README.md 30,2 ko
Newer Older
Oxal's avatar
Oxal a validé
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855
# face-api.js

[![Build Status](https://travis-ci.org/justadudewhohacks/face-api.js.svg?branch=master)](https://travis-ci.org/justadudewhohacks/face-api.js)
[![Slack](https://slack.bri.im/badge.svg)](https://slack.bri.im)

**JavaScript face recognition API for the browser and nodejs implemented on top of tensorflow.js core ([tensorflow/tfjs-core](https://github.com/tensorflow/tfjs))**

![faceapi](https://user-images.githubusercontent.com/31125521/57224752-ad3dc080-700a-11e9-85b9-1357b9f9bca4.gif)

## **[Click me for Live Demos!](https://justadudewhohacks.github.io/face-api.js/)**

## Tutorials

* **[face-api.js — JavaScript API for Face Recognition in the Browser with tensorflow.js](https://itnext.io/face-api-js-javascript-api-for-face-recognition-in-the-browser-with-tensorflow-js-bcc2a6c4cf07)**
* **[Realtime JavaScript Face Tracking and Face Recognition using face-api.js’ MTCNN Face Detector](https://itnext.io/realtime-javascript-face-tracking-and-face-recognition-using-face-api-js-mtcnn-face-detector-d924dd8b5740)**
* **[Realtime Webcam Face Detection And Emotion Recognition - Video](https://youtu.be/CVClHLwv-4I)**
* **[Easy Face Recognition Tutorial With JavaScript - Video](https://youtu.be/AZ4PdALMqx0)**
* **[Using face-api.js with Vue.js and Electron](https://medium.com/@andreas.schallwig/do-not-laugh-a-simple-ai-powered-game-3e22ad0f8166)**
* **[Add Masks to People - Gant Laborde on Learn with Jason](https://www.learnwithjason.dev/fun-with-machine-learning-pt-2)**

## Table of Contents

* **[Features](#features)**
* **[Running the Examples](#running-the-examples)**
* **[face-api.js for the Browser](#face-api.js-for-the-browser)**
* **[face-api.js for Nodejs](#face-api.js-for-nodejs)**
* **[Usage](#getting-started)**
  * **[Loading the Models](#getting-started-loading-models)**
  * **[High Level API](#high-level-api)**
  * **[Displaying Detection Results](#getting-started-displaying-detection-results)**
  * **[Face Detection Options](#getting-started-face-detection-options)**
  * **[Utility Classes](#getting-started-utility-classes)**
  * **[Other Useful Utility](#other-useful-utility)**
* **[Available Models](#models)**
  * **[Face Detection](#models-face-detection)**
  * **[Face Landmark Detection](#models-face-landmark-detection)**
  * **[Face Recognition](#models-face-recognition)**
  * **[Face Expression Recognition](#models-face-expression-recognition)**
  * **[Age Estimation and Gender Recognition](#models-age-and-gender-recognition)**
* **[API Documentation](https://justadudewhohacks.github.io/face-api.js/docs/globals.html)**

# Features

## Face Recognition

![face-recognition](https://user-images.githubusercontent.com/31125521/57297377-bfcdfd80-70cf-11e9-8afa-2044cb167bff.gif)

## Face Landmark Detection

![face_landmark_detection](https://user-images.githubusercontent.com/31125521/57297731-b1ccac80-70d0-11e9-9bd7-59d77f180322.jpg)

## Face Expression Recognition

![preview_face-expression-recognition](https://user-images.githubusercontent.com/31125521/50575270-f501d080-0dfb-11e9-9676-8f419efdade4.png)

## Age Estimation & Gender Recognition

![age_gender_recognition](https://user-images.githubusercontent.com/31125521/57297736-b5603380-70d0-11e9-873d-8b6c7243eb64.jpg)

<a name="running-the-examples"></a>

# Running the Examples

Clone the repository:

``` bash
git clone https://github.com/justadudewhohacks/face-api.js.git
```

## Running the Browser Examples

``` bash
cd face-api.js/examples/examples-browser
npm i
npm start
```

Browse to http://localhost:3000/.

