learning.ipynb 581 ko
Newer Older
C.G.Vedant's avatar
C.G.Vedant a validé
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "`DecisionFork` holds the attribute, which is tested at that node, and a dict of branches. The branches store the child nodes, one for each of the attribute's values. Calling an object of this class as a function with input tuple as an argument returns the next node in the classification path based on the result of the attribute test."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource DecisionLeaf"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The leaf node stores the class label in `result`. All input tuples' classification paths end on a `DecisionLeaf` whose `result` attribute decide their class."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource DecisionTreeLearner"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The implementation of `DecisionTreeLearner` provided in [learning.py](https://github.com/aimacode/aima-python/blob/master/learning.py) uses information gain as the metric for selecting which attribute to test for splitting. The function builds the tree top-down in a recursive manner. Based on the input it makes one of the four choices:\n",
    "<ol>\n",
    "<li>If the input at the current step has no training data we return the mode of classes of input data recieved in the parent step (previous level of recursion).</li>\n",
    "<li>If all values in training data belongs to the same class it returns a `DecisionLeaf` whose class label is the class which all the data belongs to.</li>\n",
    "<li>If the data has no attributes that can be tested we return prurality value of class of training data.</li>\n",
    "<li>We choose the attribute which gives highest amount of entropy gain and return a `DecisionFork` which splits based of this attribute. Each branch recursively calls `decision_tree_learning` to constructs the sub-tree.</li>\n",
    "</ol>"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
    "## NAIVE BAYES LEARNER\n",
    "\n",
    "### Overview\n",
    "\n",
    "#### Theory of Probabilities\n",
    "The Naive Bayes algorithm is a probabilistic classifier, making use of [Bayes' Theorem](https://en.wikipedia.org/wiki/Bayes%27_theorem). The theorem states that the conditional probability of **A** given **B** equals the conditional probability of **B** given **A** multiplied by the probability of **A**, divided by the probability of **B**.\n",
    "$$P(A|B) = \\dfrac{P(B|A)*P(A)}{P(B)}$$\n",
    "From the theory of Probabilities we have the Multiplication Rule, if the events *X* are independent the following is true:\n",
    "\n",
    "$$P(X_{1} \\cap X_{2} \\cap ... \\cap X_{n}) = P(X_{1})*P(X_{2})*...*P(X_{n})$$\n",
    "\n",
    "For conditional probabilities this becomes:\n",
    "\n",
    "$$P(X_{1}, X_{2}, ..., X_{n}|Y) = P(X_{1}|Y)*P(X_{2}|Y)*...*P(X_{n}|Y)$$"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Classifying an Item\n",
    "\n",
    "How can we use the above to classify an item though?\n",
    "\n",
    "We have a dataset with a set of classes (**C**) and we want to classify an item with a set of features (**F**). Essentially what we want to do is predict the class of an item given the features.\n",
    "\n",
    "For a specific class, **Class**, we will find the conditional probability given the item features:\n",
    "\n",
    "$$P(Class|F) = \\dfrac{P(F|Class)*P(Class)}{P(F)}$$\n",
    "\n",
    "We will do this for every class and we will pick the maximum. This will be the class the item is classified in.\n",
    "\n",
    "The features though are a vector with many elements. We need to break the probabilities up using the multiplication rule. Thus the above equation becomes:\n",
    "\n",
    "$$P(Class|F) = \\dfrac{P(Class)*P(F_{1}|Class)*P(F_{2}|Class)*...*P(F_{n}|Class)}{P(F_{1})*P(F_{2})*...*P(F_{n})}$$\n",
    "\n",
    "The calculation of the conditional probability then depends on the calculation of the following:\n",
    "\n",
    "*a)* The probability of **Class** in the dataset.\n",
    "\n",
    "*b)* The conditional probability of each feature occuring in an item classified in **Class**.\n",
    "\n",
    "*c)* The probabilities of each individual feature.\n",
    "\n",
    "For *a)*, we will count how many times **Class** occurs in the dataset (aka how many items are classified in a particular class).\n",
    "\n",
    "For *b)*, if the feature values are discrete ('Blue', '3', 'Tall', etc.), we will count how many times a feature value occurs in items of each class. If the feature values are not discrete, we will go a different route. We will use a distribution function to calculate the probability of values for a given class and feature. If we know the distribution function of the dataset, then great, we will use it to compute the probabilities. If we don't know the function, we can assume the dataset follows the normal (Gaussian) distribution without much loss of accuracy. In fact, it can be proven that any distribution tends to the Gaussian the larger the population gets (see [Central Limit Theorem](https://en.wikipedia.org/wiki/Central_limit_theorem)).\n",
    "\n",
    "*NOTE:* If the values are continuous but use the discrete approach, there might be issues if we are not lucky. For one, if we have two values, '5.0 and 5.1', with the discrete approach they will be two completely different values, despite being so close. Second, if we are trying to classify an item with a feature value of '5.15', if the value does not appear for the feature, its probability will be 0. This might lead to misclassification. Generally, the continuous approach is more accurate and more useful, despite the overhead of calculating the distribution function.\n",
    "\n",
    "The last one, *c)*, is tricky. If feature values are discrete, we can count how many times they occur in the dataset. But what if the feature values are continuous? Imagine a dataset with a height feature. Is it worth it to count how many times each value occurs? Most of the time it is not, since there can be miscellaneous differences in the values (for example, 1.7 meters and 1.700001 meters are practically equal, but they count as different values).\n",
    "\n",
    "So as we cannot calculate the feature value probabilities, what are we going to do?\n",
    "\n",
    "Let's take a step back and rethink exactly what we are doing. We are essentially comparing conditional probabilities of all the classes. For two classes, **A** and **B**, we want to know which one is greater:\n",
    "\n",
    "$$\\dfrac{P(F|A)*P(A)}{P(F)} vs. \\dfrac{P(F|B)*P(B)}{P(F)}$$\n",
    "\n",
