logic.ipynb 127 ko
Newer Older
jeff3456's avatar
jeff3456 a validé
  {
   "cell_type": "markdown",
jeff3456's avatar
jeff3456 a validé
   "metadata": {
    "collapsed": true
jeff3456's avatar
jeff3456 a validé
   },
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "# Logic: `logic.py`; Chapters 6-8"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "This notebook describes the [logic.py](https://github.com/aimacode/aima-python/blob/master/logic.py) module, which covers Chapters 6 (Logical Agents),  7 (First-Order Logic) and  8 (Inference in First-Order Logic) of *[Artificial Intelligence: A Modern Approach](http://aima.cs.berkeley.edu)*. See the [intro notebook](https://github.com/aimacode/aima-python/blob/master/intro.ipynb) for instructions.\n",
    "We'll start by looking at `Expr`, the data type for logical sentences, and the convenience function `expr`. We'll be covering two types of knowledge bases, `PropKB` - Propositional logic knowledge base and `FolKB` - First order logic knowledge base. We will construct a propositional knowledge base of a specific situation in the Wumpus World. We will next go through the `tt_entails` function and experiment with it a bit. The `pl_resolution` and `pl_fc_entails` functions will come next. We'll study forward chaining and backward chaining algorithms for `FolKB` and use them on `crime_kb` knowledge base.\n",
Peter Norvig's avatar
Peter Norvig a validé
    "But the first step is to load the code:"
jeff3456's avatar
jeff3456 a validé
   ]
  },
Peter Norvig's avatar
Peter Norvig a validé
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
    "from utils import *\n",
    "from logic import *\n",
    "from notebook import psource"
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
Peter Norvig's avatar
Peter Norvig a validé
    "## Logical Sentences"
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "The `Expr` class is designed to represent any kind of mathematical expression. The simplest type of `Expr` is a symbol, which can be defined with the function `Symbol`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "x"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "Symbol('x')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Or we can define multiple symbols at the same time with the function `symbols`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
C.G.Vedant's avatar
C.G.Vedant a validé
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "(x, y, P, Q, f) = symbols('x, y, P, Q, f')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can combine `Expr`s with the regular Python infix and prefix operators. Here's how we would form the logical sentence \"P and not Q\":"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P & ~Q)"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "P & ~Q"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "This works because the `Expr` class overloads the `&` operator with this definition:\n",
    "\n",
    "```python\n",
    "def __and__(self, other): return Expr('&',  self, other)```\n",
    "     \n",
    "and does similar overloads for the other operators. An `Expr` has two fields: `op` for the operator, which is always a string, and `args` for the arguments, which is a tuple of 0 or more expressions. By \"expression,\" I mean either an instance of `Expr`, or a number. Let's take a look at the fields for some `Expr` examples:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'&'"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "sentence = P & ~Q\n",
Peter Norvig's avatar
Peter Norvig a validé
    "\n",
    "sentence.op"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P, ~Q)"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "sentence.args"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
Peter Norvig's avatar
Peter Norvig a validé
       "'P'"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "P.op"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "()"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P.args"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
Peter Norvig's avatar
Peter Norvig a validé
       "'P'"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "Pxy = P(x, y)\n",
    "\n",
    "Pxy.op"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
     "data": {
      "text/plain": [
       "(x, y)"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
Peter Norvig's avatar
Peter Norvig a validé
    "Pxy.args"
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It is important to note that the `Expr` class does not define the *logic* of Propositional Logic sentences; it just gives you a way to *represent* expressions. Think of an `Expr` as an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree).  Each of the `args` in an `Expr` can be either a symbol, a number, or a nested `Expr`. We can nest these trees to any depth. Here is a deply nested `Expr`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
     "data": {
      "text/plain": [
       "(((3 * f(x, y)) + (P(y) / 2)) + 1)"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
Peter Norvig's avatar
Peter Norvig a validé
    "3 * f(x, y) + P(y) / 2 + 1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Operators for Constructing Logical Sentences\n",
    "Here is a table of the operators that can be used to form sentences. Note that we have a problem: we want to use Python operators to make sentences, so that our programs (and our interactive sessions like the one here) will show simple code. But Python does not allow implication arrows as operators, so for now we have to use a more verbose notation that Python does allow: `|'==>'|` instead of just `==>`. Alternately, you can always use the more verbose `Expr` constructor forms:\n",
    "| Operation                | Book | Python Infix Input | Python Output | Python `Expr` Input\n",
Peter Norvig's avatar
Peter Norvig a validé
    "|--------------------------|----------------------|-------------------------|---|---|\n",
    "| Negation                 | ¬ P      | `~P`                       | `~P` | `Expr('~', P)`\n",
    "| And                      | P ∧ Q       | `P & Q`                     | `P & Q` | `Expr('&', P, Q)`\n",
    "| Or                       | P &or; Q | `P`<tt> &#124; </tt>`Q`| `P`<tt> &#124; </tt>`Q` | `Expr('`&#124;`', P, Q)`\n",
Peter Norvig's avatar
Peter Norvig a validé
    "| Inequality (Xor)         | P &ne; Q     | `P ^ Q`                | `P ^ Q`  | `Expr('^', P, Q)`\n",
    "| Implication                  | P &rarr; Q    | `P` <tt>&#124;</tt>`'==>'`<tt>&#124;</tt> `Q`   | `P ==> Q` | `Expr('==>', P, Q)`\n",
    "| Reverse Implication      | Q &larr; P     | `Q` <tt>&#124;</tt>`'<=='`<tt>&#124;</tt> `P`  |`Q <== P` | `Expr('<==', Q, P)`\n",
    "| Equivalence            | P &harr; Q   | `P` <tt>&#124;</tt>`'<=>'`<tt>&#124;</tt> `Q`   |`P <=> Q` | `Expr('<=>', P, Q)`\n",
    "Here's an example of defining a sentence with an implication arrow:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(~(P & Q) ==> (~P | ~Q))"
Peter Norvig's avatar
Peter Norvig a validé
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "~(P & Q)  |'==>'|  (~P | ~Q)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
Peter Norvig's avatar
Peter Norvig a validé
    "## `expr`: a Shortcut for Constructing Sentences\n",
    "If the `|'==>'|` notation looks ugly to you, you can use the function `expr` instead:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(~(P & Q) ==> (~P | ~Q))"
Peter Norvig's avatar
Peter Norvig a validé
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "expr('~(P & Q)  ==>  (~P | ~Q)')"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`expr` takes a string as input, and parses it into an `Expr`. The string can contain arrow operators: `==>`, `<==`, or `<=>`, which are handled as if they were regular Python infix operators. And `expr` automatically defines any symbols, so you don't need to pre-define them:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "sqrt(((b ** 2) - ((4 * a) * c)))"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "expr('sqrt(b ** 2 - 4 * a * c)')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
C.G.Vedant's avatar
C.G.Vedant a validé
    "For now that's all you need to know about `expr`. If you are interested, we explain the messy details of how `expr` is implemented and how `|'==>'|` is handled in the appendix."