## Running the Nodejs Examples

``` bash
cd face-api.js/examples/examples-nodejs
npm i
```

Now run one of the examples using ts-node:

``` bash
ts-node faceDetection.ts
```

Or simply compile and run them with node:

``` bash
tsc faceDetection.ts
node faceDetection.js
```

<a name="face-api.js-for-the-browser"></a>

# face-api.js for the Browser

Simply include the latest script from [dist/face-api.js](https://github.com/justadudewhohacks/face-api.js/tree/master/dist).

Or install it via npm:

``` bash
npm i face-api.js
```

<a name="face-api.js-for-nodejs"></a>

# face-api.js for Nodejs

We can use the equivalent API in a nodejs environment by polyfilling some browser specifics, such as HTMLImageElement, HTMLCanvasElement and ImageData. The easiest way to do so is by installing the node-canvas package.

Alternatively you can simply construct your own tensors from image data and pass tensors as inputs to the API.

Furthermore you want to install @tensorflow/tfjs-node (not required, but highly recommended), which speeds things up drastically by compiling and binding to the native Tensorflow C++ library:

``` bash
npm i face-api.js canvas @tensorflow/tfjs-node
```

Now we simply monkey patch the environment to use the polyfills:

``` javascript
// import nodejs bindings to native tensorflow,
// not required, but will speed up things drastically (python required)
import '@tensorflow/tfjs-node';

// implements nodejs wrappers for HTMLCanvasElement, HTMLImageElement, ImageData
import * as canvas from 'canvas';

import * as faceapi from 'face-api.js';

// patch nodejs environment, we need to provide an implementation of
// HTMLCanvasElement and HTMLImageElement
const { Canvas, Image, ImageData } = canvas
faceapi.env.monkeyPatch({ Canvas, Image, ImageData })
```

<a name="getting-started"></a>

# Getting Started

<a name="getting-started-loading-models"></a>

## Loading the Models

All global neural network instances are exported via faceapi.nets:

``` javascript
console.log(faceapi.nets)
// ageGenderNet
// faceExpressionNet
// faceLandmark68Net
// faceLandmark68TinyNet
// faceRecognitionNet
// ssdMobilenetv1
// tinyFaceDetector
// tinyYolov2
```

To load a model, you have to provide the corresponding manifest.json file as well as the model weight files (shards) as assets. Simply copy them to your public or assets folder. The manifest.json and shard files of a model have to be located in the same directory / accessible under the same route.

Assuming the models reside in **public/models**:

``` javascript
await faceapi.nets.ssdMobilenetv1.loadFromUri('/models')
// accordingly for the other models:
// await faceapi.nets.faceLandmark68Net.loadFromUri('/models')
// await faceapi.nets.faceRecognitionNet.loadFromUri('/models')
// ...
```

In a nodejs environment you can furthermore load the models directly from disk:

``` javascript
await faceapi.nets.ssdMobilenetv1.loadFromDisk('./models')
```

You can also load the model from a tf.NamedTensorMap:

``` javascript
await faceapi.nets.ssdMobilenetv1.loadFromWeightMap(weightMap)
```

Alternatively, you can also create own instances of the neural nets:

``` javascript
const net = new faceapi.SsdMobilenetv1()
await net.loadFromUri('/models')
```

You can also load the weights as a Float32Array (in case you want to use the uncompressed models):

``` javascript
// using fetch
net.load(await faceapi.fetchNetWeights('/models/face_detection_model.weights'))

// using axios
const res = await axios.get('/models/face_detection_model.weights', { responseType: 'arraybuffer' })
const weights = new Float32Array(res.data)
net.load(weights)
```

