Newer
Older
import pytest
from logic import *
def test_expr():
assert repr(expr('P <=> Q(1)')) == '(P <=> Q(1))'
assert repr(expr('P & Q | ~R(x, F(x))')) == '((P & Q) | ~R(x, F(x)))'
def test_extend():
assert extend({x: 1}, y, 2) == {x: 1, y: 2}
assert count(kb.ask(expr) for expr in [A, C, D, E, Q]) is 0
kb.tell(A & E)
assert kb.ask(A) == kb.ask(E) == {}
kb.tell(E >> C)
kb.retract(E)
assert kb.ask(E) is False
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# A simple KB that defines the relevant conditions of the Wumpus World as in Fig 7.4.
# See Sec. 7.4.3
kb_wumpus = PropKB()
# Creating the relevant expressions
P = {}
B = {}
P[1,1] = Expr("P[1,1]")
P[1,2] = Expr("P[1,2]")
P[2,1] = Expr("P[2,1]")
P[2,2] = Expr("P[2,2]")
P[3,1] = Expr("P[3,1]")
B[1,1] = Expr("B[1,1]")
B[2,1] = Expr("B[2,1]")
kb_wumpus.tell(~P[1,1])
kb_wumpus.tell(B[1,1] % ((P[1,2] | P[2,1])))
kb_wumpus.tell(B[2,1] % ((P[1,1] | P[2,2] | P[3,1])))
kb_wumpus.tell(~B[1,1])
kb_wumpus.tell(B[2,1])
# Statement: There is no pit in [1,1].
assert kb_wumpus.ask(~P[1,1]) == {}
# Statement: There is no pit in [1,2].
assert kb_wumpus.ask(~P[1,2]) == {}
# Statement: There is a pit in [2,2].
assert kb_wumpus.ask(P[2,2]) == False
# Statement: There is a pit in [3,1].
assert kb_wumpus.ask(P[3,1]) == False
# Statement: Neither [1,2] nor [2,1] contains a pit.
assert kb_wumpus.ask(~P[1,2] & ~P[2,1]) == {}
# Statement: There is a pit in either [2,2] or [3,1].
assert kb_wumpus.ask(P[2,2] | P[3,1]) == {}
# TODO: resolve >> vs ==>
#def test_definite_clause():
# assert not is_definite_clause(expr('~Farmer(Mac)'))
# assert is_definite_clause(expr('(Farmer(f) & Rabbit(r)) >> Hates(f, r)'))
# assert not is_definite_clause(expr('(Farmer(f) & ~Rabbit(r)) >> Hates(f, r)'))
# assert is_definite_clause(expr('(Farmer(f) | Rabbit(r)) >> Hates(f, r)'))
def test_pl_true():
assert pl_true(P, {}) is None
assert pl_true(P, {P: False}) is False
assert pl_true(P | Q, {P: True}) is True
assert pl_true((A|B)&(C|D), {A: False, B: True, D: True}) is True
assert pl_true((A&B)&(C|D), {A: False, B: True, D: True}) is False
assert pl_true((A&B)|(A&C), {A: False, B: True, C: True}) is False
assert pl_true((A|B)&(C|D), {A: True, D: False}) is None
assert pl_true(P | P, {}) is None
def test_tt_true():
assert tt_true(P | ~P)
assert tt_true('~~P <=> P')
assert not tt_true('(P | ~Q)&(~P | Q)')
assert not tt_true(P & ~P)
assert not tt_true(P & Q)
assert tt_true('(P | ~Q)|(~P | Q)')
assert tt_true('(A & B) ==> (A | B)')
assert tt_true('((A & B) & C) <=> (A & (B & C))')
assert tt_true('((A | B) | C) <=> (A | (B | C))')
assert tt_true('(A >> B) <=> (~B >> ~A)')
assert tt_true('(A >> B) <=> (~A | B)')
assert tt_true('(A <=> B) <=> ((A >> B) & (B >> A))')
assert tt_true('~(A & B) <=> (~A | ~B)')
assert tt_true('~(A | B) <=> (~A & ~B)')
assert tt_true('(A & (B | C)) <=> ((A & B) | (A & C))')
assert tt_true('(A | (B & C)) <=> ((A | B) & (A | C))')
def test_dpll():
assert (dpll_satisfiable(A & ~B & C & (A | ~D) & (~E | ~D) & (C | ~D) & (~A | ~F) & (E | ~F)
& (~D | ~F) & (B | ~C | D) & (A | ~E | F) & (~A | E | D))
== {B: False, C: True, A: True, F: False, D: True, E: False})
assert dpll_satisfiable(A&~B) == {A: True, B: False}
assert dpll_satisfiable(P&~P) == False
def test_unify():