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Propositional Knowledge Bases: `PropKB`\n",
Peter Norvig's avatar
Peter Norvig a validé
    "The class `PropKB` can be used to represent a knowledge base of propositional logic sentences.\n",
    "We see that the class `KB` has four methods, apart from `__init__`. A point to note here: the `ask` method simply calls the `ask_generator` method. Thus, this one has already been implemented, and what you'll have to actually implement when you create your own knowledge base class (though you'll probably never need to, considering the ones we've created for you) will be the `ask_generator` function and not the `ask` function itself.\n",
Peter Norvig's avatar
Peter Norvig a validé
    "\n",
    "The class `PropKB` now.\n",
    "* `__init__(self, sentence=None)` : The constructor `__init__` creates a single field `clauses` which will be a list of all the sentences of the knowledge base. Note that each one of these sentences will be a 'clause' i.e. a sentence which is made up of only literals and `or`s.\n",
    "* `tell(self, sentence)` : When you want to add a sentence to the KB, you use the `tell` method. This method takes a sentence, converts it to its CNF, extracts all the clauses, and adds all these clauses to the `clauses` field. So, you need not worry about `tell`ing only clauses to the knowledge base. You can `tell` the knowledge base a sentence in any form that you wish; converting it to CNF and adding the resulting clauses will be handled by the `tell` method.\n",
    "* `ask_generator(self, query)` : The `ask_generator` function is used by the `ask` function. It calls the `tt_entails` function, which in turn returns `True` if the knowledge base entails query and `False` otherwise. The `ask_generator` itself returns an empty dict `{}` if the knowledge base entails query and `None` otherwise. This might seem a little bit weird to you. After all, it makes more sense just to return a `True` or a `False` instead of the `{}` or `None` But this is done to maintain consistency with the way things are in First-Order Logic, where an `ask_generator` function is supposed to return all the substitutions that make the query true. Hence the dict, to return all these substitutions. I will be mostly be using the `ask` function which returns a `{}` or a `False`, but if you don't like this, you can always use the `ask_if_true` function which returns a `True` or a `False`.\n",
Peter Norvig's avatar
Peter Norvig a validé
    "* `retract(self, sentence)` : This function removes all the clauses of the sentence given, from the knowledge base. Like the `tell` function, you don't have to pass clauses to remove them from the knowledge base; any sentence will do fine. The function will take care of converting that sentence to clauses and then remove those."
   ]
  },
C.G.Vedant's avatar
C.G.Vedant a validé
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Wumpus World KB\n",
    "Let us create a `PropKB` for the wumpus world with the sentences mentioned in `section 7.4.3`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "wumpus_kb = PropKB()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We define the symbols we use in our clauses.<br/>\n",
    "$P_{x, y}$ is true if there is a pit in `[x, y]`.<br/>\n",
    "$B_{x, y}$ is true if the agent senses breeze in `[x, y]`.<br/>"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "P11, P12, P21, P22, P31, B11, B21 = expr('P11, P12, P21, P22, P31, B11, B21')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we tell sentences based on `section 7.4.3`.<br/>\n",
    "There is no pit in `[1,1]`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "wumpus_kb.tell(~P11)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "A square is breezy if and only if there is a pit in a neighboring square. This has to be stated for each square but for now, we include just the relevant squares."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "wumpus_kb.tell(B11 | '<=>' | ((P12 | P21)))\n",
    "wumpus_kb.tell(B21 | '<=>' | ((P11 | P22 | P31)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we include the breeze percepts for the first two squares leading up to the situation in `Figure 7.3(b)`"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "wumpus_kb.tell(~B11)\n",
    "wumpus_kb.tell(B21)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We can check the clauses stored in a `KB` by accessing its `clauses` variable"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[~P11,\n",
       " (~P12 | B11),\n",
       " (~P21 | B11),\n",
       " (P12 | P21 | ~B11),\n",
       " (~P11 | B21),\n",
       " (~P22 | B21),\n",
       " (~P31 | B21),\n",
       " (P11 | P22 | P31 | ~B21),\n",
       " ~B11,\n",
       " B21]"
      ]
     },
     "execution_count": 20,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "wumpus_kb.clauses"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We see that the equivalence $B_{1, 1} \\iff (P_{1, 2} \\lor P_{2, 1})$ was automatically converted to two implications which were inturn converted to CNF which is stored in the `KB`.<br/>\n",
    "$B_{1, 1} \\iff (P_{1, 2} \\lor P_{2, 1})$ was split into $B_{1, 1} \\implies (P_{1, 2} \\lor P_{2, 1})$ and $B_{1, 1} \\Longleftarrow (P_{1, 2} \\lor P_{2, 1})$.<br/>\n",
    "$B_{1, 1} \\implies (P_{1, 2} \\lor P_{2, 1})$ was converted to $P_{1, 2} \\lor P_{2, 1} \\lor \\neg B_{1, 1}$.<br/>\n",
    "$B_{1, 1} \\Longleftarrow (P_{1, 2} \\lor P_{2, 1})$ was converted to $\\neg (P_{1, 2} \\lor P_{2, 1}) \\lor B_{1, 1}$ which becomes $(\\neg P_{1, 2} \\lor B_{1, 1}) \\land (\\neg P_{2, 1} \\lor B_{1, 1})$ after applying De Morgan's laws and distributing the disjunction.<br/>\n",
    "$B_{2, 1} \\iff (P_{1, 1} \\lor P_{2, 2} \\lor P_{3, 2})$ is converted in similar manner."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference in Propositional Knowledge Base\n",
C.G.Vedant's avatar
C.G.Vedant a validé
    "In this section we will look at two algorithms to check if a sentence is entailed by the `KB`. Our goal is to decide whether $\\text{KB} \\vDash \\alpha$ for some sentence $\\alpha$.\n",
    "### Truth Table Enumeration\n",
    "It is a model-checking approach which, as the name suggests, enumerates all possible models in which the `KB` is true and checks if $\\alpha$ is also true in these models. We list the $n$ symbols in the `KB` and enumerate the $2^{n}$ models in a depth-first manner and check the truth of `KB` and $\\alpha$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">tt_check_all</span><span class=\"p\">(</span><span class=\"n\">kb</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">,</span> <span class=\"n\">symbols</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Auxiliary routine to implement tt_entails.&quot;&quot;&quot;</span>\n",
       "    <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">symbols</span><span class=\"p\">:</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">kb</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">):</span>\n",
       "            <span class=\"n\">result</span> <span class=\"o\">=</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">alpha</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">assert</span> <span class=\"n\">result</span> <span class=\"ow\">in</span> <span class=\"p\">(</span><span class=\"bp\">True</span><span class=\"p\">,</span> <span class=\"bp\">False</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">result</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">True</span>\n",
       "    <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "        <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"n\">rest</span> <span class=\"o\">=</span> <span class=\"n\">symbols</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">],</span> <span class=\"n\">symbols</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">:]</span>\n",
