Newer
Older
yield theta
raise StopIteration()
q1 = subst(theta, goals[0])
for r in KB.clauses:
sar = standardize_apart(r)
# Split into head and body
if is_symbol(sar.op):
head = sar
body = []
elif sar.op == '>>': # sar = (Body1 & Body2 & ...) >> Head
head = sar.args[1]
else:
raise Exception("Invalid clause in FolKB: %s" % r)
if theta1 is not None:
if body == []:
new_goals = conjuncts(body) + goals[1:]
for ans in fol_bc_ask(KB, new_goals, subst_compose(theta1, theta)):
yield ans
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
def subst_compose (s1, s2):
"""Return the substitution which is equivalent to applying s2 to
the result of applying s1 to an expression.
>>> s1 = {x: A, y: B}
>>> s2 = {z: x, x: C}
>>> p = F(x) & G(y) & expr('H(z)')
>>> subst(s1, p)
((F(A) & G(B)) & H(z))
>>> subst(s2, p)
((F(C) & G(y)) & H(x))
>>> subst(s2, subst(s1, p))
((F(A) & G(B)) & H(x))
>>> subst(subst_compose(s1, s2), p)
((F(A) & G(B)) & H(x))
>>> subst(s1, subst(s2, p))
((F(C) & G(B)) & H(A))
>>> subst(subst_compose(s2, s1), p)
((F(C) & G(B)) & H(A))
>>> ppsubst(subst_compose(s1, s2))
{x: A, y: B, z: x}
>>> ppsubst(subst_compose(s2, s1))
{x: C, y: B, z: A}
>>> subst(subst_compose(s1, s2), p) == subst(s2, subst(s1, p))
True
>>> subst(subst_compose(s2, s1), p) == subst(s1, subst(s2, p))
True
"""
sc = {}
for x, v in s1.items():
if s2.has_key(v):
w = s2[v]
sc[x] = w # x -> v -> w
else:
sc[x] = v
for x, v in s2.items():
if not (s1.has_key(x)):
sc[x] = v
# otherwise s1[x] preemptys s2[x]
return sc
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
#______________________________________________________________________________
# Example application (not in the book).
# You can use the Expr class to do symbolic differentiation. This used to be
# a part of AI; now it is considered a separate field, Symbolic Algebra.
def diff(y, x):
"""Return the symbolic derivative, dy/dx, as an Expr.
However, you probably want to simplify the results with simp.
>>> diff(x * x, x)
((x * 1) + (x * 1))
>>> simp(diff(x * x, x))
(2 * x)
"""
if y == x: return ONE
elif not y.args: return ZERO
else:
u, op, v = y.args[0], y.op, y.args[-1]
if op == '+': return diff(u, x) + diff(v, x)
elif op == '-' and len(args) == 1: return -diff(u, x)
elif op == '-': return diff(u, x) - diff(v, x)
elif op == '*': return u * diff(v, x) + v * diff(u, x)
elif op == '/': return (v*diff(u, x) - u*diff(v, x)) / (v * v)
elif op == '**' and isnumber(x.op):
return (v * u ** (v - 1) * diff(u, x))
elif op == '**': return (v * u ** (v - 1) * diff(u, x)
+ u ** v * Expr('log')(u) * diff(v, x))
elif op == 'log': return diff(u, x) / u
else: raise ValueError("Unknown op: %s in diff(%s, %s)" % (op, y, x))
def simp(x):
if not x.args: return x
args = map(simp, x.args)
u, op, v = args[0], x.op, args[-1]
if op == '+':
if v == ZERO: return u
if u == ZERO: return v
if u == v: return TWO * u
if u == -v or v == -u: return ZERO
elif op == '-' and len(args) == 1:
if u.op == '-' and len(u.args) == 1: return u.args[0] ## --y ==> y
elif op == '-':
if v == ZERO: return u
if u == ZERO: return -v
if u == v: return ZERO
if u == -v or v == -u: return ZERO
elif op == '*':
if u == ZERO or v == ZERO: return ZERO
if u == ONE: return v
if v == ONE: return u
if u == v: return u ** 2
elif op == '/':
if u == ZERO: return ZERO
if v == ZERO: return Expr('Undefined')
if u == v: return ONE
if u == -v or v == -u: return ZERO
elif op == '**':
if u == ZERO: return ZERO
if v == ZERO: return ONE
if u == ONE: return ONE
if v == ONE: return u
elif op == 'log':
if u == ONE: return ZERO
else: raise ValueError("Unknown op: " + op)
## If we fall through to here, we can not simplify further
return Expr(op, *args)
def d(y, x):
"Differentiate and then simplify."
return simp(diff(y, x))
#_______________________________________________________________________________
# Utilities for doctest cases
# These functions print their arguments in a standard order
# to compensate for the random order in the standard representation
def pretty(x):
t = type(x)
if t == dict:
return pretty_dict(x)
elif t == set:
return pretty_set(x)
"""Print the dictionary d.
Prints a string representation of the dictionary
with keys in sorted order according to their string
representation: {a: A, d: D, ...}.
>>> pretty_dict({'m': 'M', 'a': 'A', 'r': 'R', 'k': 'K'})
"{'a': 'A', 'k': 'K', 'm': 'M', 'r': 'R'}"
>>> pretty_dict({z: C, y: B, x: A})
'{x: A, y: B, z: C}'
"""
def format(k, v):
return "%s: %s" % (repr(k), repr(v))
ditems = d.items()
ditems.sort(key=str)
k, v = ditems[0]
dpairs = format(k, v)
for (k, v) in ditems[1:]:
dpairs += (', ' + format(k, v))
"""Print the set s.
>>> pretty_set(set(['A', 'Q', 'F', 'K', 'Y', 'B']))
"set(['A', 'B', 'F', 'K', 'Q', 'Y'])"
>>> pretty_set(set([z, y, x]))
'set([x, y, z])'
"""
slist = list(s)
slist.sort(key=str)
def pp(x):
print pretty(x)
def ppsubst(s):
"""Pretty-print substitution s"""
ppdict(s)
def ppdict(d):
print pretty_dict(d)
def ppset(s):
print pretty_set(s)