<a name="getting-high-level-api"></a>

## High Level API

In the following **input** can be an HTML img, video or canvas element or the id of that element.

``` html
<img id="myImg" src="images/example.png" />
<video id="myVideo" src="media/example.mp4" />
<canvas id="myCanvas" />
```

``` javascript
const input = document.getElementById('myImg')
// const input = document.getElementById('myVideo')
// const input = document.getElementById('myCanvas')
// or simply:
// const input = 'myImg'
```

### Detecting Faces

Detect all faces in an image. Returns **Array<[FaceDetection](#interface-face-detection)>**:

``` javascript
const detections = await faceapi.detectAllFaces(input)
```

Detect the face with the highest confidence score in an image. Returns **[FaceDetection](#interface-face-detection) | undefined**:

``` javascript
const detection = await faceapi.detectSingleFace(input)
```

By default **detectAllFaces** and **detectSingleFace** utilize the SSD Mobilenet V1 Face Detector. You can specify the face detector by passing the corresponding options object:

``` javascript
const detections1 = await faceapi.detectAllFaces(input, new faceapi.SsdMobilenetv1Options())
const detections2 = await faceapi.detectAllFaces(input, new faceapi.TinyFaceDetectorOptions())
```

You can tune the options of each face detector as shown [here](#getting-started-face-detection-options).

### Detecting 68 Face Landmark Points

**After face detection, we can furthermore predict the facial landmarks for each detected face as follows:**

Detect all faces in an image + computes 68 Point Face Landmarks for each detected face. Returns **Array<[WithFaceLandmarks<WithFaceDetection<{}>>](#getting-started-utility-classes)>**:

``` javascript
const detectionsWithLandmarks = await faceapi.detectAllFaces(input).withFaceLandmarks()
```

Detect the face with the highest confidence score in an image + computes 68 Point Face Landmarks for that face. Returns **[WithFaceLandmarks<WithFaceDetection<{}>>](#getting-started-utility-classes) | undefined**:

``` javascript
const detectionWithLandmarks = await faceapi.detectSingleFace(input).withFaceLandmarks()
```

You can also specify to use the tiny model instead of the default model:

``` javascript
const useTinyModel = true
const detectionsWithLandmarks = await faceapi.detectAllFaces(input).withFaceLandmarks(useTinyModel)
```

### Computing Face Descriptors

**After face detection and facial landmark prediction the face descriptors for each face can be computed as follows:**

Detect all faces in an image + compute 68 Point Face Landmarks for each detected face. Returns **Array<[WithFaceDescriptor<WithFaceLandmarks<WithFaceDetection<{}>>>](#getting-started-utility-classes)>**:

``` javascript
const results = await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceDescriptors()
```

Detect the face with the highest confidence score in an image + compute 68 Point Face Landmarks and face descriptor for that face. Returns **[WithFaceDescriptor<WithFaceLandmarks<WithFaceDetection<{}>>>](#getting-started-utility-classes) | undefined**:

``` javascript
const result = await faceapi.detectSingleFace(input).withFaceLandmarks().withFaceDescriptor()
```

### Recognizing Face Expressions

**Face expression recognition can be performed for detected faces as follows:**

Detect all faces in an image + recognize face expressions of each face. Returns **Array<[WithFaceExpressions<WithFaceLandmarks<WithFaceDetection<{}>>>](#getting-started-utility-classes)>**:

``` javascript
const detectionsWithExpressions = await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceExpressions()
```

Detect the face with the highest confidence score in an image + recognize the face expressions for that face. Returns **[WithFaceExpressions<WithFaceLandmarks<WithFaceDetection<{}>>>](#getting-started-utility-classes) | undefined**:

``` javascript
const detectionWithExpressions = await faceapi.detectSingleFace(input).withFaceLandmarks().withFaceExpressions()
```

**You can also skip .withFaceLandmarks(), which will skip the face alignment step (less stable accuracy):**

Detect all faces without face alignment + recognize face expressions of each face. Returns **Array<[WithFaceExpressions<WithFaceDetection<{}>>](#getting-started-utility-classes)>**:

``` javascript
const detectionsWithExpressions = await faceapi.detectAllFaces(input).withFaceExpressions()
```