       "        <span class=\"k\">return</span> <span class=\"p\">(</span><span class=\"n\">tt_check_all</span><span class=\"p\">(</span><span class=\"n\">kb</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">,</span> <span class=\"n\">rest</span><span class=\"p\">,</span> <span class=\"n\">extend</span><span class=\"p\">(</span><span class=\"n\">model</span><span class=\"p\">,</span> <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"bp\">True</span><span class=\"p\">))</span> <span class=\"ow\">and</span>\n",
       "                <span class=\"n\">tt_check_all</span><span class=\"p\">(</span><span class=\"n\">kb</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">,</span> <span class=\"n\">rest</span><span class=\"p\">,</span> <span class=\"n\">extend</span><span class=\"p\">(</span><span class=\"n\">model</span><span class=\"p\">,</span> <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"bp\">False</span><span class=\"p\">)))</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(tt_check_all)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The algorithm basically computes every line of the truth table $KB\\implies \\alpha$ and checks if it is true everywhere.\n",
    "<br>\n",
    "If symbols are defined, the routine recursively constructs every combination of truth values for the symbols and then, \n",
    "it checks whether `model` is consistent with `kb`.\n",
    "The given models correspond to the lines in the truth table,\n",
    "which have a `true` in the KB column, \n",
    "and for these lines it checks whether the query evaluates to true\n",
    "<br>\n",
    "`result = pl_true(alpha, model)`.\n",
    "<br>\n",
    "<br>\n",
    "In short, `tt_check_all` evaluates this logical expression for each `model`\n",
    "<br>\n",
    "`pl_true(kb, model) => pl_true(alpha, model)`\n",
    "<br>\n",
    "which is logically equivalent to\n",
    "<br>\n",
    "`pl_true(kb, model) & ~pl_true(alpha, model)` \n",
    "<br>\n",
    "that is, the knowledge base and the negation of the query are logically inconsistent.\n",
    "<br>\n",
    "<br>\n",
    "`tt_entails()` just extracts the symbols from the query and calls `tt_check_all()` with the proper parameters.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">tt_entails</span><span class=\"p\">(</span><span class=\"n\">kb</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Does kb entail the sentence alpha? Use truth tables. For propositional</span>\n",
       "<span class=\"sd\">    kb&#39;s and sentences. [Figure 7.10]. Note that the &#39;kb&#39; should be an</span>\n",
       "<span class=\"sd\">    Expr which is a conjunction of clauses.</span>\n",
       "<span class=\"sd\">    &gt;&gt;&gt; tt_entails(expr(&#39;P &amp; Q&#39;), expr(&#39;Q&#39;))</span>\n",
       "<span class=\"sd\">    True</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"k\">assert</span> <span class=\"ow\">not</span> <span class=\"n\">variables</span><span class=\"p\">(</span><span class=\"n\">alpha</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">symbols</span> <span class=\"o\">=</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">kb</span> <span class=\"o\">&amp;</span> <span class=\"n\">alpha</span><span class=\"p\">))</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">tt_check_all</span><span class=\"p\">(</span><span class=\"n\">kb</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">,</span> <span class=\"n\">symbols</span><span class=\"p\">,</span> <span class=\"p\">{})</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(tt_entails)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Keep in mind that for two symbols P and Q, P => Q is false only when P is `True` and Q is `False`.\n",
    "Example usage of `tt_entails()`:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tt_entails(P & Q, Q)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "P & Q is True only when both P and Q are True. Hence, (P & Q) => Q is True"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tt_entails(P | Q, Q)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "tt_entails(P | Q, P)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If we know that P | Q is true, we cannot infer the truth values of P and Q. \n",
    "Hence (P | Q) => Q is False and so is (P | Q) => P."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "True"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "(A, B, C, D, E, F, G) = symbols('A, B, C, D, E, F, G')\n",
    "tt_entails(A & (B | C) & D & E & ~(F | G), A & D & E & ~F & ~G)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
C.G.Vedant's avatar
C.G.Vedant a validé
   "source": [
    "We can see that for the KB to be true, A, D, E have to be True and F and G have to be False.\n",
    "Nothing can be said about B or C."
C.G.Vedant's avatar
C.G.Vedant a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Coming back to our problem, note that `tt_entails()` takes an `Expr` which is a conjunction of clauses as the input instead of the `KB` itself. \n",
    "You can use the `ask_if_true()` method of `PropKB` which does all the required conversions. \n",
    "Let's check what `wumpus_kb` tells us about $P_{1, 1}$."
C.G.Vedant's avatar
C.G.Vedant a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(True, False)"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "wumpus_kb.ask_if_true(~P11), wumpus_kb.ask_if_true(P11)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Looking at Figure 7.9 we see that in all models in which the knowledge base is `True`, $P_{1, 1}$ is `False`. It makes sense that `ask_if_true()` returns `True` for $\\alpha = \\neg P_{1, 1}$ and `False` for $\\alpha = P_{1, 1}$. This begs the question, what if $\\alpha$ is `True` in only a portion of all models. Do we return `True` or `False`? This doesn't rule out the possibility of $\\alpha$ being `True` but it is not entailed by the `KB` so we return `False` in such cases. We can see this is the case for $P_{2, 2}$ and $P_{3, 1}$."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(False, False)"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "wumpus_kb.ask_if_true(~P22), wumpus_kb.ask_if_true(P22)"
   ]
  },
Peter Norvig's avatar
Peter Norvig a validé
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Proof by Resolution\n",
    "Recall that our goal is to check whether $\\text{KB} \\vDash \\alpha$ i.e. is $\\text{KB} \\implies \\alpha$ true in every model. Suppose we wanted to check if $P \\implies Q$ is valid. We check the satisfiability of $\\neg (P \\implies Q)$, which can be rewritten as $P \\land \\neg Q$. If $P \\land \\neg Q$ is unsatisfiable, then $P \\implies Q$ must be true in all models. This gives us the result \"$\\text{KB} \\vDash \\alpha$ <em>if and only if</em> $\\text{KB} \\land \\neg \\alpha$ is unsatisfiable\".<br/>\n",
    "This technique corresponds to <em>proof by <strong>contradiction</strong></em>, a standard mathematical proof technique. We assume $\\alpha$ to be false and show that this leads to a contradiction with known axioms in $\\text{KB}$. We obtain a contradiction by making valid inferences using inference rules. In this proof we use a single inference rule, <strong>resolution</strong> which states $(l_1 \\lor \\dots \\lor l_k) \\land (m_1 \\lor \\dots \\lor m_n) \\land (l_i \\iff \\neg m_j) \\implies l_1 \\lor \\dots \\lor l_{i - 1} \\lor l_{i + 1} \\lor \\dots \\lor l_k \\lor m_1 \\lor \\dots \\lor m_{j - 1} \\lor m_{j + 1} \\lor \\dots \\lor m_n$. Applying the resolution yeilds us a clause which we add to the KB. We keep doing this until:\n",
    "\n",
    "* There are no new clauses that can be added, in which case $\\text{KB} \\nvDash \\alpha$.\n",
    "* Two clauses resolve to yield the <em>empty clause</em>, in which case $\\text{KB} \\vDash \\alpha$.\n",
    "\n",
    "The <em>empty clause</em> is equivalent to <em>False</em> because it arises only from resolving two complementary\n",
    "unit clauses such as $P$ and $\\neg P$ which is a contradiction as both $P$ and $\\neg P$ can't be <em>True</em> at the same time."
