Ay7dtqXpt3VYJYFGt8N3zxCtP\nTK95X0k94Huifb1Y1xHQ9NZp2mjKI4HL1UltPIBuAXEwfD3p5MjUtG5fMe/A6/aXt+YW9GubtX6t\nu/5pe0rStp47kMOaggYAePmKhnECuKsiUs97K+Kv3gpw671Y3reR8A2UBFht7BHhq+kfq6PeI+09\nRsEXqvJG+FLywBfvIzo1LT+iUOeEr/tay65/6t0wBl0JuOj+YAawLx6EOeAlAcxoZOrZEjvS/Upj\nt7rjFud7hynnumwkbLVx3tdWSEc4YC90ubrOzhfAttrZ4ny51LFvNTTvrJ+v9eDFoFq7Vg641lXQ\nNWAxqL540O3nfVHxu+ia3SOAR6eeo7cdSTERq56j4Gq5B6mvXk5254VW0rU3djSIPfVRdRbY1tcW\n6G7LpL6N8PWudo6MsY5/iZcd83WcvCDr8jbiQN5em1ZBb2C7BS0G2Bqmz33g5ZiKzgDfG4BbU8E9\nU88el+rptxWe0j8ZDeQi4HtC11tfRzvdPVxvSxkVI7XRwJark8q41zWgAVTw9a52HhEDQK+OvtTZ\nU9PPfV7Hb8vX+LWsjtn+3MZqYFtDtoZr4aZ/NYdjJYBr9drvK7XTxHpdcoQTbe3TWm9xoXfqeqXr\nVsB6+tvbAff4GQ3iGr7MgxU0q53fAZ9nIPcK3gFv3bR5Ca/gDfj8pjwC0PqFXJe3g4f0tv02vi6X\noFsDV4KtCFkMrJzr5UCcKeitWuHraaeFYetpUZa+JbiOrsdiuHLLe90aO2iVs3TdE8RU3BkhbK3z\nvH76077aeYUvBrU34K2bNu+At1DobfvZguwN+DwB1pgFWnw5nX7moKsB7tbZrsC9Am0NzRqwGFR1\nx0Ff95UOeFUEfKNWMXvf7oiFV0eBb6859hO5Xq4uEsqt8PVCuBXK3pgWEG/hq3iwAvcsXws0+6Wl\n7XuHKfDWZXV/6/Xl7SRccgXdGrhbd4sC9xVSRl1TrlcLYoAEsF4tb0EPKGju5wx/ba1bjA6ecra2\np+q0wG1p73G72HhaByy11wBbM04kfG/GtW01Arhd9ftc/gylOv42rl453DflrJkTrsu2/UWB9wm6\n27eEgi4VU9dpyqnYBDBAjHPde89vxIlXs7nf1rRzK3w7ghfrfhbna+2Lio92w1EOOLJOA9yb1/Kc\nL0D7VqOtEwaAx+t459vijp/LcRi/gFdQu+G1TgNd1uVqYMulpSnYGlZBJ4C7p54tb11P9+vZ82vp\nr1YP+J5kvpdzYJprD2y1cdGvR0O45ae2TgPlBvh6tho9L6i6hW9k2vmNxwVd2oVeXL/Y77iWYeDd\nul0VdCngSrDlQIvBtcUN3/cirL3g29v9ev66rIDl2h8FvpY+JzhYQ7rW9DMSypHA5epaYFtfc1Dl\nylSv9audL0308N22aYHvukgLAFu01edgj3WsLXhv3DHidl9c3koAMECXc78aF4xd1/G1OBDfrwOe\nDb5eQMyYeo7smyprBWqmnE39asq1cMXqLaDVxGjdrKZOUy/G4/ClpHWgeJpZB8p3bLYhbVdMx6Wp\ntWlpHXhX6AKA7HQtwI2aA5YcL1Z/nw54phXPmrEscaP/qjxfCCglfNHrvUHsfR1Rpo3hHK32Z4jL\nrV4LW40AgF3xXF9jaVkrBOutSNpU9xvVfmNsFTY1z7y2qfslfycEvKjbfQWyy7W4YA60rU4Ya3t/\nDjg6/YvJ8sFPKerEq97ul1OLc6bGOhh8sa6tMPbU7f26B3yl9tg1VhfhfKXXV9cbelSywHe7FWcL\ntrVs+1rqY9vGts2oTidf168x8sEb1673CtKPc7zb+d0bx6txu9s6qn5bvi3jXtdtqBhN/X0BWAuP\nFvdrfat6ut/Rc82RcI6Grzb139H1YmVaN2uJnRm4WP1eDri7C35OOwOAaa+vZ7UzAGxcqexkrc43\navU0l24mU81bWFIgXn+2zAPXryPngrF29wPgEfCNahflfqU2rQ7V2/cM8O3oerHuI697g5jqs6cD\n9jjhlp/R8L26vk47A/SDrxWEEkytMF+vb+emr+eUAa5XN9fpZtLx1uClQMxBl1vpzDlkqh6Ieq6M\n0vkB3HqQg6Uvqn2P/ahSjPVeW+Ac6YwTvs2A3V5HwFTz+ggQ1tZZQczA97Wred54+N4unrpts24R\n0sI3ymlz6WZunpcEL5Z2plywdh4Yq6Pq69d13FZaCJ97EdYM8LXEe6GiGTtycZTld7XAOfr333m+\nFxvKC1sudtTrnkDuBWFrHVWmKScWXAFAJ+dbQw2HLwdvALhZTFXHS/Xciu31HgFuF1mR4K1BW19T\nLpgq06aksbq6vq7DrqXyrc7rgCPh29J+xKIvacw9U8+WcT3xB4WvF7ZcXTRkqfII4GJlURD2xjS9\nHg9faTWzBF/pUA9pDzBfL6ebb1Y2b1c1U+ClFl9h0PXMAXtPwfI64fM54NYTnqx9euCrcXXauOi/\nmhY4WwDb+iWBupeDp5zr6x4g7gltC0S5Om2bKDC3whd5sAKADF8A+5OFtoCLhK8uRa378nC5h+pJ\nTZLrrV8DU+ZJR9flgMRzr7kFWVQZ1narczngHm5zDwdLacS2I04tgLV8UYn853YS+HLjWl9H9ucp\no+q4WM0YUr91mQbSYvktfFdt9/pSeoF8Mr/clHHAe46Rtithe3Jv66i+rNfXzvd2rvcdbwnzvBhU\nI+eBe5yG5XXA5wHwaOcr9bHHwqtWRcKZkzWjEJkdOCh8R7jWiD68btgb63XA2r6MzhfgdsHVU5lr\nr6+8+tgKSGpOt80Z61POrOv1LMDSzAN7FmVR9XUMdr0V9x3s+AD2ONSIXycKvlrN7H6lfl8ydVw/\nWLxmPKqvSeE7GsSRsdp6D4QjfnrKuNdP1zr4tj7ZyFtPPRO4Fb7U/DB2L+946/O3e3o/B/SWIu08\ncN1mew1CmWbhlXcFtOR2sfrjzgF7U8PaX2VU6nkv99sC5yhnLPWjcbSTL7aqr71gjgJxbzjPBGEL\naKV6Ab7UnC9A22MF/fUyfFeY1vCl5o8pqK/zvU99eV2vZgGWNA/csgraOvdrnQfG+jueA24BYxR8\ne7pfLWSkmMh5Va4tB26uLmJl9uTwtcCWa9sC397AlepHQdgacwD4Pm/fsW0P4oFKp5WpPcUm17yB\n781c71ugn+eVwCuloS1zwBhsKdBq5n41EF51DABHuNEZ4Rvl4jUnSXH1Un+963rBd9KUs3RtBbGm\nfLTbxcp6Qdha1xm+q8bs9eXT0tHwJV3zq8fDPj73dpvrresAqQfiWjsHrElD168tC7LqeE5zAzgq\nDTwCvla1nmFskeW+W7Ydaeui0tva8RplhWlLf9q+qDisvJfz1ZRp/om0/pTqsPvUwvcpXr/auV5w\nRelF9clNAfq57rr+cpu30Nz2tb7exq5j0yujOcg/IOM+PD2n9/HtiYEvNefbejAH54Bb54GxGEoP\nMNMccK8511Hw7bHwStOf9X2LPHQjok4aX/OlBIsZlHbu5Xy5uh7O1VKPxba64b0csOq1f7UzAL8d\nKGLLjzxXK6eOsaMl6362J1ttnS8731svumoFb+14tfPA2lXQEozrGOyaKsO0rwMu0Hex0yjjHpF6\n9oImoo2n7Qj3q/mycVD4jgBxD/h6QcvVzQ7fp/uPg699xbPlmk8tS/DF0s7YSmcSvutcrwTYtx7f\nVwnMFHip+V4OxBHzwFR8LQ2E505Be2W93R7zvlHxLX1JAJvJ/SZ8TXWj4DuzAx4FX+Z4yVVb+D6V\nGeBbp469cK6BW/eznRNeH9Jgge+TK6YWW9Xg/BxRrnHE2pXQEogx6HLApcBrnQeu22CaJwUdpVng\na7mPXu7XMqZl7663Ttrzq6njYgLgi3XbC7aW2FHO1VPfWtcTvm4Q4081AriGb33E5KU5BVYavtyi\nKmq7EbYtSNpOxKWvw+C7dcAUYNfUNFR1WLmUmt5eg1C+lgFSbnXB2n3AnBM+lwOOcnSe/jTtZnK/\no6V1yd4vIyeCLxWnKef6sbTxOlpr/CjHi5UZ4btNOz9f8/CtF2FJK54BtIuh8GstYLm08/Y1Bd83\nPveF6/neNZ1cwxfbeqRJN2vAS7ldbsUzBmmqvq6ryzGwco4Xiz+HA97j9nqu0Pb03XI/PeZ+o7ID\nmt8rcLvRVi3wtfTtebulsSQgauM0X0qwuh7OVxoHuz/LlxQEvqs4+D43vwbpU9vKDT+X4+74+le5\n7u9FNQbW9nYO2l631l/Bf+N8ARDnC4DDMwK+1i1IGvC2zgOnAwbw3Vqr+/XARQtIz9GLkedgc2N5\nXbXX/Q7c69sK22i3a30d7WhbynrAd4QDRuC7zvu+ePn8Kbo9aAPgeksPVkalli9D49uCuNSzdtEV\ntopZV3e92nl7utWN86VWOnPOdxsPQKesAenDuyBLgm6UA+Zgi7nj4wLYe0s9U89Wacbx3IsFlD2c\nfIT7PQl8I+oSvreKhu9TvzR8pVOuAPBFVJdheqWeuUM7dHVu+GKQxVZAf+7xvcXiPe4YiDLOFXNl\ngJRvy7jXGFQ5CNcxx0tBt9xKBHyj3C8WG3HkpKQe7pfrs2XuF5j6hK+7/ojw5Rywpkx8vaDwfepK\nccQkAP1owFXauVztvC+3L3gL0eex6ZXSbvhSK525cit4gagHJgaQOAAaupj7xcBMxWwlrX42amcA\nRww/E3y16u1+e8i77Yjro9M/v3uGbzS494Kv1+0q4as533kVBV/t4RtYH5cyDXCv221XQFNbmqg9\nwutxkyh8a4eLQRaLAei7IIuCMQbXiFXQyvnfRXLDczvgqGFng+8o92vZW9vb/XJxHJixdh1WPB8N\nvlIfUllL2zPC91GW852fyhCQrore76t1yZQrpsB8DePrBVcq+NaQpVLU27S0dzEWIPXbMoBbEFNl\nGhdMpKVruD7UUH7U2wyEvzDHHHCv7qPcX6SL1P6uEe6XUw9nzD3tKGrshO/VawucNW1bQcvVeX9S\ndRb4Alauf7iC5qCN63J+v+/lVm5XMtvT0rb0NQbim/lgbJ+vBF/NIizqhCwqdQ1MHFbPXQPyU5uS\nhmvYbkGLwfWBAW4d/4V9HXDp13XToRQWWd2vN7YVmFFwtszbamRxv532+lrqLfHauj1ccJRrpupG\nQFgqq+uvyq+PmNxqu+L5cv3KvN1IuyWpTj1jsdsxsTrMQdf3WW83em537ZAB4Op4yavHCW4hCJvX\nlGOlnKvG+daulhoDmPjtNcDtfddl22t4hi4H3Bq2lNul3LHSAPd2wNGKhG/UftZoRT5SUEuKiCcV\nafsYBF8LkHs4YQmsmngtnK1uWBungaclXut2sX5VDljeblTP+wLotxvVwgCIbUnCYRmReqaOqqzP\nd36Ad7z1+auznUmXW28dqh3sKyIOK9fOCUtgBriFKwZYAroccLegvYFwBde3QdYaozTARwLwKPh6\n2mHjefb99lTE7xwx9ztAUUC1xHohq+nH6mCtfXjgq/l9te01YObaXJXL8F1l2W50GYpOPWOuVZNS\nvrRp35pErXh+nvfdPFhhC1Jq7vatzU8AGb7c3G+dugakvQW8igVYNXRr4G5hewVmuBYGXSYTbdZB\nADwq7expr43XxFndrxaC3jrPgRyWcSeY942ItYLY0o+1zFvHxffsRypT1+u2GwHcPt1Igq98zjPu\nbum0MQ5PyjFvX79RHSeJpZvred83Pvf29VONapBqXDAGX8rtYtDWOGIg6qAqA6QNXKArAZeC7fZ1\nDVjK+XIgPokDjtwLq+mTaz/b3K+lv4iFU545Yq7NBPD1wlgLXwm6s8BXWwdIXB1rccCa+5DaAAC2\n4nmVZtEVwG06+bmchi8d87Dp8xaQmpQyB2ntwq3nRVeI86VAyK12luDLPaxhWwdAg5lbkAVVDFw7\nXQm6GHAfkLK6HKvfCos9AYCPAF+sjfZwDqnd2dzvVpPBtyWWksUhW+rrMk2dBPKWdhI8rf1KDvim\nXF7xvIpbdMWtgq4XXNVx122eHe+lXD6j2TPve/vEJATy9XYjKsXMAVMDX8xBAxLLwZZKNTPg3bpd\nCbo1cCnYeiFc6+CLsHpvpTmboue0I/qPXlXd0J3F+VrGsrpiC8hb4cn1KZVJfUs/sb6tcLfe60sc\nkgC6M54v3V9D9KoPBpScG962rftaX2NjUwCn2nDzvmULQCR1S8IQc8sYTKEqr6+18KXuB56vKcdr\nBa8Gut7537fhsA44YjVudPvoQzewuFHHTnr7pOJ2cr+1IgGrdcY9X3tdsBd4mrrWn9a6ugx9jR+2\nIS262sqTeqaAWgPS4n7reWhN6plMSVepZxSqq2vd/sTiuMcQWh/WULtjLq76osA5Xg66rc7XM/8L\ncDgH3PtYxxHzvp7+tW16PiIRU+t4A92v5ToqttWBa/tsdbpR0NY6XW18XYfFU/eHwbdKPQMAmnrG\njpC8hSQN2lo8YLUPUKAXb1GLq9gY7KQrzNFyZdRWJC98LQ9rgOtrDLyY29VAFwOrNv3MpZ6xugM4\n4FFw65F6nsn9Riy+0n4JodyvVo3utwW+1r6pOo8rtsS2uERrDHZvmlisXANhz++Glt/Cd1XEs33x\ngzP4hyfUfdcLseoxqPljzZwwt98XPWyD+sPt2aXqNfDFjq/UwNcA3hq68HhNQdcD4d5bkACGA3iP\nox+9fVhSz57+tW2itmB53K8nfU0Be2f49nC7FqBa+vC6YatjtjhXyf1q+8FiOVjflOMnXWmf7buV\n7mQrft4XBy73IAbu4A5r6pnf73sFRmoRFVVXQ7FOWT8A/jCGliclAVzBVwNei/PlgHuybUgF+i56\n8sDE0of13nsuZurRnydF3Op+d1QUfK3A1bpcbCypzANWbXttf5rfwxKL1aPtVsLw+30Bbh+ygEHt\nKfYGiLdzxlthgL3c6isUktt2FGTX/p7jArYcaRdY1S4XA3I9h1xDtu7b8KQkK3gxsGoh7FkFLa2A\n3sYfIAXtVQR8e4+tje259ajjPCw5bicwt7rd6DptWlbbVgtnL3SlGIuLjYKwywG37fel5nQpID8P\nz7nhGqz1eDRM1/J6DGqh17af+ktC87yvpo5LKXNPUKqBDNf9UenmFbwAz8DlwKuFbl2+LavL6zoq\nptbBFmFpFXW7ke5XqyO4Rk/6mdL2PQ5c+Sz9ExgBY02cFrTe/rd1FuhqxpLaSIDF4rwO+On1der5\ntat53uuPyK0DvnTDO91a3HzwNgbrn5oX5l5fQ5sCM/7Epcvb8djPA/KQhfon5Xg1dVwf29fA9A3V\nawB0SxHneqm5Xyt4W5wvl34GOCWA93S+3PhRB29YdSfpZwtwRzjjltfavr0OVxMbkYKuy7l+re6e\nff2cegYAVep5KyqlzLna53bY3O6tw63jsXHrOO7Eq9vFWrz7JeFJpYIpmGJ11FYl7VhVOZZy1rje\nGrbYa20qelvGldd1terYk6WgI29zVvd7pvRzkPttAaqlL22dNQ0tvda6QQ9srRCPSD17xqnL0Nf4\nfl8A32lXVEp5K2nVM+VKNc7YcuIVNw564IbWzVpSz9KCKmkRF5K65uDbCl4JuhYI13VUTK2TOGDr\n7R3F/bYq4mxnrp3nC8NgjXa7lnux9ql1qNbUsKYNN2Y0jLF40QHrnu9rPe0KEwVbPPahase7X6x8\nvZ/t/W7r+BXQxIEblJuVAFvP4WKglRZiOeD72c/xrpeCcA1R76KsbRlX3ksTA7gHfPdwv5qxWtyv\nd1zKvdbSxHVw3L3crhSrifM6ZEs9VacBcg+n622P9SHd0/p6+3zfR2lXPW+FzedqQXuJxVPU3Jwu\nNl/r2XZ0fb/XK6rRhVcA/J5b7o8mhS3t7RXg+/bjIqzPfs7mejHHq90HrNkDPAK2mCYF8EzwbXW/\nvcEeQZetImHqTD9b3a3lLeDA4AWrJ56rj3CtUW3qtpoY7ZcFqv6q/PEjEjlwYyvPgRu18FQz/zQk\nzP3W/VErmuttR2sdte3o6h65s545KFKQtYAag2u9P7gac1md7oOcctakoKX0NBDXox2upAkBPOEt\nTaXeD144uCJSzxFjcbER7lc7ngeyLS65BcJX94LPonHuF0A+cONqCMTVWoRBddvv+horr1PRVIqa\nctwvHvftPP36mPuF6vWrqryOrfvZxtVldR/1WEh9BHw1h3BY5n731kS0897KLO5XK2v6uaVvSpHO\nODj93NP9euqiXnPjaAEmxbS4YCm+pR9LClrpfrmFVwDynl9M2hOv+JiHq/625VvYUwdqrPGXt+M2\nVX15O57dLwDI7reOkeaL1z9bJ0sdS4k54nWv72bO97Nv2eFbQ1i7EItLSc+mCQDccgszLRbqlX72\n3r+2XS9n3OGpIel29gAAFONJREFUR7V6wNgCUK0kF6gZL9LRemJb+9CmoAHActzkVprTrZ6Hu00r\nU5LcMeZSMZhu72lbh9/XA12+PfEKAyKAnI7GoKuJwR7UwKS41wVXEnw/+3jbGISlvcAa9zurdgTw\nBOwf7n5b5V2c5TkqU7I+HRTpdj3A5RThfq1lkWljT5ueKWjq9VPsA2iOm8ROvAKgockdrmHZdiTP\nBVPzt5TLvYau5H4BqrlfgGsIAshOdxujATMG4hq+G9e8wpdbcPVZwCG6hS9XD8zrI2gHCkYM2TPV\n6pHW/fZc/dzzi4F19fMO7jcitsX99gBxXWcBs7YPawraC2HJAT+V8cdNbkWdeIWtRqYXY92ukNao\nXji1HZ8qx8Bc3+v6egtqyv2anS0QMRo3LI1FON+3Gee7ha/W9VLp5aOBd9UAQs3gdDHtPfe7l7a/\n2yz3BMd3v56xrA5Sau9xw9pxLW2pdtrUNAC0nHgFAGQZB1qL+73c8u2iqnqcOt28ff0Sheyrq7ZX\nC7pq90stgOKgu42VQKyFb/WH2ue7QhdAhi8FXA7CR1QnOpZ+XU/nfveSljKR6Wcqfqud3S8Hjkgw\nex2v95+lFqYtaWuq3nIPaqeLtbGdeHXdnTTPe+1YMbBaVC/Oql+v19c/6ScePbe5TVev5Vcrn7ff\nLziHS0G1XqSFtQEgIUv1WZ9wVTvfbbca+GpTz0fVa3vfgE1Rjs37mEJtfMTiMCk9bR3PqwHzwi3u\nN2pMTVzkfWjhpe1HC1HrPVHlmr8j75eRlzQMa/eLxiDu9zKcZjGVbu53jcf6xg/hoMH8PDY1n/zq\n9oELANcQBLgGJ2xioKp/qOrqfjCIA/ITAzrAzeMEsT28ALd19wZfgNPaxB6/Vu90bVT/Fnt4QPVI\nN1tTzJpyD5Couoi/NmtaWhuvSSdTcVdtrvf9ag/dsB45KaWVPdK42fqe6vQzdt83bnl94AIAvc1o\n+5pKFwNTL80XMylrasUz5Xa3aWguDoiyM+hAn8hRqedI96vtPxre0fd5oLlgS9vWOE0bayJDKusx\n5+tJS2tiqWuqP/L15shJ5dwvJmw7kSXNTLnf535wh7zWX34tvLwGM97/A9Judb6vbvf9wuYaSyXX\nIIUqhuurLpcWeQGQi64ouGrgu97CGeELYEhBl1JelFL+XinlB3reEK69AUGN3zqhJ/WvrY9sp5k/\nDpz/bQFshNmPyqq3uN+odLQkq6sd5X4raVc+U4uqNAutLJJS19iRktfl13PEWDnWzxPwscVXAPSp\nV1gMVk+5X+oaNj+3b8mj++Xmfan5Xs1hHGeFL4BtDvgjAPDxXjdCywKRlk+rmZIBlnsZtSit0/yv\nZ0isbhSMLaC1ppw5tbpfj7O13AcXw76+feACwK37vap7Uad6uYVWOKS5eV2qreSQsXvh4CqV36TV\nKZiu1/UcMAZSyv1SKW0ulf1YVqeeuf25np9nhS+AEsCllPcCwO8FgO/uezu1op3vHvO4I9PP2k/3\nvTMKj2pJN1v6peqivq/1SkP3+G7TA+Ct7ldx5GT9uMFLF7j75eZ+OVFOV2qLwbTeosSlpbfbkOrx\nto8cvFp8haWUMZhSgKaASjloDOKPP+vUM8Ctc/XCd7sn+IzSOuA/DwDfDgBfoAJKKR8upXy0lPJR\ngM8E3JoVEr2cWHT6eTZNAuNaUQ7X4357mX2vI9bCcNQ/yRb32yjszGdTe2Qe13wPW0CK88o01LF6\nbBHXlarU781cbZ0qrl+vfTxU11vVfTA/l8fXD48/t7AF4vXZoWqRCOBSyjcCwKeXZfkYF7csy5vL\nsnxgWZYPALwz7Abj1HvxlVbW+d+RGjz/61VvGHvbtECn5d68c7jS2B4XbClrPPP5+brP4iv5Gb3b\ntPV1Cnn7unbGz28F7pCpZ/4+qYYuwK27XX9iKWUsBa1xzOs4jz+3e34Bnt3v1sEC8rqOkVZAn1ka\nB/x1APD7SimfBIDvA4APllL+Ute7umv3GwXoyKcUdbBcPeZwveMbFwmFpZ97pKE9jlpzX9o+NGVY\n+hmuF18BAHvwBn5LtKtt3Wp02x8PXCzNfH0vt+X19XbvLwDgbhdzsxRMAW5Ty1g/2lT1GrKZ+926\nW2wRFoAewvcgEcDLsnzHsizvXZbl/QDwzQDwd5Zl+ZZ+t9TDEe7lfo+yd3hntcwFj5jv1bSXxmr9\ngmGdo40CuaYf1xww7X634o6d9EBV42yp/uutR5Sb3cZvf8pnRSOOmlv9DNVPzBnXLrcuoxZura9r\nMG9+YnO/9RA1bKX9vfcEX4DpTsI6MlBG3HuETYza/7vTHPio+d6Itj1A3KqWxVZUH1IdmUlA5jjh\nduvR7RB8SnpbZoG0tPqZbnftZjFI12CWti4BwPWDF1bV8Fx/Ui54206CLQX5bf3jn+22IwB8WxFU\nr6VDNgDuC74Axv/yy7L8MAD8cJc7cWt0+rlF1nsd+YVk4PxvD4fbMgbWxgtpT0qWqmt1ra3yThNw\nEL7p8/KJL6WfNYuvsO1I13U82LWqH0O4/Sk99xdzwNghHGv6+UlY+rku4+aBOUDXq6glMMOz492+\nrud8LRDetr8nTeSAj+J+I4Hf8vhBS78tGux0e8/39uizpf+W9LPUhzVNTfVnTTtLqo6dXMWlnwFu\n3aJnTpd75i96T0zK2zunzH0RuOp/m35ehQ2JwRnglmgYtLEYaqzHuu3K5+15z3VzDLzYrd9j6nnV\nJAD2AkPzv3+W1c/ROslToSwuloPe6PSzJ7anY49oZ/kyoK0zLr7SPPP3qp5ID3uecERBWeoLP8GK\ndsZ1ObcV6WXlPAEAX1RFlWPzwnU5l36uob0CdzP3yzleawr63jQBgI/ifDmNOIDjJBo5z+ltM1P6\nuefiKU8/XCxVZhwbO/nq6hqFlvTwBX4e13R/V4C9TTNv4+oYbBvTWne7/agamHO6NYjrcmx1NADu\nchkwb0+9WiUttMJWQN+z691qZwDPCqkZ5n8t7VsXYFkt0bY8cP9vj/neqFRxa59WEFOxrYAdtQiL\nbGtf/QzAp23rOM1Z0NRDFbi+6nlk6jCNerw6pj71qtZ2/rdQaWMszawpX0VtNZIWYcH1vt968ZQm\nBU3NFd+jdgRwK+T2SD/3nP+11ke3k9p3+FLSG7jasTXfM6IWjkXE76WIRVgA3dPPlzq726XmhLk5\nYnwrkm4hGHV0JQDcHr4BQLtXbDEWVc7BHCurwPx01OTDdTgAn3bevqbmg+9ROwF4BHyPJsvvNGvm\n4ASKnFedLf2sTXRo2kmQxcoUi69mTz/X/T6XXaeit6+p+d/69drPi6slxkCvYoaGcixtLSzQoo6d\npB6akCloWTsA+GzwmHn+d/vpN8E9RS9CsvQ5Kv3ckpKWYrWrlq39WfoJex+ZtK3i1CvcYcrpZ6vq\nOVv8yUr1lqTtNqVbMG/LsfYAcDv/C0ADEksXa8uxhVvMIqw6/Uy5XyrdXJfduwYDeCQE9krhplTq\nmdK19Lf3orCW8Ufee4dFWPXe363q5/5aJM3Jco8V3I55nVJud9DYnDJ3z6UmFhDXEeWUc96GIOnn\nbZMaqNS8MHdL96ZBudwD70sNUc8FWB5FLcDqpN7zv5r2Fkj3cL1e9XD6lhjxvcI/erHTr7bpZ2qr\nUaQsJ2fRz/W9hSp33vPNSVivXj3t/wUAfLvRes0truLmfzVzwNvXr/D08zaFTC2sytOueHX+SJjV\nTe69AEvq2/K+jVgYFnACVk9wjurT0n/0/K3Uv3UeN2IVNFWGzg/Lq5/r+V8A/iAMqmxb3mv+F0D3\nBQADc90WO5YSTQ7U87ZSOcBtGpoqr1dBI2Cun3r0VL5psl5j6WmAnPut1SkFXWBe+PaW5vfu9d7c\n2Xs+2nnu6YSj5389as4wyO635/yv72CO23ld6n6kgzuohzFsX98swNKsUpbKt3WYk66FgLlOP1OQ\npcx0rnzGNcFBHBZpPwHOPP97hHsU1GP+d4btR1JfVN2ssyrRq6A30s7/XrrQp58l0HLP/q1jtn3S\n/fFjYTHYAqyres0CLNhcc+XaxVxUynobtoEvNhy1wrkeKt3vsw4G4Nl0Ahi6FXgAx1ajU9Wtfc84\n/6tNL3vS0C73rjv7+apO8fCFaFlcMrW1iFowxp1j/eSc6wM4MHHlmjS0Zv63ilk219iDF7BrQOoT\nvLdKAJ9Wk21BotQbfD00q2PVqueqcucY2PyvJK8zbdF2xbRusZbuiwQKbm4B1iqtK9b2R/S7XflM\npZupLrC9wamLTghgCTazLcA6kga/DxFwHr3lqGWcqAVYkbKmycV58gpIzPyv5ulH1KlTa/v66UdW\naZ5+hD2akLrX+v5uYrYroAH4NLMEVGoBFtcfsg0J236EQXV7q9wWpNSzDgTgo0Jwti1Imr6Dx5zx\nry56LljrAvdcgOUZk6uzvCfE8ZPybcjQwuKsklZXSwuwuHvSrIC+qteuXN6Kmu+t64R53qfyR2Hb\nj1ZRJ1xB9TrTz7QOBODemjhNS8rzCWzdahT8vsy+5Wi0Sx6RDraUR2cdNE2ZhzLgQ/FbjzRttQuw\n1jJsLOyaArXmOMoX9f4eaZEVpofqj6U/wa7W8791KHf0ZP06dVECOFQeWLXsAY5oN5EiFv+MdNs9\nXW+rtAuv6nJNn6b70D39aKt6AZZV3vlf6wIs3xwwvgJ6XYB1swJ6uy93Kw60WPta2KrnepzH7Uea\n+V9u6pkrv3cdBMAz5jDvGJRRurcFWD2des/MQss2pACNWAGtFeeGr5/7K7tmqsy8AhqABu3azroA\nqz5sg4Aw52qpldGpZx0EwFr1WIA1k+4I3hF/VXsswPLKunWIuj6QIhZgkX3D7SP+XPco7Nm19qHu\nR7OlqBYH2rV++1MoX6prKp3MHTuZzpfXyQDcQwf+hEvJ6rUAK1p7p9Y1dWQb38ewbi5W7tt7JKVm\nBbS2PR9H/A6at80CWq7dA1EOzwuwuC6lc57TBeNKAKcc6nQIxyhFLP5ugfJe3+mk3ztySsBxApZu\nKP2pWBZx+3W5/rEtSLr+K1f88Op2CxIAf4SkBrSeum26eV0Fjfxa0vGS6YJlHQDA9+xAIz4RT562\nPlKauVbv+7UuxOL6sI6pDRcWZuldpN3dYmlqbdrae1+qLUiUWkBrXVHN9CdlsKlV0KlbHQDAI9QL\nUkchgmYLUsDv4nWFR3kbvSugo36/XlubIvpsdL5bcS5TAiMXoz2oQ3PsJAZX9UEgEY6W29+rXGlN\nPfVIuo2UXglgl07uKiN1FHhqdKbfRVLEFwflGdDba+0WJM1DEHoIByu/B5iKr19fqQXC3EIsqg/C\nIT880CdgbRdbcSdfpQumNTmAj3jCwlE06BSsaE1+e6T2OrVq1HhHngroLAnM24cwXEkDUOm7hmfr\nEjHfi71OtWlyAFu0tyvde3yNJrrH3innMwPhoL+PdgGWa9vOAFmdtfVhEehjCAFkyEpvj3deWanc\nhuTXiQDcQzN/0s18bwfX3quUPWctR99DZ71wbk0aLcupV5zEuWlsBTSA7ulGVL22H0T1HmBD05RB\nCeBdlRDdVSHznBE3otTewB24B7iWdQ9w9CEcdMztKVgtIk/BApCdrlfEHuC3mXvJ/b4xSgBPpYlS\nxCN1dIj1HiMCkr2+SHR6PyP29gLQ242sfUSp9XAPVpIjZg7b4BzydjW05QzohLGsBPBQ9QJsgnto\nX0dKXPRaazfJQyfiQG2bd9ZvWXJkAFrmbLXDKeM8LjilVwI4lRqpUZA6wJcEz2MIe4g7BStSve7/\nRq0rpJFyyx7gBLNeEwN41CfInbrH1H3K4/R3gnmvU7Ci2nJA7XoOtOWWB66cyj3Adk0M4JRPB7A+\nPXSnv3bKL+5QDU5SzDCnCzDF0uSErF8J4FQqQp3PTD60Bh1DaetnP3LtOfaNqIO45th6fXolgFNj\nNNkq29T9ioK117lKT0LqIgvDg3ifTjdeCeBUqpfOtr3qBNrjVC33mNy2odQplABOpVLxIh7EkLrV\ni9Z87w4Z7YmS6IdWAvgwytXaqVQqdSaVZYn/plpK+WcA8E/CO+6rXwcAv7z3TZxc+R6PUb7PY5Tv\n8xgd8X3+jcuyfLkU1AXAR1Qp5aPLsnxg7/s4s/I9HqN8n8co3+cxOvP7nCnoVCqVSqV2UAI4lUql\nUqkdlAB+1pt738AdKN/jMcr3eYzyfR6j077POQecSqVSqdQOSgecSqVSqdQOSgCnUqlUKrWD7h7A\npZQPlVL+USnlE6WUP7P3/ZxRpZTvLaV8upTyM3vfy5lVSnlfKeWHSikfL6X8bCnlI3vf0xlVSvmi\nUsrfLaX89OP7/F/tfU9nVSnlRSnl75VSfmDve+mhuwZwKeUFAHwXAPweAPjtAPAHSym/fd+7OqX+\nAgB8aO+buAM9AMC3LcvyrwDA1wLAf5z/nrvoLQD44LIsvwMAvgoAPlRK+dqd7+ms+ggAfHzvm+il\nuwYwAHwNAHxiWZafW5bl8wDwfQDwTTvf0+m0LMuPAMA/3/s+zq5lWX5pWZaffHz9a3D54HrPvnd1\nPi0Xfebx8vXHP7maNVillPcCwO8FgO/e+1566d4B/B4A+IXN9acgP7BSJ1Ap5f0A8NUA8OP73sk5\n9Zga/SkA+DQA/OCyLPk+x+vPA8C3A8AX9r6RXrp3ABekLL/Jpg6tUso7AeD7AeBbl2X51b3v54xa\nluXVsixfBQDvBYCvKaV85d73dCaVUr4RAD69LMvH9r6Xnrp3AH8KAN63uX4vAPziTveSSjWrlPI6\nXOD7l5dl+et738/ZtSzLrwDAD0OucYjW1wHA7yulfBIuU4MfLKX8pX1vKV73DuCfAICvKKX8plLK\nGwDwzQDwN3a+p1TKpVJKAYDvAYCPL8vynXvfz1lVSvnyUsq7Hl9/MQB8PQD8w33v6lxaluU7lmV5\n77Is74fL5/LfWZblW3a+rXDdNYCXZXkAgD8FAH8bLgtW/tqyLD+7712dT6WUvwIAPwYAv62U8qlS\nyh/f+55Oqq8DgD8MF7fwU49/vmHvmzqhfj0A/FAp5e/D5Uv8Dy7LcsptMqm+yqMoU6lUKpXaQXft\ngFOpVCqV2ksJ4FQqlUqldlACOJVKpVKpHZQATqVSqVRqByWAU6lUKpXaQQngVCqVSqV2UAI4lUql\nUqkd9P8DnGSSkMm/7/MAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "heatmap(grid, cmap='jet', interpolation='spline16')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The peak value is 32 at the lower right corner.\n", "
\n", "The region at the upper left corner is planar." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's instantiate `PeakFindingProblem` one last time." ] }, { "cell_type": "code", "execution_count": 19, "metadata": { "collapsed": true }, "outputs": [], "source": [ "problem = PeakFindingProblem(initial, grid, directions8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Solution by Hill Climbing" ] }, { "cell_type": "code", "execution_count": 20, "metadata": { "collapsed": true }, "outputs": [], "source": [ "solution = problem.value(hill_climbing(problem))" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "0" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "solution" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Solution by Simulated Annealing" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "32" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "solutions = {problem.value(simulated_annealing(problem)) for i in range(100)}\n", "max(solutions)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Notice that even though both algorithms started at the same initial state, \n", "Hill Climbing could never escape from the planar region and gave a locally optimum solution of **0**,\n", "whereas Simulated Annealing could reach the peak at **32**.\n", "
\n", "A very similar situation arises when there are two peaks of different heights.\n", "One should carefully consider the possible search space before choosing the algorithm for the task." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## GENETIC ALGORITHM\n", "\n", "Genetic algorithms (or GA) are inspired by natural evolution and are particularly useful in optimization and search problems with large state spaces.\n", "\n", "Given a problem, algorithms in the domain make use of a *population* of solutions (also called *states*), where each solution/state represents a feasible solution. At each iteration (often called *generation*), the population gets updated using methods inspired by biology and evolution, like *crossover*, *mutation* and *natural selection*." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Overview\n", "\n", "A genetic algorithm works in the following way:\n", "\n", "1) Initialize random population.\n", "\n", "2) Calculate population fitness.\n", "\n", "3) Select individuals for mating.\n", "\n", "4) Mate selected individuals to produce new population.\n", "\n", " * Random chance to mutate individuals.\n", "\n", "5) Repeat from step 2) until an individual is fit enough or the maximum number of iterations was reached." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Glossary\n", "\n", "Before we continue, we will lay the basic terminology of the algorithm.\n", "\n", "* Individual/State: A list of elements (called *genes*) that represent possible solutions.\n", "\n", "* Population: The list of all the individuals/states.\n", "\n", "* Gene pool: The alphabet of possible values for an individual's genes.\n", "\n", "* Generation/Iteration: The number of times the population will be updated.\n", "\n", "* Fitness: An individual's score, calculated by a function specific to the problem." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Crossover\n", "\n", "Two individuals/states can \"mate\" and produce one child. This offspring bears characteristics from both of its parents. There are many ways we can implement this crossover. Here we will take a look at the most common ones. Most other methods are variations of those below.\n", "\n", "* Point Crossover: The crossover occurs around one (or more) point. The parents get \"split\" at the chosen point or points and then get merged. In the example below we see two parents get split and merged at the 3rd digit, producing the following offspring after the crossover.\n", "\n", "![point crossover](images/point_crossover.png)\n", "\n", "* Uniform Crossover: This type of crossover chooses randomly the genes to get merged. Here the genes 1, 2 and 5 were chosen from the first parent, so the genes 3, 4 were added by the second parent.\n", "\n", "![uniform crossover](images/uniform_crossover.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Mutation\n", "\n", "When an offspring is produced, there is a chance it will mutate, having one (or more, depending on the implementation) of its genes altered.\n", "\n", "For example, let's say the new individual to undergo mutation is \"abcde\". Randomly we pick to change its third gene to 'z'. The individual now becomes \"abzde\" and is added to the population." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Selection\n", "\n", "At each iteration, the fittest individuals are picked randomly to mate and produce offsprings. We measure an individual's fitness with a *fitness function*. That function depends on the given problem and it is used to score an individual. Usually the higher the better.\n", "\n", "The selection process is this:\n", "\n", "1) Individuals are scored by the fitness function.\n", "\n", "2) Individuals are picked randomly, according to their score (higher score means higher chance to get picked). Usually the formula to calculate the chance to pick an individual is the following (for population *P* and individual *i*):\n", "\n", "$$ chance(i) = \\dfrac{fitness(i)}{\\sum_{k \\, in \\, P}{fitness(k)}} $$" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Implementation\n", "\n", "Below we look over the implementation of the algorithm in the `search` module.\n", "\n", "First the implementation of the main core of the algorithm:" ] }, { "cell_type": "code", "execution_count": 51, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def genetic_algorithm(population, fitness_fn, gene_pool=[0, 1], f_thres=None, ngen=1000, pmut=0.1):\n",
       "    """[Figure 4.8]"""\n",
       "    for i in range(ngen):\n",
       "        population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, pmut)\n",
       "                      for i in range(len(population))]\n",
       "\n",
       "        fittest_individual = fitness_threshold(fitness_fn, f_thres, population)\n",
       "        if fittest_individual:\n",
       "            return fittest_individual\n",
       "\n",
       "\n",
       "    return argmax(population, key=fitness_fn)\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(genetic_algorithm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The algorithm takes the following input:\n", "\n", "* `population`: The initial population.\n", "\n", "* `fitness_fn`: The problem's fitness function.\n", "\n", "* `gene_pool`: The gene pool of the states/individuals. By default 0 and 1.\n", "\n", "* `f_thres`: The fitness threshold. If an individual reaches that score, iteration stops. By default 'None', which means the algorithm will not halt until the generations are ran.\n", "\n", "* `ngen`: The number of iterations/generations.\n", "\n", "* `pmut`: The probability of mutation.\n", "\n", "The algorithm gives as output the state with the largest score." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "For each generation, the algorithm updates the population. First it calculates the fitnesses of the individuals, then it selects the most fit ones and finally crosses them over to produce offsprings. There is a chance that the offspring will be mutated, given by `pmut`. If at the end of the generation an individual meets the fitness threshold, the algorithm halts and returns that individual.\n", "\n", "The function of mating is accomplished by the method `recombine`:" ] }, { "cell_type": "code", "execution_count": 52, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def recombine(x, y):\n",
       "    n = len(x)\n",
       "    c = random.randrange(0, n)\n",
       "    return x[:c] + y[c:]\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(recombine)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The method picks at random a point and merges the parents (`x` and `y`) around it.\n", "\n", "The mutation is done in the method `mutate`:" ] }, { "cell_type": "code", "execution_count": 53, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def mutate(x, gene_pool, pmut):\n",
       "    if random.uniform(0, 1) >= pmut:\n",
       "        return x\n",
       "\n",
       "    n = len(x)\n",
       "    g = len(gene_pool)\n",
       "    c = random.randrange(0, n)\n",
       "    r = random.randrange(0, g)\n",
       "\n",
       "    new_gene = gene_pool[r]\n",
       "    return x[:c] + [new_gene] + x[c+1:]\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(mutate)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We pick a gene in `x` to mutate and a gene from the gene pool to replace it with.\n", "\n", "To help initializing the population we have the helper function `init_population`\":" ] }, { "cell_type": "code", "execution_count": 54, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def init_population(pop_number, gene_pool, state_length):\n",
       "    """Initializes population for genetic algorithm\n",
       "    pop_number  :  Number of individuals in population\n",
       "    gene_pool   :  List of possible values for individuals\n",
       "    state_length:  The length of each individual"""\n",
       "    g = len(gene_pool)\n",
       "    population = []\n",
       "    for i in range(pop_number):\n",
       "        new_individual = [gene_pool[random.randrange(0, g)] for j in range(state_length)]\n",
       "        population.append(new_individual)\n",
       "\n",
       "    return population\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(init_population)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The function takes as input the number of individuals in the population, the gene pool and the length of each individual/state. It creates individuals with random genes and returns the population when done." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Explanation\n", "\n", "Before we solve problems using the genetic algorithm, we will explain how to intuitively understand the algorithm using a trivial example.\n", "\n", "#### Generating Phrases\n", "\n", "In this problem, we use a genetic algorithm to generate a particular target phrase from a population of random strings. This is a classic example that helps build intuition about how to use this algorithm in other problems as well. Before we break the problem down, let us try to brute force the solution. Let us say that we want to generate the phrase \"genetic algorithm\". The phrase is 17 characters long. We can use any character from the 26 lowercase characters and the space character. To generate a random phrase of length 17, each space can be filled in 27 ways. So the total number of possible phrases is\n", "\n", "$$ 27^{17} = 2153693963075557766310747 $$\n", "\n", "which is a massive number. If we wanted to generate the phrase \"Genetic Algorithm\", we would also have to include all the 26 uppercase characters into consideration thereby increasing the sample space from 27 characters to 53 characters and the total number of possible phrases then would be\n", "\n", "$$ 53^{17} = 205442259656281392806087233013 $$\n", "\n", "If we wanted to include punctuations and numerals into the sample space, we would have further complicated an already impossible problem. Hence, brute forcing is not an option. Now we'll apply the genetic algorithm and see how it significantly reduces the search space. We essentially want to *evolve* our population of random strings so that they better approximate the target phrase as the number of generations increase. Genetic algorithms work on the principle of Darwinian Natural Selection according to which, there are three key concepts that need to be in place for evolution to happen. They are:\n", "\n", "* **Heredity**: There must be a process in place by which children receive the properties of their parents.