Detect the face with the highest confidence score without face alignment + recognize the face expression for that face. Returns **[WithFaceExpressions<WithFaceDetection<{}>>](#getting-started-utility-classes) | undefined**:

``` javascript
const detectionWithExpressions = await faceapi.detectSingleFace(input).withFaceExpressions()
```

### Age Estimation and Gender Recognition

**Age estimation and gender recognition from detected faces can be done as follows:**

Detect all faces in an image + estimate age and recognize gender of each face. Returns **Array<[WithAge<WithGender<WithFaceLandmarks<WithFaceDetection<{}>>>>](#getting-started-utility-classes)>**:

``` javascript
const detectionsWithAgeAndGender = await faceapi.detectAllFaces(input).withFaceLandmarks().withAgeAndGender()
```

Detect the face with the highest confidence score in an image  + estimate age and recognize gender for that face. Returns **[WithAge<WithGender<WithFaceLandmarks<WithFaceDetection<{}>>>>](#getting-started-utility-classes) | undefined**:

``` javascript
const detectionWithAgeAndGender = await faceapi.detectSingleFace(input).withFaceLandmarks().withAgeAndGender()
```

**You can also skip .withFaceLandmarks(), which will skip the face alignment step (less stable accuracy):**

Detect all faces without face alignment + estimate age and recognize gender of each face. Returns **Array<[WithAge<WithGender<WithFaceDetection<{}>>>](#getting-started-utility-classes)>**:

``` javascript
const detectionsWithAgeAndGender = await faceapi.detectAllFaces(input).withAgeAndGender()
```

Detect the face with the highest confidence score without face alignment + estimate age and recognize gender for that face. Returns **[WithAge<WithGender<WithFaceDetection<{}>>>](#getting-started-utility-classes) | undefined**:

``` javascript
const detectionWithAgeAndGender = await faceapi.detectSingleFace(input).withAgeAndGender()
```

### Composition of Tasks

**Tasks can be composed as follows:**

``` javascript
// all faces
await faceapi.detectAllFaces(input)
await faceapi.detectAllFaces(input).withFaceExpressions()
await faceapi.detectAllFaces(input).withFaceLandmarks()
await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceExpressions()
await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceExpressions().withFaceDescriptors()
await faceapi.detectAllFaces(input).withFaceLandmarks().withAgeAndGender().withFaceDescriptors()
await faceapi.detectAllFaces(input).withFaceLandmarks().withFaceExpressions().withAgeAndGender().withFaceDescriptors()

// single face
await faceapi.detectSingleFace(input)
await faceapi.detectSingleFace(input).withFaceExpressions()
await faceapi.detectSingleFace(input).withFaceLandmarks()
await faceapi.detectSingleFace(input).withFaceLandmarks().withFaceExpressions()
await faceapi.detectSingleFace(input).withFaceLandmarks().withFaceExpressions().withFaceDescriptor()
await faceapi.detectSingleFace(input).withFaceLandmarks().withAgeAndGender().withFaceDescriptor()
await faceapi.detectSingleFace(input).withFaceLandmarks().withFaceExpressions().withAgeAndGender().withFaceDescriptor()
```

### Face Recognition by Matching Descriptors

To perform face recognition, one can use faceapi.FaceMatcher to compare reference face descriptors to query face descriptors.