   ]
  },
Aman Deep Singh's avatar
Aman Deep Singh a validé
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "There is  one catch however, the algorithm that implements proof by resolution cannot handle complex sentences. \n",
    "Implications and bi-implications have to be simplified into simpler clauses. \n",
    "We already know that *every sentence of a propositional logic is logically equivalent to a conjunction of clauses*.\n",
    "We will use this fact to our advantage and simplify the input sentence into the **conjunctive normal form** (CNF) which is a conjunction of disjunctions of literals.\n",
    "For eg:\n",
    "<br>\n",
    "$$(A\\lor B)\\land (\\neg B\\lor C\\lor\\neg D)\\land (D\\lor\\neg E)$$\n",
    "This is equivalent to the POS (Product of sums) form in digital electronics.\n",
    "<br>\n",
    "Here's an outline of how the conversion is done:\n",
    "1. Convert bi-implications to implications\n",
    "<br>\n",
    "$\\alpha\\iff\\beta$ can be written as $(\\alpha\\implies\\beta)\\land(\\beta\\implies\\alpha)$\n",
    "<br>\n",
    "This also applies to compound sentences\n",
    "<br>\n",
    "$\\alpha\\iff(\\beta\\lor\\gamma)$ can be written as $(\\alpha\\implies(\\beta\\lor\\gamma))\\land((\\beta\\lor\\gamma)\\implies\\alpha)$\n",
    "<br>\n",
    "2. Convert implications to their logical equivalents\n",
    "<br>\n",
    "$\\alpha\\implies\\beta$ can be written as $\\neg\\alpha\\lor\\beta$\n",
    "<br>\n",
    "3. Move negation inwards\n",
    "<br>\n",
    "CNF requires atomic literals. Hence, negation cannot appear on a compound statement.\n",
    "De Morgan's laws will be helpful here.\n",
    "<br>\n",
    "$\\neg(\\alpha\\land\\beta)\\equiv(\\neg\\alpha\\lor\\neg\\beta)$\n",
    "<br>\n",
    "$\\neg(\\alpha\\lor\\beta)\\equiv(\\neg\\alpha\\land\\neg\\beta)$\n",
    "<br>\n",
    "4. Distribute disjunction over conjunction\n",
    "<br>\n",
    "Disjunction and conjunction are distributive over each other.\n",
    "Now that we only have conjunctions, disjunctions and negations in our expression, \n",
    "we will distribute disjunctions over conjunctions wherever possible as this will give us a sentence which is a conjunction of simpler clauses, \n",
    "which is what we wanted in the first place.\n",
    "<br>\n",
    "We need a term of the form\n",
    "<br>\n",
    "$(\\alpha_{1}\\lor\\alpha_{2}\\lor\\alpha_{3}...)\\land(\\beta_{1}\\lor\\beta_{2}\\lor\\beta_{3}...)\\land(\\gamma_{1}\\lor\\gamma_{2}\\lor\\gamma_{3}...)\\land...$\n",
    "<br>\n",
    "<br>\n",
    "The `to_cnf` function executes this conversion using helper subroutines."
   ]
  },
  {
   "cell_type": "code",
Aman Deep Singh's avatar
Aman Deep Singh a validé
   "execution_count": 29,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">to_cnf</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Convert a propositional logical sentence to conjunctive normal form.</span>\n",
       "<span class=\"sd\">    That is, to the form ((A | ~B | ...) &amp; (B | C | ...) &amp; ...) [p. 253]</span>\n",
       "<span class=\"sd\">    &gt;&gt;&gt; to_cnf(&#39;~(B | C)&#39;)</span>\n",
       "<span class=\"sd\">    (~B &amp; ~C)</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">expr</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">if</span> <span class=\"nb\">isinstance</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">,</span> <span class=\"nb\">str</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">expr</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">eliminate_implications</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>  <span class=\"c1\"># Steps 1, 2 from p. 253</span>\n",
       "    <span class=\"n\">s</span> <span class=\"o\">=</span> <span class=\"n\">move_not_inwards</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>  <span class=\"c1\"># Step 3</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">distribute_and_over_or</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">)</span>  <span class=\"c1\"># Step 4</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(to_cnf)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`to_cnf` calls three subroutines.\n",
    "<br>\n",
    "`eliminate_implications` converts bi-implications and implications to their logical equivalents.\n",
    "<br>\n",
    "`move_not_inwards` removes negations from compound statements and moves them inwards using De Morgan's laws.\n",
    "<br>\n",
    "`distribute_and_over_or` distributes disjunctions over conjunctions.\n",
    "<br>\n",
    "Run the cells below for implementation details.\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource eliminate_implications"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
Aman Deep Singh's avatar
Aman Deep Singh a validé
    "%psource move_not_inwards"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource distribute_and_over_or"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's convert some sentences to see how it works\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((A | ~B) & (B | ~A))"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "A, B, C, D = expr('A, B, C, D')\n",
    "to_cnf(A |'<=>'| B)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((A | ~B | ~C) & (B | ~A) & (C | ~A))"
      ]
     },
     "execution_count": 34,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "to_cnf(A |'<=>'| (B & C))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(A & (C | B) & (D | B))"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "to_cnf(A & (B | (C & D)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((B | ~A | C | ~D) & (A | ~A | C | ~D) & (B | ~B | C | ~D) & (A | ~B | C | ~D))"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "to_cnf((A |'<=>'| ~B) |'==>'| (C | ~D))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Coming back to our resolution problem, we can see how the `to_cnf` function is utilized here"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">pl_resolution</span><span class=\"p\">(</span><span class=\"n\">KB</span><span class=\"p\">,</span> <span class=\"n\">alpha</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Propositional-logic resolution: say if alpha follows from KB. [Figure 7.12]&quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">clauses</span> <span class=\"o\">=</span> <span class=\"n\">KB</span><span class=\"o\">.</span><span class=\"n\">clauses</span> <span class=\"o\">+</span> <span class=\"n\">conjuncts</span><span class=\"p\">(</span><span class=\"n\">to_cnf</span><span class=\"p\">(</span><span class=\"o\">~</span><span class=\"n\">alpha</span><span class=\"p\">))</span>\n",
       "    <span class=\"n\">new</span> <span class=\"o\">=</span> <span class=\"nb\">set</span><span class=\"p\">()</span>\n",
       "    <span class=\"k\">while</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
       "        <span class=\"n\">n</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">pairs</span> <span class=\"o\">=</span> <span class=\"p\">[(</span><span class=\"n\">clauses</span><span class=\"p\">[</span><span class=\"n\">i</span><span class=\"p\">],</span> <span class=\"n\">clauses</span><span class=\"p\">[</span><span class=\"n\">j</span><span class=\"p\">])</span>\n",
       "                 <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">n</span><span class=\"p\">)</span> <span class=\"k\">for</span> <span class=\"n\">j</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">i</span><span class=\"o\">+</span><span class=\"mi\">1</span><span class=\"p\">,</span> <span class=\"n\">n</span><span class=\"p\">)]</span>\n",
       "        <span class=\"k\">for</span> <span class=\"p\">(</span><span class=\"n\">ci</span><span class=\"p\">,</span> <span class=\"n\">cj</span><span class=\"p\">)</span> <span class=\"ow\">in</span> <span class=\"n\">pairs</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">resolvents</span> <span class=\"o\">=</span> <span class=\"n\">pl_resolve</span><span class=\"p\">(</span><span class=\"n\">ci</span><span class=\"p\">,</span> <span class=\"n\">cj</span><span class=\"p\">)</span>\n",
       "            <span class=\"k\">if</span> <span class=\"bp\">False</span> <span class=\"ow\">in</span> <span class=\"n\">resolvents</span><span class=\"p\">:</span>\n",
       "                <span class=\"k\">return</span> <span class=\"bp\">True</span>\n",
       "            <span class=\"n\">new</span> <span class=\"o\">=</span> <span class=\"n\">new</span><span class=\"o\">.</span><span class=\"n\">union</span><span class=\"p\">(</span><span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">resolvents</span><span class=\"p\">))</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">new</span><span class=\"o\">.</span><span class=\"n\">issubset</span><span class=\"p\">(</span><span class=\"nb\">set</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">)):</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">False</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">c</span> <span class=\"ow\">in</span> <span class=\"n\">new</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">if</span> <span class=\"n\">c</span> <span class=\"ow\">not</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span><span class=\"p\">:</span>\n",