\n", "For this particular problem, two strings from the population will be chosen as parents and will be split at a random index and recombined as described in the `recombine` function to create a child. This child string will then be added to the new generation.\n", "\n", "\n", "* **Variation**: There must be a variety of traits present in the population or a means with which to introduce variation.
If there is no variation in the sample space, we might never reach the global optimum. To ensure that there is enough variation, we can initialize a large population, but this gets computationally expensive as the population gets larger. Hence, we often use another method called mutation. In this method, we randomly change one or more characters of some strings in the population based on a predefined probability value called the mutation rate or mutation probability as described in the `mutate` function. The mutation rate is usually kept quite low. A mutation rate of zero fails to introduce variation in the population and a high mutation rate (say 50%) is as good as a coin flip and the population fails to benefit from the previous recombinations. An optimum balance has to be maintained between population size and mutation rate so as to reduce the computational cost as well as have sufficient variation in the population.\n", "\n", "\n", "* **Selection**: There must be some mechanism by which some members of the population have the opportunity to be parents and pass down their genetic information and some do not. This is typically referred to as \"survival of the fittest\".
\n", "There has to be some way of determining which phrases in our population have a better chance of eventually evolving into the target phrase. This is done by introducing a fitness function that calculates how close the generated phrase is to the target phrase. The function will simply return a scalar value corresponding to the number of matching characters between the generated phrase and the target phrase." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before solving the problem, we first need to define our target phrase." ] }, { "cell_type": "code", "execution_count": 55, "metadata": { "collapsed": true }, "outputs": [], "source": [ "target = 'Genetic Algorithm'" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "We then need to define our gene pool, i.e the elements which an individual from the population might comprise of. Here, the gene pool contains all uppercase and lowercase letters of the English alphabet and the space character." ] }, { "cell_type": "code", "execution_count": 56, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# The ASCII values of uppercase characters ranges from 65 to 91\n", "u_case = [chr(x) for x in range(65, 91)]\n", "# The ASCII values of lowercase characters ranges from 97 to 123\n", "l_case = [chr(x) for x in range(97, 123)]\n", "\n", "gene_pool = []\n", "gene_pool.extend(u_case) # adds the uppercase list to the gene pool\n", "gene_pool.extend(l_case) # adds the lowercase list to the gene pool\n", "gene_pool.append(' ') # adds the space character to the gene pool" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now need to define the maximum size of each population. Larger populations have more variation but are computationally more expensive to run algorithms on." ] }, { "cell_type": "code", "execution_count": 57, "metadata": { "collapsed": true }, "outputs": [], "source": [ "max_population = 100" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As our population is not very large, we can afford to keep a relatively large mutation rate." ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": true }, "outputs": [], "source": [ "mutation_rate = 0.07 # 7%" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Great! Now, we need to define the most important metric for the genetic algorithm, i.e the fitness function. This will simply return the number of matching characters between the generated sample and the target phrase." ] }, { "cell_type": "code", "execution_count": 59, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def fitness_fn(sample):\n", " # initialize fitness to 0\n", " fitness = 0\n", " for i in range(len(sample)):\n", " # increment fitness by 1 for every matching character\n", " if sample[i] == target[i]:\n", " fitness += 1\n", " return fitness" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Before we run our genetic algorithm, we need to initialize a random population. We will use the `init_population` function to do this. We need to pass in the maximum population size, the gene pool and the length of each individual, which in this case will be the same as the length of the target phrase." ] }, { "cell_type": "code", "execution_count": 60, "metadata": { "collapsed": true }, "outputs": [], "source": [ "population = init_population(max_population, gene_pool, len(target))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We will now define how the individuals in the population should change as the number of generations increases. First, the `select` function will be run on the population to select *two* individuals with high fitness values. These will be the parents which will then be recombined using the `recombine` function to generate the child." ] }, { "cell_type": "code", "execution_count": 61, "metadata": { "collapsed": true }, "outputs": [], "source": [ "parents = select(2, population, fitness_fn) " ] }, { "cell_type": "code", "execution_count": 62, "metadata": { "collapsed": true }, "outputs": [], "source": [ "# The recombine function takes two parents as arguments, so we need to unpack the previous variable\n", "child = recombine(*parents)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Next, we need to apply a mutation according to the mutation rate. We call the `mutate` function on the child with the gene pool and mutation rate as the additional arguments." ] }, { "cell_type": "code", "execution_count": 63, "metadata": { "collapsed": true }, "outputs": [], "source": [ "child = mutate(child, gene_pool, mutation_rate)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The above lines can be condensed into\n", "\n", "`child = mutate(recombine(*select(2, population, fitness_fn)), gene_pool, mutation_rate)`\n", "\n", "And, we need to do this `for` every individual in the current population to generate the new population." ] }, { "cell_type": "code", "execution_count": 64, "metadata": { "collapsed": true }, "outputs": [], "source": [ "population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, mutation_rate) for i in range(len(population))]" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The individual with the highest fitness can then be found using the `max` function." ] }, { "cell_type": "code", "execution_count": 65, "metadata": { "collapsed": true }, "outputs": [], "source": [ "current_best = max(population, key=fitness_fn)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's print this out" ] }, { "cell_type": "code", "execution_count": 66, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['J', 'y', 'O', 'e', ' ', 'h', 'c', 'r', 'C', 'W', 'H', 'o', 'r', 'R', 'y', 'P', 'U']\n" ] } ], "source": [ "print(current_best)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We see that this is a list of characters. This can be converted to a string using the join function" ] }, { "cell_type": "code", "execution_count": 67, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "JyOe hcrCWHorRyPU\n" ] } ], "source": [ "current_best_string = ''.join(current_best)\n", "print(current_best_string)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We now need to define the conditions to terminate the algorithm. This can happen in two ways\n", "1. Termination after a predefined number of generations\n", "2. Termination when the fitness of the best individual of the current generation reaches a predefined threshold value.\n", "\n", "We define these variables below" ] }, { "cell_type": "code", "execution_count": 68, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ngen = 1200 # maximum number of generations\n", "# we set the threshold fitness equal to the length of the target phrase\n", "# i.e the algorithm only terminates whne it has got all the characters correct \n", "# or it has completed 'ngen' number of generations\n", "f_thres = len(target)" ] }, { "cell_type": "markdown", "metadata": { "collapsed": true }, "source": [ "To generate `ngen` number of generations, we run a `for` loop `ngen` number of times. After each generation, we calculate the fitness of the best individual of the generation and compare it to the value of `f_thres` using the `fitness_threshold` function. After every generation, we print out the best individual of the generation and the corresponding fitness value. Lets now write a function to do this." ] }, { "cell_type": "code", "execution_count": 69, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def genetic_algorithm_stepwise(population, fitness_fn, gene_pool=[0, 1], f_thres=None, ngen=1200, pmut=0.1):\n", " for generation in range(ngen):\n", " population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, pmut) for i in range(len(population))]\n", " # stores the individual genome with the highest fitness in the current population\n", " current_best = ''.join(max(population, key=fitness_fn))\n", " print(f'Current best: {current_best}\\t\\tGeneration: {str(generation)}\\t\\tFitness: {fitness_fn(current_best)}\\r', end='')\n", " \n", " # compare the fitness of the current best individual to f_thres\n", " fittest_individual = fitness_threshold(fitness_fn, f_thres, population)\n", " \n", " # if fitness is greater than or equal to f_thres, we terminate the algorithm\n", " if fittest_individual:\n", " return fittest_individual, generation\n", " return max(population, key=fitness_fn) , generation " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The function defined above is essentially the same as the one defined in `search.py` with the added functionality of printing out the data of each generation." ] }, { "cell_type": "code", "execution_count": 70, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
def genetic_algorithm(population, fitness_fn, gene_pool=[0, 1], f_thres=None, ngen=1000, pmut=0.1):\n",
       "    """[Figure 4.8]"""\n",
       "    for i in range(ngen):\n",
       "        population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, pmut)\n",
       "                      for i in range(len(population))]\n",
       "\n",
       "        fittest_individual = fitness_threshold(fitness_fn, f_thres, population)\n",
       "        if fittest_individual:\n",
       "            return fittest_individual\n",
       "\n",
       "\n",
       "    return argmax(population, key=fitness_fn)\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(genetic_algorithm)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have defined all the required functions and variables. Let's now create a new population and test the function we wrote above." ] }, { "cell_type": "code", "execution_count": 71, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Current best: Genetic Algorithm\t\tGeneration: 985\t\tFitness: 17\r" ] } ], "source": [ "population = init_population(max_population, gene_pool, len(target))\n", "solution, generations = genetic_algorithm_stepwise(population, fitness_fn, gene_pool, f_thres, ngen, mutation_rate)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The genetic algorithm was able to converge!\n", "We implore you to rerun the above cell and play around with `target, max_population, f_thres, ngen` etc parameters to get a better intuition of how the algorithm works. To summarize, if we can define the problem states in simple array format and if we can create a fitness function to gauge how good or bad our approximate solutions are, there is a high chance that we can get a satisfactory solution using a genetic algorithm. \n", "- There is also a better GUI version of this program `genetic_algorithm_example.py` in the GUI folder for you to play around with." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Usage\n", "\n", "Below we give two example usages for the genetic algorithm, for a graph coloring problem and the 8 queens problem.\n", "\n", "#### Graph Coloring\n", "\n", "First we will take on the simpler problem of coloring a small graph with two colors. Before we do anything, let's imagine how a solution might look. First, we have to represent our colors. Say, 'R' for red and 'G' for green. These make up our gene pool. What of the individual solutions though? For that, we will look at our problem. We stated we have a graph. A graph has nodes and edges, and we want to color the nodes. Naturally, we want to store each node's color. If we have four nodes, we can store their colors in a list of genes, one for each node. A possible solution will then look like this: ['R', 'R', 'G', 'R']. In the general case, we will represent each solution with a list of chars ('R' and 'G'), with length the number of nodes.\n", "\n", "Next we need to come up with a fitness function that appropriately scores individuals. Again, we will look at the problem definition at hand. We want to color a graph. For a solution to be optimal, no edge should connect two nodes of the same color. How can we use this information to score a solution? A naive (and ineffective) approach would be to count the different colors in the string. So ['R', 'R', 'R', 'R'] has a score of 1 and ['R', 'R', 'G', 'G'] has a score of 2. Why that fitness function is not ideal though? Why, we forgot the information about the edges! The edges are pivotal to the problem and the above function only deals with node colors. We didn't use all the information at hand and ended up with an ineffective answer. How, then, can we use that information to our advantage?\n", "\n", "We said that the optimal solution will have all the edges connecting nodes of different color. So, to score a solution we can count how many edges are valid (aka connecting nodes of different color). That is a great fitness function!\n", "\n", "Let's jump into solving this problem using the `genetic_algorithm` function." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "First we need to represent the graph. Since we mostly need information about edges, we will just store the edges. We will denote edges with capital letters and nodes with integers:" ] }, { "cell_type": "code", "execution_count": 72, "metadata": { "collapsed": true }, "outputs": [], "source": [ "edges = {\n", " 'A': [0, 1],\n", " 'B': [0, 3],\n", " 'C': [1, 2],\n", " 'D': [2, 3]\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Edge 'A' connects nodes 0 and 1, edge 'B' connects nodes 0 and 3 etc.\n", "\n", "We already said our gene pool is 'R' and 'G', so we can jump right into initializing our population. Since we have only four nodes, `state_length` should be 4. For the number of individuals, we will try 8. We can increase this number if we need higher accuracy, but be careful! Larger populations need more computating power and take longer. You need to strike that sweet balance between accuracy and cost (the ultimate dilemma of the programmer!)." ] }, { "cell_type": "code", "execution_count": 73, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[['R', 'G', 'G', 'G'], ['G', 'R', 'R', 'G'], ['G', 'G', 'G', 'G'], ['G', 'R', 'G', 'G'], ['G', 'G', 'G', 'R'], ['G', 'R', 'R', 'G'], ['G', 'R', 'G', 'G'], ['G', 'G', 'R', 'G']]\n" ] } ], "source": [ "population = init_population(8, ['R', 'G'], 4)\n", "print(population)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We created and printed the population. You can see that the genes in the individuals are random and there are 8 individuals each with 4 genes.\n", "\n", "Next we need to write our fitness function. We previously said we want the function to count how many edges are valid. So, given a coloring/individual `c`, we will do just that:" ] }, { "cell_type": "code", "execution_count": 74, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def fitness(c):\n", " return sum(c[n1] != c[n2] for (n1, n2) in edges.values())" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Great! Now we will run the genetic algorithm and see what solution it gives." ] }, { "cell_type": "code", "execution_count": 75, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "['R', 'G', 'R', 'G']\n" ] } ], "source": [ "solution = genetic_algorithm(population, fitness, gene_pool=['R', 'G'])\n", "print(solution)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The algorithm converged to a solution. Let's check its score:" ] }, { "cell_type": "code", "execution_count": 76, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4\n" ] } ], "source": [ "print(fitness(solution))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The solution has a score of 4. Which means it is optimal, since we have exactly 4 edges in our graph, meaning all are valid!\n", "\n", "*NOTE: Because the algorithm is non-deterministic, there is a chance a different solution is given. It might even be wrong, if we are very unlucky!*" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Eight Queens\n", "\n", "Let's take a look at a more complicated problem.\n", "\n", "In the *Eight Queens* problem, we are tasked with placing eight queens on an 8x8 chessboard without any queen threatening the others (aka queens should not be in the same row, column or diagonal). In its general form the problem is defined as placing *N* queens in an NxN chessboard without any conflicts.