    "Wait, **P(F)** is the same for both the classes! In fact, it is the same for every combination of classes. That is because **P(F)** does not depend on a class, thus being independent of the classes.\n",
    "\n",
    "So, for *c)*, we actually don't need to calculate it at all."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Wrapping It Up\n",
    "\n",
    "Classifying an item to a class then becomes a matter of calculating the conditional probabilities of feature values and the probabilities of classes. This is something very desirable and computationally delicious.\n",
    "\n",
    "Remember though that all the above are true because we made the assumption that the features are independent. In most real-world cases that is not true though. Is that an issue here? Fret not, for the the algorithm is very efficient even with that assumption. That is why the algorithm is called **Naive** Bayes Classifier. We (naively) assume that the features are independent to make computations easier."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation\n",
    "\n",
    "The implementation of the Naive Bayes Classifier is split in two; Discrete and Continuous. The user can choose between them with the argument `continuous`."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Discrete\n",
    "\n",
    "The implementation for discrete values counts how many times each feature value occurs for each class, and how many times each class occurs. The results are stored in a `CountinProbDist` object."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "With the below code you can see the probabilities of the class \"Setosa\" appearing in the dataset and the probability of the first feature (at index 0) of the same class having a value of 5. Notice that the second probability is relatively small, even though if we observe the dataset we will find that a lot of values are around 5. The issue arises because the features in the Iris dataset are continuous, and we are assuming they are discrete. If the features were discrete (for example, \"Tall\", \"3\", etc.) this probably wouldn't have been the case and we would see a much nicer probability distribution."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 30,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0.3333333333333333\n",
      "0.10588235294117647\n"
     ]
    }
   ],
   "source": [
    "dataset = iris\n",
    "\n",
    "target_vals = dataset.values[dataset.target]\n",
    "target_dist = CountingProbDist(target_vals)\n",
    "attr_dists = {(gv, attr): CountingProbDist(dataset.values[attr])\n",
    "              for gv in target_vals\n",
    "              for attr in dataset.inputs}\n",
    "for example in dataset.examples:\n",
    "        targetval = example[dataset.target]\n",
    "        target_dist.add(targetval)\n",
    "        for attr in dataset.inputs:\n",
    "            attr_dists[targetval, attr].add(example[attr])\n",
    "\n",
    "\n",
    "print(target_dist['setosa'])\n",
    "print(attr_dists['setosa', 0][5.0])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "First we found the different values for the classes (called targets here) and calculated their distribution. Next we initialized a dictionary of `CountingProbDist` objects, one for each class and feature. Finally, we iterated through the examples in the dataset and calculated the needed probabilites.\n",
    "\n",
    "Having calculated the different probabilities, we will move on to the predicting function. It will receive as input an item and output the most likely class. Using the above formula, it will multiply the probability of the class appearing, with the probability of each feature value appearing in the class. It will return the max result."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 31,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "setosa\n"
     ]
    }
   ],
   "source": [
    "def predict(example):\n",
    "    def class_probability(targetval):\n",
    "        return (target_dist[targetval] *\n",
    "                product(attr_dists[targetval, attr][example[attr]]\n",
    "                        for attr in dataset.inputs))\n",
    "    return argmax(target_vals, key=class_probability)\n",
    "\n",
    "\n",
    "print(predict([5, 3, 1, 0.1]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can view the complete code by executing the next line:"
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 32,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource NaiveBayesDiscrete"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Continuous\n",
    "\n",
    "In the implementation we use the Gaussian/Normal distribution function. To make it work, we need to find the means and standard deviations of features for each class. We make use of the `find_means_and_deviations` Dataset function. On top of that, we will also calculate the class probabilities as we did with the Discrete approach."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 33,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[5.006, 3.418, 1.464, 0.244]\n",
      "[0.5161711470638634, 0.3137983233784114, 0.46991097723995795, 0.19775268000454405]\n"
     ]
    }
   ],
   "source": [
    "means, deviations = dataset.find_means_and_deviations()\n",
    "\n",
    "target_vals = dataset.values[dataset.target]\n",
    "target_dist = CountingProbDist(target_vals)\n",
    "\n",
    "\n",
    "print(means[\"setosa\"])\n",
    "print(deviations[\"versicolor\"])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You can see the means of the features for the \"Setosa\" class and the deviations for \"Versicolor\".\n",
    "\n",
    "The prediction function will work similarly to the Discrete algorithm. It will multiply the probability of the class occuring with the conditional probabilities of the feature values for the class.\n",
    "\n",
    "Since we are using the Gaussian distribution, we will input the value for each feature into the Gaussian function, together with the mean and deviation of the feature. This will return the probability of the particular feature value for the given class. We will repeat for each class and pick the max value."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 34,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "setosa\n"
     ]
    }
   ],
   "source": [
    "def predict(example):\n",
    "    def class_probability(targetval):\n",
    "        prob = target_dist[targetval]\n",
    "        for attr in dataset.inputs:\n",
    "            prob *= gaussian(means[targetval][attr], deviations[targetval][attr], example[attr])\n",
    "        return prob\n",
    "\n",
    "    return argmax(target_vals, key=class_probability)\n",
    "\n",
    "\n",