First, we initialize the FaceMatcher with the reference data, for example we can simply detect faces in a **referenceImage** and match the descriptors of the detected faces to faces of subsequent images:

``` javascript
const results = await faceapi
  .detectAllFaces(referenceImage)
  .withFaceLandmarks()
  .withFaceDescriptors()

if (!results.length) {
  return
}

// create FaceMatcher with automatically assigned labels
// from the detection results for the reference image
const faceMatcher = new faceapi.FaceMatcher(results)
```

Now we can recognize a persons face shown in **queryImage1**:

``` javascript
const singleResult = await faceapi
  .detectSingleFace(queryImage1)
  .withFaceLandmarks()
  .withFaceDescriptor()

if (singleResult) {
  const bestMatch = faceMatcher.findBestMatch(singleResult.descriptor)
  console.log(bestMatch.toString())
}
```

Or we can recognize all faces shown in **queryImage2**:

``` javascript
const results = await faceapi
  .detectAllFaces(queryImage2)
  .withFaceLandmarks()
  .withFaceDescriptors()

results.forEach(fd => {
  const bestMatch = faceMatcher.findBestMatch(fd.descriptor)
  console.log(bestMatch.toString())
})
```

You can also create labeled reference descriptors as follows:

``` javascript
const labeledDescriptors = [
  new faceapi.LabeledFaceDescriptors(
    'obama',
    [descriptorObama1, descriptorObama2]
  ),
  new faceapi.LabeledFaceDescriptors(
    'trump',
    [descriptorTrump]
  )
]

const faceMatcher = new faceapi.FaceMatcher(labeledDescriptors)
```

<a name="getting-started-displaying-detection-results"></a>

## Displaying Detection Results

Preparing the overlay canvas:

``` javascript
const displaySize = { width: input.width, height: input.height }
// resize the overlay canvas to the input dimensions
const canvas = document.getElementById('overlay')
faceapi.matchDimensions(canvas, displaySize)
```

face-api.js predefines some highlevel drawing functions, which you can utilize:

``` javascript
/* Display detected face bounding boxes */
const detections = await faceapi.detectAllFaces(input)
// resize the detected boxes in case your displayed image has a different size than the original
const resizedDetections = faceapi.resizeResults(detections, displaySize)
// draw detections into the canvas
faceapi.draw.drawDetections(canvas, resizedDetections)

/* Display face landmarks */
const detectionsWithLandmarks = await faceapi
  .detectAllFaces(input)
  .withFaceLandmarks()
// resize the detected boxes and landmarks in case your displayed image has a different size than the original
const resizedResults = faceapi.resizeResults(detectionsWithLandmarks, displaySize)
// draw detections into the canvas
faceapi.draw.drawDetections(canvas, resizedResults)
// draw the landmarks into the canvas
faceapi.draw.drawFaceLandmarks(canvas, resizedResults)


/* Display face expression results */
const detectionsWithExpressions = await faceapi
  .detectAllFaces(input)
  .withFaceLandmarks()
  .withFaceExpressions()
// resize the detected boxes and landmarks in case your displayed image has a different size than the original
const resizedResults = faceapi.resizeResults(detectionsWithExpressions, displaySize)
// draw detections into the canvas
faceapi.draw.drawDetections(canvas, resizedResults)
// draw a textbox displaying the face expressions with minimum probability into the canvas
const minProbability = 0.05
faceapi.draw.drawFaceExpressions(canvas, resizedResults, minProbability)
```

You can also draw boxes with custom text ([DrawBox](https://github.com/justadudewhohacks/tfjs-image-recognition-base/blob/master/src/draw/DrawBox.ts)):

``` javascript
const box = { x: 50, y: 50, width: 100, height: 100 }
// see DrawBoxOptions below
const drawOptions = {
  label: 'Hello I am a box!',
  lineWidth: 2
}
const drawBox = new faceapi.draw.DrawBox(box, drawOptions)
drawBox.draw(document.getElementById('myCanvas'))
```

DrawBox drawing options:

``` javascript
export interface IDrawBoxOptions {
  boxColor?: string
  lineWidth?: number
  drawLabelOptions?: IDrawTextFieldOptions
  label?: string
}
```