assert unify(x, x, {}) == {}
assert unify(x, 3, {}) == {x: 3}
def test_pl_fc_entails():
assert pl_fc_entails(Fig[7,15], expr('Q'))
assert not pl_fc_entails(Fig[7,15], expr('SomethingSilly'))
assert tt_entails(P & Q, Q)
assert not tt_entails(P | Q, Q)
assert tt_entails(A & (B | C) & E & F & ~(P | Q), A & E & F & ~P & ~Q)
def test_eliminate_implications():
assert repr(eliminate_implications(A >> (~B << C))) == '((~B | ~C) | ~A)'
assert repr(eliminate_implications(A ^ B)) == '((A & ~B) | (~A & B))'
assert repr(eliminate_implications(A & B | C & ~D)) == '((A & B) | (C & ~D))'
def test_dissociate():
assert dissociate('&', [A & B]) == [A, B]
assert dissociate('|', [A, B, C & D, P | Q]) == [A, B, C & D, P, Q]
assert dissociate('&', [A, B, C & D, P | Q]) == [A, B, C, D, P | Q]
def test_associate():
assert repr(associate('&', [(A&B),(B|C),(B&C)])) == '(A & B & (B | C) & B & C)'
assert repr(associate('|', [A|(B|(C|(A&B)))])) == '(A | B | C | (A & B))'
def test_move_not_inwards():
assert repr(move_not_inwards(~(A | B))) == '(~A & ~B)'
assert repr(move_not_inwards(~(A & B))) == '(~A | ~B)'
assert repr(move_not_inwards(~(~(A | ~B) | ~~C))) == '((A | ~B) & ~C)'
def test_to_cnf():
assert (repr(to_cnf(Fig[7, 13] & ~expr('~P12'))) ==
"((~P12 | B11) & (~P21 | B11) & (P12 | P21 | ~B11) & ~B11 & P12)")
assert repr(to_cnf((P&Q) | (~P & ~Q))) == '((~P | P) & (~Q | P) & (~P | Q) & (~Q | Q))'
assert repr(to_cnf("B <=> (P1|P2)")) == '((~P1 | B) & (~P2 | B) & (P1 | P2 | ~B))'
assert repr(to_cnf("a | (b & c) | d")) == '((b | a | d) & (c | a | d))'
assert repr(to_cnf("A & (B | (D & E))")) == '(A & (D | B) & (E | B))'
assert repr(to_cnf("A | (B | (C | (D & E)))")) == '((D | A | B | C) & (E | A | B | C))'
def test_standardize_variables():
e = expr('F(a, b, c) & G(c, A, 23)')
assert len(variables(standardize_variables(e))) == 3
#assert variables(e).intersection(variables(standardize_variables(e))) == {}
assert is_variable(standardize_variables(expr('x')))
SnShine
a validé
def test_fol_bc_ask():
def test_ask(query, kb=None):
q = expr(query)
SnShine
a validé
test_variables = variables(q)
answers = fol_bc_ask(kb or test_kb, q)
return sorted(
SnShine
a validé
[dict((x, v) for x, v in list(a.items()) if x in test_variables)
for a in answers], key=repr)
assert repr(test_ask('Farmer(x)')) == '[{x: Mac}]'
assert repr(test_ask('Human(x)')) == '[{x: Mac}, {x: MrsMac}]'
assert repr(test_ask('Rabbit(x)')) == '[{x: MrsRabbit}, {x: Pete}]'
assert repr(test_ask('Criminal(x)', crime_kb)) == '[{x: West}]'
def test_WalkSAT():
def check_SAT(clauses, single_solution = {}):
# Make sure the solution is correct if it is returned by WalkSat
# Sometimes WalkSat may run out of flips before finding a solution
soln = WalkSAT(clauses)
if soln:
assert every(lambda x: pl_true(x, soln), clauses)
if single_solution: #Cross check the solution if only one exists
assert every(lambda x: pl_true(x, single_solution), clauses)
assert soln == single_solution
check_SAT([A & B, A & C])
check_SAT([A | B, P & Q, P & B])
check_SAT([A & B, C | D, ~(D | P)], {A: True, B: True, C: True, D: False, P: False})
assert WalkSAT([A & ~A], 0.5, 100) is None
assert WalkSAT([A | B, ~A, ~(B | C), C | D, P | Q], 0.5, 100) is None
assert WalkSAT([A | B, B & C, C | D, D & A, P, ~P], 0.5, 100) is None