    "print(predict([5, 3, 1, 0.1]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The complete code of the continuous algorithm:"
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 35,
    "collapsed": true
   "outputs": [],
   "source": [
    "%psource NaiveBayesContinuous"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Examples\n",
    "\n",
    "We will now use the Naive Bayes Classifier (Discrete and Continuous) to classify items:"
   ]
  },
  {
C.G.Vedant's avatar
C.G.Vedant a validé
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
C.G.Vedant's avatar
C.G.Vedant a validé
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Discrete Classifier\n",
      "setosa\n",
      "setosa\n",
      "setosa\n",
      "\n",
      "Continuous Classifier\n",
      "setosa\n",
      "versicolor\n",
      "virginica\n"
     ]
    }
   ],
   "source": [
C.G.Vedant's avatar
C.G.Vedant a validé
    "nBD = NaiveBayesLearner(iris, continuous=False)\n",
    "print(\"Discrete Classifier\")\n",
    "print(nBD([5, 3, 1, 0.1]))\n",
    "print(nBD([6, 5, 3, 1.5]))\n",
    "print(nBD([7, 3, 6.5, 2]))\n",
    "\n",
    "\n",
    "nBC = NaiveBayesLearner(iris, continuous=True)\n",
    "print(\"\\nContinuous Classifier\")\n",
    "print(nBC([5, 3, 1, 0.1]))\n",
    "print(nBC([6, 5, 3, 1.5]))\n",
    "print(nBC([7, 3, 6.5, 2]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Notice how the Discrete Classifier misclassified the second item, while the Continuous one had no problem."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## PERCEPTRON CLASSIFIER\n",
    "\n",
    "### Overview\n",
    "\n",
    "The Perceptron is a linear classifier. It works the same way as a neural network with no hidden layers (just input and output). First it trains its weights given a dataset and then it can classify a new item by running it through the network.\n",
    "\n",
    "Its input layer consists of the the item features, while the output layer consists of nodes (also called neurons). Each node in the output layer has *n* synapses (for every item feature), each with its own weight. Then, the nodes find the dot product of the item features and the synapse weights. These values then pass through an activation function (usually a sigmoid). Finally, we pick the largest of the values and we return its index.\n",
    "\n",
    "Note that in classification problems each node represents a class. The final classification is the class/node with the max output value.\n",
    "\n",
    "Below you can see a single node/neuron in the outer layer. With *f* we denote the item features, with *w* the synapse weights, then inside the node we have the dot product and the activation function, *g*."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![perceptron](images/perceptron.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation\n",
    "\n",
    "First, we train (calculate) the weights given a dataset, using the `BackPropagationLearner` function of `learning.py`. We then return a function, `predict`, which we will use in the future to classify a new item. The function computes the (algebraic) dot product of the item with the calculated weights for each node in the outer layer. Then it picks the greatest value and classifies the item in the corresponding class."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 37,
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource PerceptronLearner"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
    "Note that the Perceptron is a one-layer neural network, without any hidden layers. So, in `BackPropagationLearner`, we will pass no hidden layers. From that function we get our network, which is just one layer, with the weights calculated.\n",
    "That function `predict` passes the input/example through the network, calculating the dot product of the input and the weights for each node and returns the class with the max dot product."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Example\n",
    "\n",
    "We will train the Perceptron on the iris dataset. Because though the `BackPropagationLearner` works with integer indexes and not strings, we need to convert class names to integers. Then, we will try and classify the item/flower with measurements of 5, 3, 1, 0.1."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n"
     ]
    }
   ],
   "source": [
    "iris = DataSet(name=\"iris\")\n",
    "iris.classes_to_numbers()\n",
    "\n",
    "perceptron = PerceptronLearner(iris)\n",
    "print(perceptron([5, 3, 1, 0.1]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
    "The correct output is 0, which means the item belongs in the first class, \"setosa\". Note that the Perceptron algorithm is not perfect and may produce false classifications."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## NEURAL NETWORK\n",
    "\n",
    "### Overview\n",
    "\n",
    "Although the Perceptron may seem like a good way to make classifications, it is a linear classifier (which, roughly, means it can only draw straight lines to divide spaces) and therefore it can be stumped by more complex problems. We can extend Perceptron to solve this issue, by employing multiple layers of its functionality. The construct we are left with is called a Neural Network, or a Multi-Layer Perceptron, and it is a non-linear classifier. It achieves that by combining the results of linear functions on each layer of the network.\n",
    "\n",
    "Similar to the Perceptron, this network also has an input and output layer. However it can also have a number of hidden layers. These hidden layers are responsible for the non-linearity of the network. The layers are comprised of nodes. Each node in a layer (excluding the input one), holds some values, called *weights*, and takes as input the output values of the previous layer. The node then calculates the dot product of its inputs and its weights and then activates it with an *activation function* (sometimes a sigmoid). Its output is fed to the nodes of the next layer. Note that sometimes the output layer does not use an activation function, or uses a different one from the rest of the network. The process of passing the outputs down the layer is called *feed-forward*.\n",
    "\n",
    "After the input values are fed-forward into the network, the resulting output can be used for classification. The problem at hand now is how to train the network (ie. adjust the weights in the nodes). To accomplish that we utilize the *Backpropagation* algorithm. In short, it does the opposite of what we were doing up to now. Instead of feeding the input forward, it will feed the error backwards. So, after we make a classification, we check whether it is correct or not, and how far off we were. We then take this error and propagate it backwards in the network, adjusting the weights of the nodes accordingly. We will run the algorithm on the given input/dataset for a fixed amount of time, or until we are satisfied with the results. The number of times we will iterate over the dataset is called *epochs*. In a later section we take a detailed look at how this algorithm works.\n",