       "                <span class=\"n\">clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">c</span><span class=\"p\">)</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(pl_resolution)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(True, False)"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_resolution(wumpus_kb, ~P11), pl_resolution(wumpus_kb, P11)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(False, False)"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_resolution(wumpus_kb, ~P22), pl_resolution(wumpus_kb, P22)"
   ]
  },
1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Effective Propositional Model Checking\n",
    "\n",
    "The previous segments elucidate the algorithmic procedure for model checking. \n",
    "In this segment, we look at ways of making them computationally efficient.\n",
    "<br>\n",
    "The problem we are trying to solve is conventionally called the _propositional satisfiability problem_, abbreviated as the _SAT_ problem.\n",
    "In layman terms, if there exists a model that satisfies a given Boolean formula, the formula is called satisfiable.\n",
    "<br>\n",
    "The SAT problem was the first problem to be proven _NP-complete_.\n",
    "The main characteristics of an NP-complete problem are:\n",
    "- Given a solution to such a problem, it is easy to verify if the solution solves the problem.\n",
    "- The time required to actually solve the problem using any known algorithm increases exponentially with respect to the size of the problem.\n",
    "<br>\n",
    "<br>\n",
    "Due to these properties, heuristic and approximational methods are often applied to find solutions to these problems.\n",
    "<br>\n",
    "It is extremely important to be able to solve large scale SAT problems efficiently because \n",
    "many combinatorial problems in computer science can be conveniently reduced to checking the satisfiability of a propositional sentence under some constraints.\n",
    "<br>\n",
    "We will introduce two new algorithms that perform propositional model checking in a computationally effective way.\n",
    "<br>\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 1. DPLL (Davis-Putnam-Logeman-Loveland) algorithm\n",
    "This algorithm is very similar to Backtracking-Search.\n",
    "It recursively enumerates possible models in a depth-first fashion with the following improvements over algorithms like `tt_entails`:\n",
    "1. Early termination:\n",
    "<br>\n",
    "In certain cases, the algorithm can detect the truth value of a statement using just a partially completed model.\n",
    "For example, $(P\\lor Q)\\land(P\\lor R)$ is true if P is true, regardless of other variables.\n",
    "This reduces the search space significantly.\n",
    "2. Pure symbol heuristic:\n",
    "<br>\n",
    "A symbol that has the same sign (positive or negative) in all clauses is called a _pure symbol_.\n",
    "It isn't difficult to see that any satisfiable model will have the pure symbols assigned such that its parent clause becomes _true_.\n",
    "For example, $(P\\lor\\neg Q)\\land(\\neg Q\\lor\\neg R)\\land(R\\lor P)$ has P and Q as pure symbols\n",
    "and for the sentence to be true, P _has_ to be true and Q _has_ to be false.\n",
    "The pure symbol heuristic thus simplifies the problem a bit.\n",
    "3. Unit clause heuristic:\n",
    "<br>\n",
    "In the context of DPLL, clauses with just one literal and clauses with all but one _false_ literals are called unit clauses.\n",
    "If a clause is a unit clause, it can only be satisfied by assigning the necessary value to make the last literal true.\n",
    "We have no other choice.\n",
    "<br>\n",
    "Assigning one unit clause can create another unit clause.\n",
    "For example, when P is false, $(P\\lor Q)$ becomes a unit clause, causing _true_ to be assigned to Q.\n",
    "A series of forced assignments derived from previous unit clauses is called _unit propagation_.\n",
    "In this way, this heuristic simplifies the problem further.\n",
    "<br>\n",
    "The algorithm often employs other tricks to scale up to large problems.\n",
    "However, these tricks are currently out of the scope of this notebook. Refer to section 7.6 of the book for more details.\n",
    "<br>\n",
    "<br>\n",
    "Let's have a look at the algorithm."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">dpll</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">symbols</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;See if the clauses are true in a partial model.&quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">unknown_clauses</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>  <span class=\"c1\"># clauses with an unknown truth value</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">c</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span><span class=\"p\">:</span>\n",
       "        <span class=\"n\">val</span> <span class=\"o\">=</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">c</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">val</span> <span class=\"ow\">is</span> <span class=\"bp\">False</span><span class=\"p\">:</span>\n",
       "            <span class=\"k\">return</span> <span class=\"bp\">False</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">val</span> <span class=\"ow\">is</span> <span class=\"ow\">not</span> <span class=\"bp\">True</span><span class=\"p\">:</span>\n",
       "            <span class=\"n\">unknown_clauses</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">c</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">unknown_clauses</span><span class=\"p\">:</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">model</span>\n",
       "    <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"n\">value</span> <span class=\"o\">=</span> <span class=\"n\">find_pure_symbol</span><span class=\"p\">(</span><span class=\"n\">symbols</span><span class=\"p\">,</span> <span class=\"n\">unknown_clauses</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">if</span> <span class=\"n\">P</span><span class=\"p\">:</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">dpll</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">removeall</span><span class=\"p\">(</span><span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"n\">symbols</span><span class=\"p\">),</span> <span class=\"n\">extend</span><span class=\"p\">(</span><span class=\"n\">model</span><span class=\"p\">,</span> <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"n\">value</span><span class=\"p\">))</span>\n",
       "    <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"n\">value</span> <span class=\"o\">=</span> <span class=\"n\">find_unit_clause</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)</span>\n",
       "    <span class=\"k\">if</span> <span class=\"n\">P</span><span class=\"p\">:</span>\n",
       "        <span class=\"k\">return</span> <span class=\"n\">dpll</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">removeall</span><span class=\"p\">(</span><span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"n\">symbols</span><span class=\"p\">),</span> <span class=\"n\">extend</span><span class=\"p\">(</span><span class=\"n\">model</span><span class=\"p\">,</span> <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"n\">value</span><span class=\"p\">))</span>\n",
       "    <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">symbols</span><span class=\"p\">:</span>\n",
       "        <span class=\"k\">raise</span> <span class=\"ne\">TypeError</span><span class=\"p\">(</span><span class=\"s2\">&quot;Argument should be of the type Expr.&quot;</span><span class=\"p\">)</span>\n",
       "    <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"n\">symbols</span> <span class=\"o\">=</span> <span class=\"n\">symbols</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">],</span> <span class=\"n\">symbols</span><span class=\"p\">[</span><span class=\"mi\">1</span><span class=\"p\">:]</span>\n",
       "    <span class=\"k\">return</span> <span class=\"p\">(</span><span class=\"n\">dpll</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">symbols</span><span class=\"p\">,</span> <span class=\"n\">extend</span><span class=\"p\">(</span><span class=\"n\">model</span><span class=\"p\">,</span> <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"bp\">True</span><span class=\"p\">))</span> <span class=\"ow\">or</span>\n",
       "            <span class=\"n\">dpll</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">symbols</span><span class=\"p\">,</span> <span class=\"n\">extend</span><span class=\"p\">(</span><span class=\"n\">model</span><span class=\"p\">,</span> <span class=\"n\">P</span><span class=\"p\">,</span> <span class=\"bp\">False</span><span class=\"p\">)))</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(dpll)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The algorithm uses the ideas described above to check satisfiability of a sentence in propositional logic.\n",
    "It recursively calls itself, simplifying the problem at each step. It also uses helper functions `find_pure_symbol` and `find_unit_clause` to carry out steps 2 and 3 above.\n",
    "<br>\n",
    "The `dpll_satisfiable` helper function converts the input clauses to _conjunctive normal form_ and calls the `dpll` function with the correct parameters."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">dpll_satisfiable</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Check satisfiability of a propositional sentence.</span>\n",
       "<span class=\"sd\">    This differs from the book code in two ways: (1) it returns a model</span>\n",