\n", "\n", "First we need to think about the representation of each solution. We can go the naive route of representing the whole chessboard with the queens' placements on it. That is definitely one way to go about it, but for the purpose of this tutorial we will do something different. We have eight queens, so we will have a gene for each of them. The gene pool will be numbers from 0 to 7, for the different columns. The *position* of the gene in the state will denote the row the particular queen is placed in.\n", "\n", "For example, we can have the state \"03304577\". Here the first gene with a value of 0 means \"the queen at row 0 is placed at column 0\", for the second gene \"the queen at row 1 is placed at column 3\" and so forth.\n", "\n", "We now need to think about the fitness function. On the graph coloring problem we counted the valid edges. The same thought process can be applied here. Instead of edges though, we have positioning between queens. If two queens are not threatening each other, we say they are at a \"non-attacking\" positioning. We can, therefore, count how many such positionings are there.\n", "\n", "Let's dive right in and initialize our population:" ] }, { "cell_type": "code", "execution_count": 77, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[[2, 6, 2, 0, 2, 3, 4, 7], [7, 2, 0, 6, 3, 3, 0, 6], [2, 3, 0, 6, 6, 2, 5, 5], [2, 6, 4, 2, 3, 5, 5, 5], [3, 1, 5, 1, 5, 1, 0, 3]]\n" ] } ], "source": [ "population = init_population(100, range(8), 8)\n", "print(population[:5])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We have a population of 100 and each individual has 8 genes. The gene pool is the integers from 0 to 7, in string form. Above you can see the first five individuals.\n", "\n", "Next we need to write our fitness function. Remember, queens threaten each other if they are at the same row, column or diagonal.\n", "\n", "Since positionings are mutual, we must take care not to count them twice. Therefore for each queen, we will only check for conflicts for the queens after her.\n", "\n", "A gene's value in an individual `q` denotes the queen's column, and the position of the gene denotes its row. We can check if the aforementioned values between two genes are the same. We also need to check for diagonals. A queen *a* is in the diagonal of another queen, *b*, if the difference of the rows between them is equal to either their difference in columns (for the diagonal on the right of *a*) or equal to the negative difference of their columns (for the left diagonal of *a*). Below is given the fitness function." ] }, { "cell_type": "code", "execution_count": 78, "metadata": { "collapsed": true }, "outputs": [], "source": [ "def fitness(q):\n", " non_attacking = 0\n", " for row1 in range(len(q)):\n", " for row2 in range(row1+1, len(q)):\n", " col1 = int(q[row1])\n", " col2 = int(q[row2])\n", " row_diff = row1 - row2\n", " col_diff = col1 - col2\n", "\n", " if col1 != col2 and row_diff != col_diff and row_diff != -col_diff:\n", " non_attacking += 1\n", "\n", " return non_attacking" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Note that the best score achievable is 28. That is because for each queen we only check for the queens after her. For the first queen we check 7 other queens, for the second queen 6 others and so on. In short, the number of checks we make is the sum 7+6+5+...+1. Which is equal to 7\\*(7+1)/2 = 28.\n", "\n", "Because it is very hard and will take long to find a perfect solution, we will set the fitness threshold at 25. If we find an individual with a score greater or equal to that, we will halt. Let's see how the genetic algorithm will fare." ] }, { "cell_type": "code", "execution_count": 79, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "[2, 5, 7, 1, 3, 6, 4, 6]\n", "25\n" ] } ], "source": [ "solution = genetic_algorithm(population, fitness, f_thres=25, gene_pool=range(8))\n", "print(solution)\n", "print(fitness(solution))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Above you can see the solution and its fitness score, which should be no less than 25." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This is where we conclude Genetic Algorithms." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### N-Queens Problem\n", "Here, we will look at the generalized cae of the Eight Queens problem.\n", "
\n", "We are given a `N` x `N` chessboard, with `N` queens, and we need to place them in such a way that no two queens can attack each other.\n", "
\n", "We will solve this problem using search algorithms.\n", "To do this, we already have a `NQueensProblem` class in `search.py`." ] }, { "cell_type": "code", "execution_count": 80, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
class NQueensProblem(Problem):\n",
       "\n",
       "    """The problem of placing N queens on an NxN board with none attacking\n",
       "    each other.  A state is represented as an N-element array, where\n",
       "    a value of r in the c-th entry means there is a queen at column c,\n",
       "    row r, and a value of -1 means that the c-th column has not been\n",
       "    filled in yet.  We fill in columns left to right.\n",
       "    >>> depth_first_tree_search(NQueensProblem(8))\n",
       "    <Node (7, 3, 0, 2, 5, 1, 6, 4)>\n",
       "    """\n",
       "\n",
       "    def __init__(self, N):\n",
       "        self.N = N\n",
       "        self.initial = tuple([-1] * N)\n",
       "        Problem.__init__(self, self.initial)\n",
       "\n",
       "    def actions(self, state):\n",
       "        """In the leftmost empty column, try all non-conflicting rows."""\n",
       "        if state[-1] is not -1:\n",
       "            return []  # All columns filled; no successors\n",
       "        else:\n",
       "            col = state.index(-1)\n",
       "            return [row for row in range(self.N)\n",
       "                    if not self.conflicted(state, row, col)]\n",
       "\n",
       "    def result(self, state, row):\n",
       "        """Place the next queen at the given row."""\n",
       "        col = state.index(-1)\n",
       "        new = list(state[:])\n",
       "        new[col] = row\n",
       "        return tuple(new)\n",
       "\n",
       "    def conflicted(self, state, row, col):\n",
       "        """Would placing a queen at (row, col) conflict with anything?"""\n",
       "        return any(self.conflict(row, col, state[c], c)\n",
       "                   for c in range(col))\n",
       "\n",
       "    def conflict(self, row1, col1, row2, col2):\n",
       "        """Would putting two queens in (row1, col1) and (row2, col2) conflict?"""\n",
       "        return (row1 == row2 or  # same row\n",
       "                col1 == col2 or  # same column\n",
       "                row1 - col1 == row2 - col2 or  # same \\ diagonal\n",
       "                row1 + col1 == row2 + col2)   # same / diagonal\n",
       "\n",
       "    def goal_test(self, state):\n",
       "        """Check if all columns filled, no conflicts."""\n",
       "        if state[-1] is -1:\n",
       "            return False\n",
       "        return not any(self.conflicted(state, state[col], col)\n",
       "                       for col in range(len(state)))\n",
       "\n",
       "    def h(self, node):\n",
       "        """Return number of conflicting queens for a given node"""\n",
       "        num_conflicts = 0\n",
       "        for (r1, c1) in enumerate(node.state):\n",
       "            for (r2, c2) in enumerate(node.state):\n",
       "                if (r1, c1) != (r2, c2):\n",
       "                    num_conflicts += self.conflict(r1, c1, r2, c2)\n",
       "\n",
       "        return num_conflicts\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(NQueensProblem)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In [`csp.ipynb`](https://github.com/aimacode/aima-python/blob/master/csp.ipynb) we have seen that the N-Queens problem can be formulated as a CSP and can be solved by \n", "the `min_conflicts` algorithm in a way similar to Hill-Climbing. \n", "Here, we want to solve it using heuristic search algorithms and even some classical search algorithms.\n", "The `NQueensProblem` class derives from the `Problem` class and is implemented in such a way that the search algorithms we already have, can solve it.\n", "
\n", "Let's instantiate the class." ] }, { "cell_type": "code", "execution_count": 81, "metadata": { "collapsed": true }, "outputs": [], "source": [ "nqp = NQueensProblem(8)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Let's use `depth_first_tree_search` first.\n", "
\n", "We will also use the %%timeit magic with each algorithm to see how much time they take." ] }, { "cell_type": "code", "execution_count": 82, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "4.82 ms ± 498 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], "source": [ "%%timeit\n", "depth_first_tree_search(nqp)" ] }, { "cell_type": "code", "execution_count": 83, "metadata": { "collapsed": true }, "outputs": [], "source": [ "dfts = depth_first_tree_search(nqp).solution()" ] }, { "cell_type": "code", "execution_count": 84, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+4FdWd7/nP93IOIIZfBw6YAGOg\nkyczHQO2nBa7iQwxpA0IRmd6umGMXs1kuJO5hiDY6Zbn6Scmz41mVCB07OncXGnw3jagaduI2lGi\nEQwYtQ+00jHpnseAiYj8OMIJ6DERuGv+qLM9e+9TVbvO3lW7dlW9X8+zn7131aq11t6Lw3evVatW\nmXNOAACgtf27tCsAAABqI2ADAJABBGwAADKAgA0AQAYQsAEAyAACNgAAGUDABgAgAwjYAABkAAEb\naDFm9kEz+0czO2Fmh83sbjNrC0k/zsz+pj9tn5n9i5n9+2bWGUDyCNhA6/l/JR2V9H5JF0r6nyX9\n334JzWy4pCclnS/pDySNlfRnku4wsxVNqS2ApiBgA61nuqQHnHO/cc4dlvS4pI8GpL1W0v8g6X9z\nzh1wzp12zj0uaYWk/2RmoyXJzJyZfah0kJltNrP/VPZ+sZm9aGa9Zvasmc0s2/cBM3vQzI6Z2YHy\nHwJmdquZPWBm/9XMTpnZy2bWVbb/z83s9f59/2Zmn4znKwKKh4ANtJ4Nkpaa2SgzmyJpobyg7edT\nkn7gnHu7avuDkkZJuqRWYWZ2kaS/lfQfJE2Q9J8lbTOzEWb27yQ9IuklSVMkfVLSSjO7vCyLKyVt\nlTRO0jZJd/fn+xFJN0r6fefcaEmXS3q1Vn0A+CNgA61np7we9UlJByV1S/p+QNqJkt6o3uicOyOp\nR1JnhPL+T0n/2Tn3vHPurHPuXkm/lRfsf19Sp3Pua865d51z+yX9F0lLy47f5Zz7R+fcWUn/TdKs\n/u1nJY2Q9Ltm1u6ce9U594sI9QHgg4ANtJD+Hu0Tkv5B0rnyAvJ4Sf9PwCE98s51V+fT1n/ssQjF\nni9pdf9weK+Z9UqaJukD/fs+ULVvjaTJZccfLnvdJ2mkmbU5516RtFLSrZKOmtlWM/tAhPoA8EHA\nBlpLh7xgebdz7rfOuTclbZK0KCD9k5IWmtm5Vdv/V0mnJb3Q/75P3hB5yXllr1+T9HXn3Liyxyjn\n3Jb+fQeq9o12zgXVp4Jz7rvOuY/LC/xOwT88ANRAwAZaiHOuR9IBSV8wszYzGyfp38s7h+znv8kb\nNv9e/+Vg7f3nl/9K0h3OuV/3p3tR0v9uZsPM7NPyZp6X/BdJ/5eZzTHPuWZ2Rf+EtRckneyfPHZO\n//EXmNnv1/osZvYRM7vMzEZI+o2kd+QNkwOoAwEbaD3/i6RPyxvOfkXSGUk3+SV0zv1W0gJ5PeHn\n5QXFxyV9U9JXy5J+SdISSb2SrlHZOXHnXLe889h3SzrRX+b1/fvO9h93obwfEj2S7pF3+VgtIyR9\no/+Yw5ImyRtOB1AHc86lXQcAMTGzdkk/kPS6pOsdf+BAbtDDBnLEOXda3vnrX0j6SMrVARAjetgA\nAGQAPWwAADIg8IYCzTJx4kT3wQ9+MO1qJGbPnj1pVyFRs2fPTrsKiaMNs432y768t6GkHudczUWO\nUh8S7+rqct3d3anWIUlmlnYVEhXrv589MXxXs+P/90wbZhvtl315b0NJe5xzXbUSMSSOdB250wvU\ncQRraSCvI2vjyQ8AWgQBG+k4/aYXWA9+OZn8D97s5X/6SDL5A0CTpX4OGwUUV286in39K3AmMFQO\nAM1EDxvN1cxg3QrlAkBMCNhojr0j0g+ae0w6vjXdOgBAnQjYSN4ek9y7DWdz4x0x1OXAsvR/OABA\nHTiHjWTtHdlwFlZ2scNfP+A9u0avBNw7Qrrotw1mAgDNQw8byXK1g2LnAum+H/jvs4ArE4O2RxZD\njx8AmomAjeTUGHq2Lu/R0yt99i8bD8Kl/EqPC/6ksfoBQCshYCMZNYLht+73315v0PY77uX9EQ4k\naAPICAI24nfmaM0kK+5sQj0U8QfAmZ7E6wEAjSJgI34vTY4tq6DJZQ1POiv3Us019wEgdcwSR7ze\nGLj2yq93Wwq0rjv68Lfrlk71SWPmSSefkUaPil6dTV8ZeB1WHx1eL513U/SMAaDJ6GEjXof+XFJw\nMD5YNlo+d9bg/UE951KQDgrWQcddv8R7/tVh//3v1fP1Vf4JAKBFELDRVNMWDbzetbEy0IYNc3/4\nau95wmXBaarzKn9//uKh1RMAWg0BG/FpcMb16yFz1V55zXs+fjI4Tdi+SJgxDqCFEbDRVIvmBu+b\nuih4XxRhve/FlzaWNwCkjYCNRPTt9t/+2Ibm1qPkkfX+2995trn1AIB6EbARj9OVs7rOGeGdQz5n\nxMC2KJdibX6kvuIf3lk7TXn5o0Z670cOr0p0+lh9FQCAhBGwEY997/fd3LdbOv289zrKZVw3fHXw\ntjNnK9/39A5Oc9Xq2nmXyu/dIb29KyDRvkm1MwKAFBCwkbi2YY0dP/ySyvedCxrLb+z7GjseANJA\nwEZTRellL11T+d658PSf+1o85QJAKyNgo+Xcv31o6TdtS6YeANBKEgnYZvZpM/s3M3vFzP4iiTLQ\nWlati5622b3doZQ3lM8BAM0Ue8A2s2GS/lrSQkm/K2mZmf1u3OWgtayLeWXPL9weLV3cd/2K+3MA\nQFyS6GFfLOkV59x+59y7krZK+kwC5SDDFq8M3//tB73nnXv99297xnsOuq92SfXs8euuqF03AGhF\nSQTsKZJeK3t/sH/be8xsuZl1m1n3sWNc91oE0z9Q+f6xoMuqqsxf7r/9MxF7wtXXZ9/rc9kYAGRB\nEgHbb0Hminm+zrnvOOe6nHNdnZ3ci7gIfnzP4G0LV4Qf0xGy1Kgkjf9E+P6Va8P3A0CWJBGwD0qa\nVvZ+qqRDCZSDVjIrfKRkis96JI/XWBb0RI2befSeCt+/YUv4fl8ze+o4CACSl0TA/idJHzaz6WY2\nXNJSSVx4k3dtE+s6LKkZ41ffXOeB7RNirQcAxKUt7gydc2fM7EZJT0gaJulvnXMvx10OEOb7O9Ku\nAQDEK/aALUnOuX+U9I9J5I3smtwhHTmeXvlzLkivbABoFCudIT6zw9cQPTzEFczKfexD0oKLpd+Z\nWn8ez22ukaBG/QEgTYn0sIEgrjv4vPWiuY3dL/vyG6XtzwWXCwBZRsBGvKbeJR0Mn/HVu0MaN997\nfWS7NKmjcv/1t0r3Phq9yLmzpF0bpSfuHth24JA040rvdaSe/bS/il4gAKSAIXHEa3LtG1OXbm/p\nur1gvXW71+suPYYSrCVp90uVx295wluopdSrntwRfrwkadIXh1YoADSZuVr3LkxYV1eX6+7O73il\nmd86Mvnh++/n9DFpn8+F11WiXtK1ZJ50wxJp/mzpxCnpJ/uk2zZJP9sfoX5R/mnN7Am9nKuQbZgj\ntF/25b0NJe1xztX8H5EhccSvvf7V67at8wJ0kPFjpBlTpGsWVm7f9aJ06efrLJRrrwFkAAEbyZjt\npD3hv4pLE9Da26R3qyaLDWVBFdctffzCgd50+xzpzNmIvWtmhgPICAI2khMhaEsDwbreVc/Kjzv7\ngnT6+Yh5EawBZAiTzpCs6bUX9C5NFvNz63LpxNNeb7n06Nvtbfcz7OKIwXr69yIkAoDWwaSzhOV9\nskSkfz8BvezqwHrVfOmhu+qvy7I13ozzcoHD4kPoXdOG2Ub7ZV/e21BMOkPLmO2kvaMk986gXT1P\nSRPGVm4bPU96qy969h1jpDd/JG25zXtI0jc2S7fc7ZN4+hapY2n0zAGgRRCw0RwX9Ufgqt522zBp\n+pXSqw3cgPX4ycre+i8fHdzTlsQ5awCZxjlsNFdZ0HTd0sM7GwvWfs5f7F23XTEcTrAGkHH0sNF8\ns510+ri0b4Kuu0K67ooEy5p5tKHrwgGgVdDDRjraO7zAPW19MvlP2+DlT7AGkBP0sJGuSSu9hxTp\nmu2aGPoGkFP0sNE6ZruBx6wTg3av9uuMz3yj8jgAyCl62GhNbeMGBeC1f5dSXQCgBdDDBgAgAwjY\nAABkAAEbAIAMIGADAJABqd/8w8xyPbU37e83aQVYlJ82zDjaL/sK0Ibc/AMAEnP2hPRiR8Wm1eul\ntTdVpZt5SGp/f/Pqhdyih52wtL/fpPHrPvvy3oaxtl8LLu6T9/aTCvE3GKmHzTlsAAhz5E4vUMcR\nrKWBvI6sjSc/FAY97ISl/f0mjV/32Zf3Nqy7/U6/Ke2bGG9l/Mw8LLVPrvvwvLefVIi/Qc5hA0Bd\n4upNR7HvPO+ZpXVRA0PiAFCumcG6FcpFZhCwAUCS9o5IP2juMen41nTrgJZFwAaAPSa5dxvO5sY7\nYqjLgWXp/3BAS2LSWcLS/n6TxoSX7Mt7G9Zsv70jJffbhsown+lCrruhLCUbLl1Uu155bz+pEH+D\nXNYFADVFCNadC6T7fuC/zy9Yh22PLIYeP/KFHnbC0v5+k8av++zLexuGtl+NoecoPeewwFwr7Udn\nSD99ILQKNWeP5739pEL8DdLDBoBANYL1t+73315vz9nvuJf3RziQ89noR8AGUDxnjtZMsuLOJtRD\nEX8AnOlJvB5ofQRsAMXzUv0ri1ULmlzW8KSzci91xpgZsoqVzgAUyxsD116FnaN23dGHv123dKpP\nGjNPOvmMNHpU9Ops+srA69Bz5ofXS+dV3woMRUIPG0CxHPpzScHB+GDZaPncWYP3B/WcS0E6KFgH\nHXf9Eu/5V4f9979Xz9dX+SdAYRCwAaDMtEUDr3dtrAy0YcPcH77ae55wWXCa6rzK35+/eGj1RPEQ\nsAEUR4Mzrl8Pmav2ymve8/GTwWnC9kXCjPFCI2ADQJlFc4P3TV0UvC+KsN734ksbyxv5R8AGUEh9\nu/23P7ahufUoeWS9//Z3nm1uPdC6CNgAiuF05ayuc0Z455DPGTGwLcqlWJsfqa/4h3fWTlNe/qiR\n3vuRw6sSnT5WXwWQeSxNmrC0v9+ksSxi9uW9Dd9rv5Dzv2fOSu1z+tP7BO3qGeXVacqPl6RjT0oT\nxw0tj/I0vTukse8LrG7FcqV5bz+pEH+DLE0KAFG0DWvs+OGXVL7vXNBYfqHBGoVFwAaAMlEWS1m6\npvJ9rQ7g574WT7kottgDtpn9rZkdNbOfxp03ALSC+7cPLf2mbcnUA8WSRA97s6RPJ5AvANRt1bro\naZvd2x1KeUP5HMiX2AO2c+4ZScfjzhcAGrEu5pU9v3B7tHRx3/Ur7s+B7OAcNgD4WLwyfP+3H/Se\nd+7137/tGe856L7aJVetrnx/3RW164ZiSiVgm9lyM+s2szhvQAcAdZv+gcr3j+2Kdtz85f7bPxOx\nJ1x9ffa9X412HIonlYDtnPuOc64rynVnANAMP75n8LaFK8KP6QhZalSSxn8ifP/KteH7gXIMiQMo\nhlnhK4RNmTR42+M1lgU9UeNmHr2nwvdv2BK+39fMnjoOQh4kcVnXFkk/kfQRMztoZv9H3GUAwJC1\nTazrsKRmjF99c50Htk+ItR7Ijra4M3TOLYs7TwDIm+/vSLsGyBqGxAGg3+SOdMufc0G65aO1cfOP\nhKX9/SaNGw9kX97bcFD7hdwERKp/CPxjH/IC/oFD0i8O1pdHzbuFzR78bzHv7ScV4m8w0s0/Yh8S\nB4Asc93BQXvR3Mbul335jdL254LLBcIQsAEUy9S7pIPhM756d0jj5nuvj2yXJlUNlV9/q3Tvo9GL\nnDtL2rVReuLugW0HDkkzrvReH46yNvm0v4peIHKJIfGEpf39Jo3huOzLexv6tl+NYXHJ62WXer1b\nt0vL1oSnH4rvfl1advngckL5DIdL+W8/qRB/g5GGxAnYCUv7+00a/1lkX97b0Lf9Th+T9vlceF0l\n6vnsJfOkG5ZI82dLJ05JP9kn3bZJ+tn+CPWLEqxn9gRezpX39pMK8TfIOWwA8NXeWfeh29Z5ATrI\n+DHSjCnSNQsrt+96Ubr083UWyrXXED3sxKX9/SaNX/fZl/c2DG2/iEPj7W3Su88N3h65DlW96PY5\n0pmzjQ2Fv1ePnLefVIi/QXrYABBqtosUtEvBut5LvsqPO/uCdPr5iHnVCNYoFhZOAVBs02sv6G1d\nwQH21uXSiae93nLp0bfb2+5n2MURg/X070VIhCJhSDxhaX+/SWM4Lvvy3oaR2i+gl10dWK+aLz10\nV/11WbbGm3FeLnBYPGLvOu/tJxXib5BZ4q0g7e83afxnkX15b8PI7bd3lOTeqdhkXVLPU9KEsZVJ\nR8+T3uqLXoeOMdKbP6rc9o3N0i13+wTs6VukjqWR8857+0mF+BvkHDYARHZRfwSu6m23DZOmXym9\neqj+rI+frOyt//LRwT1tSZyzRijOYQNAubKg6bqlh3c2Fqz9nL/Yu267ondNsEYNDIknLO3vN2kM\nx2Vf3tuw7vY7fVza14Trn2cebei68Ly3n1SIv8FIQ+L0sAHAT3uH1+udtj6Z/Kdt8PJvIFijWOhh\nJyzt7zdp/LrPvry3YaztF+Ga7ZpiHvrOe/tJhfgbpIcNALGa7QYes04M2r3arzM+843K44A60cNO\nWNrfb9L4dZ99eW9D2i/7CtCG9LABAMgLAjYAABlAwAYAIANSX+ls9uzZ6u6Oco+5bMr7+aW8n1uS\naMOso/2yL+9tGBU9bAAAMiD1HjZQFIF3ZRqCeu/HDCD76GEDCbr52oF7JMehlNeqa+LJD0B2ELCB\nBHSM8QLrnV9KJv+1N3n5T+pIJn8ArYchcSBmcfWmozjSf4tGhsqB/KOHDcSomcG6FcoF0DwEbCAG\nv3k2/aDpuqU//VS6dQCQHAI20CDXLY0Y3ng+N97ReB5bb0//hwOAZHAOG2jAO7sbz6P8/PNfP+A9\nNxp0f/OsNPIPG8sDQGuhhw00YOSI2mk6F0j3/cB/X9BksUYnkcXR4wfQWgjYQJ1q9YKty3v09Eqf\n/cvGg3Apv9Ljgj9prH4AsoWADdShVjD81v3+2+sN2n7Hvby/9nEEbSA/CNjAEHVGWKxkxZ3J10OK\n9gNgwtjk6wEgeQRsYIiObo8vr6AecJw9456n4ssLQHqYJQ4MwZ9dO/Dar3dbCrSuO/rwt+uWTvVJ\nY+ZJJ5+RRo+KXp9NX4lWn5XLpG9uiZ4vgNZDDxsYgjv61wYPCsYHjw68njtr8P6gnnMpSAcF66Dj\nrl/iPf/qsP/+Uj3Xr/bfDyA7CNhAjKYtGni9a2NloA0b5v7w1d7zhMuC01TnVf7+/MVDqyeA7CFg\nAxE1el759aPB+155zXs+fjI4Tdi+KJgxDmQbARuI0aK5wfumLgreF0VY73vxpY3lDaD1EbCBOvQF\nLEn62Ibm1qPkkfX+2995trn1AJAcAjYQweQJle/PGeENMZ9TtjRplCHnzY/UV/7DO2unKS9/1Ejv\n/ciqJUonjquvfADpI2ADERx+wn97327p9PPe6yiXcd3w1cHbzpytfN/TOzjNVRFmeZfK790hvb3L\nP82xJ2vnA6A1EbCBBrUNa+z44ZdUvu9c0Fh+Y9/X2PEAWhMBG4hRlF720jWV750LT/+5r8VTLoBs\nI2ADTXb/EJc23bQtmXoAyJbYA7aZTTOzp83s52b2spl9Ke4ygGZbtS562mb3dodS3lA+B4DWkkQP\n+4yk1c65/0nSJZL+o5n9bgLlAE2zblW8+X3h9mjp4r7rV9yfA0DzxB6wnXNvOOf29r8+JennkqbE\nXQ7QyhavDN//7Qe95517/fdve8Z7Drqvdkn17PHrrqhdNwDZlOg5bDP7oKTfk/R81fblZtZtZt3H\njh1LsgpAU0z/QOX7xwIuq6o2f7n/9s9E7AlXX599r89lYwDyIbGAbWbvk/SgpJXOuYpVkJ1z33HO\ndTnnujo7O5OqAtA0P75n8LaFK8KP6QhZalSSxn8ifP/KteH7AeRLIgHbzNrlBev7nHP/kEQZQDNN\n/GT4/imTBm97vMayoCdq3Myj91T4/g113N86bD1yAK0tiVniJmmjpJ8755iTilx489f1HZfUjPGr\nb67vuEbv+AUgPUn0sOdKulbSZWb2Yv+jwfsUASj3/R1p1wBAs7XFnaFzbpckiztfoNVN7pCOHE+v\n/DkXpFc2gOSx0hkQUa3h7cNDXMGs3Mc+JC24WPqdqfXn8dzm8P0sXwpkW+w9bKDIXHdwYFw0t7H7\nZV9+o7T9ueByAeQbARsYgtXrpbU3hafp3SGNm++9PrJdmtRRuf/6W6V7H41e5txZ0q6N0hN3D2w7\ncEiacaX3OkrP/osxr5gGoPnM1bpVUMK6urpcd3d+uwfepPn8SvvfTzNUt2GU3qx1DaTbul1atiY8\n/VB89+vSsssHl1OrPkHy3ob8DWZf3ttQ0h7nXM2TVgTshOX9H1ra/36aoboNJ46Tjj0Z4biI54yX\nzJNuWCLNny2dOCX9ZJ902ybpZ/trHxslWE+4LPxyrry3IX+D2Zf3NlTEgM2QODBEPb31H7ttnReg\ng4wfI82YIl2zsHL7rhelSz9fX5lcew3kAwEbqEOUoejSBLT2NundqsliQ5mx7bqlj184UF77HOnM\n2caHwgFkCwEbqFPU88elYF1v8Cw/7uwL0unno+VFsAbyheuwgQYsvaV2GusKDp63LpdOPO0F/tKj\nb7e33c+wi6MF4j/+cu00ALKFSWcJy/tkibT//TRDrTYM6mVXB9ar5ksP3VV/PZat8Wac11N2mLy3\nIX+D2Zf3NhSTzoDmsC7p7V3SqJGD9/U8JU0YW7lt9Dzprb7o+XeMkd78kbTlNu8hSd/YLN1y9+C0\nS2+R7v9h9LwBZAcBG4jBuR/3nqt7vG3DpOlXSq8eqj/v4ycre8y/fHRwT1vinDWQd5zDBmJUHjRd\nt/TwzsaCtZ/zF3vXbZf/OCBYA/lHDxuImXVJ40dLx5+WrrvCeySlc0Fj14UDyA562EACTpzyAvfK\ntcnkv+JOL3+CNVAc9LCBBG3Y4j2keO6oxdA3UFz0sIEmKV2PbV0Dd/Mqt3r94G3nXV55HIDioocN\npODXb/kH4HX3Nb8uALKBHjYAABlAwAYAIAMI2AAAZAABGwCADEj95h9mluuV69P+fpNWgEX5acOM\no/2yrwBtyM0/cu3sCenFjopNq9dLa2+qSjfzkNT+/ubVCwCQCHrYCYv1+90Twy/p2fF+3fy6z768\ntyHtl30FaMNIPWzOYbe6I3d6gTqOYC0N5HUkoTUzAQCJoIedsLq/39NvSvsmxlsZPzMPS+2T6z6c\nX/fZl/c2pP2yrwBtyDnszIqrNx3FvvO855iHygEA8WJIvNU0M1i3QrkAgEgI2K1i74j0g+Yek45v\nTbcOAABfBOxWsMck927D2dx4Rwx1ObAs/R8OAIBBmHSWsJrf796RkvttQ2X43fWp4Xsv23Dpotr1\nYsJL9uW9DWm/7CtAG3JZVyZECNadC6T7fuC/L+geyQ3fOzmGHj8AID70sBMW+v3WGHqO0nMOC8y1\n0n50hvTTB0KrUHP2OL/usy/vbUj7ZV8B2pAedkurEay/db//9np7zn7Hvbw/woGczwaAlkDATsOZ\nozWTrLizCfVQxB8AZ3oSrwcAIBwBOw0v1b+yWLWgyWUNTzor91JnjJkBAOrBSmfN9sbAtVdh56hd\nd/Thb9ctneqTxsyTTj4jjR4VvTqbvjLwOvSc+eH10nnVtwIDADQLPexmO/TnkoKD8cGy0fK5swbv\nD+o5l4J0ULAOOu76Jd7zrw7773+vnq+v8k8AAGgKAnaLmbZo4PWujZWBNmyY+8NXe88TLgtOU51X\n+fvzFw+tngCA5iJgN1ODM65fD5mr9spr3vPxk8FpwvZFwoxxAEgNAbvFLJobvG/qouB9UYT1vhdf\n2ljeAIBkEbBT0rfbf/tjG5pbj5JH1vtvf+fZ5tYDAOCPgN0spytndZ0zwjuHfM6IgW1RLsXa/Eh9\nxT+8s3aa8vJHjfTejxxelej0sfoqAABoCEuTJuy97zfk/O+Zs1L7nP70PkG7ekZ5dZry4yXp2JPS\nxHFDy6M8Te8Oaez7AqtbsVwpyyJmX97bkPbLvgK0IUuTZkXbsMaOH35J5fvOBY3lFxqsAQCpIGC3\nmCiLpSxdU/m+1o/Pz30tnnIBAOmJPWCb2Ugze8HMXjKzl83sq3GXUXT3bx9a+k3bkqkHAKB5kuhh\n/1bSZc65WZIulPRpM7ukxjG5t2pd9LTN7u0OpbyhfA4AQHxiD9jO81b/2/b+R75nDESwLuaVPb9w\ne7R0cd/1K+7PAQCIJpFz2GY2zMxelHRU0g+dc89X7V9uZt1mFuc9pXJl8crw/d9+0Hveudd//7Zn\nvOeg+2qXXLW68v11V9SuGwCg+RK9rMvMxkl6SNIXnXM/DUiT6953lMu6JGnGldKBQ1XH9v+cCRqy\nrnVHr7D9QXlHui0nl3XlSt7bkPbLvgK0YfqXdTnneiXtkPTpJMvJgx/fM3jbwhXhx3SELDUqSeM/\nEb5/5drw/QCA1pHELPHO/p61zOwcSQsk/Wvc5WTOrPAVwqZMGrzt8RrLgp6ocTOP3lPh+zdsCd/v\na2ZPHQcBABrVlkCe75d0r5kNk/eD4AHn3KMJlJMtbRPrOiypGeNX31znge0TYq0HACCa2AO2c26f\npN+LO1/E6/s70q4BAGAoWOmshUzuSLf8ORekWz4AIBg3/0jYoO+3xmzxeofAP/YhL+AfOCT94mB9\nedScIT57cFMxQzX78t6GtF/2FaANI80ST+IcNhoQdinWormN3S/78hul7c8FlwsAaF0E7Gabepd0\nMHzGV+8Oadx87/WR7dKkqqHy62+V7h3CNL65s6RdG6Un7h7YduCQd+23JB2Osjb5tL+KXiAAIHYM\niSfM9/utMSwueb3sUq9363Zp2Zrw9EPx3a9Lyy4fXE4on+FwieG4PMh7G9J+2VeANow0JE7ATpjv\n93v6mLTP58LrKlHPZy+ZJ92wRJo/WzpxSvrJPum2TdLP9keoX5RgPbMn8HIu/rPIvry3Ie2XfQVo\nQ85ht6z2zroP3bbOC9BBxo+RZkyRrllYuX3Xi9Kln6+zUK69BoDU0cNOWOj3G3FovL1Neve5wdsj\n16GqF90+RzpztrGh8Pfqwa//wb/SAAAgAElEQVT7zMt7G9J+2VeANqSH3fJmu0hBuxSs673kq/y4\nsy9Ip5+PmFeNYA0AaB4WTknb9NoLeltXcIC9dbl04mmvt1x69O32tvsZdnHEYD39exESAQCahSHx\nhEX6fgN62dWB9ar50kN31V+XZWu8GeflAofFI/auGY7Lvry3Ie2XfQVoQ2aJt4LI3+/eUZJ7p2KT\ndUk9T0kTxlYmHT1Peqsveh06xkhv/qhy2zc2S7fc7ROwp2+ROpZGzpv/LLIv721I+2VfAdqQc9iZ\nclF/BK7qbbcNk6ZfKb16qP6sj5+s7K3/8tHBPW1JnLMGgBbGOexWUxY0Xbf08M7GgrWf8xd7121X\n9K4J1gDQ0hgST1jd3+/p49K+Jlz/PPNoQ9eFMxyXfXlvQ9ov+wrQhpGGxOlht6r2Dq/XO219MvlP\n2+Dl30CwBgA0Dz3shMX6/Ua4ZrummIe++XWffXlvQ9ov+wrQhvSwc2e2G3jMOjFo92q/zvjMNyqP\nAwBkEj3shKX9/SaNX/fZl/c2pP2yrwBtSA8bAIC8IGADAJABBGwAADIg9ZXOZs+ere7uKPd5zKa8\nn1/K+7kliTbMOtov+/LehlHRwwYAIANS72EDANAsgXcoHIJItyhOAD1sAECu3XytF6jjCNbSQF6r\nroknv6gI2ACAXOoY4wXWO7+UTP5rb/Lyn9SRTP7VGBIHAOROXL3pKI7036446aFyetgAgFxpZrBu\nZrkEbABALvzm2fSCdYnrlv70U8nkTcAGAGSe65ZGDG88nxvvaDyPrbcn88OBc9gAgEx7Z3fjeZSf\nf/7rB7znRoPub56VRv5hY3mUo4cNAMi0kSNqp+lcIN33A/99QZPFGp1EFkePvxwBGwCQWbV6wdbl\nPXp6pc/+ZeNBuJRf6XHBnzRWv6EgYAMAMqlWMPzW/f7b6w3afse9vL/2cXEFbQI2ACBzOiMsVrLi\nzuTrIUX7ATBhbOPlELABAJlzdHt8eQX1gOMczu55qvE8mCUOAMiUP7t24LVf77YUaF139OFv1y2d\n6pPGzJNOPiONHhW9Ppu+Eq0+K5dJ39wSPd9q9LABAJlyR//a4EHB+ODRgddzZw3eH9RzLgXpoGAd\ndNz1S7znXx3231+q5/rV/vujImADAHJl2qKB17s2VgbasGHuD1/tPU+4LDhNdV7l789fPLR6DhUB\nGwCQGY2eV379aPC+V17zno+fDE4Tti+KRupPwAYA5MqiucH7pi4K3hdFWO978aWN5V0LARsAkEl9\nAUuSPrahufUoeWS9//Z3no0nfwI2ACATJk+ofH/OCG+I+ZyypUmjDDlvfqS+8h/eWTtNefmjRnrv\nR1YtUTpxXH3lE7ABAJlw+An/7X27pdPPe6+jXMZ1w1cHbztztvJ9T+/gNFdFmOVdKr93h/T2Lv80\nx56snY8fAjYAIPPahjV2/PBLKt93Lmgsv7Hva+x4PwRsAECuROllL11T+d658PSf+1o85TYikYBt\nZsPM7J/N7NEk8gcAoBH3D3Fp003bkqnHUCTVw/6SpJ8nlDcAoIBWrYueNunebiPlDeVzlIs9YJvZ\nVElXSLon7rwBAMW1blW8+X3h9mjp4r7rV72fI4ke9jclfVnSfw9KYGbLzazbzLqPHTuWQBUAAEW3\neGX4/m8/6D3v3Ou/f9sz3nPQfbVLqmePX3dF7brVI9aAbWaLJR11zu0JS+ec+45zrss519XZ2Rln\nFQAABTX9A5XvHwu4rKra/OX+2z8TsSdcfX32vT6XjcUh7h72XElXmtmrkrZKuszM/i7mMgAAGOTH\nPidiF64IP6YjZKlRSRr/ifD9K9eG749TrAHbOXeLc26qc+6DkpZK+pFz7rNxlgEAKKaJnwzfP2XS\n4G2P11gW9ESNm3n0ngrfv6GO+1uHrUcehuuwAQCZ8Oav6zsuqRnjV99c33H13vGrrb7DanPO7ZC0\nI6n8AQBI0/d3NLc8etgAgNyY3JFu+XMuSC5vAjYAIDNqDW8fHuIKZuU+9iFpwcXS70ytP4/nNofv\nb2R4PrEhcQAA0uC6gwPjormN3S/78hul7c8Fl5skAjYAIFNWr5fW3hSepneHNG6+9/rIdmlS1VD5\n9bdK9w7hbhdzZ0m7NkpP3D2w7cAhacaV3usoPfsvNrhimrlatyhJWFdXl+vuTvhnSYrMLO0qJCrt\nfz/NQBtmG+2XfX5tGKU3a10D6bZul5atCU8/FN/9urTs8sHl1KpPgD3OuZqD5QTshPGfRfbRhtlG\n+2WfXxtOHCcdezLCsRHPGS+ZJ92wRJo/WzpxSvrJPum2TdLP9tc+NkqwnnBZ6OVckQI2Q+IAgMzp\n6a3/2G3rvAAdZPwYacYU6ZqFldt3vShd+vn6yqz32utyBGwAQCZFGYouTUBrb5PerZosNpQZ265b\n+viFA+W1z5HOnG14KHxICNgAgMyKev64FKzrDZ7lx519QTr9fLS84lxljeuwAQCZtvSW2mmsKzh4\n3rpcOvG0F/hLj77d3nY/wy6OFoj/+Mu10wwFk84SxoSX7KMNs432y74obRjUy64OrFfNlx66q/66\nLFvjzTivp+wQTDoDABSDdUlv75JGjRy8r+cpacLYym2j50lv9UXPv2OM9OaPpC23eQ9J+sZm6Za7\nB6ddeot0/w+j5x0VARsAkAvnftx7ru7xtg2Tpl8pvXqo/ryPn6zsMf/y0cE9bSm5O4NJnMMGAORM\nedB03dLDOxsL1n7OX+xdt13+4yDJYC3RwwYA5JB1SeNHS8eflq67wnskpXNBY9eFR0UPGwCQSydO\neYF75dpk8l9xp5d/M4K1RA8bAJBzG7Z4DymeO2olPfQdhB42AKAwStdjW9fA3bzKrV4/eNt5l1ce\nlxZ62ACAQvr1W/4BeN19za9LFPSwAQDIAAI2AAAZQMAGACADUl9L3MxyvRBu2t9v0vK+TrNEG2Yd\n7Zd9BWjDSGuJ08MGACADmCUOIDZZvsYVaHX0sAE05OZrB+4hHIdSXquuiSc/IC84h52wtL/fpHH+\nLPvqbcPS7QaTNvmPpKPH6z+e9su+ArQh98MGkIy4etNRHOm/hSFD5Sg6hsQBDEkzg3UrlAu0CgI2\ngEh+82z6QdN1S3/6qXTrAKSFgA2gJtctjRjeeD433tF4HltvT/+HA5AGJp0lLO3vN2lMeMm+Wm34\nzm5p5IgGy/A5/9xo0P3tu9LIP6ydrujtlwcFaEMWTgHQuCjBunOBdN8P/PcFTRZrdBJZHD1+IEvo\nYScs7e83afy6z76wNqzVC47Scw4LzLXSfnSG9NMHhl6HijIK3H55UYA2pIcNoH61gvW37vffXm/P\n2e+4l/fXPo7z2SgKAjaAQTo7aqdZcWfy9ZCi/QCYMDb5egBpI2ADGOTo9vjyCuoBx9kz7nkqvryA\nVsVKZwAq/Nm1A6/DzlG77ujD365bOtUnjZknnXxGGj0qen02fSVafVYuk765JXq+QNbQwwZQ4Y4v\nec9Bwfjg0YHXc2cN3h/Ucy4F6aBgHXTc9Uu8518d9t9fquf61f77gbwgYAMYkmmLBl7v2lgZaMOG\nuT98tfc84bLgNNV5lb8/f/HQ6gnkDQEbwHsaPa/8+tHgfa+85j0fPxmcJmxfFMwYR54RsAEMyaK5\nwfumLgreF0VY73vxpY3lDWQdARuAr77d/tsf29DcepQ8st5/+zvPNrceQFoI2AAkSZMnVL4/Z4Q3\nxHxO2dKkUYacNz9SX/kP76ydprz8USO99yOrliidOK6+8oFWx9KkCUv7+00ayyJmX6kNw4LxmbNS\n+xwFpqueUV6dpvx4STr25ODAWiuP8jS9O6Sx7wuub3leRWm/PCtAG7I0KYB4tA1r7Pjhl1S+71zQ\nWH5hwRrIKwI2gCGJsljK0jWV72t1kD73tXjKBfIskYBtZq+a2b+Y2YtmxoUWQMHcP8SlTTdtS6Ye\nQJ4k2cP+hHPuwijj8gDSt2pd9LTN7u0OpbyhfA4gSxgSByBJWrcq3vy+cHu0dHHf9SvuzwG0iqQC\ntpO03cz2mNny6p1mttzMuhkuB7Jr8crw/d9+0Hveudd//7ZnvOeg+2qXXFW1Rvh1V9SuG5BHiVzW\nZWYfcM4dMrNJkn4o6YvOuWcC0uZ6vn4BLkdIuwqJK0ob1rrGesaV0oFDldtKxwQNWde6o1fY/qC8\no1wLzmVd+VKANkzvsi7n3KH+56OSHpJ0cRLlAGieH98zeNvCFeHHdIQsNSpJ4z8Rvn/l2vD9QJHE\nHrDN7FwzG116LemPJP007nIAxGviJ8P3T5k0eNvjNZYFPVHjZh69p8L3b6jj/tZh65EDWdaWQJ6T\nJT3UP0zTJum7zrnHEygHQIze/HV9xyU1Y/zqm+s7rtE7fgGtKvaA7ZzbL8nntvYAEN33d6RdA6C1\ncFkXgMgmd6Rb/pwL0i0fSBM3/0hY2t9v0pihmn3VbVhrFna9Q+Af+5AX8A8ckn5xsL486qlb0dov\njwrQhpFmiSdxDhtAjoVdirVobmP3y778Rmn7c8HlAkVGwAZQYfV6ae1N4Wl6d0jj5nuvj2yXJlUN\nlV9/q3Tvo9HLnDtL2rVReuLugW0HDnnXfkvS4Qhrk38x5hXTgFbDkHjC0v5+k8ZwXPb5tWHUxUlK\n6bZul5atCU8/FN/9urTs8sHl1KqPnyK2X94UoA0jDYkTsBOW9vebNP6zyD6/Npw4Tjr2ZIRjI57P\nXjJPumGJNH+2dOKU9JN90m2bpJ/tr31slGA94bLgy7mK2H55U4A25Bw2gPr09NZ/7LZ1XoAOMn6M\nNGOKdM3Cyu27XpQu/Xx9ZXLtNYqAHnbC0v5+k8av++wLa8OoQ9HtbdK7zw3eHlV1Oe1zpDNnGxsK\nfy/vArdfXhSgDelhA2hM1PPHpWBd7yVf5cedfUE6/Xy0vJp9X24gTSycAiDU0ltqp7Gu4OB563Lp\nxNNe4C89+nZ72/0MuzhaIP7jL9dOA+QJQ+IJS/v7TRrDcdkXpQ2DetnVgfWq+dJDd9Vfl2VrvBnn\n9ZQdhPbLvgK0IbPEW0Ha32/S+M8i+6K24du7pFEjq47tknqekiaMrdw+ep70Vl/0OnSMkd78UeW2\nb2yWbrl7cMBeeot0/w+j5037ZV8B2pBz2ADic+7HvefqANo2TJp+pfTqofrzPn6yssf8y0cH97Ql\nzlmj2DiHDWBIyoOm65Ye3tlYsPZz/mLvuu3yHwcEaxQdQ+IJS/v7TRrDcdlXbxuOHy0dfzrmyvjo\nXNDYdeG0X/YVoA0jDYnTwwZQlxOnvF7vyrXJ5L/izv5z5A0EayBP6GEnLO3vN2n8us++ONswjjtq\nxT30TftlXwHakB42gOYqXY9tXQN38yq3ev3gbeddXnkcAH/0sBOW9vebNH7dZ1/e25D2y74CtCE9\nbAAA8oKADQBABhCwAQDIgNRXOps9e7a6u2OYWtqi8n5+Ke/nliTaMOtov+zLextGRQ8bAIAMIGAD\nAJABqQ+JAwBayJ4Yhp9n53+YPg30sAGg6I7c6QXqOIK1NJDXkYTWrS0oAjYAFNXpN73AevDLyeR/\n8GYv/9NHksm/YBgSB4Aiiqs3HcW+87xnhsobQg8bAIqmmcG6FcrNCQI2ABTF3hHpB809Jh3fmm4d\nMoqADQBFsMck927D2dx4Rwx1ObAs/R8OGcQ5bADIu70jG86i/Nanf/2A99zw/c/3jpAu+m2DmRQH\nPWwAyDtXOyh2LpDu+4H/vqD7lDd8//IYevxFQsAGgDyrMfRsXd6jp1f67F82HoRL+ZUeF/xJY/XD\nAAI2AORVjWD4rfv9t9cbtP2Oe3l/hAMJ2pEQsAEgj84crZlkxZ1NqIci/gA405N4PbKOgA0AefTS\n5NiyCppc1vCks3IvdcaYWT4xSxwA8uaNgWuv/Hq3pUDruqMPf7tu6VSfNGaedPIZafSo6NXZ9JWB\n12H10eH10nk3Rc+4YOhhA0DeHPpzScHB+GDZaPncWYP3B/WcS0E6KFgHHXf9Eu/5V4f9979Xz9dX\n+SeAJAI2ABTOtEUDr3dtrAy0YcPcH77ae55wWXCa6rzK35+/eGj1RCUCNgDkSYMzrl8Pmav2ymve\n8/GTwWnC9kXCjPFABGwAKJhFc4P3TV0UvC+KsN734ksby7voCNgAkFN9u/23P7ahufUoeWS9//Z3\nnm1uPbKKgA0AeXG6clbXOSO8c8jnjBjYFuVSrM2P1Ff8wztrpykvf9RI7/3I4VWJTh+rrwI5R8AG\ngLzY937fzX27pdPPe6+jXMZ1w1cHbztztvJ9T+/gNFetrp13qfzeHdLbuwIS7ZtUO6MCImADQAG0\nDWvs+OGXVL7vXNBYfmPf19jxRZRIwDazcWb292b2r2b2czP7gyTKAQAMXZRe9tI1le+dC0//ua/F\nUy6CJdXD3iDpcefc/yhplqSfJ1QOACAB928fWvpN25KpBwbEHrDNbIykeZI2SpJz7l3nnM/ZDgBA\nnFati5622b3doZQ3lM9RJEn0sGdIOiZpk5n9s5ndY2bnJlAOAKDMuphX9vzC7dHSxX3Xr7g/R14k\nEbDbJF0k6W+cc78n6W1Jf1GewMyWm1m3mXUfO8b0fQBIw+KV4fu//aD3vHOv//5tz3jPQffVLqme\nPX7dFbXrhsGSCNgHJR10zvVfRKC/lxfA3+Oc+45zrss519XZyS3VAKAZpn+g8v1jQZdVVZm/3H/7\nZyL2hKuvz77X57Ix1BZ7wHbOHZb0mpl9pH/TJyX9LO5yAABD8+N7Bm9buCL8mI6QpUYlafwnwvev\nXBu+H9EldT/sL0q6z8yGS9ov6YaEygEAlMw6Jr0UPGo5xWc9ksdrLAt6osbNPHpPhe/fsCV8v6+Z\nPXUclH+JBGzn3IuSuOIOAJqpbWJdhyU1Y/zqm+s8sH1CrPXIC1Y6AwAk4vs70q5BvhCwAaBAJnek\nW/6cC9ItP8sI2ACQJ7PD1xA9PMQVzMp97EPSgoul35lafx7Pba6RoEb9iyypSWcAgBbluoPPWy+a\n29j9si+/Udr+XHC5qB8BGwDyZupd0sHwGV+9O6Rx873XR7ZLk6qGyq+/Vbr30ehFzp0l7dooPXH3\nwLYDh6QZV3qvI/Xsp/1V9AILiCFxAMibybVvTF26vaXr9oL11u1er7v0GEqwlqTdL1Uev+UJb6GW\nUq860rnzSV8cWqEFY67WPdMS1tXV5bq78ztOYmZpVyFRaf/7aQbaMNsK236nj0n7fC68rhL1kq4l\n86QblkjzZ0snTkk/2Sfdtkn62f4IdYzyX/zMnsDLufLehpL2OOdqtgRD4gCQR+31L/u8bZ0XoIOM\nHyPNmCJds7By+64XpUs/X2ehXHtdEwEbAPJqtpP2hPdOSxPQ2tukd6smiw1lQRXXLX38woHedPsc\n6czZiL1rZoZHQsAGgDyLELSlgWBd76pn5cedfUE6/XzEvAjWkTHpDADybnrtBb1Lk8X83LpcOvG0\n11suPfp2e9v9DLs4YrCe/r0IiVDCpLOE5X2yRNr/fpqBNsw22q9fQC+7OrBeNV966K7667NsjTfj\nvFzgsHjE3nXe21BMOgMAvGe2k/aOktw7g3b1PCVNGFu5bfQ86a2+6Nl3jJHe/JG05TbvIUnf2Czd\ncrdP4ulbpI6l0TOHJAI2ABTHRf0RuKq33TZMmn6l9Oqh+rM+frKyt/7LRwf3tCVxzroBnMMGgKIp\nC5quW3p4Z2PB2s/5i73rtiuGwwnWDaGHDQBFNNtJp49L+ybouiuk665IsKyZRxu6LhweetgAUFTt\nHV7gnrY+mfynbfDyJ1jHgh42ABTdpJXeQ4p0zXZNDH0ngh42AGDAbDfwmHVi0O7Vfp3xmW9UHodE\n0MMGAPhrGzcoAK/9u5TqAnrYAABkAQEbAIAMIGADAJABqa8lbma5nqGQ9vebtAKs8UsbZhztl30F\naMNIa4nTwwYAIANyM0s80k3Sa6j3PrAAACQt0z3sm68duDdrHEp5rbomnvwAAIhLJs9hl27jlrTJ\nfyQdPd5YHml/v0nj/Fn25b0Nab/sK0Ab5vN+2HH1pqM40n9rOIbKAQBpy9SQeDODdSuUCwBASSYC\n9m+eTT9oum7pTz+Vbh0AAMXV8gHbdUsjhjeez413NJ7H1tvT/+EAACimlp509s5uaeSIBvP3Of/c\naND97bvSyD+Mljbt7zdpTHjJvry3Ie2XfQVow+wvnBIlWHcukO77gf++oMlijU4ii6PHDwDAULRs\nD7tWLzhKzzksMNdK+9EZ0k8fGHodBpWT/1+GaVchcbRhttF+2VeANsxuD7tWsP7W/f7b6+05+x33\n8v7ax3E+GwDQLC0XsDs7aqdZcWfy9ZCi/QCYMDb5egAA0HIB++j2+PIK6gHH2TPueSq+vAAACNJS\nK5392bUDr8POUbvu6MPfrls61SeNmSedfEYaPSp6fTZ9JVp9Vi6Tvrkler4AAAxVS/Ww7/iS9xwU\njA8eHXg9d9bg/UE951KQDgrWQcddv8R7/tVh//2leq5f7b8fAIC4tFTArmXaooHXuzZWBtqwYe4P\nX+09T7gsOE11XuXvz188tHoCABC3lgnYjZ5Xfv1o8L5XXvOej58MThO2LwpmjAMAktQyATuKRXOD\n901dFLwvirDe9+JLG8sbAIBGtWTA7tvtv/2xDc2tR8kj6/23v/Nsc+sBACiulgjYkydUvj9nhDfE\nfE7Z0qRRhpw3P1Jf+Q/vrJ2mvPxRI733I6uWKJ04rr7yAQCopSWWJg0LxmfOSu1zvNd+6apnlFen\nKT9eko49OTiw1sqjPE3vDmns+4LrOyiv/C+pl3YVEkcbZhvtl30FaMPsLk1arm1YY8cPv6TyfeeC\nxvILC9YAACSl5QN2uSiLpSxdU/m+1g+zz30tnnIBAEhS7AHbzD5iZi+WPU6a2cq4ywly/xCXNt20\nLZl6AAAQp9gDtnPu35xzFzrnLpQ0W1KfpIfCjlm1Lnr+ze7tDqW8oXwOAACGIukh8U9K+oVz7pdh\nidatirfQL9weLV3cd/2K+3MAAFCSdMBeKmnQbTHMbLmZdZtZXeuDLa4xwP7tB73nnXv99297xnsO\nuq92yVVVa4Rfd0XtugEAkITELusys+GSDkn6qHPuSEi60Mu6JGnGldKBQ5XbSscEDVnXuqNX2P6g\nvKNcC85lXflDG2Yb7Zd9BWjD1C/rWihpb1iwjurH9/hkviL8mI6QpUYlafwnwvevXBu+HwCAZkoy\nYC+Tz3C4n4mfDN8/ZdLgbY/XWBb0RI2befSeCt+/oY77W4etRw4AQCMSCdhmNkrSpyT9Q5T0b/66\nznISmjF+9c31HdfoHb8AAAjSlkSmzrk+SRNqJmxR39+Rdg0AAKiUmZXOJnekW/6cC9ItHwBQbC1x\n84/S61qzsOsdAv/Yh7yAf+CQ9IuD9eVRb93S/n6TxgzV7Mt7G9J+2VeANow0SzyRIfGkhF2KtWhu\nY/fLvvxGaftzweUCAJCmlgrYq9dLa28KT9O7Qxo333t9ZLs0qWqo/PpbpXsfjV7m3FnSro3SE3cP\nbDtwyLv2W5IOR1ib/Isxr5gGAEC1lhoSl6IvTlJKt3W7tGxNePqh+O7XpWWXDy6nVn2CpP39Jo3h\nuOzLexvSftlXgDaMNCTecgF74jjp2JMRjot4PnvJPOmGJdL82dKJU9JP9km3bZJ+tr/2sVGC9YTL\nwi/nSvv7TRr/WWRf3tuQ9su+ArRhNs9h9/TWf+y2dV6ADjJ+jDRjinTNwsrtu16ULv18fWVy7TUA\noBlaroddEnUour1Neve5wdujqi6nfY505mzjQ+Hv5Z//X4ZpVyFxtGG20X7ZV4A2zGYPuyTq+eNS\nsK73kq/y486+IJ1+Plpezb4vNwCg2Fp64ZSlt9ROY13BwfPW5dKJp73AX3r07fa2+xl2cbRA/Mdf\nrp0GAIA4teyQeElQL7s6sF41X3rorvrrsWyNN+O8nrLDpP39Jo3huOzLexvSftlXgDbM5ixxP2/v\nkkaNrDquS+p5SpowtnL76HnSW33Ry+8YI735o8pt39gs3XL34IC99Bbp/h9Gz1sqxD+0tKuQONow\n22i/7CtAG2b7HHa5cz/uPVcH0LZh0vQrpVcP1Z/38ZOVPeZfPjq4py1xzhoAkK6WPoddrTxoum7p\n4Z2NBWs/5y/2rtsu/3FAsAYApC0TQ+LVxo+Wjj+dRG0qdS5o7LpwqRBDOWlXIXG0YbbRftlXgDaM\nNCSeqR52yYlTXq935dpk8l9xZ/858gaDNQAAcclkD9tPHHfUSmLoO+3vN2n8us++vLch7Zd9BWjD\n/Paw/ZSux7augbt5lVu9fvC28y6vPA4AgFaVmx52q0r7+00av+6zL+9tSPtlXwHasFg9bAAA8oyA\nDQBABhCwAQDIgFZY6axH0i+bWN7E/jKbIqXzS039jCnIexvSfjGi/WLX9M9XgDY8P0qi1CedNZuZ\ndUc5uZ9lef+MfL5s4/NlW94/n9S6n5EhcQAAMoCADQBABhQxYH8n7Qo0Qd4/I58v2/h82Zb3zye1\n6Gcs3DlsAACyqIg9bAAAMoeADQBABhQqYJvZp83s38zsFTP7i7TrEycz+1szO2pmP027Lkkws2lm\n9rSZ/dzMXjazL6Vdp7iZ2Ugze8HMXur/jF9Nu05xM7NhZvbPZvZo2nVJgpm9amb/YmYvmlkM9xBs\nLWY2zsz+3sz+tf9v8Q/SrlNczOwj/e1Wepw0s5Vp16tcYc5hm9kwSf+fpE9JOijpnyQtc879LNWK\nxcTM5kl6S9J/dc5dkHZ94mZm75f0fufcXjMbLWmPpKvy0n6SZN7qEOc6594ys3ZJuyR9yTn3XMpV\ni42ZrZLUJWmMc25x2vWJm5m9KqnLOZfLhVPM7F5JP3bO3WNmwyWNcs71pl2vuPXHi9clzXHONXNh\nr1BF6mFfLOkV59x+59y7krZK+kzKdYqNc+4ZScfTrkdSnHNvOOf29r8+JennkqakW6t4Oc9b/W/b\n+x+5+UVtZlMlXSHpnn58C9IAAAJTSURBVLTrgqEzszGS5knaKEnOuXfzGKz7fVLSL1opWEvFCthT\nJL1W9v6gcvYfflGY2Qcl/Z6k59OtSfz6h4xflHRU0g+dc3n6jN+U9GVJ/z3tiiTISdpuZnvMbHna\nlYnZDEnHJG3qP61xj5mdm3alErJU0pa0K1GtSAHbbzHa3PReisLM3ifpQUkrnXMn065P3JxzZ51z\nF0qaKuliM8vF6Q0zWyzpqHNuT9p1Sdhc59xFkhZK+o/9p6ryok3SRZL+xjn3e5LelpSruUCS1D/U\nf6Wk76Vdl2pFCtgHJU0rez9V0qGU6oI69J/XfVDSfc65f0i7PknqH2rcIenTKVclLnMlXdl/jner\npMvM7O/SrVL8nHOH+p+PSnpI3qm4vDgo6WDZqM/fywvgebNQ0l7n3JG0K1KtSAH7nyR92Mym9/+C\nWippW8p1QkT9E7I2Svq5c25d2vVJgpl1mtm4/tfnSFog6V/TrVU8nHO3OOemOuc+KO9v70fOuc+m\nXK1Ymdm5/RMi1T9U/EeScnPVhnPusKTXzOwj/Zs+KSk3kz7LLFMLDodLrXF7zaZwzp0xsxslPSFp\nmKS/dc69nHK1YmNmWyTNlzTRzA5K+opzbmO6tYrVXEnXSvqX/nO8krTGOfePKdYpbu+XdG//DNV/\nJ+kB51wuL3/KqcmSHuq/FWSbpO865x5Pt0qx+6Kk+/o7Pfsl3ZByfWJlZqPkXUn0H9Kui5/CXNYF\nAECWFWlIHACAzCJgAwCQAQRsAAAygIANAEAGELABAMgAAjYAABlAwAYAIAP+fzFY3dTllVswAAAA\nAElFTkSuQmCC\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_NQueens(dfts)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`breadth_first_tree_search`" ] }, { "cell_type": "code", "execution_count": 85, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "88.6 ms ± 2.01 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)\n" ] } ], "source": [ "%%timeit\n", "breadth_first_tree_search(nqp)" ] }, { "cell_type": "code", "execution_count": 86, "metadata": { "collapsed": true }, "outputs": [], "source": [ "bfts = breadth_first_tree_search(nqp).solution()" ] }, { "cell_type": "code", "execution_count": 87, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+4FNWd7/vPd9gbEMOvDRtMgGtg\nkifnTow4skecIXKJIWNAMHru3Bm4Ro/m5nJu7jEEwcmMPM88MXlONFcFQuLcycmRAc8ZA5pxjKgT\nJf4AA0adDaNMTGbuY8BERH5sgYBiInDW/aN2u7t7V1VXd1d1dVW9X8/TT3dXrVprdS82316rVq0y\n55wAAEB7+520KwAAAGojYAMAkAEEbAAAMoCADQBABhCwAQDIAAI2AAAZQMAGACADCNgAAGQAARto\nM2b2QTP7RzM7amYHzOwuM+sIST/GzP6mP+1JM/sXM/sPrawzgOQRsIH28/9KOiTp/ZIukPS/SPq/\n/RKa2VBJT0g6V9IfShot6c8l3W5mS1tSWwAtQcAG2s9USfc7537jnDsg6TFJHw1Ie42k/0nS/+ac\n2+ucO+Wce0zSUkn/2cxGSpKZOTP7UOkgM9tgZv+57P0CM3vRzI6Z2bNmdn7Zvg+Y2QNmdtjM9pb/\nEDCzW8zsfjP7b2Z2wsxeNrOesv1/YWav9+/7NzP7ZDxfEVA8BGyg/ayVtMjMRpjZJEnz5AVtP5+S\n9EPn3NtV2x+QNELSxbUKM7MLJf2tpP8oaZyk/yJps5kNM7PfkfSwpJckTZL0SUnLzOyysiyukLRJ\n0hhJmyXd1Z/vRyTdIOkPnHMjJV0m6dVa9QHgj4ANtJ9t8nrUxyXtk9Qr6QcBacdLeqN6o3PutKQ+\nSd0Ryvs/Jf0X59zzzrkzzrl7JP1WXrD/A0ndzrmvOefedc7tkfRfJS0qO367c+4fnXNnJP13SdP7\nt5+RNEzS75lZp3PuVefcLyLUB4APAjbQRvp7tI9L+gdJZ8sLyGMl/T8Bh/TJO9ddnU9H/7GHIxR7\nrqQV/cPhx8zsmKQpkj7Qv+8DVftWSppYdvyBstcnJQ03sw7n3CuSlkm6RdIhM9tkZh+IUB8APgjY\nQHvpkhcs73LO/dY596ak9ZLmB6R/QtI8Mzu7avv/KumUpBf635+UN0Reck7Z69ckfd05N6bsMcI5\nt7F/396qfSOdc0H1qeCc+55z7uPyAr9T8A8PADUQsIE24pzrk7RX0hfMrMPMxkj6D/LOIfv57/KG\nzb/ffzlYZ//55W9Jut059+v+dC9K+t/NbIiZfVrezPOS/yrp/zKzmeY528wu75+w9oKk4/2Tx87q\nP/48M/uDWp/FzD5iZpea2TBJv5H0jrxhcgANIGAD7effS/q0vOHsVySdlnSjX0Ln3G8lzZXXE35e\nXlB8TNI3JX21LOmXJC2UdEzS1So7J+6c65V3HvsuSUf7y7yuf9+Z/uMukPdDok/S3fIuH6tlmKRv\n9B9zQNIEecPpABpgzrm06wAgJmbWKemHkl6XdJ3jDxzIDXrYQI44507JO3/9C0kfSbk6AGJEDxsA\ngAyghw0AQAYE3lCgVcaPH+8++MEPpl2NxOzcuTPtKiRqxowZaVchcbRhttF+2Zf3NpTU55yruchR\n6kPiPT09rre3t/mMdlrzecyI/7swi6FebSztfz+tQBtmG+2XfXlvQ0k7nXM9tRJle0j84B1eoI4j\nWEsDeR1cFU9+AADEJJsB+9SbXmDd9+Vk8t93k5f/qYPJ5A8AQJ1SP4ddt7h601Hs7l+9MYGhcgAA\n6pGtHnYrg3U7lAsAQL9sBOxdw9IPmjtNOrIp3ToAAAqr/QP2TpPcu01nc8PtMdRl7+L0fzgAAAqp\nvc9h7xredBZWNlH+r+/3nl2zV5HtGiZd+NsmMwEAILr27mG72kGxe6507w/991nAVW1B2yOLoccP\nAEA92jdg1xh6th7v0XdM+uxfNR+ES/mVHuf9aXP1AwAgTu0ZsGsEw2/f57+90aDtd9zLeyIcSNAG\nALRI+wXs04dqJll6RwvqoYg/AE73JV4PAADaL2C/NDG2rIImlzU96azcSzXXawcAoGntNUv8jYFr\nr/x6t6VA63qjD3+7XunESWnUbOn4M9LIEdGrs/4rA6/D6qMDa6RzboyeMQAAdWqvHvb+v5AUHIz3\nlY2Wz5o+eH9Qz7kUpIOCddBx1y30nn91wH//e/V8fbl/AgAAYtJeAbuGKfMHXm9fVxlow4a5P3yV\n9zzu0uA01XmVvz93QX31BAAgbu0TsJuccf16yFy1V17zno8cD04Tti8SZowDABLUPgE7gvmzgvdN\nnh+8L4qw3veCS5rLGwCAZrVlwD65w3/7o2tbW4+Sh9f4b3/n2dbWAwBQXO0RsE9Vzuo6a5h3Dvms\nYQPbolyKteHhxop/aFvtNOXljxjuvR8+tCrRqcONVQAAgBraI2Dvfr/v5pM7pFPPe6+jXMZ1/VcH\nbzt9pvJ937HBaa5cUTvvUvnHtkpvbw9ItHtC7YwAAGhAewTsEB1Dmjt+6MWV77vnNpff6Pc1dzwA\nAI1o+4BdLkove9HKyvfOhaf/3NfiKRcAgCRlKmBHcd+W+tKv35xMPQAAiFMiAdvMPm1m/2Zmr5jZ\nX9ZKv3x1HXm3uLdbT3n1fA4AAOoRe8A2syGS/lrSPEm/J2mxmf1e2DGrY17Z8wu3RUsX912/4v4c\nAACUJNHDvkjSK865Pc65dyVtkvSZOAtYsCx8/3ce8J637fLfv/kZ7znovtol1bPHr728dt0AAEhC\nEgF7kqTXyt7v69/2HjNbYma9ZtZ7+HDta5enfqDy/aNBl1VVmbPEf/tnIvaEq6/PvsfnsjEAAFoh\niYDtt6h2xVxt59x3nXM9zrme7u7a95P+8d2Dt81bGn5MV8hSo5I09hPh+5etCt8PAEArJRGw90ma\nUvZ+sqT9oUdMD+9lT/JZj+SxGsuCHq1xM49jJ8L3r90Yvt/X+X0NHAQAQG1JBOx/kvRhM5tqZkMl\nLZIUfvFUx/iGCkpqxvhVNzV4YOe4WOsBAEBJR9wZOudOm9kNkh6XNETS3zrnXo67nCT9YGvaNQAA\noFLsAVuSnHP/KOkf48xzYpd08EicOdZn5nnplQ0AQPusdDYjfA3RA3WuYFbuYx+S5l4k/e7kxvN4\nbkONBDXqDwBAMxLpYSfF9Qaft54/q7n7ZV92g7TlueByAQBIU3sF7Ml3SvvCZ3wd2yqNmeO9PrhF\nmtBVuf+6W6R7Hole5Kzp0vZ10uN3DWzbu1+adoX3OlLPfsq3ohcIAEAD2mdIXJIm1r4xden2lq7X\nC9abtni97tKjnmAtSTteqjx+4+PeQi2lXvXErvDjJUkTvlhfoQAA1MlcrftPJqynp8f19paNOZ86\nLO32ufC6StRLuhbOlq5fKM2ZIR09If1kt3Treulne2ofG2ko/Py+0Mu5zPzWkcmPtP/9tAJtmG20\nX/blvQ0l7XTO1Yxq7TUkLkmdtVc+C7J5tRegg4wdJU2bJF09r3L79helSz7fYKFcew0AaIH2C9iS\nN+N6Z/gvqtIEtM4O6d2qyWL1LKjieqWPXzDQm+6cKZ0+E7F3zcxwAECLtGfAliIFbWkgWDe66ln5\ncWdekE49HzEvgjUAoIXaa9JZtam1F/QuTRbzc8sS6ejTXm+59Di5w9vuZ8hFEYP11O9HSAQAQHza\nb9JZtYBednVgvXKO9OCdjddj8Upvxnm5wGHxOnrXeZ8skfa/n1agDbON9su+vLehMjvprNoMJ+0a\nIbl3Bu3qe1IaN7py28jZ0lsno2ffNUp68ylp463eQ5K+sUG6+S6fxFM3Sl2LomcOAEBM2j9gS9KF\n/RG4qrfdMUSaeoX0avjNO0MdOV7ZW//lI4N72pI4Zw0ASFV7n8OuVhY0Xa/00LbmgrWfcxd4121X\nDIcTrAEAKctGD7vcDCedOiLtHqdrL5euvTzBss4/1NR14QAAxCVbPeySzi4vcE9Zk0z+U9Z6+ROs\nAQBtIns97HITlnkPKdI12zUx9A0AaFPZ7GH7meEGHtOPDtq9wq8zfv4blccBANCmst3DDtIxZlAA\nXvV3KdUFAIAY5KeHDQBAjhGwAQDIAAI2AAAZQMAGACADUr/5h5nlenp22t9v0gqwKD9tmHG0X/YV\noA0j3fyDHjYAwNeYkZW3J3a90vKrB287Z1zaNS0GetgJS/v7TRq/7rMv721I+9Un8LbCdai+/XGz\nCtCG9LABALXddM1AbzkO5b1xxIcedsLS/n6TlvfemUQbZh3tF6xrlPTmUzFWJsDEP5YOHWn8+AK0\nYaQedj5XOgMAhIqrNx3FwS3ec9xD5UXDkDgAFEwrg3U7lJsXBGwAKIjfPJt+0HS90p99Kt06ZBUB\nGwAKwPVKw4Y2n88Ntzefx6bb0v/hkEVMOktY2t9v0vI+YUmiDbOO9pPe2SENH9ZkOT7nn5sNur99\nVxr+R7XTFaANuawLABAtWHfPle79of++oMlizU4ii6PHXyT0sBOW9vebtLz3ziTaMOuK3n61esFR\nes5hgblW2o9Ok356f/11qCgj/21IDxsAiqxWsP72ff7bG+05+x338p7ax3E+OxoCNgDkUHdX7TRL\n70i+HlK0HwDjRidfj6wjYANADh3aEl9eQT3gOHvGfU/Gl1desdIZAOTMn18z8DrsHLXrjT787Xql\nEyelUbOl489II0dEr8/6r0Srz7LF0jc3Rs+3aOhhA0DO3P4l7zkoGO87NPB61vTB+4N6zqUgHRSs\ng467bqH3/KsD/vtL9Vyzwn8/PARsACiYKfMHXm9fVxlow4a5P3yV9zzu0uA01XmVvz93QX31RCUC\nNgDkSLPnlV8/FLzvlde85yPHg9OE7YuCGePBCNgAUDDzZwXvmzw/eF8UYb3vBZc0l3fREbABIKdO\n7vDf/uja1taj5OE1/tvfeba19cgqAjYA5MTEcZXvzxrmDTGfVbY0aZQh5w0PN1b+Q9tqpykvf8Rw\n7/3wqiVKx49prPy8Y2nShKX9/SYt78taSrRh1hWp/cKC8ekzUufM4HTVM8qr05QfL0mHnxgcWGvl\nUZ7m2FZp9PuC61ueVwHakKVJAQCejiHNHT/04sr33XObyy8sWMMfARsACibKYimLVla+r9XJ/dzX\n4ikXwWIP2Gb2t2Z2yMx+GnfeAIDWuK/OpU3Xb06mHhiQRA97g6RPJ5AvACDE8tXR07a6t1tPefV8\njiKJPWA7556RdCTufAEA4VYvjze/L9wWLV3cd/2K+3PkBeewAaCgFiwL3/+dB7znbbv8929+xnsO\nuq92yZVVa4Rfe3ntumGwVAK2mS0xs14zYxE6AGiRqR+ofP/o9mjHzVniv/0zEXvC1ddn3/PVaMeh\nUioB2zn3XedcT5TrzgAA8fjx3YO3zVsafkxXyFKjkjT2E+H7l60K34/oGBIHgJwY/8nw/ZMmDN72\nWI1lQY/WuJnHsRPh+9c2cH/rsPXIiyyJy7o2SvqJpI+Y2T4z+z/iLgMAMNibv27suKRmjF91U2PH\nNXvHr7zqiDtD59ziuPMEAGTPD7amXYN8YUgcAApkYle65c88L93ys4ybfyQs7e83aXm/cYREG2Zd\nEduv1h25Gh0C/9iHvIC/d7/0i32N5dFI3QrQhpFu/hH7kDgAoL253uCgPX9Wc/fLvuwGactzweWi\ncQRsAMiZFWukVTeGpzm2VRozx3t9cIs0oWqo/LpbpHseiV7mrOnS9nXS43cNbNu7X5p2hff6QIS1\nyb8Y84ppecOQeMLS/n6TlvfhVIk2zLqitl+U3qz1DKTbtEVavDI8fT2+93Vp8WWDy6lVHz8FaMNI\nQ+IE7ISl/f0mLe//2Uu0YdYVtf3Gj5EOPxHh+IjnsxfOlq5fKM2ZIR09If1kt3Treulne2ofGyVY\nj7s0+HKuArQh57ABoKj6jjV+7ObVXoAOMnaUNG2SdPW8yu3bX5Qu+XxjZXLtdW30sBOW9vebtLz3\nziTaMOuK3n5Rh6I7O6R3nxu8ParqcjpnSqfPNDcU/l7e+W9DetgAUHRRzx+XgnWjl3yVH3fmBenU\n89HyavV9ubOMhVMAIOcW3Vw7jfUEB89blkhHn/YCf+lxcoe33c+Qi6IF4j/5cu00GMCQeMLS/n6T\nlvfhVIk2zDrazxPUy64OrFfOkR68s/H6LF7pzThvpOwgBWhDZom3g7S/36Tl/T97iTbMOtpvwNvb\npRHDq47vkfqelMaNrtw+crb01sno9egaJb35VOW2b2yQbr5rcMBedLN034+i512ANuQcNgBgwNkf\n956rA2jHEGnqFdKr+xvP+8jxyh7zLx8Z3NOWOGfdDM5hA0DBlAdN1ys9tK25YO3n3AXeddvlPw4I\n1s1hSDxhaX+/Scv7cKpEG2Yd7Rds7EjpyNMxViZA99zmrgsvQBtGGhKnhw0ABXX0hNfrXbYqmfyX\n3tF/jryJYI0B9LATlvb3m7S8984k2jDraL/6xHFHrbiHvgvQhvSwAQD1KV2PbT0Dd/Mqt2LN4G3n\nXFZ5HJJBDzthaX+/Sct770yiDbOO9su+ArQhPWwAAPKCgA0AQAYQsAEAyIDUVzqbMWOGentjmJbY\npvJ+finv55Yk2jDraL/sy3sbRkUPGwCADEi9hw0gR3bG0BOakf8eI9AIetgAmnPwDi9QxxGspYG8\nDia0/BaQUQRsAI059aYXWPd9OZn8993k5X/qYDL5AxnDkDiA+sXVm45i9zneM0PlKDh62ADq08pg\n3Q7lAm2CgA0gml3D0g+aO006sindOgApIWADqG2nSe7dprO54fYY6rJ3cfo/HIAUcA4bQLhdw5vO\novwOTn99v/fc9G0cdw2TLvxtk5kA2UEPG0A4Vzsods+V7v2h/76g2y02fRvGGHr8QJYQsAEEqzH0\nXLr/cd8x6bN/1XwQLr+nsvVI5/1pc/UD8oSADcBfjWD47fv8tzcatP2Oe3lPhAMJ2igIAjaAwU4f\nqplk6R0tqIci/gA43Zd4PYC0EbABDPbSxNiyCppc1vSks3IvdceYGdCemCUOoNIbA9de+fVuS4HW\n9UYf/na90omT0qjZ0vFnpJEjoldn/VcGXofVRwfWSOfcGD1jIGPoYQOotP8vJAUH431lo+Wzpg/e\nH9RzLgXpoGAddNx1C73nXx3w3/9ePV9f7p8AyAkCNoC6TJk/8Hr7uspAGzbM/eGrvOdxlwanqc6r\n/P25C+qrJ5A3BGwAA5qccf16yFy1V17zno8cD04Tti8SZowjxwjYAOoyf1bwvsnzg/dFEdb7XnBJ\nc3kDWUfABuDr5A7/7Y+ubW09Sh5e47/9nWdbWw8gLQRsAJ5TlbO6zhrmnUM+a9jAtiiXYm14uLHi\nH9pWO015+SOGe++HD61KdOpwYxUA2hwBG4Bn9/t9N5/cIZ163nsd5TKu6786eNvpM5Xv+44NTnPl\nitp5l8o/tlV6e3tAot0TamcEZBABG0BNHUOaO37oxZXvu+c2l9/o9zV3PJBFBGwAdYnSy160svK9\nc+HpP/e1eMoF8oyADSB2922pL/36zcnUA8iT2AO2mU0xs6fN7Odm9rKZfSnuMgDEb/nq6Glb3dut\np7x6PgeQJUn0sE9LWuGc+58lXSzpP5nZ7yVQDoAYrY55Zc8v3BYtXdx3/Yr7cwDtIvaA7Zx7wzm3\nq//1CUk/lzQp7nIApGvBsvD933nAe962y3//5me856D7apdUzx6/9vLadQPyKNFz2Gb2QUm/L+n5\nqu1LzKzXzHoPH+aaSSALpn6g8v2jQZdVVZmzxH/7ZyL2hKuvz77H57IxoAgSC9hm9j5JD0ha5pyr\nWCHYOfdd51yPc66nu5v72AJZ8OO7B2+btzT8mK6QpUYlaewnwvcvWxW+HyiSRAK2mXXKC9b3Ouf+\nIYkyAMRsevho1ySf9Ugeq7Es6NEaN/M4diJ8/9qN4ft9nd/XwEFA+0tilrhJWifp58455msCWdEx\nvqHDkpoxftVNDR7YOS7WegDtIoke9ixJ10i61Mxe7H80eQ8fAEXzg61p1wBoLx1xZ+ic2y6Jm9IC\nOTSxSzp4JL3yZ56XXtlA2ljpDMCAGeFriB6ocwWzch/7kDT3Iul3Jzeex3MbaiSoUX8gy2LvYQPI\nN9cbfN56/qzm7pd92Q3SlueCywWKjIANoNLkO6V94TO+jm2VxszxXh/cIk3oqtx/3S3SPY9EL3LW\ndGn7Ounxuwa27d0vTbvCex2pZz/lW9ELBDKIIXEAlSbWvjF16faWrtcL1pu2eL3u0qOeYC1JO16q\nPH7j495CLaVe9cSu8OMlSRO+WF+hQMaYq3Xfu4T19PS43t78jnV5V7nlV9r/flqhkG146rC02+fC\n6ypRL+laOFu6fqE0Z4Z09IT0k93Sreuln+2JUL8o/z2c3xd4OVch2y9n8t6GknY652r+NTEkDmCw\nzsZXINy82gvQQcaOkqZNkq6eV7l9+4vSJZ9vsFCuvUYBELAB+JvhpJ3hPZvSBLTODundqsli9Syo\n4nqlj18w0JvunCmdPhOxd83McBQEARtAsAhBWxoI1o2uelZ+3JkXpFPPR8yLYI0CYdIZgHBTay/o\nXZos5ueWJdLRp73eculxcoe33c+QiyIG66nfj5AIyA8mnSUs75Ml0v730wq0oQJ72dWB9co50oN3\nNl6XxSu9GeflAofFI/auab/sy3sbiklnAGIzw0m7RkjunUG7+p6Uxo2u3DZytvTWyejZd42S3nxK\n2nir95Ckb2yQbr7LJ/HUjVLXouiZAzlBwAYQzYX9Ebiqt90xRJp6hfTq/sazPnK8srf+y0cG97Ql\ncc4ahcY5bAD1KQuarld6aFtzwdrPuQu867YrhsMJ1ig4etgA6jfDSaeOSLvH6drLpWsvT7Cs8w81\ndV04kBf0sAE0prPLC9xT1iST/5S1Xv4Ea0ASPWwAzZqwzHtIka7Zromhb8AXPWwA8ZnhBh7Tjw7a\nvcKvM37+G5XHAfBFDxtAMjrGDArAq/4upboAOUAPGwCADCBgAwCQAQRsAAAygIANAEAGpH7zDzPL\n9bTQtL/fpBVgUX7aMONov+wrQBty8w8AAAKdOSq92FWxacUaadWNVenO3y91vr919QpADzthaX+/\nSePXffblvQ1pv+yLtQ3bcHGfqD1szmEDAPLt4B1eoI4jWEsDeR1cFU9+EdHDTlja32/S+HWffXlv\nQ9ov+xpuw1NvSrvHx1sZP+cfkDonNnw457ABAMUVV286it3neM8JL63LkDgAIF9aGaxbWC4BGwCQ\nD7uGpResS3aadGRTIlkTsAEA2bfTJPdu09nccHsMddm7OJEfDkw6S1ja32/SmPCSfXlvQ9ov+2q2\n4a7hkvttU2WYz5Qv19tUlpINlS6sXS8u6wIAFEOEYN09V7r3h/77/IJ12PbIYujxl6OHnbC0v9+k\n8es++/LehrRf9oW2YY2h5yg957DAXCvtR6dJP70/tAo1Z4/TwwYA5FuNYP3t+/y3N9pz9jvu5T0R\nDozpfDYBGwCQPacP1Uyy9I4W1EMRfwCc7mu6HAI2ACB7Xmp8ZbFqQZPLmp50Vu6l7qazYKUzAEC2\nvDFw7VXYOWrXG3342/VKJ05Ko2ZLx5+RRo6IXp31Xxl4HXrO/MAa6ZzqW4FFRw8bAJAt+/9CUnAw\n3lc2Wj5r+uD9QT3nUpAOCtZBx1230Hv+1QH//e/V8/Xl/gkiImADAHJlyvyB19vXVQbasGHuD1/l\nPY+7NDhNdV7l789dUF8960XABgBkR5Mzrl8Pmav2ymve85HjwWnC9kXSRP0J2ACAXJk/K3jf5PnB\n+6II630vuKS5vGshYAMAMunkDv/tj65tbT1KHl7jv/2dZ+PJn4ANAMiGU5Wzus4a5p1DPmvYwLYo\nl2JteLix4h/aVjtNefkjhnvvhw+tSnTqcEPlszRpwtL+fpNW+GURcyDvbUj7Zd97bRhy/vf0Galz\nZn96n6BdPaO8Ok358ZJ0+Alp/Jj68ihPc2yrNPp9gdWtWK6UpUkBAIXRMaS544deXPm+e25z+YUG\n6wYRsAEAuRJlsZRFKyvf1xqI+dzX4im3GbEHbDMbbmYvmNlLZvaymX017jIAAGjGfVvqS79+czL1\nqEcSPezfSrrUOTdd0gWSPm1mF9c4BgCAUMtXR0+bdG+3mfLq+RzlYg/YzvNW/9vO/ke+Z30AABK3\nurmVPQf5wm3R0sV9169GP0ci57DNbIiZvSjpkKQfOeeer9q/xMx6zSzOe6EAAPCeBcvC93/nAe95\n2y7//Zuf8Z6D7qtdcuWKyvfXXl67bo1I9LIuMxsj6UFJX3TO/TQgTa5731xSkn20YbbRftkX5bIu\nSZp2hbR3f9Wx/d3CoCHrWnf0CtsflHek23K222VdzrljkrZK+nSS5QAA8OO7B2+btzT8mK6QpUYl\naewnwvcvWxW+P05JzBLv7u9Zy8zOkjRX0r/GXQ4AoGCmh68QNmnC4G2P1VgW9GiNm3kcOxG+f+3G\n8P2+zu9r4CCpo6Gjwr1f0j1mNkTeD4L7nXOPJFAOAKBIOsY3dFhSM8avuqnBAzvHNXRY7AHbObdb\n0u/HnS8AAO3kB1tbWx4rnQEAcmNiV7rlzzwvuby5+UfC0v5+k1aoGao5lfc2pP2yb1Ab1pgt3ugQ\n+Mc+5AX8vfulX+xrLI+aM8RnDP73GHWWeBLnsAEASE3YpVjzZzV3v+zLbpC2PBdcbpII2ACAbJl8\np7QvfMbXsa3SmDne64NbpAlVQ+XX3SLdU8d06FnTpe3rpMfvGti2d7937bckHYiyNvmUb0Uv0AdD\n4glL+/tNWiGH43Im721I+2WfbxvWGBaXvF52qde7aYu0eGV4+np87+vS4ssGlxPKZzhcij4kTsBO\nWNrfb9IK+59FjuS9DWm/7PNtw1OHpd0+F15XiXo+e+Fs6fqF0pwZ0tET0k92S7eul362J0L9ogTr\n8/sCL+fiHDYAIL86uxs+dPNqL0AHGTtKmjZJunpe5fbtL0qXfL7BQhu89rocPeyEpf39Jq2wv+5z\nJO9tSPtlX2gbRhwa7+yQ3n1u8PbIdajqRXfOlE6faW4o/L160MMGAOTeDBcpaJeCdaOXfJUfd+YF\n6dTzEfOqEazrwcIpAIBsm1pjBNUvAAAgAElEQVR7QW/rCQ6wtyyRjj7t9ZZLj5M7vO1+hlwUMVhP\n/X6ERNExJJ6wtL/fpBV+OC4H8t6GtF/2RWrDgF52dWC9co704J2N12XxSm/GebnAYfGIvWtmibeJ\ntL/fpPGfRfblvQ1pv+yL3Ia7RkjunYpN1iP1PSmNG12ZdORs6a2T0evQNUp686nKbd/YIN18l0/A\nnrpR6loUOW/OYQMAiuXC/ghc1dvuGCJNvUJ6dX/jWR85Xtlb/+Ujg3vakmI9Z12Nc9gAgHwpC5qu\nV3poW3PB2s+5C7zrtit61wkGa4kh8cSl/f0mjeG47Mt7G9J+2ddwG546Iu1u/vrnms4/1NR14VGH\nxOlhAwDyqbPL6/VOWZNM/lPWevk3EazrQQ87YWl/v0nj13325b0Nab/si7UNI1yzXVPMQ9/0sAEA\nqDbDDTymHx20e4VfZ/z8NyqPSwk97ISl/f0mjV/32Zf3NqT9sq8AbUgPGwCAvCBgAwCQAQRsAAAy\nIPWVzmbMmKHe3ij3J8umvJ9fyvu5JYk2zDraL/vy3oZR0cMGACADUu9hI7pIN0qvodF7wQIA0kUP\nu83ddM3A/VnjUMpr+dXx5AcAaA0CdpvqGuUF1ju+lEz+q2708p/QlUz+AIB4MSTehuLqTUdxsP/2\ncAyVA0B7o4fdZloZrNuhXABANATsNvGbZ9MPmq5X+rNPpVsHAIA/AnYbcL3SsKHN53PD7c3nsem2\n9H84AAAG4xx2yt7Z0Xwe5eef//p+77nZoPubZ6Xhf9RcHgCA+NDDTtnwYbXTdM+V7v2h/76gyWLN\nTiKLo8cPAIgPATtFtXrB1uM9+o5Jn/2r5oNwKb/S47w/ba5+AIDWIWCnpFYw/PZ9/tsbDdp+x728\np/ZxBG0AaA8E7BR0R1isZOkdyddDivYDYNzo5OsBAAhHwE7BoS3x5RXUA46zZ9z3ZHx5AQAawyzx\nFvvzawZe+/VuS4HW9UYf/na90omT0qjZ0vFnpJEjotdn/Vei1WfZYumbG6PnCwCIFz3sFru9f23w\noGC879DA61nTB+8P6jmXgnRQsA467rqF3vOvDvjvL9VzzQr//QCA1iBgt5kp8wdeb19XGWjDhrk/\nfJX3PO7S4DTVeZW/P3dBffUEALQWAbuFmj2v/Pqh4H2vvOY9HzkenCZsXxTMGAeA9BCw28z8WcH7\nJs8P3hdFWO97wSXN5Q0ASBYBOyUnA5YkfXRta+tR8vAa/+3vPNvaegAA/BGwW2TiuMr3Zw3zhpjP\nKluaNMqQ84aHGyv/oW2105SXP2K493541RKl48c0Vj4AoDkE7BY58Lj/9pM7pFPPe6+jXMZ1/VcH\nbzt9pvJ937HBaa6MMMu7VP6xrdLb2/3THH6idj4AgPgRsNtAx5Dmjh96ceX77rnN5Tf6fc0dDwCI\nHwG7zUTpZS9aWfneufD0n/taPOUCANKTSMA2syFm9s9m9kgS+RfdfXUubbp+czL1AAC0TlI97C9J\n+nlCeWfS8tXR07a6t1tPefV8DgBAfGIP2GY2WdLlku6OO+8sW7083vy+cFu0dHHf9SvuzwEAiCaJ\nHvY3JX1Z0v8ISmBmS8ys18x6Dx8+nEAVsm/BsvD933nAe962y3//5me856D7apdUzx6/9vLadQMA\ntF6sAdvMFkg65JzbGZbOOfdd51yPc66nu7s7zipk1tQPVL5/NOCyqmpzlvhv/0zEnnD19dn3+Fw2\nBgBIX9w97FmSrjCzVyVtknSpmf1dzGXk0o99TiDMWxp+TFfIUqOSNPYT4fuXrQrfDwBoH7EGbOfc\nzc65yc65D0paJOkp59xn4ywjq8Z/Mnz/pAmDtz1WY1nQozVu5nHsRPj+tQ3c3zpsPXIAQHK4DrtF\n3vx1Y8clNWP8qpsaO67ZO34BABrTkVTGzrmtkrYmlT+a84OtadcAAFAPethtZGJXuuXPPC/d8gEA\nwQjYLVRrePtAnSuYlfvYh6S5F0m/O7nxPJ7bEL6f5UsBID2JDYmjMa43ODDOn9Xc/bIvu0Ha8lxw\nuQCA9kXAbrEVa6RVN4anObZVGjPHe31wizShaqj8uluke+pYpX3WdGn7Ounxuwa27d0vTbvCex2l\nZ//FmFdMAwDUx1ytWz0lrKenx/X25rd7Z2aDtkXpzVrPQLpNW6TFK8PT1+N7X5cWXza4nFr18ZP2\nv59W8GvDPMl7G9J+2Zf3NpS00zlX86QjATthfv/Qxo+RDj8R4diI54wXzpauXyjNmSEdPSH9ZLd0\n63rpZ3tqHxslWI+7NPhyrrT//bRC3v+zyHsb0n7Zl/c2VMSAzZB4CvqONX7s5tVegA4ydpQ0bZJ0\n9bzK7dtflC75fGNlcu01AKSPgJ2SKEPRpQlonR3Su1WTxeqZse16pY9fMFBe50zp9JnmhsIBAK1F\nwE5R1PPHpWDdaPAsP+7MC9Kp56PlRbAGgPbBddgpW3Rz7TTWExw8b1kiHX3aC/ylx8kd3nY/Qy6K\nFoj/5Mu10wAAWodJZwmLMlkiqJddHVivnCM9eGfjdVm80ptx3kjZQdL+99MKeZ/wkvc2pP2yL+9t\nKCadZYf1SG9vl0YMH7yv70lp3OjKbSNnS2+djJ5/1yjpzaekjbd6D0n6xgbp5rsGp110s3Tfj6Ln\nDQBoDQJ2mzj7495zdY+3Y4g09Qrp1f2N533keGWP+ZePDO5pS5yzBoB2xjnsNlMeNF2v9NC25oK1\nn3MXeNdtl/84IFgDQHujh92GrEcaO1I68rR07eXeIyndc5u7LhwA0Br0sNvU0RNe4F62Kpn8l97h\n5U+wBoBsoIfd5tZu9B5SPHfUYugbALKJHnaGlK7Htp6Bu3mVW7Fm8LZzLqs8DgCQTfSwM+rXb/kH\n4NX3tr4uAIDk0cMGACADCNgAAGQAARsAgAxIfS1xM8v1Qrhpf79JK8Aav7RhxtF+2VeANoy0ljg9\nbAAAMoBZ4kCr7IyhJzQj3z0NAMHoYQNJOniHF6jjCNbSQF4HE1oCD0Db4hx2wtL+fpPG+bMAp96U\ndo+PvzLVzj8gdU5sKou8tyF/g9lXgDbkfthAKuLqTUex+xzvmaFyIPcYEgfi1Mpg3Q7lAmgZAjYQ\nh13D0g+aO006sindOgBIDAEbaNZOk9y7TWdzw+0x1GXv4vR/OABIBJPOEpb295u0wk942TVccr9t\nKn+/m7g0fStVGypdGK1eeW9D/gazrwBtyMIpQOIiBOvuudK9P/TfF3TL06ZvhRpDjx9Ae6GHnbC0\nv9+kFfrXfY2h5yg957DAXCvtR6dJP70/tAqRZo/nvQ35G8y+ArQhPWwgMTWC9bfv89/eaM/Z77iX\n90Q4kPPZQG4QsIF6nT5UM8nSO1pQD0X8AXC6L/F6AEgeARuo10vNrSxWLmhyWdOTzsq91B1jZgDS\nwkpnQD3eGLj2KuwcteuNPvzteqUTJ6VRs6Xjz0gjR0SvzvqvDLwOPWd+YI10zo3RMwbQduhhA/XY\n/xeSgoPxvrLR8lnTB+8P6jmXgnRQsA467rqF3vOvDvjvf6+ery/3TwAgMwjYQIymzB94vX1dZaAN\nG+b+8FXe87hLg9NU51X+/twF9dUTQPYQsIGompxx/XrIXLVXXvOejxwPThO2LxJmjAOZRsAGYjR/\nVvC+yfOD90UR1vtecElzeQNofwRsoAEnd/hvf3Rta+tR8vAa/+3vPNvaegBIDgEbiOJU5ayus4Z5\n55DPGjawLcqlWBsebqz4h7bVTlNe/ojh3vvhQ6sSnTrcWAUApI6lSROW9vebtMIsixhy/vf0Galz\nZn9an6BdPaO8Ok358ZJ0+Alp/Jj68ihPc2yrNPp9gdUdtFxp3tuQv8HsK0AbsjQp0AodQ5o7fujF\nle+75zaXX2iwBpBZBGwgRlEWS1m0svJ9rc7D574WT7kAsi2RgG1mr5rZv5jZi2YW5yKLQObdt6W+\n9Os3J1MPANmSZA/7E865C6KMywPtbvnq6Glb3dutp7x6PgeA9sKQOBDB6phX9vzCbdHSxX3Xr7g/\nB4DWSSpgO0lbzGynmS2p3mlmS8ysl+Fy5NWCZeH7v/OA97xtl//+zc94z0H31S65ckXl+2svr103\nANmUyGVdZvYB59x+M5sg6UeSvuiceyYgba7n6xfgcoS0q5C4Wpd1SdK0K6S9+6uO6/85GjRkXeuO\nXmH7g/KOdFtOLuvKlby3n1SINkzvsi7n3P7+50OSHpR0URLlAO3ix3cP3jZvafgxXSFLjUrS2E+E\n71+2Knw/gHyJPWCb2dlmNrL0WtIfS/pp3OUALTU9fIWwSRMGb3usxrKgR2vczOPYifD9azeG7/d1\nfl8DBwFoBx0J5DlR0oP9wzQdkr7nnHssgXKA1ukY39BhSc0Yv+qmBg/sHBdrPQC0TuwB2zm3R9L0\nuPMFMOAHW9OuAYBW47IuICYTu9Itf+Z56ZYPIFnc/CNhaX+/SSvcDNUas8UbHQL/2Ie8gL93v/SL\nfY3lUXOG+Az/f4t5b0P+BrOvAG0YaZZ4EuewgcIKuxRr/qzm7pd92Q3SlueCywWQbwRsoB6T75T2\nhc/4OrZVGjPHe31wizShaqj8ulukex6JXuSs6dL2ddLjdw1s27vfu/Zbkg5EWZt8yreiFwigLTEk\nnrC0v9+kFXI4rsawuOT1sku93k1bpMUrw9PX43tflxZfNricUAHD4VL+25C/wewrQBtGGhInYCcs\n7e83aYX8z+LUYWm3z4XXVaKez144W7p+oTRnhnT0hPST3dKt66Wf7YlQtyjB+vy+0Mu58t6G/A1m\nXwHakHPYQCI6uxs+dPNqL0AHGTtKmjZJunpe5fbtL0qXfL7BQrn2GsgFetgJS/v7TVqhf91HHBrv\n7JDefW7w9sjlV/WiO2dKp880PxT+Xl1y3ob8DWZfAdqQHjaQqBm1bwoiDQTrRi/5Kj/uzAvSqecj\n5hUhWAPIDhZOAZoxtfaC3tYTHGBvWSIdfdrrLZceJ3d42/0MuShisJ76/QiJAGQJQ+IJS/v7TRrD\ncQrsZVcH1ivnSA/e2Xg9Fq/0ZpxX1C1oWLyO3nXe25C/wewrQBsyS7wdpP39Jo3/LPrtGiG5dyo2\nWY/U96Q0bnRl0pGzpbdORi+/a5T05lOV276xQbr5Lp+APXWj1LUoeubKfxvyN5h9BWhDzmEDLXNh\nfwSu6m13DJGmXiG9ur/xrI8cr+yt//KRwT1tSZyzBnKOc9hAnMqCpuuVHtrWXLD2c+4C77rtit41\nwRrIPYbEE5b295s0huMCnDoi7W7B9c/nH2rqunAp/23I32D2FaANIw2J08MGktDZ5fV6p6xJJv8p\na738mwzWALKDHnbC0v5+k8av+zpEuGa7pgSGvvPehvwNZl8B2pAeNtBWZriBx/Sjg3av8OuMn/9G\n5XEACosedsLS/n6Txq/77Mt7G9J+2VeANqSHDQBAXhCwAQDIAAI2AAAZkPpKZzNmzFBvb5T7BGZT\n3s8v5f3ckkQbZh3tl315b8Oo6GEDAJABBGwAADIg9SFxAMiKwNuZ1iHS/cwBH/SwASDETdd4gTqO\nYC0N5LX86njyQ3EQsAHAR9coL7De8aVk8l91o5f/hK5k8kf+MCQOAFXi6k1HcbD/3uYMlaMWetgA\nUKaVwbodykV2ELABQNJvnk0/aLpe6c8+lW4d0L4I2AAKz/VKw4Y2n88Ntzefx6bb0v/hgPbEOWwA\nhfbOjubzKD///Nf3e8/NBt3fPCsN/6Pm8kC+0MMGUGjDh9VO0z1XuveH/vuCJos1O4ksjh4/8oWA\nDaCwavWCrcd79B2TPvtXzQfhUn6lx3l/2lz9UCwEbACFVCsYfvs+/+2NBm2/417eU/s4gjZKCNgA\nCqc7wmIlS+9Ivh5StB8A40YnXw+0PwI2gMI5tCW+vIJ6wHH2jPuejC8vZBezxAEUyp9fM/Dar3db\nCrSuN/rwt+uVTpyURs2Wjj8jjRwRvT7rvxKtPssWS9/cGD1f5A89bACFcnv/2uBBwXjfoYHXs6YP\n3h/Ucy4F6aBgHXTcdQu9518d8N9fqueaFf77URwEbAAoM2X+wOvt6yoDbdgw94ev8p7HXRqcpjqv\n8vfnLqivnigeAjaAwmj2vPLrh4L3vfKa93zkeHCasH1RMGO82AjYAFBm/qzgfZPnB++LIqz3veCS\n5vJG/hGwARTSyYAlSR9d29p6lDy8xn/7O8+2th5oXwRsAIUwcVzl+7OGeUPMZ5UtTRplyHnDw42V\n/9C22mnKyx8x3Hs/vGqJ0vFjGisf2UfABlAIBx73335yh3Tqee91lMu4rv/q4G2nz1S+7zs2OM2V\nEWZ5l8o/tlV6e7t/msNP1M4H+UTABlB4HUOaO37oxZXvu+c2l9/o9zV3PPIpkYBtZmPM7O/N7F/N\n7Odm9odJlAMAcYvSy160svK9c+HpP/e1eMpFsSXVw14r6THn3L+TNF3SzxMqBwBa7r46lzZdvzmZ\neqBYYg/YZjZK0mxJ6yTJOfeuc87njA4AtM7y1dHTtrq3W0959XwO5EsSPexpkg5LWm9m/2xmd5vZ\n2QmUAwCRrV4eb35fuC1aurjv+hX350B2JBGwOyRdKOlvnHO/L+ltSX9ZnsDMlphZr5n1Hj58OIEq\nAEBzFiwL3/+dB7znbbv8929+xnsOuq92SfXs8Wsvr103FFMSAXufpH3Ouf4LJfT38gL4e5xz33XO\n9Tjnerq7uxOoAgDUZ+oHKt8/GnBZVbU5S/y3fyZiT7j6+ux7fC4bA6QEArZz7oCk18zsI/2bPinp\nZ3GXAwBx+vHdg7fNWxp+TFfIUqOSNPYT4fuXrQrfD5RLapb4FyXda2a7JV0g6daEygGASMZ/Mnz/\npAmDtz1WY1nQozVu5nHsRPj+tQ3c3zpsPXLkW0cSmTrnXpTEVYUA2sabv27suKRmjF91U2PHNXvH\nL2QXK50BQAp+sDXtGiBrCNgA0G9iV7rlzzwv3fLR3gjYAAqj1vD2gTpXMCv3sQ9Jcy+Sfndy43k8\ntyF8P8uXFlsi57ABIKtcb3BgnD+ruftlX3aDtOW54HKBMARsAIWyYo206sbwNMe2SmPmeK8PbpEm\nVA2VX3eLdM8j0cucNV3avk56/K6BbXv3S9Ou8F5H6dl/MeYV05A95mrdZiZhPT09rrc3vz8tzSzt\nKiQq7X8/rUAbZptf+0XpzVrPQLpNW6TFK8PT1+N7X5cWXza4nFr18ZP39pPy/zcoaadzruYJDwJ2\nwvL+Dy3tfz+tQBtmm1/7jR8jHX4iwrERzxkvnC1dv1CaM0M6ekL6yW7p1vXSz/bUPjZKsB53afDl\nXHlvPyn/f4OKGLAZEgdQOH1N3D9w82ovQAcZO0qaNkm6el7l9u0vSpd8vrEyufYaEgEbQEFFGYou\nTUDr7JDerZosVs+MbdcrffyCgfI6Z0qnzzQ3FI7iIWADKKyo549LwbrR4Fl+3JkXpFPPR8uLYI1y\nXIcNoNAW3Vw7jfUEB89blkhHn/YCf+lxcoe33c+Qi6IF4j/5cu00KBYmnSUs75Ml0v730wq0YbZF\nab+gXnZ1YL1yjvTgnY3XZfFKb8Z5I2UHyXv7Sfn/GxSTzgAgGuuR3t4ujRg+eF/fk9K40ZXbRs6W\n3joZPf+uUdKbT0kbb/UekvSNDdLNdw1Ou+hm6b4fRc8bxUHABgBJZ3/ce67u8XYMkaZeIb26v/G8\njxyv7DH/8pHBPW2Jc9YIxzlsAChTHjRdr/TQtuaCtZ9zF3jXbZf/OCBYoxZ62ABQxXqksSOlI09L\n117uPZLSPbe568JRHPSwAcDH0RNe4F62Kpn8l97h5U+wRlT0sAEgxNqN3kOK545aDH2jUfSwASCi\n0vXY1jNwN69yK9YM3nbOZZXHAY2ihw0ADfj1W/4BePW9ra8LioEeNgAAGUDABgAgAwjYAABkQOpr\niZtZrhfCTfv7TVoB1vilDTOO9su+ArRhpLXE6WEDAJABzBJH2+AaVwAIRg8bqbrpmoF7CMehlNfy\nq+PJDwDaBeewE5b295u0Rs+flW43mLSJfywdOtJcHrRhttF+2VeANuR+2GhPcfWmozjYfwtDhsoB\nZB1D4mipVgbrdigXAOJCwEZL/ObZ9IOm65X+7FPp1gEAGkXARuJcrzRsaPP53HB783lsui39Hw4A\n0AgmnSUs7e83abUmvLyzQxo+rMkyfM4/Nxt0f/uuNPyPoqUtehtmHe2XfQVoQxZOQfqiBOvuudK9\nP/TfFzRZrNlJZHH0+AGglehhJyzt7zdpYb/ua/WCo/ScwwJzrbQfnSb99P766zConAK3YR7QftlX\ngDakh4301ArW377Pf3ujPWe/417eU/s4zmcDyAoCNmLX3VU7zdI7kq+HFO0HwLjRydcDAJpFwEbs\nDm2JL6+gHnCcPeO+J+PLCwCSwkpniNWfXzPwOuwcteuNPvzteqUTJ6VRs6Xjz0gjR0Svz/qvRKvP\nssXSNzdGzxcAWo0eNmJ1+5e856BgvO/QwOtZ0wfvD+o5l4J0ULAOOu66hd7zrw747y/Vc80K//0A\n0C4I2GipKfMHXm9fVxlow4a5P3yV9zzu0uA01XmVvz93QX31BIB2Q8BGbJo9r/z6oeB9r7zmPR85\nHpwmbF8UzBgH0M4I2Gip+bOC902eH7wvirDe94JLmssbANJGwEYiTu7w3/7o2tbWo+ThNf7b33m2\ntfUAgEYRsBGLieMq3581zBtiPqtsadIoQ84bHm6s/Ie21U5TXv6I4d774VVLlI4f01j5AJA0liZN\nWNrfb9JKyyKGBePTZ6TOmQpMVz2jvDpN+fGSdPiJwYG1Vh7laY5tlUa/L7i+g/IqSBvmFe2XfQVo\nQ5YmRXvoGNLc8UMvrnzfPbe5/MKCNQC0KwI2WirKYimLVla+r/Xj+nNfi6dcAGhnsQdsM/uImb1Y\n9jhuZsviLgf5dV+dS5uu35xMPQCgncQesJ1z/+acu8A5d4GkGZJOSnow7nLQXpavjp621b3desqr\n53MAQCslPST+SUm/cM79MuFykLLVy+PN7wu3RUsX912/4v4cABCXpAP2IkmDbqlgZkvMrNfMWFuq\noBbUOEnynQe85227/PdvfsZ7DrqvdsmVVWuEX3t57boBQDtK7LIuMxsqab+kjzrnDoaky/V8/QJc\njiCp9jXW066Q9u6v3FY6JmjIutYdvcL2B+Ud5VpwLuvKF9ov+wrQhqlf1jVP0q6wYI3i+PHdg7fN\nWxp+TFfIUqOSNPYT4fuXrQrfDwBZkmTAXiyf4XDk0/hPhu+fNGHwtsdqLAt6tMbNPI6dCN+/toF/\nfWHrkQNAmhIJ2GY2QtKnJP1DEvmj/bz568aOS2rG+FU3NXZcs3f8AoCkdCSRqXPupKRxNRMCCfnB\n1rRrAADxYqUztMzErnTLn3leuuUDQDO4+UfC0v5+k1Y9Q7XWLOxGh8A/9iEv4O/dL/1iX2N5NFq3\norVh3tB+2VeANow0SzyRIXEgSNilWPNnNXe/7MtukLY8F1wuAGQZARuxWrFGWnVjeJpjW6Uxc7zX\nB7dIE6qGyq+7RbrnkehlzpoubV8nPX7XwLa9+71rvyXpQIS1yb8Y84ppABA3hsQTlvb3mzS/4bio\ni5OU0m3aIi1eGZ6+Ht/7urT4ssHl1KpPkCK2YZ7QftlXgDaMNCROwE5Y2t9v0vz+sxg/Rjr8RIRj\nI57PXjhbun6hNGeGdPSE9JPd0q3rpZ/tqX1slGA97tLwy7mK2IZ5QvtlXwHakHPYSEffscaP3bza\nC9BBxo6Spk2Srp5XuX37i9Iln2+sTK69BpAF9LATlvb3m7SwX/dRh6I7O6R3nxu8ParqcjpnSqfP\nND8U/l7+BW7DPKD9sq8AbUgPG+mKev64FKwbveSr/LgzL0inno+WV6vvyw0AzWDhFCRq0c2101hP\ncPC8ZYl09Gkv8JceJ3d42/0MuShaIP6TL9dOAwDthCHxhKX9/SYtynBcUC+7OrBeOUd68M7G67J4\npTfjvJGyw9CG2Ub7ZV8B2pBZ4u0g7e83aVH/s3h7uzRieNWxPVLfk9K40ZXbR86W3joZvQ5do6Q3\nn6rc9o0N0s13DQ7Yi26W7vtR9Lwl2jDraL/sK0Abcg4b7ePsj3vP1QG0Y4g09Qrp1f2N533keGWP\n+ZePDO5pS5yzBpBtnMNGS5UHTdcrPbStuWDt59wF3nXb5T8OCNYAso4h8YSl/f0mrdHhuLEjpSNP\nx1wZH91zm7suXKINs472y74CtGGkIXF62EjF0RNer3fZqmTyX3pH/znyJoM1ALQLetgJS/v7TVqc\nv+7juKNWEkPftGG20X7ZV4A2pIeNbCldj209A3fzKrdizeBt51xWeRwA5BU97ISl/f0mjV/32Zf3\nNqT9sq8AbUgPGwCAvCBgAwCQAQRsAAAyoB1WOuuT9MsWlje+v8yWSOn8Uks/Ywry3oa0X4xov9i1\n/PMVoA3PjZIo9UlnrWZmvVFO7mdZ3j8jny/b+HzZlvfPJ7XvZ2RIHACADCBgAwCQAUUM2N9NuwIt\nkPfPyOfLNj5ftuX980lt+hkLdw4bAIAsKmIPGwCAzCFgAwCQAYUK2Gb2aTP7NzN7xcz+Mu36xMnM\n/tbMDpnZT9OuSxLMbIqZPW1mPzezl83sS2nXKW5mNtzMXjCzl/o/41fTrlPczGyImf2zmT2Sdl2S\nYGavmtm/mNmLZhbD/efai5mNMbO/N7N/7f9b/MO06xQXM/tIf7uVHsfNbFna9SpXmHPYZjZE0v8n\n6VOS9kn6J0mLnXM/S7ViMTGz2ZLekvTfnHPnpV2fuJnZ+yW93zm3y8xGStop6cq8tJ8kmbc6xNnO\nubfMrFPSdklfcs49l3LVYmNmyyX1SBrlnFuQdn3iZmavSupxzuVy4RQzu0fSj51zd5vZUEkjnHO5\nu+t8f7x4XdJM51wrF/YKVaQe9kWSXnHO7XHOvStpk6TPpFyn2DjnnpF0JO16JMU594Zzblf/6xOS\nfi5pUrq1ipfzvNX/tl2ok/MAAAJgSURBVLP/kZtf1GY2WdLlku5Ouy6on5mNkjRb0jpJcs69m8dg\n3e+Tkn7RTsFaKlbAniTptbL3+5Sz//CLwsw+KOn3JT2fbk3i1z9k/KKkQ5J+5JzL02f8pqQvS/of\naVckQU7SFjPbaWZL0q5MzKZJOixpff9pjbvN7Oy0K5WQRZI2pl2JakUK2H6L0eam91IUZvY+SQ9I\nWuacO552feLmnDvjnLtA0mRJF5lZLk5vmNkCSYecczvTrkvCZjnnLpQ0T9J/6j9VlRcdki6U9DfO\nud+X9LakXM0FkqT+of4rJH0/7bpUK1LA3idpStn7yZL2p1QXNKD/vO4Dku51zv1D2vVJUv9Q41ZJ\nn065KnGZJemK/nO8myRdamZ/l26V4uec29//fEjSg/JOxeXFPkn7ykZ9/l5eAM+beZJ2OecOpl2R\nakUK2P8k6cNmNrX/F9QiSZtTrhMi6p+QtU7Sz51zq9OuTxLMrNvMxvS/PkvSXEn/mm6t4uGcu9k5\nN9k590F5f3tPOec+m3K1YmVmZ/dPiFT/UPEfS8rNVRvOuQOSXjOzj/Rv+qSk3Ez6LLNYbTgcLrXH\n7TVbwjl32sxukPS4pCGS/tY593LK1YqNmW2UNEfSeDPbJ+krzrl16dYqVrMkXSPpX/rP8UrSSufc\nP6ZYp7i9X9I9/TNUf0fS/c65XF7+lFMTJT3YfyvIDknfc849lm6VYvdFSff2d3r2SLo+5frEysxG\nyLuS6D+mXRc/hbmsCwCALCvSkDgAAJlFwAYAIAMI2AAAZAABGwCADCBgAwCQAQRsAAAygIANAEAG\n/P+uMuaa/akHvAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_NQueens(bfts)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`uniform_cost_search`" ] }, { "cell_type": "code", "execution_count": 88, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "1.08 s ± 154 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)\n" ] } ], "source": [ "%%timeit\n", "uniform_cost_search(nqp)" ] }, { "cell_type": "code", "execution_count": 89, "metadata": { "collapsed": true }, "outputs": [], "source": [ "ucs = uniform_cost_search(nqp).solution()" ] }, { "cell_type": "code", "execution_count": 90, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+4FNWd7/vPd9gbEMOvDRtMgGtg\nkifnTow4skecIXKJIWNAMHru3Bm4Ro/m5nJu7jEEwcmMPM88MXlONFcFQuLcycmRAc8ZA5pxjKgT\nJf4AA0adDaNMTGbuY8BERH5sgYBiInDW/aN2u7t7V1VXd1d1dVW9X8/TT3dXrVprdS82316rVq0y\n55wAAEB7+520KwAAAGojYAMAkAEEbAAAMoCADQBABhCwAQDIAAI2AAAZQMAGACADCNgAAGQAARto\nM2b2QTP7RzM7amYHzOwuM+sIST/GzP6mP+1JM/sXM/sPrawzgOQRsIH28/9KOiTp/ZIukPS/SPq/\n/RKa2VBJT0g6V9IfShot6c8l3W5mS1tSWwAtQcAG2s9USfc7537jnDsg6TFJHw1Ie42k/0nS/+ac\n2+ucO+Wce0zSUkn/2cxGSpKZOTP7UOkgM9tgZv+57P0CM3vRzI6Z2bNmdn7Zvg+Y2QNmdtjM9pb/\nEDCzW8zsfjP7b2Z2wsxeNrOesv1/YWav9+/7NzP7ZDxfEVA8BGyg/ayVtMjMRpjZJEnz5AVtP5+S\n9EPn3NtV2x+QNELSxbUKM7MLJf2tpP8oaZyk/yJps5kNM7PfkfSwpJckTZL0SUnLzOyysiyukLRJ\n0hhJmyXd1Z/vRyTdIOkPnHMjJV0m6dVa9QHgj4ANtJ9t8nrUxyXtk9Qr6QcBacdLeqN6o3PutKQ+\nSd0Ryvs/Jf0X59zzzrkzzrl7JP1WXrD/A0ndzrmvOefedc7tkfRfJS0qO367c+4fnXNnJP13SdP7\nt5+RNEzS75lZp3PuVefcLyLUB4APAjbQRvp7tI9L+gdJZ8sLyGMl/T8Bh/TJO9ddnU9H/7GHIxR7\nrqQV/cPhx8zsmKQpkj7Qv+8DVftWSppYdvyBstcnJQ03sw7n3CuSlkm6RdIhM9tkZh+IUB8APgjY\nQHvpkhcs73LO/dY596ak9ZLmB6R/QtI8Mzu7avv/KumUpBf635+UN0Reck7Z69ckfd05N6bsMcI5\nt7F/396qfSOdc0H1qeCc+55z7uPyAr9T8A8PADUQsIE24pzrk7RX0hfMrMPMxkj6D/LOIfv57/KG\nzb/ffzlYZ//55W9Jut059+v+dC9K+t/NbIiZfVrezPOS/yrp/zKzmeY528wu75+w9oKk4/2Tx87q\nP/48M/uDWp/FzD5iZpea2TBJv5H0jrxhcgANIGAD7effS/q0vOHsVySdlnSjX0Ln3G8lzZXXE35e\nXlB8TNI3JX21LOmXJC2UdEzS1So7J+6c65V3HvsuSUf7y7yuf9+Z/uMukPdDok/S3fIuH6tlmKRv\n9B9zQNIEecPpABpgzrm06wAgJmbWKemHkl6XdJ3jDxzIDXrYQI44507JO3/9C0kfSbk6AGJEDxsA\ngAyghw0AQAYE3lCgVcaPH+8++MEPpl2NxOzcuTPtKiRqxowZaVchcbRhttF+2Zf3NpTU55yruchR\n6kPiPT09rre3t/mMdlrzecyI/7swi6FebSztfz+tQBtmG+2XfXlvQ0k7nXM9tRJle0j84B1eoI4j\nWEsDeR1cFU9+AADEJJsB+9SbXmDd9+Vk8t93k5f/qYPJ5A8AQJ1SP4ddt7h601Hs7l+9MYGhcgAA\n6pGtHnYrg3U7lAsAQL9sBOxdw9IPmjtNOrIp3ToAAAqr/QP2TpPcu01nc8PtMdRl7+L0fzgAAAqp\nvc9h7xredBZWNlH+r+/3nl2zV5HtGiZd+NsmMwEAILr27mG72kGxe6507w/991nAVW1B2yOLoccP\nAEA92jdg1xh6th7v0XdM+uxfNR+ES/mVHuf9aXP1AwAgTu0ZsGsEw2/f57+90aDtd9zLeyIcSNAG\nALRI+wXs04dqJll6RwvqoYg/AE73JV4PAADaL2C/NDG2rIImlzU96azcSzXXawcAoGntNUv8jYFr\nr/x6t6VA63qjD3+7XunESWnUbOn4M9LIEdGrs/4rA6/D6qMDa6RzboyeMQAAdWqvHvb+v5AUHIz3\nlY2Wz5o+eH9Qz7kUpIOCddBx1y30nn91wH//e/V8fbl/AgAAYtJeAbuGKfMHXm9fVxlow4a5P3yV\n9zzu0uA01XmVvz93QX31BAAgbu0TsJuccf16yFy1V17zno8cD04Tti8SZowDABLUPgE7gvmzgvdN\nnh+8L4qw3veCS5rLGwCAZrVlwD65w3/7o2tbW4+Sh9f4b3/n2dbWAwBQXO0RsE9Vzuo6a5h3Dvms\nYQPbolyKteHhxop/aFvtNOXljxjuvR8+tCrRqcONVQAAgBraI2Dvfr/v5pM7pFPPe6+jXMZ1/VcH\nbzt9pvJ937HBaa5cUTvvUvnHtkpvbw9ItHtC7YwAAGhAewTsEB1Dmjt+6MWV77vnNpff6Pc1dzwA\nAI1o+4BdLkove9HKyvfOhaf/3NfiKRcAgCRlKmBHcd+W+tKv35xMPQAAiFMiAdvMPm1m/2Zmr5jZ\nX9ZKv3x1HXm3uLdbT3n1fA4AAOoRe8A2syGS/lrSPEm/J2mxmf1e2DGrY17Z8wu3RUsX912/4v4c\nAACUJNHDvkjSK865Pc65dyVtkvSZOAtYsCx8/3ce8J637fLfv/kZ7znovtol1bPHr728dt0AAEhC\nEgF7kqTXyt7v69/2HjNbYma9ZtZ7+HDta5enfqDy/aNBl1VVmbPEf/tnIvaEq6/PvsfnsjEAAFoh\niYDtt6h2xVxt59x3nXM9zrme7u7a95P+8d2Dt81bGn5MV8hSo5I09hPh+5etCt8PAEArJRGw90ma\nUvZ+sqT9oUdMD+9lT/JZj+SxGsuCHq1xM49jJ8L3r90Yvt/X+X0NHAQAQG1JBOx/kvRhM5tqZkMl\nLZIUfvFUx/iGCkpqxvhVNzV4YOe4WOsBAEBJR9wZOudOm9kNkh6XNETS3zrnXo67nCT9YGvaNQAA\noFLsAVuSnHP/KOkf48xzYpd08EicOdZn5nnplQ0AQPusdDYjfA3RA3WuYFbuYx+S5l4k/e7kxvN4\nbkONBDXqDwBAMxLpYSfF9Qaft54/q7n7ZV92g7TlueByAQBIU3sF7Ml3SvvCZ3wd2yqNmeO9PrhF\nmtBVuf+6W6R7Hole5Kzp0vZ10uN3DWzbu1+adoX3OlLPfsq3ohcIAEAD2mdIXJIm1r4xden2lq7X\nC9abtni97tKjnmAtSTteqjx+4+PeQi2lXvXErvDjJUkTvlhfoQAA1MlcrftPJqynp8f19paNOZ86\nLO32ufC6StRLuhbOlq5fKM2ZIR09If1kt3Treulne2ofG2ko/Py+0Mu5zPzWkcmPtP/9tAJtmG20\nX/blvQ0l7XTO1Yxq7TUkLkmdtVc+C7J5tRegg4wdJU2bJF09r3L79helSz7fYKFcew0AaIH2C9iS\nN+N6Z/gvqtIEtM4O6d2qyWL1LKjieqWPXzDQm+6cKZ0+E7F3zcxwAECLtGfAliIFbWkgWDe66ln5\ncWdekE49HzEvgjUAoIXaa9JZtam1F/QuTRbzc8sS6ejTXm+59Di5w9vuZ8hFEYP11O9HSAQAQHza\nb9JZtYBednVgvXKO9OCdjddj8Upvxnm5wGHxOnrXeZ8skfa/n1agDbON9su+vLehMjvprNoMJ+0a\nIbl3Bu3qe1IaN7py28jZ0lsno2ffNUp68ylp463eQ5K+sUG6+S6fxFM3Sl2LomcOAEBM2j9gS9KF\n/RG4qrfdMUSaeoX0avjNO0MdOV7ZW//lI4N72pI4Zw0ASFV7n8OuVhY0Xa/00LbmgrWfcxd4121X\nDIcTrAEAKctGD7vcDCedOiLtHqdrL5euvTzBss4/1NR14QAAxCVbPeySzi4vcE9Zk0z+U9Z6+ROs\nAQBtIns97HITlnkPKdI12zUx9A0AaFPZ7GH7meEGHtOPDtq9wq8zfv4blccBANCmst3DDtIxZlAA\nXvV3KdUFAIAY5KeHDQBAjhGwAQDIAAI2AAAZQMAGACADUr/5h5nlenp22t9v0gqwKD9tmHG0X/YV\noA0j3fyDHjYAwNeYkZW3J3a90vKrB287Z1zaNS0GetgJS/v7TRq/7rMv721I+9Un8LbCdai+/XGz\nCtCG9LABALXddM1AbzkO5b1xxIcedsLS/n6TlvfemUQbZh3tF6xrlPTmUzFWJsDEP5YOHWn8+AK0\nYaQedj5XOgMAhIqrNx3FwS3ec9xD5UXDkDgAFEwrg3U7lJsXBGwAKIjfPJt+0HS90p99Kt06ZBUB\nGwAKwPVKw4Y2n88Ntzefx6bb0v/hkEVMOktY2t9v0vI+YUmiDbOO9pPe2SENH9ZkOT7nn5sNur99\nVxr+R7XTFaANuawLABAtWHfPle79of++oMlizU4ii6PHXyT0sBOW9vebtLz3ziTaMOuK3n61esFR\nes5hgblW2o9Ok356f/11qCgj/21IDxsAiqxWsP72ff7bG+05+x338p7ax3E+OxoCNgDkUHdX7TRL\n70i+HlK0HwDjRidfj6wjYANADh3aEl9eQT3gOHvGfU/Gl1desdIZAOTMn18z8DrsHLXrjT787Xql\nEyelUbOl489II0dEr8/6r0Srz7LF0jc3Rs+3aOhhA0DO3P4l7zkoGO87NPB61vTB+4N6zqUgHRSs\ng467bqH3/KsD/vtL9Vyzwn8/PARsACiYKfMHXm9fVxlow4a5P3yV9zzu0uA01XmVvz93QX31RCUC\nNgDkSLPnlV8/FLzvlde85yPHg9OE7YuCGePBCNgAUDDzZwXvmzw/eF8UYb3vBZc0l3fREbABIKdO\n7vDf/uja1taj5OE1/tvfeba19cgqAjYA5MTEcZXvzxrmDTGfVbY0aZQh5w0PN1b+Q9tqpykvf8Rw\n7/3wqiVKx49prPy8Y2nShKX9/SYt78taSrRh1hWp/cKC8ekzUufM4HTVM8qr05QfL0mHnxgcWGvl\nUZ7m2FZp9PuC61ueVwHakKVJAQCejiHNHT/04sr33XObyy8sWMMfARsACibKYimLVla+r9XJ/dzX\n4ikXwWIP2Gb2t2Z2yMx+GnfeAIDWuK/OpU3Xb06mHhiQRA97g6RPJ5AvACDE8tXR07a6t1tPefV8\njiKJPWA7556RdCTufAEA4VYvjze/L9wWLV3cd/2K+3PkBeewAaCgFiwL3/+dB7znbbv8929+xnsO\nuq92yZVVa4Rfe3ntumGwVAK2mS0xs14zYxE6AGiRqR+ofP/o9mjHzVniv/0zEXvC1ddn3/PVaMeh\nUioB2zn3XedcT5TrzgAA8fjx3YO3zVsafkxXyFKjkjT2E+H7l60K34/oGBIHgJwY/8nw/ZMmDN72\nWI1lQY/WuJnHsRPh+9c2cH/rsPXIiyyJy7o2SvqJpI+Y2T4z+z/iLgMAMNibv27suKRmjF91U2PH\nNXvHr7zqiDtD59ziuPMEAGTPD7amXYN8YUgcAApkYle65c88L93ys4ybfyQs7e83aXm/cYREG2Zd\nEduv1h25Gh0C/9iHvIC/d7/0i32N5dFI3QrQhpFu/hH7kDgAoL253uCgPX9Wc/fLvuwGactzweWi\ncQRsAMiZFWukVTeGpzm2VRozx3t9cIs0oWqo/LpbpHseiV7mrOnS9nXS43cNbNu7X5p2hff6QIS1\nyb8Y84ppecOQeMLS/n6TlvfhVIk2zLqitl+U3qz1DKTbtEVavDI8fT2+93Vp8WWDy6lVHz8FaMNI\nQ+IE7ISl/f0mLe//2Uu0YdYVtf3Gj5EOPxHh+IjnsxfOlq5fKM2ZIR09If1kt3Treulne2ofGyVY\nj7s0+HKuArQh57ABoKj6jjV+7ObVXoAOMnaUNG2SdPW8yu3bX5Qu+XxjZXLtdW30sBOW9vebtLz3\nziTaMOuK3n5Rh6I7O6R3nxu8ParqcjpnSqfPNDcU/l7e+W9DetgAUHRRzx+XgnWjl3yVH3fmBenU\n89HyavV9ubOMhVMAIOcW3Vw7jfUEB89blkhHn/YCf+lxcoe33c+Qi6IF4j/5cu00GMCQeMLS/n6T\nlvfhVIk2zDrazxPUy64OrFfOkR68s/H6LF7pzThvpOwgBWhDZom3g7S/36Tl/T97iTbMOtpvwNvb\npRHDq47vkfqelMaNrtw+crb01sno9egaJb35VOW2b2yQbr5rcMBedLN034+i512ANuQcNgBgwNkf\n956rA2jHEGnqFdKr+xvP+8jxyh7zLx8Z3NOWOGfdDM5hA0DBlAdN1ys9tK25YO3n3AXeddvlPw4I\n1s1hSDxhaX+/Scv7cKpEG2Yd7Rds7EjpyNMxViZA99zmrgsvQBtGGhKnhw0ABXX0hNfrXbYqmfyX\n3tF/jryJYI0B9LATlvb3m7S8984k2jDraL/6xHFHrbiHvgvQhvSwAQD1KV2PbT0Dd/Mqt2LN4G3n\nXFZ5HJJBDzthaX+/Sct770yiDbOO9su+ArQhPWwAAPKCgA0AQAYQsAEAyIDUVzqbMWOGentjmJbY\npvJ+finv55Yk2jDraL/sy3sbRkUPGwCADEi9hw0gR3bG0BOakf8eI9AIetgAmnPwDi9QxxGspYG8\nDia0/BaQUQRsAI059aYXWPd9OZn8993k5X/qYDL5AxnDkDiA+sXVm45i9zneM0PlKDh62ADq08pg\n3Q7lAm2CgA0gml3D0g+aO006sindOgApIWADqG2nSe7dprO54fYY6rJ3cfo/HIAUcA4bQLhdw5vO\novwOTn99v/fc9G0cdw2TLvxtk5kA2UEPG0A4Vzsods+V7v2h/76g2y02fRvGGHr8QJYQsAEEqzH0\nXLr/cd8x6bN/1XwQLr+nsvVI5/1pc/UD8oSADcBfjWD47fv8tzcatP2Oe3lPhAMJ2igIAjaAwU4f\nqplk6R0tqIci/gA43Zd4PYC0EbABDPbSxNiyCppc1vSks3IvdceYGdCemCUOoNIbA9de+fVuS4HW\n9UYf/na90omT0qjZ0vFnpJEjoldn/VcGXofVRwfWSOfcGD1jIGPoYQOotP8vJAUH431lo+Wzpg/e\nH9RzLgXpoGAddNx1C73nXx3w3/9ePV9f7p8AyAkCNoC6TJk/8Hr7uspAGzbM/eGrvOdxlwanqc6r\n/P25C+qrJ5A3BGwAA5qccf16yFy1V17zno8cD04Tti8SZowjxwjYAOoyf1bwvsnzg/dFEdb7XnBJ\nc3kDWUfABuDr5A7/7Y+ubW09Sh5e47/9nWdbWw8gLQRsAJ5TlbO6zhrmnUM+a9jAtiiXYm14uLHi\nH9pWO015+SOGe++HD61KdOpwYxUA2hwBG4Bn9/t9N5/cIZ163nsd5TKu6786eNvpM5Xv+44NTnPl\nitp5l8o/tlV6e3tAot0TamcEZBABG0BNHUOaO37oxZXvu+c2l9/o9zV3PJBFBGwAdYnSy160svK9\nc+HpP/e1eMoF8oyADSB2922pL/36zcnUA8iT2AO2mU0xs6fN7Odm9rKZfSnuMgDEb/nq6Glb3dut\np7x6PgeQJUn0sE9LWuGc+58lXSzpP5nZ7yVQDoAYrY55Zc8v3BYtXdx3/Yr7cwDtIvaA7Zx7wzm3\nq//1CUk/lzQp7nIApGvBsvD933nAe962y3//5me856D7apdUzx6/9vLadQPyKNFz2Gb2QUm/L+n5\nqu1LzKzXzHoPH+aaSSALpn6g8v2jQZdVVZmzxH/7ZyL2hKuvz77H57IxoAgSC9hm9j5JD0ha5pyr\nWCHYOfdd51yPc66nu5v72AJZ8OO7B2+btzT8mK6QpUYlaewnwvcvWxW+HyiSRAK2mXXKC9b3Ouf+\nIYkyAMRsevho1ySf9Ugeq7Es6NEaN/M4diJ8/9qN4ft9nd/XwEFA+0tilrhJWifp58455msCWdEx\nvqHDkpoxftVNDR7YOS7WegDtIoke9ixJ10i61Mxe7H80eQ8fAEXzg61p1wBoLx1xZ+ic2y6Jm9IC\nOTSxSzp4JL3yZ56XXtlA2ljpDMCAGeFriB6ocwWzch/7kDT3Iul3Jzeex3MbaiSoUX8gy2LvYQPI\nN9cbfN56/qzm7pd92Q3SlueCywWKjIANoNLkO6V94TO+jm2VxszxXh/cIk3oqtx/3S3SPY9EL3LW\ndGn7Ounxuwa27d0vTbvCex2pZz/lW9ELBDKIIXEAlSbWvjF16faWrtcL1pu2eL3u0qOeYC1JO16q\nPH7j495CLaVe9cSu8OMlSRO+WF+hQMaYq3Xfu4T19PS43t78jnV5V7nlV9r/flqhkG146rC02+fC\n6ypRL+laOFu6fqE0Z4Z09IT0k93Sreuln+2JUL8o/z2c3xd4OVch2y9n8t6GknY652r+NTEkDmCw\nzsZXINy82gvQQcaOkqZNkq6eV7l9+4vSJZ9vsFCuvUYBELAB+JvhpJ3hPZvSBLTODundqsli9Syo\n4nqlj18w0JvunCmdPhOxd83McBQEARtAsAhBWxoI1o2uelZ+3JkXpFPPR8yLYI0CYdIZgHBTay/o\nXZos5ueWJdLRp73eculxcoe33c+QiyIG66nfj5AIyA8mnSUs75Ml0v730wq0oQJ72dWB9co50oN3\nNl6XxSu9GeflAofFI/auab/sy3sbiklnAGIzw0m7RkjunUG7+p6Uxo2u3DZytvTWyejZd42S3nxK\n2nir95Ckb2yQbr7LJ/HUjVLXouiZAzlBwAYQzYX9Ebiqt90xRJp6hfTq/sazPnK8srf+y0cG97Ql\ncc4ahcY5bAD1KQuarld6aFtzwdrPuQu867YrhsMJ1ig4etgA6jfDSaeOSLvH6drLpWsvT7Cs8w81\ndV04kBf0sAE0prPLC9xT1iST/5S1Xv4Ea0ASPWwAzZqwzHtIka7Zromhb8AXPWwA8ZnhBh7Tjw7a\nvcKvM37+G5XHAfBFDxtAMjrGDArAq/4upboAOUAPGwCADCBgAwCQAQRsAAAygIANAEAGpH7zDzPL\n9bTQtL/fpBVgUX7aMONov+wrQBty8w8AAAKdOSq92FWxacUaadWNVenO3y91vr919QpADzthaX+/\nSePXffblvQ1pv+yLtQ3bcHGfqD1szmEDAPLt4B1eoI4jWEsDeR1cFU9+EdHDTlja32/S+HWffXlv\nQ9ov+xpuw1NvSrvHx1sZP+cfkDonNnw457ABAMUVV286it3neM8JL63LkDgAIF9aGaxbWC4BGwCQ\nD7uGpResS3aadGRTIlkTsAEA2bfTJPdu09nccHsMddm7OJEfDkw6S1ja32/SmPCSfXlvQ9ov+2q2\n4a7hkvttU2WYz5Qv19tUlpINlS6sXS8u6wIAFEOEYN09V7r3h/77/IJ12PbIYujxl6OHnbC0v9+k\n8es++/LehrRf9oW2YY2h5yg957DAXCvtR6dJP70/tAo1Z4/TwwYA5FuNYP3t+/y3N9pz9jvu5T0R\nDozpfDYBGwCQPacP1Uyy9I4W1EMRfwCc7mu6HAI2ACB7Xmp8ZbFqQZPLmp50Vu6l7qazYKUzAEC2\nvDFw7VXYOWrXG3342/VKJ05Ko2ZLx5+RRo6IXp31Xxl4HXrO/MAa6ZzqW4FFRw8bAJAt+/9CUnAw\n3lc2Wj5r+uD9QT3nUpAOCtZBx1230Hv+1QH//e/V8/Xl/gkiImADAHJlyvyB19vXVQbasGHuD1/l\nPY+7NDhNdV7l789dUF8960XABgBkR5Mzrl8Pmav2ymve85HjwWnC9kXSRP0J2ACAXJk/K3jf5PnB\n+6II630vuKS5vGshYAMAMunkDv/tj65tbT1KHl7jv/2dZ+PJn4ANAMiGU5Wzus4a5p1DPmvYwLYo\nl2JteLix4h/aVjtNefkjhnvvhw+tSnTqcEPlszRpwtL+fpNW+GURcyDvbUj7Zd97bRhy/vf0Galz\nZn96n6BdPaO8Ok358ZJ0+Alp/Jj68ihPc2yrNPp9gdWtWK6UpUkBAIXRMaS544deXPm+e25z+YUG\n6wYRsAEAuRJlsZRFKyvf1xqI+dzX4im3GbEHbDMbbmYvmNlLZvaymX017jIAAGjGfVvqS79+czL1\nqEcSPezfSrrUOTdd0gWSPm1mF9c4BgCAUMtXR0+bdG+3mfLq+RzlYg/YzvNW/9vO/ke+Z30AABK3\nurmVPQf5wm3R0sV9169GP0ci57DNbIiZvSjpkKQfOeeer9q/xMx6zSzOe6EAAPCeBcvC93/nAe95\n2y7//Zuf8Z6D7qtdcuWKyvfXXl67bo1I9LIuMxsj6UFJX3TO/TQgTa5731xSkn20YbbRftkX5bIu\nSZp2hbR3f9Wx/d3CoCHrWnf0CtsflHek23K222VdzrljkrZK+nSS5QAA8OO7B2+btzT8mK6QpUYl\naewnwvcvWxW+P05JzBLv7u9Zy8zOkjRX0r/GXQ4AoGCmh68QNmnC4G2P1VgW9GiNm3kcOxG+f+3G\n8P2+zu9r4CCpo6Gjwr1f0j1mNkTeD4L7nXOPJFAOAKBIOsY3dFhSM8avuqnBAzvHNXRY7AHbObdb\n0u/HnS8AAO3kB1tbWx4rnQEAcmNiV7rlzzwvuby5+UfC0v5+k1aoGao5lfc2pP2yb1Ab1pgt3ugQ\n+Mc+5AX8vfulX+xrLI+aM8RnDP73GHWWeBLnsAEASE3YpVjzZzV3v+zLbpC2PBdcbpII2ACAbJl8\np7QvfMbXsa3SmDne64NbpAlVQ+XX3SLdU8d06FnTpe3rpMfvGti2d7937bckHYiyNvmUb0Uv0AdD\n4glL+/tNWiGH43Im721I+2WfbxvWGBaXvF52qde7aYu0eGV4+np87+vS4ssGlxPKZzhcij4kTsBO\nWNrfb9IK+59FjuS9DWm/7PNtw1OHpd0+F15XiXo+e+Fs6fqF0pwZ0tET0k92S7eul362J0L9ogTr\n8/sCL+fiHDYAIL86uxs+dPNqL0AHGTtKmjZJunpe5fbtL0qXfL7BQhu89rocPeyEpf39Jq2wv+5z\nJO9tSPtlX2gbRhwa7+yQ3n1u8PbIdajqRXfOlE6faW4o/L160MMGAOTeDBcpaJeCdaOXfJUfd+YF\n6dTzEfOqEazrwcIpAIBsm1pjBNUvAAAgAElEQVR7QW/rCQ6wtyyRjj7t9ZZLj5M7vO1+hlwUMVhP\n/X6ERNExJJ6wtL/fpBV+OC4H8t6GtF/2RWrDgF52dWC9co704J2N12XxSm/GebnAYfGIvWtmibeJ\ntL/fpPGfRfblvQ1pv+yL3Ia7RkjunYpN1iP1PSmNG12ZdORs6a2T0evQNUp686nKbd/YIN18l0/A\nnrpR6loUOW/OYQMAiuXC/ghc1dvuGCJNvUJ6dX/jWR85Xtlb/+Ujg3vakmI9Z12Nc9gAgHwpC5qu\nV3poW3PB2s+5C7zrtit61wkGa4kh8cSl/f0mjeG47Mt7G9J+2ddwG546Iu1u/vrnms4/1NR14VGH\nxOlhAwDyqbPL6/VOWZNM/lPWevk3EazrQQ87YWl/v0nj13325b0Nab/si7UNI1yzXVPMQ9/0sAEA\nqDbDDTymHx20e4VfZ/z8NyqPSwk97ISl/f0mjV/32Zf3NqT9sq8AbUgPGwCAvCBgAwCQAQRsAAAy\nIPWVzmbMmKHe3ij3J8umvJ9fyvu5JYk2zDraL/vy3oZR0cMGACADUu9hI7pIN0qvodF7wQIA0kUP\nu83ddM3A/VnjUMpr+dXx5AcAaA0CdpvqGuUF1ju+lEz+q2708p/QlUz+AIB4MSTehuLqTUdxsP/2\ncAyVA0B7o4fdZloZrNuhXABANATsNvGbZ9MPmq5X+rNPpVsHAIA/AnYbcL3SsKHN53PD7c3nsem2\n9H84AAAG4xx2yt7Z0Xwe5eef//p+77nZoPubZ6Xhf9RcHgCA+NDDTtnwYbXTdM+V7v2h/76gyWLN\nTiKLo8cPAIgPATtFtXrB1uM9+o5Jn/2r5oNwKb/S47w/ba5+AIDWIWCnpFYw/PZ9/tsbDdp+x728\np/ZxBG0AaA8E7BR0R1isZOkdyddDivYDYNzo5OsBAAhHwE7BoS3x5RXUA46zZ9z3ZHx5AQAawyzx\nFvvzawZe+/VuS4HW9UYf/na90omT0qjZ0vFnpJEjotdn/Vei1WfZYumbG6PnCwCIFz3sFru9f23w\noGC879DA61nTB+8P6jmXgnRQsA467rqF3vOvDvjvL9VzzQr//QCA1iBgt5kp8wdeb19XGWjDhrk/\nfJX3PO7S4DTVeZW/P3dBffUEALQWAbuFmj2v/Pqh4H2vvOY9HzkenCZsXxTMGAeA9BCw28z8WcH7\nJs8P3hdFWO97wSXN5Q0ASBYBOyUnA5YkfXRta+tR8vAa/+3vPNvaegAA/BGwW2TiuMr3Zw3zhpjP\nKluaNMqQ84aHGyv/oW2105SXP2K493541RKl48c0Vj4AoDkE7BY58Lj/9pM7pFPPe6+jXMZ1/VcH\nbzt9pvJ937HBaa6MMMu7VP6xrdLb2/3THH6idj4AgPgRsNtAx5Dmjh96ceX77rnN5Tf6fc0dDwCI\nHwG7zUTpZS9aWfneufD0n/taPOUCANKTSMA2syFm9s9m9kgS+RfdfXUubbp+czL1AAC0TlI97C9J\n+nlCeWfS8tXR07a6t1tPefV8DgBAfGIP2GY2WdLlku6OO+8sW7083vy+cFu0dHHf9SvuzwEAiCaJ\nHvY3JX1Z0v8ISmBmS8ys18x6Dx8+nEAVsm/BsvD933nAe962y3//5me856D7apdUzx6/9vLadQMA\ntF6sAdvMFkg65JzbGZbOOfdd51yPc66nu7s7zipk1tQPVL5/NOCyqmpzlvhv/0zEnnD19dn3+Fw2\nBgBIX9w97FmSrjCzVyVtknSpmf1dzGXk0o99TiDMWxp+TFfIUqOSNPYT4fuXrQrfDwBoH7EGbOfc\nzc65yc65D0paJOkp59xn4ywjq8Z/Mnz/pAmDtz1WY1nQozVu5nHsRPj+tQ3c3zpsPXIAQHK4DrtF\n3vx1Y8clNWP8qpsaO67ZO34BABrTkVTGzrmtkrYmlT+a84OtadcAAFAPethtZGJXuuXPPC/d8gEA\nwQjYLVRrePtAnSuYlfvYh6S5F0m/O7nxPJ7bEL6f5UsBID2JDYmjMa43ODDOn9Xc/bIvu0Ha8lxw\nuQCA9kXAbrEVa6RVN4anObZVGjPHe31wizShaqj8uluke+pYpX3WdGn7Ounxuwa27d0vTbvCex2l\nZ//FmFdMAwDUx1ytWz0lrKenx/X25rd7Z2aDtkXpzVrPQLpNW6TFK8PT1+N7X5cWXza4nFr18ZP2\nv59W8GvDPMl7G9J+2Zf3NpS00zlX86QjATthfv/Qxo+RDj8R4diI54wXzpauXyjNmSEdPSH9ZLd0\n63rpZ3tqHxslWI+7NPhyrrT//bRC3v+zyHsb0n7Zl/c2VMSAzZB4CvqONX7s5tVegA4ydpQ0bZJ0\n9bzK7dtflC75fGNlcu01AKSPgJ2SKEPRpQlonR3Su1WTxeqZse16pY9fMFBe50zp9JnmhsIBAK1F\nwE5R1PPHpWDdaPAsP+7MC9Kp56PlRbAGgPbBddgpW3Rz7TTWExw8b1kiHX3aC/ylx8kd3nY/Qy6K\nFoj/5Mu10wAAWodJZwmLMlkiqJddHVivnCM9eGfjdVm80ptx3kjZQdL+99MKeZ/wkvc2pP2yL+9t\nKCadZYf1SG9vl0YMH7yv70lp3OjKbSNnS2+djJ5/1yjpzaekjbd6D0n6xgbp5rsGp110s3Tfj6Ln\nDQBoDQJ2mzj7495zdY+3Y4g09Qrp1f2N533keGWP+ZePDO5pS5yzBoB2xjnsNlMeNF2v9NC25oK1\nn3MXeNdtl/84IFgDQHujh92GrEcaO1I68rR07eXeIyndc5u7LhwA0Br0sNvU0RNe4F62Kpn8l97h\n5U+wBoBsoIfd5tZu9B5SPHfUYugbALKJHnaGlK7Htp6Bu3mVW7Fm8LZzLqs8DgCQTfSwM+rXb/kH\n4NX3tr4uAIDk0cMGACADCNgAAGQAARsAgAxIfS1xM8v1Qrhpf79JK8Aav7RhxtF+2VeANoy0ljg9\nbAAAMoBZ4kCr7IyhJzQj3z0NAMHoYQNJOniHF6jjCNbSQF4HE1oCD0Db4hx2wtL+fpPG+bMAp96U\ndo+PvzLVzj8gdU5sKou8tyF/g9lXgDbkfthAKuLqTUex+xzvmaFyIPcYEgfi1Mpg3Q7lAmgZAjYQ\nh13D0g+aO006sindOgBIDAEbaNZOk9y7TWdzw+0x1GXv4vR/OABIBJPOEpb295u0wk942TVccr9t\nKn+/m7g0fStVGypdGK1eeW9D/gazrwBtyMIpQOIiBOvuudK9P/TfF3TL06ZvhRpDjx9Ae6GHnbC0\nv9+kFfrXfY2h5yg957DAXCvtR6dJP70/tAqRZo/nvQ35G8y+ArQhPWwgMTWC9bfv89/eaM/Z77iX\n90Q4kPPZQG4QsIF6nT5UM8nSO1pQD0X8AXC6L/F6AEgeARuo10vNrSxWLmhyWdOTzsq91B1jZgDS\nwkpnQD3eGLj2KuwcteuNPvzteqUTJ6VRs6Xjz0gjR0SvzvqvDLwOPWd+YI10zo3RMwbQduhhA/XY\n/xeSgoPxvrLR8lnTB+8P6jmXgnRQsA467rqF3vOvDvjvf6+ery/3TwAgMwjYQIymzB94vX1dZaAN\nG+b+8FXe87hLg9NU51X+/twF9dUTQPYQsIGompxx/XrIXLVXXvOejxwPThO2LxJmjAOZRsAGYjR/\nVvC+yfOD90UR1vtecElzeQNofwRsoAEnd/hvf3Rta+tR8vAa/+3vPNvaegBIDgEbiOJU5ayus4Z5\n55DPGjawLcqlWBsebqz4h7bVTlNe/ojh3vvhQ6sSnTrcWAUApI6lSROW9vebtMIsixhy/vf0Galz\nZn9an6BdPaO8Ok358ZJ0+Alp/Jj68ihPc2yrNPp9gdUdtFxp3tuQv8HsK0AbsjQp0AodQ5o7fujF\nle+75zaXX2iwBpBZBGwgRlEWS1m0svJ9rc7D574WT7kAsi2RgG1mr5rZv5jZi2YW5yKLQObdt6W+\n9Os3J1MPANmSZA/7E865C6KMywPtbvnq6Glb3dutp7x6PgeA9sKQOBDB6phX9vzCbdHSxX3Xr7g/\nB4DWSSpgO0lbzGynmS2p3mlmS8ysl+Fy5NWCZeH7v/OA97xtl//+zc94z0H31S65ckXl+2svr103\nANmUyGVdZvYB59x+M5sg6UeSvuiceyYgba7n6xfgcoS0q5C4Wpd1SdK0K6S9+6uO6/85GjRkXeuO\nXmH7g/KOdFtOLuvKlby3n1SINkzvsi7n3P7+50OSHpR0URLlAO3ix3cP3jZvafgxXSFLjUrS2E+E\n71+2Knw/gHyJPWCb2dlmNrL0WtIfS/pp3OUALTU9fIWwSRMGb3usxrKgR2vczOPYifD9azeG7/d1\nfl8DBwFoBx0J5DlR0oP9wzQdkr7nnHssgXKA1ukY39BhSc0Yv+qmBg/sHBdrPQC0TuwB2zm3R9L0\nuPMFMOAHW9OuAYBW47IuICYTu9Itf+Z56ZYPIFnc/CNhaX+/SSvcDNUas8UbHQL/2Ie8gL93v/SL\nfY3lUXOG+Az/f4t5b0P+BrOvAG0YaZZ4EuewgcIKuxRr/qzm7pd92Q3SlueCywWQbwRsoB6T75T2\nhc/4OrZVGjPHe31wizShaqj8ulukex6JXuSs6dL2ddLjdw1s27vfu/Zbkg5EWZt8yreiFwigLTEk\nnrC0v9+kFXI4rsawuOT1sku93k1bpMUrw9PX43tflxZfNricUAHD4VL+25C/wewrQBtGGhInYCcs\n7e83aYX8z+LUYWm3z4XXVaKez144W7p+oTRnhnT0hPST3dKt66Wf7YlQtyjB+vy+0Mu58t6G/A1m\nXwHakHPYQCI6uxs+dPNqL0AHGTtKmjZJunpe5fbtL0qXfL7BQrn2GsgFetgJS/v7TVqhf91HHBrv\n7JDefW7w9sjlV/WiO2dKp880PxT+Xl1y3ob8DWZfAdqQHjaQqBm1bwoiDQTrRi/5Kj/uzAvSqecj\n5hUhWAPIDhZOAZoxtfaC3tYTHGBvWSIdfdrrLZceJ3d42/0MuShisJ76/QiJAGQJQ+IJS/v7TRrD\ncQrsZVcH1ivnSA/e2Xg9Fq/0ZpxX1C1oWLyO3nXe25C/wewrQBsyS7wdpP39Jo3/LPrtGiG5dyo2\nWY/U96Q0bnRl0pGzpbdORi+/a5T05lOV276xQbr5Lp+APXWj1LUoeubKfxvyN5h9BWhDzmEDLXNh\nfwSu6m13DJGmXiG9ur/xrI8cr+yt//KRwT1tSZyzBnKOc9hAnMqCpuuVHtrWXLD2c+4C77rtit41\nwRrIPYbEE5b295s0huMCnDoi7W7B9c/nH2rqunAp/23I32D2FaANIw2J08MGktDZ5fV6p6xJJv8p\na738mwzWALKDHnbC0v5+k8av+zpEuGa7pgSGvvPehvwNZl8B2pAeNtBWZriBx/Sjg3av8OuMn/9G\n5XEACosedsLS/n6Txq/77Mt7G9J+2VeANqSHDQBAXhCwAQDIAAI2AAAZkPpKZzNmzFBvb5T7BGZT\n3s8v5f3ckkQbZh3tl315b8Oo6GEDAJABBGwAADIg9SFxAMiKwNuZ1iHS/cwBH/SwASDETdd4gTqO\nYC0N5LX86njyQ3EQsAHAR9coL7De8aVk8l91o5f/hK5k8kf+MCQOAFXi6k1HcbD/3uYMlaMWetgA\nUKaVwbodykV2ELABQNJvnk0/aLpe6c8+lW4d0L4I2AAKz/VKw4Y2n88Ntzefx6bb0v/hgPbEOWwA\nhfbOjubzKD///Nf3e8/NBt3fPCsN/6Pm8kC+0MMGUGjDh9VO0z1XuveH/vuCJos1O4ksjh4/8oWA\nDaCwavWCrcd79B2TPvtXzQfhUn6lx3l/2lz9UCwEbACFVCsYfvs+/+2NBm2/417eU/s4gjZKCNgA\nCqc7wmIlS+9Ivh5StB8A40YnXw+0PwI2gMI5tCW+vIJ6wHH2jPuejC8vZBezxAEUyp9fM/Dar3db\nCrSuN/rwt+uVTpyURs2Wjj8jjRwRvT7rvxKtPssWS9/cGD1f5A89bACFcnv/2uBBwXjfoYHXs6YP\n3h/Ucy4F6aBgHXTcdQu9518d8N9fqueaFf77URwEbAAoM2X+wOvt6yoDbdgw94ev8p7HXRqcpjqv\n8vfnLqivnigeAjaAwmj2vPLrh4L3vfKa93zkeHCasH1RMGO82AjYAFBm/qzgfZPnB++LIqz3veCS\n5vJG/hGwARTSyYAlSR9d29p6lDy8xn/7O8+2th5oXwRsAIUwcVzl+7OGeUPMZ5UtTRplyHnDw42V\n/9C22mnKyx8x3Hs/vGqJ0vFjGisf2UfABlAIBx73335yh3Tqee91lMu4rv/q4G2nz1S+7zs2OM2V\nEWZ5l8o/tlV6e7t/msNP1M4H+UTABlB4HUOaO37oxZXvu+c2l9/o9zV3PPIpkYBtZmPM7O/N7F/N\n7Odm9odJlAMAcYvSy160svK9c+HpP/e1eMpFsSXVw14r6THn3L+TNF3SzxMqBwBa7r46lzZdvzmZ\neqBYYg/YZjZK0mxJ6yTJOfeuc87njA4AtM7y1dHTtrq3W0959XwO5EsSPexpkg5LWm9m/2xmd5vZ\n2QmUAwCRrV4eb35fuC1aurjv+hX350B2JBGwOyRdKOlvnHO/L+ltSX9ZnsDMlphZr5n1Hj58OIEq\nAEBzFiwL3/+dB7znbbv8929+xnsOuq92SfXs8Wsvr103FFMSAXufpH3Ouf4LJfT38gL4e5xz33XO\n9Tjnerq7uxOoAgDUZ+oHKt8/GnBZVbU5S/y3fyZiT7j6+ux7fC4bA6QEArZz7oCk18zsI/2bPinp\nZ3GXAwBx+vHdg7fNWxp+TFfIUqOSNPYT4fuXrQrfD5RLapb4FyXda2a7JV0g6daEygGASMZ/Mnz/\npAmDtz1WY1nQozVu5nHsRPj+tQ3c3zpsPXLkW0cSmTrnXpTEVYUA2sabv27suKRmjF91U2PHNXvH\nL2QXK50BQAp+sDXtGiBrCNgA0G9iV7rlzzwv3fLR3gjYAAqj1vD2gTpXMCv3sQ9Jcy+Sfndy43k8\ntyF8P8uXFlsi57ABIKtcb3BgnD+ruftlX3aDtOW54HKBMARsAIWyYo206sbwNMe2SmPmeK8PbpEm\nVA2VX3eLdM8j0cucNV3avk56/K6BbXv3S9Ou8F5H6dl/MeYV05A95mrdZiZhPT09rrc3vz8tzSzt\nKiQq7X8/rUAbZptf+0XpzVrPQLpNW6TFK8PT1+N7X5cWXza4nFr18ZP39pPy/zcoaadzruYJDwJ2\nwvL+Dy3tfz+tQBtmm1/7jR8jHX4iwrERzxkvnC1dv1CaM0M6ekL6yW7p1vXSz/bUPjZKsB53afDl\nXHlvPyn/f4OKGLAZEgdQOH1N3D9w82ovQAcZO0qaNkm6el7l9u0vSpd8vrEyufYaEgEbQEFFGYou\nTUDr7JDerZosVs+MbdcrffyCgfI6Z0qnzzQ3FI7iIWADKKyo549LwbrR4Fl+3JkXpFPPR8uLYI1y\nXIcNoNAW3Vw7jfUEB89blkhHn/YCf+lxcoe33c+Qi6IF4j/5cu00KBYmnSUs75Ml0v730wq0YbZF\nab+gXnZ1YL1yjvTgnY3XZfFKb8Z5I2UHyXv7Sfn/GxSTzgAgGuuR3t4ujRg+eF/fk9K40ZXbRs6W\n3joZPf+uUdKbT0kbb/UekvSNDdLNdw1Ou+hm6b4fRc8bxUHABgBJZ3/ce67u8XYMkaZeIb26v/G8\njxyv7DH/8pHBPW2Jc9YIxzlsAChTHjRdr/TQtuaCtZ9zF3jXbZf/OCBYoxZ62ABQxXqksSOlI09L\n117uPZLSPbe568JRHPSwAcDH0RNe4F62Kpn8l97h5U+wRlT0sAEgxNqN3kOK545aDH2jUfSwASCi\n0vXY1jNwN69yK9YM3nbOZZXHAY2ihw0ADfj1W/4BePW9ra8LioEeNgAAGUDABgAgAwjYAABkQOpr\niZtZrhfCTfv7TVoB1vilDTOO9su+ArRhpLXE6WEDAJABzBJH2+AaVwAIRg8bqbrpmoF7CMehlNfy\nq+PJDwDaBeewE5b295u0Rs+flW43mLSJfywdOtJcHrRhttF+2VeANuR+2GhPcfWmozjYfwtDhsoB\nZB1D4mipVgbrdigXAOJCwEZL/ObZ9IOm65X+7FPp1gEAGkXARuJcrzRsaPP53HB783lsui39Hw4A\n0AgmnSUs7e83abUmvLyzQxo+rMkyfM4/Nxt0f/uuNPyPoqUtehtmHe2XfQVoQxZOQfqiBOvuudK9\nP/TfFzRZrNlJZHH0+AGglehhJyzt7zdpYb/ua/WCo/ScwwJzrbQfnSb99P766zConAK3YR7QftlX\ngDakh4301ArW377Pf3ujPWe/417eU/s4zmcDyAoCNmLX3VU7zdI7kq+HFO0HwLjRydcDAJpFwEbs\nDm2JL6+gHnCcPeO+J+PLCwCSwkpniNWfXzPwOuwcteuNPvzteqUTJ6VRs6Xjz0gjR0Svz/qvRKvP\nssXSNzdGzxcAWo0eNmJ1+5e856BgvO/QwOtZ0wfvD+o5l4J0ULAOOu66hd7zrw747y/Vc80K//0A\n0C4I2GipKfMHXm9fVxlow4a5P3yV9zzu0uA01XmVvz93QX31BIB2Q8BGbJo9r/z6oeB9r7zmPR85\nHpwmbF8UzBgH0M4I2Gip+bOC902eH7wvirDe94JLmssbANJGwEYiTu7w3/7o2tbWo+ThNf7b33m2\ntfUAgEYRsBGLieMq3581zBtiPqtsadIoQ84bHm6s/Ie21U5TXv6I4d774VVLlI4f01j5AJA0liZN\nWNrfb9JKyyKGBePTZ6TOmQpMVz2jvDpN+fGSdPiJwYG1Vh7laY5tlUa/L7i+g/IqSBvmFe2XfQVo\nQ5YmRXvoGNLc8UMvrnzfPbe5/MKCNQC0KwI2WirKYimLVla+r/Xj+nNfi6dcAGhnsQdsM/uImb1Y\n9jhuZsviLgf5dV+dS5uu35xMPQCgncQesJ1z/+acu8A5d4GkGZJOSnow7nLQXpavjp621b3desqr\n53MAQCslPST+SUm/cM79MuFykLLVy+PN7wu3RUsX912/4v4cABCXpAP2IkmDbqlgZkvMrNfMWFuq\noBbUOEnynQe85227/PdvfsZ7DrqvdsmVVWuEX3t57boBQDtK7LIuMxsqab+kjzrnDoaky/V8/QJc\njiCp9jXW066Q9u6v3FY6JmjIutYdvcL2B+Ud5VpwLuvKF9ov+wrQhqlf1jVP0q6wYI3i+PHdg7fN\nWxp+TFfIUqOSNPYT4fuXrQrfDwBZkmTAXiyf4XDk0/hPhu+fNGHwtsdqLAt6tMbNPI6dCN+/toF/\nfWHrkQNAmhIJ2GY2QtKnJP1DEvmj/bz568aOS2rG+FU3NXZcs3f8AoCkdCSRqXPupKRxNRMCCfnB\n1rRrAADxYqUztMzErnTLn3leuuUDQDO4+UfC0v5+k1Y9Q7XWLOxGh8A/9iEv4O/dL/1iX2N5NFq3\norVh3tB+2VeANow0SzyRIXEgSNilWPNnNXe/7MtukLY8F1wuAGQZARuxWrFGWnVjeJpjW6Uxc7zX\nB7dIE6qGyq+7RbrnkehlzpoubV8nPX7XwLa9+71rvyXpQIS1yb8Y84ppABA3hsQTlvb3mzS/4bio\ni5OU0m3aIi1eGZ6+Ht/7urT4ssHl1KpPkCK2YZ7QftlXgDaMNCROwE5Y2t9v0vz+sxg/Rjr8RIRj\nI57PXjhbun6hNGeGdPSE9JPd0q3rpZ/tqX1slGA97tLwy7mK2IZ5QvtlXwHakHPYSEffscaP3bza\nC9BBxo6Spk2Srp5XuX37i9Iln2+sTK69BpAF9LATlvb3m7SwX/dRh6I7O6R3nxu8ParqcjpnSqfP\nND8U/l7+BW7DPKD9sq8AbUgPG+mKev64FKwbveSr/LgzL0inno+WV6vvyw0AzWDhFCRq0c2101hP\ncPC8ZYl09Gkv8JceJ3d42/0MuShaIP6TL9dOAwDthCHxhKX9/SYtynBcUC+7OrBeOUd68M7G67J4\npTfjvJGyw9CG2Ub7ZV8B2pBZ4u0g7e83aVH/s3h7uzRieNWxPVLfk9K40ZXbR86W3joZvQ5do6Q3\nn6rc9o0N0s13DQ7Yi26W7vtR9Lwl2jDraL/sK0Abcg4b7ePsj3vP1QG0Y4g09Qrp1f2N533keGWP\n+ZePDO5pS5yzBpBtnMNGS5UHTdcrPbStuWDt59wF3nXb5T8OCNYAso4h8YSl/f0mrdHhuLEjpSNP\nx1wZH91zm7suXKINs472y74CtGGkIXF62EjF0RNer3fZqmTyX3pH/znyJoM1ALQLetgJS/v7TVqc\nv+7juKNWEkPftGG20X7ZV4A2pIeNbCldj209A3fzKrdizeBt51xWeRwA5BU97ISl/f0mjV/32Zf3\nNqT9sq8AbUgPGwCAvCBgAwCQAQRsAAAyoB1WOuuT9MsWlje+v8yWSOn8Uks/Ywry3oa0X4xov9i1\n/PMVoA3PjZIo9UlnrWZmvVFO7mdZ3j8jny/b+HzZlvfPJ7XvZ2RIHACADCBgAwCQAUUM2N9NuwIt\nkPfPyOfLNj5ftuX980lt+hkLdw4bAIAsKmIPGwCAzCFgAwCQAYUK2Gb2aTP7NzN7xcz+Mu36xMnM\n/tbMDpnZT9OuSxLMbIqZPW1mPzezl83sS2nXKW5mNtzMXjCzl/o/41fTrlPczGyImf2zmT2Sdl2S\nYGavmtm/mNmLZhbD/efai5mNMbO/N7N/7f9b/MO06xQXM/tIf7uVHsfNbFna9SpXmHPYZjZE0v8n\n6VOS9kn6J0mLnXM/S7ViMTGz2ZLekvTfnHPnpV2fuJnZ+yW93zm3y8xGStop6cq8tJ8kmbc6xNnO\nubfMrFPSdklfcs49l3LVYmNmyyX1SBrlnFuQdn3iZmavSupxzuVy4RQzu0fSj51zd5vZUEkjnHO5\nu+t8f7x4XdJM51wrF/YKVaQe9kWSXnHO7XHOvStpk6TPpFyn2DjnnpF0JO16JMU594Zzblf/6xOS\nfi5pUrq1ipfzvNX/tl2ok/MAAAJgSURBVLP/kZtf1GY2WdLlku5Ouy6on5mNkjRb0jpJcs69m8dg\n3e+Tkn7RTsFaKlbAniTptbL3+5Sz//CLwsw+KOn3JT2fbk3i1z9k/KKkQ5J+5JzL02f8pqQvS/of\naVckQU7SFjPbaWZL0q5MzKZJOixpff9pjbvN7Oy0K5WQRZI2pl2JakUK2H6L0eam91IUZvY+SQ9I\nWuacO552feLmnDvjnLtA0mRJF5lZLk5vmNkCSYecczvTrkvCZjnnLpQ0T9J/6j9VlRcdki6U9DfO\nud+X9LakXM0FkqT+of4rJH0/7bpUK1LA3idpStn7yZL2p1QXNKD/vO4Dku51zv1D2vVJUv9Q41ZJ\nn065KnGZJemK/nO8myRdamZ/l26V4uec29//fEjSg/JOxeXFPkn7ykZ9/l5eAM+beZJ2OecOpl2R\nakUK2P8k6cNmNrX/F9QiSZtTrhMi6p+QtU7Sz51zq9OuTxLMrNvMxvS/PkvSXEn/mm6t4uGcu9k5\nN9k590F5f3tPOec+m3K1YmVmZ/dPiFT/UPEfS8rNVRvOuQOSXjOzj/Rv+qSk3Ez6LLNYbTgcLrXH\n7TVbwjl32sxukPS4pCGS/tY593LK1YqNmW2UNEfSeDPbJ+krzrl16dYqVrMkXSPpX/rP8UrSSufc\nP6ZYp7i9X9I9/TNUf0fS/c65XF7+lFMTJT3YfyvIDknfc849lm6VYvdFSff2d3r2SLo+5frEysxG\nyLuS6D+mXRc/hbmsCwCALCvSkDgAAJlFwAYAIAMI2AAAZAABGwCADCBgAwCQAQRsAAAygIANAEAG\n/P+uMuaa/akHvAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_NQueens(ucs)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`depth_first_tree_search` is almost 20 times faster than `breadth_first_tree_search` and more than 200 times faster than `uniform_cost_search`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can also solve this problem using `astar_search` with a suitable heuristic function. \n", "
\n", "The best heuristic function for this scenario will be one that returns the number of conflicts in the current state." ] }, { "cell_type": "code", "execution_count": 91, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\n", " \n", " \n", " \n", "\n", "\n", "

\n", "\n", "
    def h(self, node):\n",
       "        """Return number of conflicting queens for a given node"""\n",
       "        num_conflicts = 0\n",
       "        for (r1, c1) in enumerate(node.state):\n",
       "            for (r2, c2) in enumerate(node.state):\n",
       "                if (r1, c1) != (r2, c2):\n",
       "                    num_conflicts += self.conflict(r1, c1, r2, c2)\n",
       "\n",
       "        return num_conflicts\n",
       "
\n", "\n", "\n" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "psource(NQueensProblem.h)" ] }, { "cell_type": "code", "execution_count": 92, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "8.85 ms ± 424 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)\n" ] } ], "source": [ "%%timeit\n", "astar_search(nqp)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`astar_search` is faster than both `uniform_cost_search` and `breadth_first_tree_search`." ] }, { "cell_type": "code", "execution_count": 93, "metadata": { "collapsed": true }, "outputs": [], "source": [ "astar = astar_search(nqp).solution()" ] }, { "cell_type": "code", "execution_count": 94, "metadata": {}, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAewAAAHwCAYAAABkPlyAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3X+4FdWd7/nP93IOIIZfBw6YAGOg\nkyczHSO2nBa7iQwxpA0IRmd6umGMXs1kuJO5hqDY6Zbn6Scmz41mVCB07OncXGnw3jagaduI2lGi\nEQwYtQ+00jHpnseAiYj8OMIJKCYCd80fdbZn/6iqXWfvql27qt6v59nP3rtq1Vpr73Xgu9eqVavM\nOScAANDe/l3aFQAAAPURsAEAyAACNgAAGUDABgAgAwjYAABkAAEbAIAMIGADAJABBGwAADKAgA20\nGTP7oJn9o5kdM7ODZna3mXWEpB9nZn8zkPakmf2Lmf37VtYZQPII2ED7+X8lHZb0fkkXSPqfJf3f\nfgnNbLikJyWdK+kPJI2V9GeS7jCz5S2pLYCWIGAD7We6pAecc79xzh2U9LikjwakvUbS/yDpf3PO\n7XPOnXLOPS5puaT/ZGajJcnMnJl9qHSQmW00s/9U9n6Rmb1oZv1m9qyZnV+27wNm9qCZHTGzfeU/\nBMzsVjN7wMz+q5mdMLOXzaynbP+fm9nrA/v+zcw+Gc9XBBQPARtoP+skLTGzUWY2RdICeUHbz6ck\n/cA593bV9gcljZJ0cb3CzOxCSX8r6T9ImiDpP0vaYmYjzOzfSXpE0kuSpkj6pKQVZnZZWRZXSNos\naZykLZLuHsj3I5JukPT7zrnRki6T9Gq9+gDwR8AG2s92eT3q45L2S+qV9P2AtBMlvVG90Tl3WlKf\npO4I5f2fkv6zc+5559wZ59y9kn4rL9j/vqRu59zXnHPvOuf2SvovkpaUHb/DOfePzrkzkv6bpJkD\n289IGiHpd82s0zn3qnPuFxHqA8AHARtoIwM92ick/YOks+UF5PGS/p+AQ/rkneuuzqdj4NgjEYo9\nV9LKgeHwfjPrlzRN0gcG9n2gat8qSZPLjj9Y9vqkpJFm1uGce0XSCkm3SjpsZpvN7AMR6gPABwEb\naC9d8oLl3c653zrn3pS0QdLCgPRPSlpgZmdXbf9fJZ2S9MLA+5PyhshLzil7/ZqkrzvnxpU9Rjnn\nNg3s21e1b7RzLqg+FZxz33XOfVxe4HcK/uEBoA4CNtBGnHN9kvZJ+oKZdZjZOEn/Xt45ZD//Td6w\n+fcGLgfrHDi//FeS7nDO/Xog3YuS/nczG2Zmn5Y387zkv0j6v8xstnnONrPLByasvSDp+MDksbMG\njj/PzH6/3mcxs4+Y2aVmNkLSbyS9I2+YHEADCNhA+/lfJH1a3nD2K5JOS7rRL6Fz7reS5svrCT8v\nLyg+Lumbkr5alvRLkhZL6pd0tcrOiTvneuWdx75b0rGBMq8b2Hdm4LgL5P2Q6JN0j7zLx+oZIekb\nA8cclDRJ3nA6gAaYcy7tOgCIiZl1SvqBpNclXef4Bw7kBj1sIEecc6fknb/+haSPpFwdADGihw0A\nQAbQwwYAIAMCbyjQKhMnTnQf/OAH065GYnbt2pV2FRI1a9astKuQONow22i/7Mt7G0rqc87VXeQo\n9SHxnp4e19vbm2odkmRmaVchUWn//bRCXG3oYvgzH1ylOz55b0P+DWZf3ttQ0i7nXN1/3QyJAwm6\n+RovUMcRrKXBvG66Op78AGQHARtIQNcYL7De+aVk8l99o5f/pK5k8gfQflI/hw3kTVy96SgObfWe\nkxgqB9Be6GEDMWplsG6HcgG0DgEbiMFvnk0/aLpe6U8/lW4dACSHgA00yfVKI4Y3n88NdzSfx+bb\n0//hACAZnMMGmvDOzubzKD///NcPeM/NBt3fPCuN/MPm8gDQXuhhA00YOaJ+mu750n0/8N8XNFms\n2UlkcfT4AbQXAjbQoHq9YOvxHn390mf/svkgXMqv9DjvT5qrH4BsIWADDagXDL91v//2RoO233Ev\n761/HEEbyA8CNjBE3REWK1l+Z/L1kKL9AJgwNvl6AEgeARsYosNb48srqAccZ8+476n48gKQHmaJ\nA0PwZ9cMvvbr3ZYCreuNPvzteqUTJ6Uxc6Xjz0ijR0Wvz4avRKvPiqXSNzdFzxdA+6GHDQzBHQNr\ngwcF4/2HB1/PmVm7P6jnXArSQcE66LjrFnvPvzrov79Uz7Ur/fcDyA4CNhCjaQsHX+9YXxlow4a5\nP3yV9zzh0uA01XmVvz930dDqCSB7CNhARM2eV379cPC+V17zno8eD04Tti8KZowD2UbABmK0cE7w\nvqkLg/dFEdb7XnRJc3kDaH8EbKABJwOWJH1sXWvrUfLIWv/t7zzb2noASA4BG4hg8oTK92eN8IaY\nzypbmjTKkPPGRxor/+Ht9dOUlz9qpPd+ZNUSpRPHNVY+gPQRsIEIDj7hv/3kTunU897rKJdxXf/V\n2m2nz1S+7+uvTXNlhFnepfL7t0lv7/BPc+TJ+vkAaE8EbKBJHcOaO374xZXvu+c3l9/Y9zV3PID2\nRMAGYhSll71kVeV758LTf+5r8ZQLINsI2ECL3T/EpU03bEmmHgCyJZGAbWafNrN/M7NXzOwvkigD\naKWb1kRP2+re7lDKG8rnANBeYg/YZjZM0l9LWiDpdyUtNbPfjbscoJXW3BRvfl+4PVq6uO/6Fffn\nANA6SfSwL5L0inNur3PuXUmbJX0mgXKAtrVoRfj+bz/oPW/f7b9/yzPec9B9tUuqZ49fe3n9ugHI\npiQC9hRJr5W93z+w7T1mtszMes2s98iRIwlUAWit6R+ofP9YwGVV1eYt89/+mYg94errs+/1uWwM\nQD4kEbDNZ1vFPFjn3Heccz3OuZ7u7u4EqgC01o/vqd22YHn4MV0hS41K0vhPhO9fsTp8P4B8SSJg\n75c0rez9VEkHEigHaJmJnwzfP2VS7bbH6ywLeqzOzTz6T4TvX9fA/a3D1iMH0N6SCNj/JOnDZjbd\nzIZLWiKJC1OQaW/+urHjkpoxftXNjR3X7B2/AKSnI+4MnXOnzewGSU9IGibpb51zL8ddDlBk39+W\ndg0AtFrsAVuSnHP/KOkfk8gbaFeTu6RDR9Mrf/Z56ZUNIHmsdAZEVG94++AQVzAr97EPSfMvkn5n\nauN5PLcxfD/LlwLZlkgPGygq1xscGBfOae5+2ZfdIG19LrhcAPlGwAaGYOVaafWN4Wn6t0nj5nmv\nD22VJnVV7r/uVuneR6OXOWemtGO99MTdg9v2HZBmXOG9jtKz/2LMK6YBaD1z9W4VlLCenh7X25vf\n7oGZ32Xp+ZH2308rVLdhlN6s9Qym27xVWroqPP1QfPfr0tLLasupV58geW9D/g1mX97bUNIu51zd\nk1YE7ITl/Q8t7b+fVqhuw4njpCNPRjgu4jnjxXOl6xdL82ZJx05IP9kj3bZB+tne+sdGCdYTLg2/\nnCvvbci/wezLexsqYsBmSBwYor7+xo/dssYL0EHGj5FmTJGuXlC5fceL0iWfb6xMrr0G8oGADTQg\nylB0aQJaZ4f0btVksaHM2Ha90scvGCyvc7Z0+kzzQ+EAsoWADTQo6vnjUrBuNHiWH3fmBenU89Hy\nIlgD+cJ12EATltxSP431BAfPW5dJx572An/pcXKnt93PsIuiBeI//nL9NACyhUlnCcv7ZIm0/35a\noV4bBvWyqwPrlfOkh+5qvB5LV3kzzhspO0ze25B/g9mX9zYUk86A1rAe6e0d0qiRtfv6npImjK3c\nNnqu9NbJ6Pl3jZHe/JG06TbvIUnf2Cjdcndt2iW3SPf/MHreALKDgA3E4OyPe8/VPd6OYdL0K6RX\nm7jB7NHjlT3mXz5a29OWOGcN5B3nsIEYlQdN1ys9vL25YO3n3EXeddvlPw4I1kD+0cMGYmY90vjR\n0tGnpWsv9x5J6Z7f3HXhALKDHjaQgGMnvMC9YnUy+S+/08ufYA0UBz1sIEHrNnkPKZ47ajH0DRQX\nPWygRUrXY1vP4N28yq1cW7vtnMsqjwNQXPSwgRT8+i3/ALzmvtbXBUA20MMGACADCNgAAGQAARsA\ngAwgYAMAkAGp3/zDzHK9cn3a32/SCrAoP22YcbRf9hWgDbn5R66dOSa92FWxaeVaafWNVenOPyB1\nvr919QIAJIIedsJi/X53xfBLela8Xze/7rMv721I+2VfAdowUg+bc9jt7tCdXqCOI1hLg3kdSmjN\nTABAIuhhJ6zh7/fUm9KeifFWxs/5B6XOyQ0fzq/77Mt7G9J+2VeANuQcdmbF1ZuOYs853nPMQ+UA\ngHgxJN5uWhms26FcAEAkBOx2sXtE+kFzl0lHN6dbBwCALwJ2O9hlknu36WxuuCOGuuxbmv4PBwBA\nDSadJazu97t7pOR+21QZfnd9avreyzZcurB+vZjwkn15b0PaL/sK0IZc1pUJEYJ193zpvh/47wu6\nR3LT906OoccPAIgPPeyEhX6/dYaeo/ScwwJzvbQfnSH99IHQKtSdPc6v++zLexvSftlXgDakh93W\n6gTrb93vv73RnrPfcS/vjXAg57MBoC0QsNNw+nDdJMvvbEE9FPEHwOm+xOsBAAhHwE7DS42vLFYt\naHJZ05POyr3UHWNmAIBGsNJZq70xeO1V2Dlq1xt9+Nv1SidOSmPmSsefkUaPil6dDV8ZfB16zvzg\nWumc6luBAQBahR52qx34c0nBwXh/2Wj5nJm1+4N6zqUgHRSsg467brH3/KuD/vvfq+frN/knAAC0\nBAG7zUxbOPh6x/rKQBs2zP3hq7znCZcGp6nOq/z9uYuGVk8AQGsRsFupyRnXr4fMVXvlNe/56PHg\nNGH7ImHGOACkhoDdZhbOCd43dWHwvijCet+LLmkubwBAsgjYKTm503/7Y+taW4+SR9b6b3/n2dbW\nAwDgj4DdKqcqZ3WdNcI7h3zWiMFtUS7F2vhIY8U/vL1+mvLyR4303o8cXpXo1JHGKgAAaApLkybs\nve835Pzv6TNS5+yB9D5Bu3pGeXWa8uMl6ciT0sRxQ8ujPE3/Nmns+wKrW7FcKcsiZl/e25D2y74C\ntCFLk2ZFx7Dmjh9+ceX77vnN5RcarAEAqSBgt5koi6UsWVX5vt6Pz899LZ5yAQDpiT1gm9nfmtlh\nM/tp3HnDc//WoaXfsCWZegAAWieJHvZGSZ9OIN9Mu2lN9LSt7u0OpbyhfA4AQHxiD9jOuWckHY07\n36xbE/PKnl+4PVq6uO/6FffnAABEwznsNrVoRfj+bz/oPW/f7b9/yzPec9B9tUuuXFn5/trL69cN\nANB6qQRsM1tmZr1mFudNIDNt+gcq3z+2I9px85b5b/9MxJ5w9fXZ93412nEAgNZKJWA7577jnOuJ\nct1ZUfz4ntptC5aHH9MVstSoJI3/RPj+FavD9wMA2gdD4q0yM3yFsCmTarc9XmdZ0GN1bubRfyJ8\n/7pN4ft9nd/XwEEAgGYlcVnXJkk/kfQRM9tvZv9H3GVkUsfEhg5Lasb4VTc3eGDnhFjrAQCIpiPu\nDJ1zS+POE/H7/ra0awAAGAqGxNvI5K50y599XrrlAwCCcfOPhNV8vyE3AZEaHwL/2Ie8gL/vgPSL\n/Y3lUfduYbNqm4obD2Rf3tuQ9su+ArRhpJt/xD4kjua43uCgvXBOc/fLvuwGaetzweUCANoXAbvV\npt4l7Q+f8dW/TRo3z3t9aKs0qWqo/LpbpXsfjV7knJnSjvXSE3cPbtt3QJpxhff6YJS1yaf9VfQC\nAQCxY0g8Yb7fb51hccnrZZd6vZu3SktXhacfiu9+XVp6WW05oXyGwyWG4/Ig721I+2VfAdow0pA4\nATthvt/vqSPSHp8Lr6tEPZ+9eK50/WJp3izp2AnpJ3uk2zZIP9sboX5RgvX5fYGXc/GfRfblvQ1p\nv+wrQBtyDrttdXY3fOiWNV6ADjJ+jDRjinT1gsrtO16ULvl8g4Vy7TUApI4edsJCv9+IQ+OdHdK7\nz9Vuj1yHql5052zp9JnmhsLfqwe/7jMv721I+2VfAdqQHnbbm+UiBe1SsG70kq/y4868IJ16PmJe\ndYI1AKB1WDglbdPrL+htPcEB9tZl0rGnvd5y6XFyp7fdz7CLIgbr6d+LkAgA0CoMiScs0vcb0Muu\nDqxXzpMeuqvxuixd5c04Lxc4LB6xd81wXPblvQ1pv+wrQBsyS7wdRP5+d4+S