    "\n",
    "NOTE: Sometimes we add to the input of each layer another node, called *bias*. This is a constant value that will be fed to the next layer, usually set to 1. The bias generally helps us \"shift\" the computed function to the left or right."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![neural_net](images/neural_net.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation\n",
    "\n",
    "The `NeuralNetLearner` function takes as input a dataset to train upon, the learning rate (in (0, 1]), the number of epochs and finally the size of the hidden layers. This last argument is a list, with each element corresponding to one hidden layer.\n",
    "\n",
    "After that we will create our neural network in the `network` function. This function will make the necessary connections between the input layer, hidden layer and output layer. With the network ready, we will use the `BackPropagationLearner` to train the weights of our network for the examples provided in the dataset.\n",
    "\n",
    "The NeuralNetLearner returns the `predict` function, which can receive an example and feed-forward it into our network to generate a prediction."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 39,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource NeuralNetLearner"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Backpropagation\n",
    "\n",
    "In both the Perceptron and the Neural Network, we are using the Backpropagation algorithm to train our weights. Basically it achieves that by propagating the errors from our last layer into our first layer, this is why it is called Backpropagation. In order to use Backpropagation, we need a cost function. This function is responsible for indicating how good our neural network is for a given example. One common cost function is the *Mean Squared Error* (MSE). This cost function has the following format:\n",
    "\n",
    "$$MSE=\\frac{1}{2} \\sum_{i=1}^{n}(y - \\hat{y})^{2}$$\n",
    "\n",
    "Where `n` is the number of training examples, $\\hat{y}$ is our prediction and $y$ is the correct prediction for the example.\n",
    "\n",
    "The algorithm combines the concept of partial derivatives and the chain rule to generate the gradient for each weight in the network based on the cost function.\n",
    "\n",
    "For example, if we are using a Neural Network with three layers, the sigmoid function as our activation function and the MSE cost function, we want to find the gradient for the a given weight $w_{j}$, we can compute it like this:\n",
    "\n",
    "$$\\frac{\\partial MSE(\\hat{y}, y)}{\\partial w_{j}} = \\frac{\\partial MSE(\\hat{y}, y)}{\\partial \\hat{y}}\\times\\frac{\\partial\\hat{y}(in_{j})}{\\partial in_{j}}\\times\\frac{\\partial in_{j}}{\\partial w_{j}}$$\n",
    "\n",
    "Solving this equation, we have:\n",
    "\n",
    "$$\\frac{\\partial MSE(\\hat{y}, y)}{\\partial w_{j}} = (\\hat{y} - y)\\times{\\hat{y}}'(in_{j})\\times a_{j}$$\n",
    "\n",
    "Remember that $\\hat{y}$ is the activation function applied to a neuron in our hidden layer, therefore $$\\hat{y} = sigmoid(\\sum_{i=1}^{num\\_neurons}w_{i}\\times a_{i})$$\n",
    "\n",
    "Also $a$ is the input generated by feeding the input layer variables into the hidden layer.\n",
    "\n",
    "We can use the same technique for the weights in the input layer as well. After we have the gradients for both weights, we use gradient descent to update the weights of the network."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Implementation\n",
    "\n",
    "First, we feed-forward the examples in our neural network. After that, we calculate the gradient for each layer weights. Once that is complete, we update all the weights using gradient descent. After running these for a given number of epochs, the function returns the trained Neural Network."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 40,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource BackPropagationLearner"
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "0\n"
     ]
    }
   ],
   "source": [
    "iris = DataSet(name=\"iris\")\n",
    "iris.classes_to_numbers()\n",
    "\n",
    "nNL = NeuralNetLearner(iris)\n",
    "print(nNL([5, 3, 1, 0.1]))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The output should be 0, which means the item should get classified in the first class, \"setosa\". Note that since the algorithm is non-deterministic (because of the random initial weights) the classification might be wrong. Usually though it should be correct.\n",
    "\n",
    "To increase accuracy, you can (most of the time) add more layers and nodes. Unfortunately the more layers and nodes you have, the greater the computation cost."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
    "## LEARNER EVALUATION\n",
    "In this section we will evaluate and compare algorithm performance. The dataset we will use will again be the iris one."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 42,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "iris = DataSet(name=\"iris\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Naive Bayes\n",
    "First up we have the Naive Bayes algorithm. First we will test how well the Discrete Naive Bayes works, and then how the Continuous fares."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 43,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
C.G.Vedant's avatar
C.G.Vedant a validé
      "Error ratio for Discrete: 0.040000000000000036\n",
      "Error ratio for Continuous: 0.040000000000000036\n"
     ]
    }
   ],
   "source": [
    "nBD = NaiveBayesLearner(iris, continuous=False)\n",
    "print(\"Error ratio for Discrete:\", err_ratio(nBD, iris))\n",
    "nBC = NaiveBayesLearner(iris, continuous=True)\n",
    "print(\"Error ratio for Continuous:\", err_ratio(nBC, iris))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The error for the Naive Bayes algorithm is very, very low; close to 0. There is also very little difference between the discrete and continuous version of the algorithm."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## k-Nearest Neighbors\n",
    "Now we will take a look at kNN, for different values of *k*. Note that *k* should have odd values, to break any ties between two classes."