Finally you can draw custom text fields ([DrawTextField](https://github.com/justadudewhohacks/tfjs-image-recognition-base/blob/master/src/draw/DrawTextField.ts)):

``` javascript
const text = [
  'This is a textline!',
  'This is another textline!'
]
const anchor = { x: 200, y: 200 }
// see DrawTextField below
const drawOptions = {
  anchorPosition: 'TOP_LEFT',
  backgroundColor: 'rgba(0, 0, 0, 0.5)'
}
const drawBox = new faceapi.draw.DrawTextField(text, anchor, drawOptions)
drawBox.draw(document.getElementById('myCanvas'))
```

DrawTextField drawing options:

``` javascript
export interface IDrawTextFieldOptions {
  anchorPosition?: AnchorPosition
  backgroundColor?: string
  fontColor?: string
  fontSize?: number
  fontStyle?: string
  padding?: number
}

export enum AnchorPosition {
  TOP_LEFT = 'TOP_LEFT',
  TOP_RIGHT = 'TOP_RIGHT',
  BOTTOM_LEFT = 'BOTTOM_LEFT',
  BOTTOM_RIGHT = 'BOTTOM_RIGHT'
}
```

<a name="getting-started-face-detection-options"></a>

## Face Detection Options

### SsdMobilenetv1Options

``` javascript
export interface ISsdMobilenetv1Options {
  // minimum confidence threshold
  // default: 0.5
  minConfidence?: number

  // maximum number of faces to return
  // default: 100
  maxResults?: number
}

// example
const options = new faceapi.SsdMobilenetv1Options({ minConfidence: 0.8 })
```

### TinyFaceDetectorOptions

``` javascript
export interface ITinyFaceDetectorOptions {
  // size at which image is processed, the smaller the faster,
  // but less precise in detecting smaller faces, must be divisible
  // by 32, common sizes are 128, 160, 224, 320, 416, 512, 608,
  // for face tracking via webcam I would recommend using smaller sizes,
  // e.g. 128, 160, for detecting smaller faces use larger sizes, e.g. 512, 608
  // default: 416
  inputSize?: number

  // minimum confidence threshold
  // default: 0.5
  scoreThreshold?: number
}

// example
const options = new faceapi.TinyFaceDetectorOptions({ inputSize: 320 })
```

<a name="getting-started-utility-classes"></a>

## Utility Classes

### IBox

``` javascript
export interface IBox {
  x: number
  y: number
  width: number
  height: number
}
```

### IFaceDetection

``` javascript
export interface IFaceDetection {
  score: number
  box: Box
}
```

### IFaceLandmarks

``` javascript
export interface IFaceLandmarks {
  positions: Point[]
  shift: Point
}
```

### WithFaceDetection

``` javascript
export type WithFaceDetection<TSource> = TSource & {
  detection: FaceDetection
}
```

### WithFaceLandmarks

``` javascript
export type WithFaceLandmarks<TSource> = TSource & {
  unshiftedLandmarks: FaceLandmarks
  landmarks: FaceLandmarks
  alignedRect: FaceDetection
}
```

### WithFaceDescriptor

``` javascript
export type WithFaceDescriptor<TSource> = TSource & {
  descriptor: Float32Array
}
```

### WithFaceExpressions

``` javascript
export type WithFaceExpressions<TSource> = TSource & {
  expressions: FaceExpressions
}
```

### WithAge

``` javascript
export type WithAge<TSource> = TSource & {
  age: number
}
```

### WithGender

``` javascript
export type WithGender<TSource> = TSource & {
  gender: Gender
  genderProbability: number
}

export enum Gender {
  FEMALE = 'female',
  MALE = 'male'
}
```

<a name="getting-started-other-useful-utility"></a>

## Other Useful Utility

### Using the Low Level API

Instead of using the high level API, you can directly use the forward methods of each neural network:

``` javascript
const detections1 = await faceapi.ssdMobilenetv1(input, options)
const detections2 = await faceapi.tinyFaceDetector(input, options)
const landmarks1 = await faceapi.detectFaceLandmarks(faceImage)
const landmarks2 = await faceapi.detectFaceLandmarksTiny(faceImage)
const descriptor = await faceapi.computeFaceDescriptor(alignedFaceImage)
```