       "<span class=\"sd\">    rather than True when it succeeds; this is more useful. (2) The</span>\n",
       "<span class=\"sd\">    function find_pure_symbol is passed a list of unknown clauses, rather</span>\n",
       "<span class=\"sd\">    than a list of all clauses and the model; this is more efficient.&quot;&quot;&quot;</span>\n",
       "    <span class=\"n\">clauses</span> <span class=\"o\">=</span> <span class=\"n\">conjuncts</span><span class=\"p\">(</span><span class=\"n\">to_cnf</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">))</span>\n",
       "    <span class=\"n\">symbols</span> <span class=\"o\">=</span> <span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">s</span><span class=\"p\">))</span>\n",
       "    <span class=\"k\">return</span> <span class=\"n\">dpll</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">symbols</span><span class=\"p\">,</span> <span class=\"p\">{})</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(dpll_satisfiable)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's see a few examples of usage."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
   "outputs": [],
   "source": [
    "A, B, C, D = expr('A, B, C, D')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: False, A: True, D: True, B: True}"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dpll_satisfiable(A & B & ~C & D)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is a simple case to highlight that the algorithm actually works."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: True, D: False, B: True}"
      ]
     },
     "execution_count": 52,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dpll_satisfiable((A & B) | (C & ~A) | (B & ~D))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "If a particular symbol isn't present in the solution, \n",
    "it means that the solution is independent of the value of that symbol.\n",
    "In this case, the solution is independent of A."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{A: True, B: True}"
      ]
     },
     "execution_count": 53,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dpll_satisfiable(A |'<=>'| B)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: True, A: True, B: False}"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dpll_satisfiable((A |'<=>'| B) |'==>'| (C & ~A))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: True, A: True}"
      ]
     },
     "execution_count": 55,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "dpll_satisfiable((A | (B & C)) |'<=>'| ((A | B) & (A | C)))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2. WalkSAT algorithm\n",
    "This algorithm is very similar to Hill climbing.\n",
    "On every iteration, the algorithm picks an unsatisfied clause and flips a symbol in the clause.\n",
    "This is similar to finding a neighboring state in the `hill_climbing` algorithm.\n",
    "<br>\n",
    "The symbol to be flipped is decided by an evaluation function that counts the number of unsatisfied clauses.\n",
    "Sometimes, symbols are also flipped randomly, to avoid local optima. A subtle balance between greediness and randomness is required. Alternatively, some versions of the algorithm restart with a completely new random assignment if no solution has been found for too long, as a way of getting out of local minima of numbers of unsatisfied clauses.\n",
    "<br>\n",
    "<br>\n",
    "Let's have a look at the algorithm."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
       "   \"http://www.w3.org/TR/html4/strict.dtd\">\n",
       "\n",
       "<html>\n",
       "<head>\n",
       "  <title></title>\n",
       "  <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
       "  <style type=\"text/css\">\n",
       "td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
       "span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
       "pre { line-height: 125%; }\n",
       "body .hll { background-color: #ffffcc }\n",
       "body  { background: #f8f8f8; }\n",
       "body .c { color: #408080; font-style: italic } /* Comment */\n",
       "body .err { border: 1px solid #FF0000 } /* Error */\n",
       "body .k { color: #008000; font-weight: bold } /* Keyword */\n",
       "body .o { color: #666666 } /* Operator */\n",
       "body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
       "body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
       "body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
       "body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
       "body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
       "body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
       "body .gd { color: #A00000 } /* Generic.Deleted */\n",
       "body .ge { font-style: italic } /* Generic.Emph */\n",
       "body .gr { color: #FF0000 } /* Generic.Error */\n",
       "body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
       "body .gi { color: #00A000 } /* Generic.Inserted */\n",
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">WalkSAT</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">p</span><span class=\"o\">=</span><span class=\"mf\">0.5</span><span class=\"p\">,</span> <span class=\"n\">max_flips</span><span class=\"o\">=</span><span class=\"mi\">10000</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Checks for satisfiability of all clauses by randomly flipping values of variables</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"c1\"># Set of all symbols in all clauses</span>\n",
       "    <span class=\"n\">symbols</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">sym</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span> <span class=\"k\">for</span> <span class=\"n\">sym</span> <span class=\"ow\">in</span> <span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)}</span>\n",
       "    <span class=\"c1\"># model is a random assignment of true/false to the symbols in clauses</span>\n",
       "    <span class=\"n\">model</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">s</span><span class=\"p\">:</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">([</span><span class=\"bp\">True</span><span class=\"p\">,</span> <span class=\"bp\">False</span><span class=\"p\">])</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">symbols</span><span class=\"p\">}</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">max_flips</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">satisfied</span><span class=\"p\">,</span> <span class=\"n\">unsatisfied</span> <span class=\"o\">=</span> <span class=\"p\">[],</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span><span class=\"p\">:</span>\n",
       "            <span class=\"p\">(</span><span class=\"n\">satisfied</span> <span class=\"k\">if</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)</span> <span class=\"k\">else</span> <span class=\"n\">unsatisfied</span><span class=\"p\">)</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">unsatisfied</span><span class=\"p\">:</span>  <span class=\"c1\"># if model satisfies all the clauses</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">model</span>\n",
       "        <span class=\"n\">clause</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"n\">unsatisfied</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">probability</span><span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">):</span>\n",
       "            <span class=\"n\">sym</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)))</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"c1\"># Flip the symbol in clause that maximizes number of sat. clauses</span>\n",
       "            <span class=\"k\">def</span> <span class=\"nf\">sat_count</span><span class=\"p\">(</span><span class=\"n\">sym</span><span class=\"p\">):</span>\n",
       "                <span class=\"c1\"># Return the the number of clauses satisfied after flipping the symbol.</span>\n",
       "                <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "                <span class=\"n\">count</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">([</span><span class=\"n\">clause</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span> <span class=\"k\">if</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)])</span>\n",
       "                <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "                <span class=\"k\">return</span> <span class=\"n\">count</span>\n",
       "            <span class=\"n\">sym</span> <span class=\"o\">=</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">),</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">sat_count</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "    <span class=\"c1\"># If no solution is found within the flip limit, we return failure</span>\n",
       "    <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(WalkSAT)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The function takes three arguments:\n",
    "<br>\n",
    "1. The `clauses` we want to satisfy.\n",
    "<br>\n",
    "2. The probability `p` of randomly changing a symbol.\n",
    "<br>\n",
    "3. The maximum number of flips (`max_flips`) the algorithm will run for. If the clauses are still unsatisfied, the algorithm returns `None` to denote failure.\n",
    "<br>\n",
    "The algorithm is identical in concept to Hill climbing and the code isn't difficult to understand.\n",
    "<br>\n",