3DsVm6xH6ntKmjC2\nMunoudJbJ6PXoWuM9OaPKrd9Y6N0y90+AXv6JqlrSeS8+c8i+/LehrRf9hWgDTmHnSkXDkTgqt52\nxzBp+hXSqwcaz/ro8cre+i8fre1pS+KcNQC0Mc5ht5uyoOl6pYe3Nxes/Zy7yLtuu6J3TbAGgLbG\nkHjCGv5+Tx2V9rTg+ufzDzd1XTjDcdmX9zak/bKvAG0YaUicHna76uzyer3T1iaT/7R1Xv5NBGsA\nQOvQw05YrN9vhGu264p56Jtf99mX9zak/bKvAG1IDzt3ZrnBx8xjNbtX+nXGz3+j8jgAQCbRw05Y\n2t9v0vh1n315b0PaL/sK0Ib0sAEAyAsCNgAAGUDABgAgA1Jf6WzWrFnq7Y1yn8dsyvv5pbyfW5Jo\nw6yj/bIv720YFT1sAAAyIPUeNgCgjbTheg/w0MMGgKI7dKcXqOMI1tJgXodWx5MfJBGwAaC4Tr3p\nBdb9X04m//03e/mfOpRM/gXDkDgAFFFcveko9pzjPTNU3hR62ABQNK0M1u1Qbk4QsAGgKHaPSD9o\n7jLp6OZ065BRBGwAKIJdJrl3m87mhjtiqMu+pen/cMggzmEDQN7tHtl0FlZ2a4q/fsB7ds2uebV7\nhHThb5vMpDjoYQNA3rn6QbF7vnTfD/z3WcB9pIK2RxZDj79ICNgAkGd1hp6tx3v09Uuf/cvmg3Ap\nv9LjvD9prn4YRMAGgLyqEwy/db//9kaDtt9xL++NcCBBOxICNgDk0enDdZMsv7MF9VDEHwCn+xKv\nR9YRsAEgj16aHFtWQZPLmp50Vu6l7hgzyydmiQNA3rwxeO2VX++2FGhdb/Thb9crnTgpjZkrHX9G\nGj0qenU2fGXwdVh9dHCtdM6N0TMuGHrYAJA3B/5cUnAw3l82Wj5nZu3+oJ5zKUgHBeug465b7D3/\n6qD//vfq+fpN/gkgiYANAIUzbeHg6x3rKwNt2DD3h6/ynidcGpymOq/y9+cuGlo9UYmADQB50uSM\n69dD5qq98pr3fPR4cJqwfZEwYzwQARsACmbhnOB9UxcG74sirPe96JLm8i46AjYA5NTJnf7bH1vX\n2nqUPLLWf/s7z7a2HllFwAaAvDhVOavrrBHeOeSzRgxui3Ip1sZHGiv+4e3105SXP2qk937k8KpE\np440VoGcI2ADQF7seb/v5pM7pVPPe6+jXMZ1/Vdrt50+U/m+r782zZUr6+ddKr9/m/T2joBEeybV\nz6iACNgAUAAdw5o7fvjFle+75zeX39j3NXd8ERGwAaBgovSyl6yqfO9cePrPfS2echGMgA0AqHH/\n1qGl37AlmXpgUOwB28ymmdnTZvZzM3vZzL4UdxkAgFo3rYmettW93aGUN5TPUSRJ9LBPS1rpnPuf\nJF0s6T+a2e8mUA4AoMyamFf2/MLt0dLFfdevuD9HXsQesJ1zbzjndg+8PiHp55KmxF0OAKA5i1aE\n7//2g97z9t3++7c84z0H3Ve7pHr2+LWX168baiV6DtvMPijp9yQ9X7V9mZn1mlnvkSNcbwcArTD9\nA5XvHwu6rKrKvGX+2z8TsSdcfX32vT6XjaG+xAK2mb1P0oOSVjjnKlaXdc59xznX45zr6e7mHqgA\n0Ao/vqd224Ll4cd0hSw1KknjPxG+f8Xq8P2ILpGAbWad8oL1fc65f0iiDABAlZnhI5ZTfNYjebzO\nsqDH6tzMo/9E+P51m8L3+zq/r4GD8i+JWeImab2knzvnmOsHAK3SMbGhw5KaMX7VzQ0e2Dkh1nrk\nRRI97DmSrpF0qZm9OPBo8v4vAICs+f62tGuQLx1xZ+ic2yGJG5oCQBua3CUdOppe+bPPS6/srGOl\nMwDIk1nha4geHOIKZuU+9iFp/kXS70xtPI/nNtZJUKf+RRZ7DxsA0N5cb/B564Vzmrtf9mU3SFuf\nCy4XjSNgA0DeTL1L2h8+46t/mzRunvf60FZpUlfl/utule59NHqRc2ZKO9ZLT9w9uG3fAWnGFd7r\nSD37aX8VvcACYkgcAPJmcv0bU5dub+l6vWC9eavX6y49hhKsJWnnS5XHb3rCW6il1Kue3BV+vCRp\n0heHVmjBmKt3z7SE9fT0uN7e/I6TeFe55Vfafz+tQBtmW2Hb79QRaY/PhddVol7StXiudP1iad4s\n6dgJ6Sd7pNs2SD/bG6GOUf6LP78v8HKuvLehpF3OubotwZA4AORRZ+OrSG5Z4wXoIOPHSDOmSFcv\nqNy+40Xpks83WCjXXtdFwAaAvJrlpF3hvdPSBLTODundqsliQ1lQxfVKH79gsDfdOVs6fSZi75qZ\n4ZEQsAEgzyIEbWkwWDe66ln5cWdekE49HzEvgnVkTDoDgLybXn9B79JkMT+3LpOOPe31lkuPkzu9\n7X6GXRQxWE//XoREKGHSWcLyPlki7b+fVqANs432GxDQy64OrFfOkx66q/H6LF3lzTgvFzgsHrF3\nnfc2FJPOAADvmeWk3aMk907Nrr6npAljK7eNniu9dTJ69l1jpDd/JG26zXtI0jc2Srfc7ZN4+iap\na0n0zCGJgA0AxXHhQASu6m13DJOmXyG9eqDxrI8er+yt//LR2p62JM5ZN4Fz2ABQNGVB0/VKD29v\nLlj7OXeRd912xXA4wbop9LABoIhmOenUUWnPBF17uXTt5QmWdf7hpq4Lh4ceNgAUVWeXF7inrU0m\n/2nrvPwJ1rGghw0ARTdphfeQIl2zXRdD34mghw0AGDTLDT5mHqvZvdKvM37+G5XHIRH0sAEA/jrG\n1QTg1X+XUl1ADxsAgCwgYAMAkAEEbAAAMoCADQBABqR+8w8zy/WUwrS/36QVYFF+2jDjaL/sK0Ab\nRrr5Bz1stKVxoytv5ed6pZuurt12zoS0awoArUEPO2Fpf79Ji/PXfeAt+IYg0j14h4g2zDbaL/sK\n0Ib0sNH+br5msLcch/LeOADkCT3shKX9/Sat0V/3pXvnJm3yH0mHjzaXB22YbbRf9hWgDSP1sFnp\nDC0XV286ikMD9+NNYqgcAFqJIXG0VCuDdTuUCwBxIWCjJX7zbPpB0/VKf/qpdOsAAI0iYCNxrlca\nMbz5fG64o/k8Nt+e/g8HAGgEk84Slvb3m7R6E17e2SmNHNFkGT7nn5sNur99Vxr5h9HSFr0Ns472\ny74CtCGXdSF9UYJ193zpvh/47wuaLNbsJLI4evwA0Er0sBOW9vebtLBf9/V6wVF6zmGBuV7aj86Q\nfvrA0OtQU06B2zAPaL/sK0Ab0sNGeuoF62/d77+90Z6z33Ev761/HOezAWQFARux6+6qn2b5ncnX\nQ4r2A2DC2OTrAQDNImAjdoe3xpdXUA84zp5x31Px5QUASWGlM8Tqz64ZfB12jtr1Rh/+dr3SiZPS\nmLnS8Wek0aOi12fDV6LVZ8VS6ZuboucLAK1GDxuxuuNL3nNQMN5/ePD1nJm1+4N6zqUgHRSsg467\nbrH3/KuD/vtL9Vy70n8/ALQLAjZaatrCwdc71lcG2rBh7g9f5T1PuDQ4TXVe5e/PXTS0egJAuyFg\nIzbNnld+/XDwvlde856PHg9OE7YvCmaMA2hnBGy01MI5wfumLgzeF0VY73vRJc3lDQBpI2AjESd3\n+m9/bF1r61HyyFr/7e8829p6AECjCNiIxeQJle/PGuENMZ9VtjRplCHnjY80Vv7D2+unKS9/1Ejv\n/ciqJUonjmusfABIGkuTJizt7zdppWURw4Lx6TNS52wFpqueUV6dpvx4STryZG1grZdHeZr+bdLY\n9wXXtyavgrRhXtF+2VeANmRpUrSHjmHNHT/84sr33fObyy8sWANAuyJgo6WiLJayZFXl+3o/rj/3\ntXjKBYB2FnvANrORZvaCmb1kZi+b2VfjLgP5dv8QlzbdsCWZegBAO0mih/1bSZc652ZKukDSp83s\n4jrHIONuWhM9bat7u0MpbyifAwBaKfaA7TxvDbztHHjke8YAtOamePP7wu3R0sV916+4PwcAxCWR\nc9hmNszMXpR0WNIPnXPPV+1fZma9ZsbaUgW1aEX4/m8/6D1v3+2/f8sz3nPQfbVLrqxaI/zay+vX\nDQDaUaKXdZnZOEkPSfqic+6nAWly3fsuwOUIkupfYz3jCmnfgcptpWOChqzr3dErbH9Q3lGuBeey\nrnyh/bKvAG2Y/mVdzrl+SdskfTrJctD+fnxP7bYFy8OP6QpZalSSxn8ifP+K1eH7ASBLkpgl3j3Q\ns5aZnSVpvqR/jbsctJeJnwzfP2VS7bbH6ywLeqzOzTz6T4TvX9fA/a3D1iMHgDR1JJDn+yXda2bD\n5P0geMA592gC5aCNvPnrxo5Lasb4VTc3dlyzd/wCgKTEHrCdc3sk/V7c+QJD8f1tadcAAOLFSmdo\nmcld6ZY/+7x0yweAZnDzj4Sl/f0mrXqGar1Z2I0OgX/sQ17A33dA+sX+xvJotG5Fa8O8of2yrwBt\nGGmWeBLnsIFAYZdiLZzT3P2yL7tB2vpccLkAkGUEbMRq5Vpp9Y3hafq3SePmea8PbZUmVQ2VX3er\ndO8QpinOmSntWC89cffgtn0HvGu/JelghLXJvxjzimkAEDeGxBOW9vebNL/huKiLk5TSbd4qLV0V\nnn4ovvt1aellteXUq0+QIrZhntB+2VeANow0JE7ATlja32/S/P6zmDhOOvJkhGMjns9ePFe6frE0\nb5Z07IT0kz3SbRukn+2tf2yUYD3h0vDLuYrYhnlC+2VfAdqQc9hIR19/48duWeMF6CDjx0gzpkhX\nL6jcvuNF6ZLPN1Ym114DyAJ62AlL+/tNWtiv+6hD0Z0d0rvP1W6PqrqcztnS6TPND4W/l3+B2zAP\naL/sK0Ab0sNGuqKePy4F60Yv+So/7swL0qnno+XV6vtyA0AzWDgFiVpyS/001hMcPG9dJh172gv8\npcfJnd52P8MuihaI//jL9dOjhkQyAAAgAElEQVQAQDthSDxhaX+/SYsyHBfUy64OrFfOkx66q/G6\nLF3lzThvpOwwtGG20X7ZV4A2ZJZ4O0j7+01a1P8s3t4hjRpZdWyP1PeUNGFs5fbRc6W3TkavQ9cY\n6c0fVW77xkbplrtrA/aSW6T7fxg9b4k2zDraL/sK0Iacw0b7OPvj3nN1AO0YJk2/Qnr1QON5Hz1e\n2WP+5aO1PW2Jc9YAso1z2Gip8qDpeqWHtzcXrP2cu8i7brv8xwHBGkDWMSSesLS/36Q1Ohw3frR0\n9OmYK+Oje35z14VLtGHW0X7ZV4A2jDQkTg8bqTh2wuv1rlidTP7L7xw4R95ksAaAdkEPO2Fpf79J\ni/PXfRx31Epi6Js2zDbaL/sK0Ib0sJEtpeuxrWfwbl7lVq6t3XbOZZXHAUBe0cNOWNrfb9L4dZ99\neW9D2i/7CtCG9LABAMgLAjYAABlAwAYAIANSX+ls1qxZ6u2NYXpwm8r7+aW8n1uSaMOso/2yL+9t\nGBU9bAAAMiD1HjYAZEW7rhWAYqCHDQAhbr5m8F7scSjlddPV8eSH4iBgA4CPrjFeYL3zS8nkv/pG\nL/9JXcnkj/xhSBwAqsTVm47i0MCtYBkqRz30sAGgTCuDdTuUi+wgYAOApN88m37QdL3Sn34q3Tqg\nfRGwARSe65VGDG8+nxvuaD6Pzben/8MB7Ylz2AAK7Z2dzedRfv75rx/wnpsNur95Vhr5h83lgXyh\nhw2g0EaOqJ+me7503w/89wVNFmt2ElkcPX7kCwEbQGHV6wWX7rPe1y999i+bD8Ll9263Hum8P2mu\nfigWAjaAQqoXDL91v//2RoO233Ev761/HEEbJQRsAIXTHWGxkuV3Jl8PKdoPgAljk68H2h8BG0Dh\nHN4aX15BPeA4e8Z9T8WXF7KLWeIACuXPrhl87de7LQVa1xt9+Nv1SidOSmPmSsefkUaPil6fDV+J\nVp8VS6VvboqeL/KHHjaAQrljYG3woGC8//Dg6zkza/cH9ZxLQTooWAcdd91i7/lXB/33l+q5dqX/\nfhQHARsAykxbOPh6x/rKQBs2zP3hq7znCZcGp6nOq/z9uYuGVk8UDwEbQGE0e1759cPB+155zXs+\nejw4Tdi+KJgxXmwEbAAos3BO8L6pC4P3RRHW+150SXN5I/8I2AAK6WTAkqSPrWttPUoeWeu//Z1n\nW1sPtC8CNoBCmDyh8v1ZI7wh5rPKliaNMuS88ZHGyn94e/005eWPGum9H1m1ROnEcY2Vj+wjYAMo\nhINP+G8/uVM69bz3OsplXNd/tXbb6TOV7/v6a9NcGWGWd6n8/m3S2zv80xx5sn4+yCcCNoDC6xjW\n3PHDL6583z2/ufzGvq+545FPBGwAKBOll71kVeV758LTf+5r8ZSLYkskYJvZMDP7ZzN7NIn8ASBN\n9w9xadMNW5KpB4olqR72lyT9PKG8AWDIbloTPW2re7tDKW8onwP5EnvANrOpki6XdE/ceQNAo9bc\nFG9+X7g9Wrq47/oV9+dAdiTRw/6mpC9L+u9BCcxsmZn1mlnvkSNHEqgCADRn0Yrw/d9+0Hvevtt/\n/5ZnvOeg+2qXVM8ev/by+nVDMcUasM1skaTDzrldYemcc99xzvU453q6u7vjrAIANGT6ByrfPxZw\nWVW1ecv8t38mYk+4+vrse30uGwOk+HvYcyRdYWavStos6VIz+7uYywCA2P3Y5yTeguXhx3SFLDUq\nSeM/Eb5/xerw/UC5WAO2c+4W59xU59wHJS2R9CPn3GfjLAMAGjHxk+H7p0yq3fZ4nWVBj9W5mUf/\nifD96xq4v3XYeuTIN67DBlAIb/66seOSmjF+1c2NHdfsHb+QXR1JZeyc2yZpW1L5A0CWfX9b2jVA\n1tDDBoABk7vSLX/2eemWj/ZGwAZQGPWGtw8OcQWzch/7kDT/Iul3pjaex3Mbw/ezfGmxJTYkDgBZ\n5HqDA+PCOc3dL/uyG6StzwWXC4QhYAMolJVrpdU3hqfp3yaNm+e9PrRVmlQ1VH7drdK9Q7hTwpyZ\n0o710hN3D27bd0CacYX3OkrP/osxr5iG7DFX7zYzCevp6XG9vfn9aWlmaVchUWn//bQCbZhtfu0X\npTdrPYPpNm+Vlq4KTz8U3/26tPSy2nLq1cdP3ttPyv+/QUm7nHN1T3gQsBOW9z+0tP9+WoE2zDa/\n9ps4TjryZIRjI54zXjxXun6xNG+WdOyE9JM90m0bpJ/trX9slGA94dLgy7ny3n5S/v8NKmLAZkgc\nQOH09Td+7JY1XoAOMn6MNGOKdPWCyu07XpQu+XxjZXLtNSQCNoCCijIUXZqA1tkhvVs1WWwoM7Zd\nr/TxCwbL65wtnT7T3FA4ioeADaCwop4/LgXrRoNn+XFnXpBOPR8tL4I1ynEdNoBCW3JL/TTWExw8\nb10mHXvaC/ylx8md3nY/wy6KFoj/+Mv106BYmHSWsLxPlkj776cVaMNsi9J+Qb3s6sB65Tzpobsa\nr8vSVd6M80bKDpL39pPy/29QTDoDgGisR3p7hzRqZO2+vqekCWMrt42eK711Mnr+XWOkN38kbbrN\ne0jSNzZKt9xdm3bJLdL9P4yeN4qDgA0Aks7+uPdc3ePtGCZNv0J69UDjeR89Xtlj/uWjtT1tiXPW\nCMc5bAAoUx40Xa/08PbmgrWfcxd5122X/zggWKMeetgAUMV6pPGjpaNPS9de7j2S0j2/uevCURz0\nsAHAx7ETXuBesTqZ/Jff6eVPsEZU9LABIMS6Td5DiueOWgx9o1H0sAEgotL12NYzeDevcivX1m47\n57LK44BG0cMGgAb8+i3/ALzmvtbXBcVADxsAgAwgYAMAkAEEbAAAMiD1tcTNLNcL4ab9/SatAGv8\n0oYZR/tlXwHaMNJa4vSwAQDIAGaJAwCKY1cMIxKz0unx08MGAOTboTu9QB1HsJYG8zqU0DJ4ATiH\nnbC0v9+kcf4s+/LehrRf9jXchqfelPZMjLcyfs4/KHVObvjwqOewGRIHAORPXL3pKPac4z0nPFTO\nkDgAIF9aGaxbWC4BGwCQD7tHpBesS3aZdHRzIlkTsAEA2bfLJPdu09nccEcMddm3NJEfDkw6S1ja\n32/SmPCSfXlvQ9ov++q24e6RkvttU2X43cil6dup2nDpwvr1YuEUAEAxRAjW3fOl+37gvy/otqdN\n3w41hh5/OXrYCUv7+00av+6zL+9tSPtlX2gb1hl6jtJzDgvM9dJ+dIb00wdCq1B39jg9bABAvtUJ\n1t+63397oz1nv+Ne3hvhwJjOZxOwAQDZc/pw3STL72xBPRTxB8DpvqbLIWADALLnpcZXFqsWNLms\n6Uln5V7qbjoLVjoDAGTLG4PXXoWdo3a90Ye/Xa904qQ0Zq50/Blp9Kjo1dnwlcHXoefMD66Vzrkx\nesZV6GEDALLlwJ9LCg7G+8tGy+fMrN0f1HMuBemgYB103HWLvedfHfTf/149X7/JP0FEBGwAQK5M\nWzj4esf6ykAbNsz94au85wmXBqepzqv8/bmLhlbPoSJgAwCyo8kZ16+HzFV75TXv+ejx4DRh+yJp\nov4EbABAriycE7xv6sLgfVGE9b4XXdJc3vUQsAEAmXRyp//2x9a1th4lj6z13/7Os/HkT8AGAGTD\nqcpZXWeN8M4hnzVicFuUS7E2PtJY8Q9vr5+mvPxRI733I4dXJTp1pKHyWZo0YWl/v0kr/LKIOZD3\nNqT9su+9Ngw5/3v6jNQ5eyC9T9CunlFenab8eEk68qQ0cdzQ8ihP079NGvu+wOpWLFfK0qQAgMLo\nGNbc8cMvrnzfPb+5/EKDdYMI2ACAXImyWMqSVZXv6w3EfO5r8ZTbjEQCtpm9amb/YmYvmlmci7sB\nANC0+7cOLf2GLcnUYyiS7GF/wjl3QZRxeQAA6rlpTfS0Sfd2mylvKJ+jHEPiAIBMWNPcyp41vnB7\ntHRx3/Wr0c+RVMB2kraa2S4zW1a908yWmVkvw+UAgKQsWhG+/9sPes/bd/vv3/KM9xx0X+2SK1dW\nvr/28vp1a0Qil3WZ2QeccwfMbJKkH0r6onPumYC0ub7mgktKso82zDbaL/uiXNYlSTOukPYdqDp2\noFsYNGRd745eYfuD8o50W852uazLOXdg4PmwpIckXZREOQAAlPz4ntptC5aHH9MVstSoJI3/RPj+\nFavD98cp9oBtZmeb2ejSa0l/JOmncZcDACiYmeErhE2ZVLvt8TrLgh6rczOP/hPh+9dtCt/v6/y+\nBg6SOho6KtxkSQ8NDNN0SPquc+7xBMoBABRJx8SGDktqxvhVNzd4YOeEhg6LPWA75/ZK8rllOAAA\n+fH9ba0tj8u6AAC5Mbkr3fJnn5dc3tz8I2Fpf79JK9QM1ZzKexvSftlX04Z1Zos3OgT+sQ95AX/f\nAekX+xvLo+4M8Vm1f49RZ4kncQ4bAIDUhF2KtXBOc/fLvuwGaetzweUmiYANAMiWqXdJ+8NnfPVv\nk8bN814f2ipNqhoqv+5W6d5Hoxc5Z6a0Y730xN2D2/Yd8K79lqSDUdYmn/ZX0Qv0wZB4wtL+fpNW\nyOG4nMl7G9J+2efbhnWGxSWvl13q9W7eKi1dFZ5+KL77dWnpZbXlhPIZDpeiD4kTsBOW9vebtML+\nZ5EjeW9D2i/7fNvw1BFpj8+F11Wins9ePFe6frE0b5Z07IT0kz3SbRukn+2NUL8owfr8vsDLuTiH\nDQDIr87uhg/dssYL0EHGj5FmTJGuXlC5fceL0iWfb7DQBq+9LkcPO2Fpf79JK+yv+xzJexvSftkX\n2oYRh8Y7O6R3n6vdHrkOVb3oztnS6TPNDYW/Vw962ACA3JvlIgXtUrBu9JKv8uPOvCCdej5iXnWC\n9VCwcAoAINum11/Q23qCA+yty6RjT3u95dLj5E5vu59hF0UM1tO/FyFRdAyJJyzt7zdphR+Oy4G8\ntyHtl32R2jCgl10dWK+cJz10V+N1WbrKm3FeLnBYPGLvmlnibSLt7zdp/GeRfXlvQ9ov+yK34e5R\nknunYpP1SH1PSRPGViYdPVd662T0OnSNkd78UeW2b2yUbrnbJ2BP3yR1LYmcN+ewAQDFcuFABK7q\nbXcMk6ZfIb16oPGsjx6v7K3/8tHanrakWM9ZV+McNgAgX8qCpuuVHt7eXLD2c+4i77rtit51gsFa\nYkg8cWl/v0ljOC778t6GtF/2NdyGp45Ke5q//rmu8w83dV141CFxetgAgHzq7PJ6vdPWJpP/tHVe\n/k0E66Ggh52wtL/fpPHrPvvy3oa0X/bF2oYRrtmuK+ahb3rYAABUm+UGHzOP1exe6dcZP/+NyuNS\nQg87YWl/v0nj13325b0Nab/sK0Ab0sMGACAvCNgAAGQAARsAgAxIfaWzWbNmqbc3yv3Jsinv55fy\nfm5Jog2zjvbLvry3YVT0sAEAyAACNgAAGZD6kDiAHGnDRSmAvKCHDaA5h+70AnUcwVoazOvQ6njy\nA3KCgA2gMafe9ALr/i8nk//+m738Tx1KJn8gYxgSBzB0cfWmo9hzjvfMUDkKjh42gKFpZbBuh3KB\nNkHABhDN7hHpB81dJh3dnG4dgJQQsAHUt8sk927T2dxwRwx12bc0/R8OQAo4hw0g3O6RTWdhZfch\n+usHvGfX7AKHu0dIF/62yUyA7KCHDSCcqx8Uu+dL9/3Af58F3DQwaHtkMfT4gSwhYAMIVmfo2Xq8\nR1+/9Nm/bD4Il/IrPc77k+bqB+QJARuAvzrB8Fv3+29vNGj7Hffy3ggHErRREARsALVOH66bZPmd\nLaiHIv4AON2XeD2AtBGwAdR6aXJsWQVNLmt60lm5l7pjzAxoT8wSB1DpjcFrr/x6t6VA63qjD3+7\nXunESWnMXOn4M9LoUdGrs+Erg6/D6qODa6VzboyeMZAx9LABVDrw55KCg/H+stHyOTNr9wf1nEtB\nOihYBx133WLv+VcH/fe/V8/Xb/JPAOQEARvAkExbOPh6x/rKQBs2zP3hq7znCZcGp6nOq/z9uYuG\nVk8gbwjYAAY1OeP69ZC5aq+85j0fPR6cJmxfJMwYR44RsAEMycI5wfumLgzeF0VY73vRJc3lDWQd\nARuAr5M7/bc/tq619Sh5ZK3/9neebW09gLQQsAF4TlXO6jprhHcO+awRg9uiXIq18ZHGin94e/00\n5eWPGum9Hzm8KtGpI41VAGhzBGwAnj3v9918cqd06nnvdZTLuK7/au2202cq3/f116a5cmX9vEvl\n92+T3t4RkGjPpPoZARlEwAZQV8ew5o4ffnHl++75zeU39n3NHQ9kUSIB28zGmdnfm9m/mtnPzewP\nkigHQOtF6WUvWVX53rnw9J/7WjzlAnmWVA97naTHnXP/o6SZkn6eUDkA2tD9W4eWfsOWZOoB5Ens\nAdvMxkiaK2m9JDnn3nXO+ZyxAtBObloTPW2re7tDKW8onwPIkiR62DMkHZG0wcz+2czuMbOzEygH\nQIzWxLyy5xduj5Yu7rt+xf05gHaRRMDukHShpL9xzv2epLcl/UV5AjNbZma9ZtZ75AiXYABZtGhF\n+P5vP+g9b9/tv3/LM95z0H21S6pnj197ef26AXmURMDeL2m/c27gQhD9vbwA/h7n3Heccz3OuZ7u\nbm6LB2TB9A9Uvn8s6LKqKvOW+W//TMSecPX12ff6XDYGFEHsAds5d1DSa2b2kYFNn5T0s7jLAdBa\nP76ndtuC5eHHdIUsNSpJ4z8Rvn/F6vD9QJEkdT/sL0q6z8yGS9or6fqEygEQl5lHpJeCR7ym+KxH\n8nidZUGP1bmZR/+J8P3rNoXv93V+XwMHAe0vkYDtnHtREldNAlnSMbGhw5KaMX7VzQ0e2Dkh1noA\n7YKVzgC0pe9vS7sGQHshYAOIbHJXuuXPPi/d8oE0EbABDJoVvobowSGuYFbuYx+S5l8k/c7UxvN4\nbmOdBHXqD2RZUpPOAOSU6w0+b71wTnP3y77sBmnrc8HlAkVGwAZQaepd0v7wGV/926Rx87zXh7ZK\nk6qGyq+7Vbr30ehFzpkp7VgvPXH34LZ9B6QZV3ivI/Xsp/1V9AKBDGJIHEClyfVvTF26vaXr9YL1\n5q1er7v0GEqwlqSdL1Uev+kJb6GWUq860rnzSV8cWqFAxpird9+7hPX09Lje3vyOdZlZ2lVIVNp/\nP61QyDY8dUTa43PhdZWol3Qtnitdv1iaN0s6dkL6yR7ptg3Sz/ZGqF+U/x7O7wu8nKuQ7ZczeW9D\nSbucc3X/NTEkDqBWZ+NLBm9Z4wXoIOPHSDOmSFcvqNy+40Xpks83WCjXXqMACNgA/M1y0q7wnk1p\nAlpnh/Ru1WSxoSyo4nqlj18w2JvunC2dPhOxd83McBQEARtAsAhBWxoM1o2uelZ+3JkXpFPPR8yL\nYI0CYdIZgHDT6y/oXZos5ufWZdKxp73eculxcqe33c+wiyIG6+nfi5AIyA8mnSUs75Ml0v77aQXa\nUIG97OrAeuU86aG7Gq/L0lXejPNygcPiEXvXtF/25b0NxaQzALGZ5aTdoyT3Ts2uvqekCWMrt42e\nK711Mnr2XWOkN38kbbrNe0jSNzZKt9ztk3j6JqlrSfTMgZwgYAOI5sKBCFzV2+4YJk2/Qnr1QONZ\nHz1e2Vv/5aO1PW1JnLNGoXEOG8DQlAVN1ys9vL25YO3n3EXeddsVw+EEaxQcPWwAQzfLSaeOSnsm\n6NrLpWsvT7Cs8w83dV04kBf0sAE0prPLC9zT1iaT/7R1Xv4Ea0ASPWwAzZq0wntIka7Zrouhb8AX\nPWwA8ZnlBh8zj9XsXunXGT//jcrjAPiihw0gGR3jagLw6r9LqS5ADtDDBgAgAwjYAABkAAEbAIAM\nSH0tcTPL9SyTtL/fpBVgjV/aMONov+wrQBtGWkucHjYAABmQm1nikW50X0ej9/IFACBpme5h33zN\n4P1141DK66ar48kPAIC4ZPIcdulWfEmb/EfS4aPN5ZH295s0zp9lX97bkPbLvgK0YT7vhx1XbzqK\nQwO392OoHACQtkwNibcyWLdDuQAAlGQiYP/m2fSDpuuV/vRT6dYBAFBcbR+wXa80Ynjz+dxwR/N5\nbL49/R8OAIBiautJZ+/slEaOaDJ/n/PPzQbd374rjfzDaGnT/n6TxoSX7Mt7G9J+2VeANsz+wilR\ngnX3fOm+H/jvC5os1uwksjh6/AAADEXb9rDr9YKj9JzDAnO9tB+dIf30gaHXoaac/P8yTLsKiaMN\ns432y74CtGF2e9j1gvW37vff3mjP2e+4l/fWP47z2QCAVmm7gN3dVT/N8juTr4cU7QfAhLHJ1wMA\ngLYL2Ie3xpdXUA84zp5x31Px5QUAQJC2Wunsz64ZfB12jtr1Rh/+dr3SiZPSmLnS8Wek0aOi12fD\nV6LVZ8VS6ZuboucLAMBQtVUP+44vec9BwXj/4cHXc2bW7g/qOZeCdFCwDjruusXe868O+u8v1XPt\nSv/9AADEpa0Cdj3TFg6+3rG+MtCGDXN/+CrvecKlwWmq8yp/f+6iodUTAIC4tU3Abva88uuHg/e9\n8pr3fPR4cJqwfVEwYxwAkKS2CdhRLJwTvG/qwuB9UYT1vhdd0lzeAAA0qy0D9smd/tsfW9faepQ8\nstZ/+zvPtrYeAIDiaouAPXlC5fuzRnhDzGeVLU0aZch54yONlf/w9vppyssfNdJ7P7JqidKJ4xor\nHwCAetpiadKwYHz6jNQ523vtl656Rnl1mvLjJenIk7WBtV4e5Wn6t0lj3xdc35q88r+kXtpVSBxt\nmG20X/YVoA2zuzRpuY5hzR0//OLK993zm8svLFgDAJCUtg/Y5aIslrJkVeX7ej/MPve1eMoFACBJ\nsQdsM/uImb1Y9jhuZiviLifI/UNc2nTDlmTqAQBAnGIP2M65f3POXeCcu0DSLEknJT0UdsxNa6Ln\n3+re7lDKG8rnAABgKJIeEv+kpF84534ZlmjNTfEW+oXbo6WL+65fcX8OAABKkg7YSyTV3BbDzJaZ\nWa+ZNbQ+2KI6A+zfftB73r7bf/+WZ7znoPtql1xZtUb4tZfXrxsAAElI7LIuMxsu6YCkjzrnDoWk\nC72sS5JmXCHtO1C5rXRM0JB1vTt6he0PyjvKteBc1pU/tGG20X7ZV4A2TP2yrgWSdocF66h+fI9P\n5svDj+kKWWpUksZ/Inz/itXh+wEAaKUkA/ZS+QyH+5n4yfD9UybVbnu8zrKgx+rczKP/RPj+dQ3c\n3zpsPXIAAJqRSMA2s1GSPiXpH6Kkf/PXDZaT0Izxq25u7Lhm7/gFAECQjiQydc6dlDShbsI29f1t\nadcAAIBKmVnpbHJXuuXPPi/d8gEAxdYWN/8ova43C7vRIfCPfcgL+PsOSL/Y31gejdYt7e83acxQ\nzb68tyHtl30FaMNIs8QTGRJPStilWAvnNHe/7MtukLY+F1wuAABpaquAvXKttPrG8DT926Rx87zX\nh7ZKk6qGyq+7Vbr30ehlzpkp7VgvPXH34LZ9B7xrvyXpYIS1yb8Y84ppAABUa6shcSn64iSldJu3\nSktXhacfiu9+XVp6WW059eoTJO3vN2kMx2Vf3tuQ9su+ArRhpCHxtgvYE8dJR56McFzE89mL50rX\nL5bmzZKOnZB+ske6bYP0s731j40SrCdcGn45V9rfb9L4zyL78t6GtF/2FaANs3kOu6+/8WO3rPEC\ndJDxY6QZU6SrF1Ru3/GidMnnGyuTa68BAK3Qdj3skqhD0Z0d0rvP1W6PqrqcztnS6TPND4W/l3/+\nfxmmXYXE0YbZRvtlXwHaMJs97JKo549LwbrRS77KjzvzgnTq+Wh5tfq+3ACAYmvrhVOW3FI/jfUE\nB89bl0nHnvYCf+lxcqe33c+wi6IF4j/+cv00AADEqW2HxEuCetnVgfXKedJDdzVej6WrvBnnjZQd\nJu3vN2kMx2Vf3tuQ9su+ArRhNmeJ+3l7hzRqZNVxPVLfU9KEsZXbR8+V3joZvfyuMdKbP6rc9o2N\n0i131wbsJbdI9/8wet5SIf7Q0q5C4mjDbKP9sq8AbZjtc9jlzv6491wdQDuGSdOvkF490HjeR49X\n9ph/+WhtT1vinDUAIF1tfQ67WnnQdL3Sw9ubC9Z+zl3kXbdd/uOAYA0ASFsmhsSrjR8tHX06idpU\n6p7f3HXhUiGGctKuQuJow2yj/bKvAG0YaUg8Uz3skmMnvF7vitXJ5L/8zoFz5E0GawAA4pLJHraf\nOO6olcTQd9rfb9L4dZ99eW9D2i/7CtCG+e1h+yldj209g3fzKrdybe22cy6rPA4AgHaVmx52u0r7\n+00av+6zL+9tSPtlXwHasFg9bAAA8oyADQBABhCwAQDIgHZY6axP0i9bWN7EgTJbIqXzSy39jCnI\nexvSfjGi/WLX8s9XgDY8N0qi1CedtZqZ9UY5uZ9lef+MfL5s4/NlW94/n9S+n5EhcQAAMoCADQBA\nBhQxYH8n7Qq0QN4/I58v2/h82Zb3zye16Wcs3DlsAACyqIg9bAAAMoeADQBABhQqYJvZp83s38zs\nFTP7i7TrEycz+1szO2xmP027Lkkws2lm9rSZ/dzMXjazL6Vdp7iZ2Ugze8HMXhr4jF9Nu05xM7Nh\nZvbPZvZo2nVJgpm9amb/YmYvmlkM9xBsL2Y2zsz+3sz+deDf4h+kXae4mNlHBtqt9DhuZivSrle5\nwpzDNrNhkv4/SZ+StF/SP0la6pz7WaoVi4mZzZX0lqT/6pw7L+36xM3M3i/p/c653WY2WtIuSVfm\npf0kybzVIc52zr1lZp2Sdkj6knPuuZSrFhszu0lSj6QxzrlFadcnbmb2qqQe51wuF04xs3sl/dg5\nd4+ZDZc0yjnXn3a94jYQL16XNNs518qFvUIVqYd9kaRXnHN7nXPvStos6TMp1yk2zrlnJB1Nux5J\ncc694ZzbPfD6hKSfS5qSbq3i5TxvDbztHHjk5he1mU2VdLmke9KuC4bOzMZImitpvSQ5597NY7Ae\n8ElJv2inYC0VK2BPkRolYLIAAAIzSURBVPRa2fv9ytl/+EVhZh+U9HuSnk+3JvEbGDJ+UdJhST90\nzuXpM35T0pcl/fe0K5IgJ2mrme0ys2VpVyZmMyQdkbRh4LTGPWZ2dtqVSsgSSZvSrkS1IgVsv8Vo\nc9N7KQoze5+kByWtcM4dT7s+cXPOnXHOXSBpqqSLzCwXpzfMbJGkw865XWnXJWFznHMXSlog6T8O\nnKrKiw5JF0r6G+fc70l6W1Ku5gJJ0sBQ/xWSvpd2XaoVKWDvlzSt7P1USQdSqgsaMHBe90FJ9znn\n/iHt+iRpYKhxm6RPp1yVuMyRdMXAOd7Nki41s79Lt0rxc84dGHg+LOkheafi8mK/pP1loz5/Ly+A\n580CSbudc4fSrki1IgXsf5L0YTObPvALaomkLSnXCRENTMhaL+nnzrk1adcnCWbWbWbjBl6fJWm+\npH9Nt1bxcM7d4pyb6pz7oLx/ez9yzn025WrFyszOHpgQqYGh4j+SlJurNpxzByW9ZmYfGdj0SUm5\nmfRZZqnacDhcao/ba7aEc+60md0g6QlJwyT9rXPu5ZSrFRsz2yRpnqSJZrZf0lecc+vTrVWs5ki6\nRtK/DJzjlaRVzrl/TLFOcXu/pHsHZqj+O0kPOOdyeflTTk2W9NDArSA7JH3XOfd4ulWK3Rcl3TfQ\n6dkr6fqU6xMrMxsl70qi/5B2XfwU5rIuAACyrEhD4gAAZBYBGwCADCBgAwCQAQRsAAAygIANAEAG\nELABAMgAAjYAABnw/wPRIOc/pYUmbAAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plot_NQueens(astar)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "This concludes the notebook.\n", "Hope you learned something new!" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.6.1" }, "widgets": { "state": { "1516e2501ddd4a2e8e3250bffc0164db": { "views": [ { "cell_index": 59 } ] }, "17be64c89a9a4a43b3272cb018df0970": { "views": [ { "cell_index": 59 } ] }, "ac05040009a340b0af81b0ee69161fbc": { "views": [ { "cell_index": 59 } ] }, "d9735ffe77c24f13ae4ad3620ce84334": { "views": [ { "cell_index": 59 } ] } }, "version": "1.2.0" } }, "nbformat": 4, "nbformat_minor": 1 }