### Extracting a Canvas for an Image Region

``` javascript
const regionsToExtract = [
  new faceapi.Rect(0, 0, 100, 100)
]
// actually extractFaces is meant to extract face regions from bounding boxes
// but you can also use it to extract any other region
const canvases = await faceapi.extractFaces(input, regionsToExtract)
```

### Euclidean Distance

``` javascript
// ment to be used for computing the euclidean distance between two face descriptors
const dist = faceapi.euclideanDistance([0, 0], [0, 10])
console.log(dist) // 10
```

### Retrieve the Face Landmark Points and Contours

``` javascript
const landmarkPositions = landmarks.positions

// or get the positions of individual contours,
// only available for 68 point face ladnamrks (FaceLandmarks68)
const jawOutline = landmarks.getJawOutline()
const nose = landmarks.getNose()
const mouth = landmarks.getMouth()
const leftEye = landmarks.getLeftEye()
const rightEye = landmarks.getRightEye()
const leftEyeBbrow = landmarks.getLeftEyeBrow()
const rightEyeBrow = landmarks.getRightEyeBrow()
```

### Fetch and Display Images from an URL

``` html
<img id="myImg" src="">
```

``` javascript
const image = await faceapi.fetchImage('/images/example.png')

console.log(image instanceof HTMLImageElement) // true

// displaying the fetched image content
const myImg = document.getElementById('myImg')
myImg.src = image.src
```

### Fetching JSON

``` javascript
const json = await faceapi.fetchJson('/files/example.json')
```

### Creating an Image Picker

``` html
<img id="myImg" src="">
<input id="myFileUpload" type="file" onchange="uploadImage()" accept=".jpg, .jpeg, .png">
```

``` javascript
async function uploadImage() {
  const imgFile = document.getElementById('myFileUpload').files[0]
  // create an HTMLImageElement from a Blob
  const img = await faceapi.bufferToImage(imgFile)
  document.getElementById('myImg').src = img.src
}
```

### Creating a Canvas Element from an Image or Video Element

``` html
<img id="myImg" src="images/example.png" />
<video id="myVideo" src="media/example.mp4" />
```

``` javascript
const canvas1 = faceapi.createCanvasFromMedia(document.getElementById('myImg'))
const canvas2 = faceapi.createCanvasFromMedia(document.getElementById('myVideo'))
```

<a name="models"></a>

# Available Models

<a name="models-face-detection"></a>

## Face Detection Models

### SSD Mobilenet V1

For face detection, this project implements a SSD (Single Shot Multibox Detector) based on MobileNetV1. The neural net will compute the locations of each face in an image and will return the bounding boxes together with it's probability for each face. This face detector is aiming towards obtaining high accuracy in detecting face bounding boxes instead of low inference time. The size of the quantized model is about 5.4 MB (**ssd_mobilenetv1_model**).

The face detection model has been trained on the [WIDERFACE dataset](http://mmlab.ie.cuhk.edu.hk/projects/WIDERFace/) and the weights are provided by [yeephycho](https://github.com/yeephycho) in [this](https://github.com/yeephycho/tensorflow-face-detection) repo.

### Tiny Face Detector

The Tiny Face Detector is a very performant, realtime face detector, which is much faster, smaller and less resource consuming compared to the SSD Mobilenet V1 face detector, in return it performs slightly less well on detecting small faces. This model is extremely mobile and web friendly, thus it should be your GO-TO face detector on mobile devices and resource limited clients. The size of the quantized model is only 190 KB (**tiny_face_detector_model**).

The face detector has been trained on a custom dataset of ~14K images labeled with bounding boxes. Furthermore the model has been trained to predict bounding boxes, which entirely cover facial feature points, thus it in general produces better results in combination with subsequent face landmark detection than SSD Mobilenet V1.