    "<br>\n",
    "Let's see a few examples of usage."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "A, B, C, D = expr('A, B, C, D')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: False, A: True, D: True, B: True}"
      ]
     },
     "execution_count": 58,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A, B, ~C, D], 0.5, 100)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is a simple case to show that the algorithm converges."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: True, A: True, B: True}"
      ]
     },
     "execution_count": 59,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A & B, A & C], 0.5, 100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: True, A: True, D: True, B: True}"
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A & B, C & D, C & B], 0.5, 100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {},
   "outputs": [],
   "source": [
    "WalkSAT([A & B, C | D, ~(D | B)], 0.5, 1000)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This one doesn't give any output because WalkSAT did not find any model where these clauses hold. We can solve these clauses to see that they together form a contradiction and hence, it isn't supposed to have a solution."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One point of difference between this algorithm and the `dpll_satisfiable` algorithms is that both these algorithms take inputs differently. \n",
    "For WalkSAT to take complete sentences as input, \n",
    "we can write a helper function that converts the input sentence into conjunctive normal form and then calls WalkSAT with the list of conjuncts of the CNF form of the sentence."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def WalkSAT_CNF(sentence, p=0.5, max_flips=10000):\n",
    "    return WalkSAT(conjuncts(to_cnf(sentence)), 0, max_flips)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can call `WalkSAT_CNF` and `DPLL_Satisfiable` with the same arguments."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{A: False, D: False, C: True, B: False}"
      ]
     },
     "execution_count": 63,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT_CNF((A & B) | (C & ~A) | (B & ~D), 0.5, 1000)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It works!\n",
    "<br>\n",
    "Notice that the solution generated by WalkSAT doesn't omit variables that the sentence doesn't depend upon. \n",
    "If the sentence is independent of a particular variable, the solution contains a random value for that variable because of the stochastic nature of the algorithm.\n",
    "<br>\n",
    "<br>\n",
    "Let's compare the runtime of WalkSAT and DPLL for a few cases. We will use the `%%timeit` magic to do this."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sentence_1 = A |'<=>'| B\n",
    "sentence_2 = (A & B) | (C & ~A) | (B & ~D)\n",
    "sentence_3 = (A | (B & C)) |'<=>'| ((A | B) & (A | C))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "100 loops, best of 3: 2.46 ms per loop\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "dpll_satisfiable(sentence_1)\n",
    "dpll_satisfiable(sentence_2)\n",
    "dpll_satisfiable(sentence_3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "100 loops, best of 3: 1.91 ms per loop\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "WalkSAT_CNF(sentence_1)\n",
    "WalkSAT_CNF(sentence_2)\n",
    "WalkSAT_CNF(sentence_3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "On an average, for solvable cases, `WalkSAT` is quite faster than `dpll` because, for a small number of variables, \n",
    "`WalkSAT` can reduce the search space significantly. \n",
    "Results can be different for sentences with more symbols though.\n",
    "Feel free to play around with this to understand the trade-offs of these algorithms better."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## First-Order Logic Knowledge Bases: `FolKB`\n",
    "\n",
    "The class `FolKB` can be used to represent a knowledge base of First-order logic sentences. You would initialize and use it the same way as you would for `PropKB` except that the clauses are first-order definite clauses. We will see how to write such clauses to create a database and query them in the following sections."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Criminal KB\n",
    "In this section we create a `FolKB` based on the following paragraph.<br/>\n",
    "<em>The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.</em><br/>\n",
    "The first step is to extract the facts and convert them into first-order definite clauses. Extracting the facts from data alone is a challenging task. Fortunately, we have a small paragraph and can do extraction and conversion manually. We'll store the clauses in list aptly named `clauses`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses = []"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>“... it is a crime for an American to sell weapons to hostile nations”</em><br/>\n",
    "The keywords to look for here are 'crime', 'American', 'sell', 'weapon' and 'hostile'. We use predicate symbols to make meaning of them.\n",
    "\n",
    "* `Criminal(x)`: `x` is a criminal\n",
    "* `American(x)`: `x` is an American\n",
    "* `Sells(x ,y, z)`: `x` sells `y` to `z`\n",
    "* `Weapon(x)`: `x` is a weapon\n",
    "* `Hostile(x)`: `x` is a hostile nation\n",
    "\n",
    "Let us now combine them with appropriate variable naming to depict the meaning of the sentence. The criminal `x` is also the American `x` who sells weapon `y` to `z`, which is a hostile nation.\n",
    "\n",
    "$\\text{American}(x) \\land \\text{Weapon}(y) \\land \\text{Sells}(x, y, z) \\land \\text{Hostile}(z) \\implies \\text{Criminal} (x)$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"The country Nono, an enemy of America\"</em><br/>\n",
    "We now know that Nono is an enemy of America. We represent these nations using the constant symbols `Nono` and `America`. the enemy relation is show using the predicate symbol `Enemy`.\n",
    "\n",
    "$\\text{Enemy}(\\text{Nono}, \\text{America})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Enemy(Nono, America)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"Nono ... has some missiles\"</em><br/>\n",
Robert Hönig's avatar
Robert Hönig a validé
    "This states the existence of some missile which is owned by Nono. $\\exists x \\text{Owns}(\\text{Nono}, x) \\land \\text{Missile}(x)$. We invoke existential instantiation to introduce a new constant `M1` which is the missile owned by Nono.\n",
    "\n",
    "$\\text{Owns}(\\text{Nono}, \\text{M1}), \\text{Missile}(\\text{M1})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Owns(Nono, M1)\"))\n",
    "clauses.append(expr(\"Missile(M1)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "<em>\"All of its missiles were sold to it by Colonel West\"</em><br/>\n",
    "If Nono owns something and it classifies as a missile, then it was sold to Nono by West.\n",
    "\n",
    "$\\text{Missile}(x) \\land \\text{Owns}(\\text{Nono}, x) \\implies \\text{Sells}(\\text{West}, x, \\text{Nono})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"West, who is American\"</em><br/>\n",
    "West is an American.\n",
    "\n",
    "$\\text{American}(\\text{West})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"American(West)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also know, from our understanding of language, that missiles are weapons and that an enemy of America counts as “hostile”.\n",
    "\n",
    "$\\text{Missile}(x) \\implies \\text{Weapon}(x), \\text{Enemy}(x, \\text{America}) \\implies \\text{Hostile}(x)$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Missile(x) ==> Weapon(x)\"))\n",
    "clauses.append(expr(\"Enemy(x, America) ==> Hostile(x)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have converted the information into first-order definite clauses we can create our first-order logic knowledge base."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "crime_kb = FolKB(clauses)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference in First-Order Logic\n",
    "In this section we look at a forward chaining and a backward chaining algorithm for `FolKB`. Both aforementioned algorithms rely on a process called <strong>unification</strong>, a key component of all first-order inference algorithms."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Unification\n",
    "We sometimes require finding substitutions that make different logical expressions look identical. This process, called unification, is done by the `unify` algorithm. It takes as input two sentences and returns a <em>unifier</em> for them if one exists. A unifier is a dictionary which stores the substitutions required to make the two sentences identical. It does so by recursively unifying the components of a sentence, where the unification of a variable symbol `var` with a constant symbol `Const` is the mapping `{var: Const}`. Let's look at a few examples."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: 3}"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('x'), 3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: B}"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('A(x)'), expr('A(B)'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: Bella, y: Dobby}"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(y)'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In cases where there is no possible substitution that unifies the two sentences the function return `None`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "None\n"