   ]
  },
  {
   "cell_type": "code",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 44,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Error ratio for k=1: 0.0\n",
C.G.Vedant's avatar
C.G.Vedant a validé
      "Error ratio for k=3: 0.06000000000000005\n",
      "Error ratio for k=5: 0.1266666666666667\n",
      "Error ratio for k=7: 0.19999999999999996\n"
     ]
    }
   ],
   "source": [
    "kNN_1 = NearestNeighborLearner(iris, k=1)\n",
    "kNN_3 = NearestNeighborLearner(iris, k=3)\n",
    "kNN_5 = NearestNeighborLearner(iris, k=5)\n",
    "kNN_7 = NearestNeighborLearner(iris, k=7)\n",
    "print(\"Error ratio for k=1:\", err_ratio(kNN_1, iris))\n",
    "print(\"Error ratio for k=3:\", err_ratio(kNN_3, iris))\n",
    "print(\"Error ratio for k=5:\", err_ratio(kNN_5, iris))\n",
    "print(\"Error ratio for k=7:\", err_ratio(kNN_7, iris))"
   "metadata": {},
    "Notice how the error became larger and larger as *k* increased. This is generally the case with datasets where classes are spaced out, as is the case with the iris dataset. If items from different classes were closer together, classification would be more difficult. Usually a value of 1, 3 or 5 for *k* suffices.\n",
    "Also note that since the training set is also the testing set, for *k* equal to 1 we get a perfect score, since the item we want to classify each time is already in the dataset and its closest neighbor is itself."
   "cell_type": "markdown",
   "metadata": {},
    "For the Perceptron, we first need to convert class names to integers. Let's see how it performs in the dataset."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 45,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
C.G.Vedant's avatar
C.G.Vedant a validé
      "Error ratio for Perceptron: 0.31333333333333335\n"
     ]
    }
   ],
   "source": [
    "iris2 = DataSet(name=\"iris\")\n",
    "iris2.classes_to_numbers()\n",
    "\n",
    "perceptron = PerceptronLearner(iris2)\n",
    "print(\"Error ratio for Perceptron:\", err_ratio(perceptron, iris2))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
    "The Perceptron didn't fare very well mainly because the dataset is not linearly separated. On simpler datasets the algorithm performs much better, but unfortunately such datasets are rare in real life scenarios."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## MNIST HANDWRITTEN DIGITS CLASSIFICATION\n",
    "\n",
    "The MNIST database, available from [this page](http://yann.lecun.com/exdb/mnist/), is a large database of handwritten digits that is commonly used for training and testing/validating in Machine learning.\n",
    "\n",
    "The dataset has **60,000 training images** each of size 28x28 pixels with labels and **10,000 testing images** of size 28x28 pixels with labels.\n",
    "\n",
    "In this section, we will use this database to compare performances of different learning algorithms.\n",
    "\n",
    "It is estimated that humans have an error rate of about **0.2%** on this problem. Let's see how our algorithms perform!\n",
    "\n",
    "NOTE: We will be using external libraries to load and visualize the dataset smoothly ([numpy](http://www.numpy.org/) for loading and [matplotlib](http://matplotlib.org/) for visualization). You do not need previous experience of the libraries to follow along."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Loading MNIST digits data\n",