This model is basically an even tinier version of Tiny Yolo V2, replacing the regular convolutions of Yolo with depthwise separable convolutions. Yolo is fully convolutional, thus can easily adapt to different input image sizes to trade off accuracy for performance (inference time).

<a name="models-face-landmark-detection"></a>

## 68 Point Face Landmark Detection Models

This package implements a very lightweight and fast, yet accurate 68 point face landmark detector. The default model has a size of only 350kb (**face_landmark_68_model**) and the tiny model is only 80kb (**face_landmark_68_tiny_model**). Both models employ the ideas of depthwise separable convolutions as well as densely connected blocks. The models have been trained on a dataset of ~35k face images labeled with 68 face landmark points.

<a name="models-face-recognition"></a>

## Face Recognition Model

For face recognition, a ResNet-34 like architecture is implemented to compute a face descriptor (a feature vector with 128 values) from any given face image, which is used to describe the characteristics of a persons face. The model is **not** limited to the set of faces used for training, meaning you can use it for face recognition of any person, for example yourself. You can determine the similarity of two arbitrary faces by comparing their face descriptors, for example by computing the euclidean distance or using any other classifier of your choice.

The neural net is equivalent to the **FaceRecognizerNet** used in [face-recognition.js](https://github.com/justadudewhohacks/face-recognition.js) and the net used in the [dlib](https://github.com/davisking/dlib/blob/master/examples/dnn_face_recognition_ex.cpp) face recognition example. The weights have been trained by [davisking](https://github.com/davisking) and the model achieves a prediction accuracy of 99.38% on the LFW (Labeled Faces in the Wild) benchmark for face recognition.

The size of the quantized model is roughly 6.2 MB (**face_recognition_model**).

<a name="models-face-expression-recognition"></a>

## Face Expression Recognition Model

The face expression recognition model is lightweight, fast and provides reasonable accuracy. The model has a size of roughly 310kb and it employs depthwise separable convolutions and densely connected blocks. It has been trained on a variety of images from publicly available datasets as well as images scraped from the web. Note, that wearing glasses might decrease the accuracy of the prediction results.

<a name="models-age-and-gender-recognition"></a>

## Age and Gender Recognition Model

The age and gender recognition model is a multitask network, which employs a feature extraction layer, an age regression layer and a gender classifier. The model has a size of roughly 420kb and the feature extractor employs a tinier but very similar architecture to Xception.

This model has been trained and tested on the following databases with an 80/20 train/test split each: UTK, FGNET, Chalearn, Wiki, IMDB*, CACD*, MegaAge, MegaAge-Asian. The `*` indicates, that these databases have been algorithmically cleaned up, since the initial databases are very noisy.

### Total Test Results

Total MAE (Mean Age Error): **4.54**

Total Gender Accuracy: **95%**

### Test results for each database

The `-` indicates, that there are no gender labels available for these databases.

Database        | UTK    | FGNET | Chalearn | Wiki | IMDB* | CACD* | MegaAge | MegaAge-Asian |
----------------|-------:|------:|---------:|-----:|------:|------:|--------:|--------------:|
MAE             | 5.25   | 4.23  | 6.24     | 6.54 | 3.63  | 3.20  | 6.23    | 4.21          |
Gender Accuracy | 0.93   | -     | 0.94     | 0.95 | -     | 0.97  | -       | -             |

### Test results for different age category groups

Age Range       | 0 - 3  | 4 - 8 | 9 - 18 | 19 - 28 | 29 - 40 | 41 - 60 | 60 - 80 | 80+     |
----------------|-------:|------:|-------:|--------:|--------:|--------:|--------:|--------:|
MAE             | 1.52   | 3.06  | 4.82   | 4.99    | 5.43    | 4.94    | 6.17    | 9.91    |
Gender Accuracy | 0.69   | 0.80  | 0.88   | 0.96    | 0.97    | 0.97    | 0.96    | 0.9     |