     ]
    }
   ],
   "source": [
    "print(unify(expr('Cat(x)'), expr('Dog(Dobby)')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also need to take care we do not unintentionally use the same variable name. Unify treats them as a single variable which prevents it from taking multiple value."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "None\n"
     ]
    }
   ],
   "source": [
    "print(unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(x)')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Forward Chaining Algorithm\n",
    "We consider the simple forward-chaining algorithm presented in <em>Figure 9.3</em>. We look at each rule in the knoweldge base and see if the premises can be satisfied. This is done by finding a substitution which unifies each of the premise with a clause in the `KB`. If we are able to unify the premises, the conclusion (with the corresponding substitution) is added to the `KB`. This inferencing process is repeated until either the query can be answered or till no new sentences can be added. We test if the newly added clause unifies with the query in which case the substitution yielded by `unify` is an answer to the query. If we run out of sentences to infer, this means the query was a failure.\n",
    "The function `fol_fc_ask` is a generator which yields all substitutions which validate the query."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_fc_ask"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's find out all the hostile nations. Note that we only told the `KB` that Nono was an enemy of America, not that it was hostile."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{x: Nono}]\n"
     ]
    }
   ],
   "source": [
    "answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
    "print(list(answer))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The generator returned a single substitution which says that Nono is a hostile nation. See how after adding another enemy nation the generator returns two substitutions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{x: Nono}, {x: JaJa}]\n"
     ]
    }
   ],
   "source": [
    "crime_kb.tell(expr('Enemy(JaJa, America)'))\n",
    "answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
    "print(list(answer))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<strong><em>Note</em>:</strong> `fol_fc_ask` makes changes to the `KB` by adding sentences to it."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Backward Chaining Algorithm\n",
    "This algorithm works backward from the goal, chaining through rules to find known facts that support the proof. Suppose `goal` is the query we want to find the substitution for. We find rules of the form $\\text{lhs} \\implies \\text{goal}$ in the `KB` and try to prove `lhs`. There may be multiple clauses in the `KB` which give multiple `lhs`. It is sufficient to prove only one of these. But to prove a `lhs` all the conjuncts in the `lhs` of the clause must be proved. This makes it similar to <em>And/Or</em> search."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### OR\n",
    "The <em>OR</em> part of the algorithm comes from our choice to select any clause of the form $\\text{lhs} \\implies \\text{goal}$. Looking at all rules's `lhs` whose `rhs` unify with the `goal`, we yield a substitution which proves all the conjuncts in the `lhs`. We use `parse_definite_clause` to attain `lhs` and `rhs` from a clause of the form $\\text{lhs} \\implies \\text{rhs}$. For atomic facts the `lhs` is an empty list."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_bc_or"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### AND\n",
    "The <em>AND</em> corresponds to proving all the conjuncts in the `lhs`. We need to find a substitution which proves each <em>and</em> every clause in the list of conjuncts."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_bc_and"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now the main function `fl_bc_ask` calls `fol_bc_or` with substitution initialized as empty. The `ask` method of `FolKB` uses `fol_bc_ask` and fetches the first substitution returned by the generator to answer query. Let's query the knowledge base we created from `clauses` to find hostile nations."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# Rebuild KB because running fol_fc_ask would add new facts to the KB\n",
    "crime_kb = FolKB(clauses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{v_5: x, x: Nono}"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "crime_kb.ask(expr('Hostile(x)'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You may notice some new variables in the substitution. They are introduced to standardize the variable names to prevent naming problems as discussed in the [Unification section](#Unification)"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Appendix: The Implementation of `|'==>'|`\n",
Peter Norvig's avatar
Peter Norvig a validé
    "\n",
    "Consider the `Expr` formed by this syntax:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 47,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P |'==>'| ~Q"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What is the funny `|'==>'|` syntax? The trick is that \"`|`\" is just the regular Python or-operator, and so is exactly equivalent to this: "
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 48,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "(P | '==>') | ~Q"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In other words, there are two applications of or-operators. Here's the first one:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "PartialExpr('==>', P)"
     "execution_count": 49,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P | '==>'"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What is going on here is that the `__or__` method of `Expr` serves a dual purpose. If the right-hand-side is another `Expr` (or a number), then the result is an `Expr`, as in `(P | Q)`. But if the right-hand-side is a string, then the string is taken to be an operator, and we create a node in the abstract syntax tree corresponding to a partially-filled  `Expr`, one where we know the left-hand-side is `P` and the operator is `==>`, but we don't yet know the right-hand-side.\n",
Peter Norvig's avatar
Peter Norvig a validé
    "\n",
    "The `PartialExpr` class has an `__or__` method that says to create an `Expr` node with the right-hand-side filled in. Here we can see the combination of the `PartialExpr` with `Q` to create a complete `Expr`:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 50,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "partial = PartialExpr('==>', P) \n",
    "partial | ~Q"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This  [trick](http://code.activestate.com/recipes/384122-infix-operators/) is due to [Ferdinand Jamitzky](http://code.activestate.com/recipes/users/98863/), with a modification by [C. G. Vedant](https://github.com/Chipe1),\n",
    "who suggested using a string inside the or-bars.\n",
    "\n",
    "## Appendix: The Implementation of `expr`\n",
    "\n",
    "How does `expr` parse a string into an `Expr`? It turns out there are two tricks (besides the Jamitzky/Vedant trick):\n",
    "\n",
    "1. We do a string substitution, replacing \"`==>`\" with \"`|'==>'|`\" (and likewise for other operators).\n",
    "2. We `eval` the resulting string in an environment in which every identifier\n",
    "is bound to a symbol with that identifier as the `op`.\n",
    "\n",
    "In other words,"
   "execution_count": 51,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(~(P & Q) ==> (~P | ~Q))"
     "execution_count": 51,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "expr('~(P & Q)  ==>  (~P | ~Q)')"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "is equivalent to doing:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(~(P & Q) ==> (~P | ~Q))"
     "execution_count": 52,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P, Q = symbols('P, Q')\n",
    "~(P & Q)  |'==>'|  (~P | ~Q)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One thing to beware of: this puts `==>` at the same precedence level as `\"|\"`, which is not quite right. For example, we get this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(((P & Q) ==> P) | Q)"
      ]
     },
     "execution_count": 53,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P & Q  |'==>'|  P | Q"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "which is probably not what we meant; when in doubt, put in extra parens:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((P & Q) ==> (P | Q))"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "(P & Q)  |'==>'|  (P | Q)"
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Examples"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "from notebook import Canvas_fol_bc_ask\n",
    "canvas_bc_ask = Canvas_fol_bc_ask('canvas_bc_ask', crime_kb, expr('Criminal(x)'))"
   ]
  },
Peter Norvig's avatar
Peter Norvig a validé
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
Peter Norvig's avatar
Peter Norvig a validé
   "source": [
    "# Authors\n",
    "\n",
    "This notebook by [Chirag Vartak](https://github.com/chiragvartak) and [Peter Norvig](https://github.com/norvig).\n",
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.1"
 "nbformat_minor": 1