    "\n",
    "Let's start by loading MNIST data into numpy arrays."
   "metadata": {},
    "The function `load_MNIST()` loads MNIST data from files saved in `aima-data/MNIST`. It returns four numpy arrays that we are going to use to train and classify hand-written digits in various learning approaches."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 46,
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "train_img, train_lbl, test_img, test_lbl = load_MNIST()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Check the shape of these NumPy arrays to make sure we have loaded the database correctly.\n",
    "\n",
    "Each 28x28 pixel image is flattened to a 784x1 array and we should have 60,000 of them in training data. Similarly, we should have 10,000 of those 784x1 arrays in testing data."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 47,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Training images size: (60000, 784)\n",
      "Training labels size: (60000,)\n",
      "Testing images size: (10000, 784)\n",
      "Training labels size: (10000,)\n"
     ]
    }
   ],
   "source": [
    "print(\"Training images size:\", train_img.shape)\n",
    "print(\"Training labels size:\", train_lbl.shape)\n",
    "print(\"Testing images size:\", test_img.shape)\n",
    "print(\"Training labels size:\", test_lbl.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
    "### Visualizing MNIST digits data\n",
    "To get a better understanding of the dataset, let's visualize some random images for each class from training and testing datasets."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 48,
   "metadata": {},
C.G.Vedant's avatar
C.G.Vedant a validé
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAKoCAYAAABUXzFLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3Xm8TdX/x/GXMULmIWODJFKUIgmlzIpKpZQiRSiFQmRI\npUElRQMqRIqiRJo0Skqp5Nc8q4TMNMj5/dH3s/c695x73XvuvWfY5/18PHrY7XXuOcuyzzl3r89n\nfVaBUCgUQkREREREJCAKJroDIiIiIiIieUk3OSIiIiIiEii6yRERERERkUDRTY6IiIiIiASKbnJE\nRERERCRQdJMjIiIiIiKBopscEREREREJFN3kiIiIiIhIoOgmR0REREREAkU3OY6dO3cyaNAgqlat\nSrFixWjYsCFPPvlkoruV9Hbs2MH1119PmzZtqFixIgUKFGDMmDGJ7lZKeO211+jVqxd169alRIkS\nVKtWjbPOOovVq1cnumtJbc2aNXTs2JGaNWtSvHhxypUrx0knncTs2bMT3bWUNG3aNAoUKEDJkiUT\n3ZWk9vrrr1OgQIGo/61cuTLR3UsJb7/9Nh06dKBs2bIUL16cI444gptvvjnR3Upql156aabXna69\nrH300Ud06dKFqlWrcuCBB1K3bl3GjRvH7t27E921pLdq1Sratm1LqVKlKFmyJKeeeirvvPNOoruV\nI4UT3YFkcvbZZ/P+++8zYcIE6tSpw5w5c+jevTv79u3jwgsvTHT3ktbmzZt5+OGHOfbYY+nSpQvT\npk1LdJdSxtSpU9m8eTPXXHMN9erVY+PGjUycOJGmTZuybNkyTjvttER3MSlt3bqVGjVq0L17d6pV\nq8auXbt44oknuPjii/n+++8ZOXJkoruYMtavX8+QIUOoWrUq27ZtS3R3UsKtt97KqaeeGnbu6KOP\nTlBvUsecOXO4+OKLOe+885g5cyYlS5bkm2++4Zdffkl015LaqFGj6Nu3b8T5zp07c8ABB3DCCSck\noFfJb926dTRr1owjjzySe++9lwoVKvDmm28ybtw4Vq9ezaJFixLdxaT1/vvv06JFC0488URmzZpF\nKBTijjvuoHXr1ixfvpyTTjop0V3MnpCEQqFQ6IUXXggBoTlz5oSdP+OMM0JVq1YN7d27N0E9S377\n9u0L7du3LxQKhUIbN24MAaHRo0cntlMpYsOGDRHnduzYEapcuXKodevWCehRamvSpEmoRo0aie5G\nSunUqVOoc+fOoZ49e4ZKlCiR6O4kteXLl4eA0NNPP53orqScn3/+OVSiRIlQv379Et2VQHj99ddD\nQGjkyJGJ7krSuvHGG0NA6Ouvvw47f8UVV4SA0B9//JGgniW/tm3bhipXrhzatWuXd2779u2hChUq\nhJo1a5bAnuWM0tX+59lnn6VkyZJ069Yt7Pxll13GL7/8wnvvvZegniU/C5lLzlWqVCniXMmSJalX\nrx4//fRTAnqU2ipUqEDhwgpQZ9fs2bN54403mDJlSqK7IgE3bdo0du3axQ033JDorgTC9OnTKVCg\nAL169Up0V5JWkSJFAChdunTY+TJlylCwYEGKFi2aiG6lhHfeeYdWrVpx4IEHeudKlSpFixYtWLFi\nBb/++msCe5d9usn5n7Vr13LUUUdF/IJ0zDHHeO0i8bBt2zY+/PBD6tevn+iuJL19+/axd+9eNm7c\nyJQpU1i2bJl+icqm33//nUGDBjFhwgSqV6+e6O6klP79+1O4cGEOOugg2rZty9tvv53oLiW9N998\nk3LlyvH555/TsGFDChcuTKVKlejbty/bt29PdPdSyrZt25g/fz6tW7fm0EMPTXR3klbPnj0pU6YM\n/fr149tvv2XHjh0sXryYhx56iP79+1OiRIlEdzFp/f333xxwwAER5+3cp59+Gu8uxUQ3Of+zefNm\nypUrF3Hezm3evDneXZI01b9/f3bt2sWNN96Y6K4kvauuuooiRYpQqVIlrr32Wu677z6uvPLKRHcr\nJVx11VUceeSR9OvXL9FdSRmlS5fmmmuu4aGHHmL58uVMmjSJn376iVatWrFs2bJEdy+prV+/nt27\nd9OtWzfOP/98XnnlFYYOHcrMmTPp0KEDoVAo0V1MGXPnzmXPnj307t070V1Jaocccgjvvvsua9eu\n5fDDD+eggw6ic+fO9OzZk0mTJiW6e0mtXr16rFy5kn379nnn9u7d62U1pcrvxMrrcGSVcqV0LImH\nUaNG8cQTTzB58mSOP/74RHcn6Y0YMYLLL7+c33//neeff54BAwawa9cuhgwZkuiuJbUFCxbw/PPP\n89FHH+mzLQcaNWpEo0aNvP8/5ZRT6Nq1Kw0aNOD666+nbdu2Cexdctu3bx9//vkno0ePZtiwYQC0\natWKokWLMmjQIF599VVOP/30BPcyNUyfPp3y5cvTtWvXRHclqX3//fd07tyZypUrM3/+fCpWrMh7\n773H+PHj2blzJ9OnT090F5PWwIED6d27NwMGDODGG29k3759jB07lh9++AGAggVTI0aSGr2Mg/Ll\ny0e9M/3jjz8AokZ5RPLS2LFjGT9+PLfccgsDBgxIdHdSQs2aNWncuDEdOnRg6tSpXHHFFQwfPpyN\nGzcmumtJa+fOnfTv35+BAwdStWpVtm7dytatW/n777+B/yrX7dq1K8G9TB1lypShU6dOfPLJJ+zZ\nsyfR3Ula5cuXB4i4EWzfvj0AH374Ydz7lIo++eQTPvjgA3r06BE1nUh8w4YNY/v27SxbtoxzzjmH\nFi1aMHToUO69915mzJjBG2+8keguJq1evXoxYcIEZs2aRfXq1alZsybr1q3zJhCrVauW4B5mj25y\n/qdBgwb83//9H3v37g07b3mHKg8q+Wns2LGMGTOGMWPGMGLEiER3J2WdeOKJ7N27l2+//TbRXUla\nmzZtYsOGDUycOJGyZct6/82dO5ddu3ZRtmxZLrrookR3M6VYqpWiYpmz9a0Z2dilysxwoln04fLL\nL09wT5LfmjVrqFevXsTaGyu5rbXWWbvhhhvYtGkTn376Kd9//z0rVqxgy5YtlChRImUyTfSp8j9d\nu3Zl586dLFiwIOz8448/TtWqVWnSpEmCeiZBd/PNNzNmzBhGjhzJ6NGjE92dlLZ8+XIKFizIYYcd\nluiuJK0qVaqwfPnyiP/atm1LsWLFWL58OePHj090N1PGli1bWLx4MQ0bNqRYsWKJ7k7SOueccwBY\nunRp2PklS5YA0LRp07j3KdX89ddfzJ49mxNPPFETr9lQtWpVPvvsM3bu3Bl2/t133wVQwZVsOOCA\nAzj66KOpVasWP/74I/PmzaNPnz4UL1480V3LFq3J+Z/27dtzxhln0K9fP7Zv307t2rWZO3cuL774\nIrNnz6ZQoUKJ7mJSW7p0Kbt27WLHjh3Af5twzZ8/H4AOHTqElSEU38SJE7npppto164dHTt2jNi5\nWl/80V1xxRUcdNBBnHjiiVSuXJlNmzbx9NNPM2/ePIYOHUrFihUT3cWkVaxYMVq1ahVx/rHHHqNQ\noUJR2+Q/F154oZciWaFCBb766ismTpzIhg0beOyxxxLdvaTWpk0bOnfuzLhx49i3bx9Nmzblgw8+\nYOzYsXTq1InmzZsnuotJb+HChfzxxx+K4mTToEGD6NKlC2eccQbXXnstFSpUYOXKldx2223Uq1fP\nS5WUSGvXrmXBggU0btyYAw44gI8//pgJEyZwxBFHcPPNNye6e9mX4H16ksqOHTtCV199dahKlSqh\nokWLho455pjQ3LlzE92tlFCrVq0QEPW/7777LtHdS1otW7bMdNz09szcjBkzQqecckqoQoUKocKF\nC4fKlCkTatmyZWjWrFmJ7lrK0mag+3fbbbeFGjZsGCpdunSoUKFCoYoVK4a6du0aWrVqVaK7lhJ2\n794duuGGG0I1atQIFS5cOFSzZs3Q8OHDQ3/++Weiu5YSzjjjjFCJEiVC27dvT3RXUsZrr70WatOm\nTahKlSqh4sWLh+rUqRMaPHhwaNOmTYnuWlL74osvQi1atAiVK1cuVLRo0VDt2rVDI0eODO3cuTPR\nXcuRAqGQ6jaKiIiIiEhwaE2OiIiIiIgEim5yREREREQkUHSTIyIiIiIigaKbHBERERERCRTd5IiI\niIiISKDoJkdERERERAJFNzkiIiIiIhIohRPdgWgKFCiQ6C4khVi2MNLY/UdjFzuNXexyOnYat//o\nmoudxi52GrvYaexip7GLXU7HTpEcEREREREJFN3kiIiIiIhIoOgmR0REREREAkU3OSIiIiIiEii6\nyRERERERkUDRTY6IiIiIiARKUpaQFhERkfTWvn1773j69OkADB48GIC5c+cmpE8ikjoUyRERERER\nkUBRJEckCdStWxeAPn36AHDEEUd4bR07dgSgYMH/5iT27dvntX311VcA3HDDDQAsWrQo/zsrCWez\n2XfddZd37plnngGgd+/e3rmtW7fGt2NponHjxgAsW7YMgFdffdVr69mzJwB79uyJf8dSXNGiRQG4\n+uqrARg9erTXVqJECQAKFSoU/46JSEpSJEdERERERAJFNzkiIiIiIhIoSlcTyUcHHHCAd9yoUSMA\nLrjgAgAOPvhgr+3cc88FIBQKRTyHnbM0NfcxtWvXBqB58+ZA+qSrVaxY0Tu+8MILAejSpQsALVu2\n9NoKFCgA+GP2ww8/eG1Lly4F4JdffgFg4cKFXtvatWvzo9t5xq4FN3XR/v6W6gNKV8tLhQv7X5f3\n3HMPAOXKlQOgW7duXpulkP7+++8Rz/H9998D8NJLLwFKaYPw9LNJkyYBcOWVVwLw77//em0TJ04E\n4Nlnn41j7yRojj32WADOPPNM79w555wDwDHHHBPx+PXr1wPQunVrAL788sv87qLkIUVyREREREQk\nUBTJIXyh7h133LHfxz/44IMAjB071jv3999/533HUlznzp294379+gF+SVA3GmHj/+ijj8axd3mv\nRo0a3rH9fdu0aeOda9iwYZ6/5s8//wzAY489lufPnWjVqlXzjjt06ADApZdeCkCVKlW8tkMOOSTs\n59xrK2NkrGbNmt6xzRYbd5HzkCFDAH9mOV1FW+Ttzq6nAysycP/993vnmjRpkunjR4wYsd/n3Llz\nJwB9+/b1zj355JNA+o3vsGHDvOOM78lHHnnEOx46dGjc+iTB4EZf7TPdPuetyIUrWiaFfQ/Zd3m6\nRHIOO+ww73jChAmAH7F2x2nbtm2A/7vdypUr49XFbFEkR0REREREAqVAKNqta4JZHn28WI4m+LNp\nderU2e/PPfzww97xggULAHjllVfyrF+x/NPEe+xcNrtps3E9evTw2rIq+/nNN98A2Rvz7ErE2N16\n663e8fXXXx/xnFn1KePakaweY2tIANq1awfAZ599FkOPo0v0dWd/J1v3AFlfG7b2YdWqVQDccsst\nXltWa2uOO+44wF/T484i21oXW0e1v+cyOR27WMft2muvBcJLSBs3WmX55LGy2fOzzz7bO2dRyjVr\n1uTquV2Jvuay8sADDwBw1VVXRbT9+eefALzwwgveOVuTE41FHU8//fSINvt3y+k6nWQeu6xYhMze\nt67FixcD/uw75M8MeqqO3UEHHQSEz7afcMIJgP/5565btPG0tvfee89ri/VXwFQYO1vHBTBo0KCw\nPmS3//Z4Wwtm63dyI5nHrmvXrgDMnj3bO1esWDEAdu/eDcCBBx4Y8XMWwTnllFO8c+6a0byS07FT\nJEdERERERAJFNzkiIiIiIhIoKjyAv3gbYNOmTUD2UqeuuOIK79hKAJ900kkAfP3113nZxaRVvHhx\n7/jll18G/J2psysvU60S6fjjj/eOLbRcsKA/j2ChW0uvcotVfPTRR4CfHlWpUiWvzRZI2nNWrVrV\na+vUqRMQnDEEaNasGRD9PWipLVb+GWDatGlAeBpfdrz99tuAH4p309Xs383990tH3bt3B8JTemfO\nnAn4KXOvvvpq/DsWB/Y+u+yyyyLaNm/eDPhpfG+++Wb8OpbiSpUqBYQXcjBbtmwBYODAgUB4yfd0\nc/LJJwNQtmxZ75wVXLHxOfroozP9eTdVyAq32J/nn3++1zZ//vw86nHy6NixIwCXX355po+x31cA\n7rzzTgBuv/12IDxN2Sxfvjwvu5h0LE3NPt/texH8wgNWCMQt/DNjxgwAmjZtCoSX5na3ZUiU9P4G\nFxERERGRwEnrSI7NKNmdKPizyMbdeGzdunWAvzDanbm3TeEGDBgA+Av9IG+LESSbXr16ecc5jeCY\nkSNH5lV3EspmOwDmzp0LQJ8+fbxzdk1YwQqbDY7GLS1ri79t0bK78M4WgdvC52TfxDI7Jk+eDIRH\numwR5K+//grAX3/9levXsWIY7kJJ888//wCwd+/eXL9OvLmRh/Hjx8f0HFYO3V28bOrXrw/4C3CD\nGsmZOnUqEB6tNtOnTwdg9erVce1TEFhU8MQTT4xos5n0IEZwLKpQq1Yt79xFF12U6eNtttzdUNo+\n++1zafv27V6bRbTnzZsH+IUdwC+eYdztDoLo7rvvBqBkyZIRbf379wf88QL/8/7xxx8Hokdyguis\ns87yju071iI411xzjdc2ZcoUwI8O2qbGbpttt2ARSFAkR0REREREJM/pJkdERERERAIlLdPVLE3t\n0UcfBfzF2y6rB26LsACee+45wE9VsP8HPwRtCwLPO+88r+3iiy8GgpHWYSkGTzzxBBC+AC0n3Pr1\nWe0rkUqiLUx87LHHYnquBx980DtetGgREF4gw1SvXh3w9z9ww8+pauPGjUDsqVZZqVy5sndsaQs3\n3ngjEL7TvKUBWopqKom2h0FO2eeZW+Qi3Vj6Rt26dYHwQhi2D5alOto1BMFfoBwL+84Ff8d546Zc\nxfp5mQpGjBgBhKerZccnn3ziHY8bNw4IT6PPTLT9XKywQ1Cv0RYtWgD+7yXu3jL2eW9pqNHY492f\ns2NLLYxWMCNVDRs2zDu2NDVL2bM0NMh6vxtLw7/66qsBvwgX+GmDlmaeCIrkiIiIiIhIoKRNJKdH\njx7ecbdu3YDoERxb0Gd3pW60xtiiSLes6s033wz4szXujLHNuriz7Kkwk2JljN1S2VZmN9YZXivz\n6+4Q7i4wl0g2C/Lhhx8C0RdFWslMCWcLTwcPHgyE71pfoUIFwN9JfcyYMV6bLd6V9PX0008D8Pzz\nzwPhM5Q2o25bBrjlaK3M6g033ACERyrSVZMmTbzj1q1bh7VZKXLwy+sHkWV0uH/faD799FPA/1xa\nsGCB15ad70orUONer8YKO6xZs2b/HU5BFnGwz/2dO3d6bUuWLNnvz1thB7e4j7HCSm5p5T///DP2\nziZQzZo1Ab/sM/iZDK+//jqQdfTGZUUI7Hc6t2DBrbfeCkQvwx8viuSIiIiIiEigBDKSE63kpztL\ne+ihh4a1uWViLUfR1utkl+Ux2iagbllqmwFwy0WmQiTnqKOOAmDs2LGZPsad8di6dSsQvnlZRuvX\nrwfgjTfeyIsuphWbiTruuOMS3JPEc8ujZixd3rx5c+/Y1shFK4VsZVVtI7iffvopz/uZX7Ka0XVL\n81r52bwouZ2ubLbW1uiAXxrVSsW7WQFW/v2II44AwiP4u3btyt/OJhmLKrjlejPK6XdtqnrnnXfC\n/swvbdu2BeCwww6LaMtONCOVWSlo89RTT3nHWZUlL1++POBn+URjvye6azdTlf0O4f7+9tprrwHh\n69BzIloULFpELN4UyRERERERkUDRTY6IiIiIiARKINPV3FK7ZcqU2e/jbQd6gHvuuSem17Q0tR07\ndgDw5JNPem220NINH1erVg3w07eSUVYpBmvXrgXCy2KvWrUK8MtLS96yAgTJEAKOB/f9MmfOHMAv\nReu2FS1aNNvP6ZbFtGIEGVMcUoEtbr/vvvsi2k499VTv2FIQbBH822+/na3nt2tt06ZNgF+kQf5j\nC5q7du0KwKhRo7w2G2v73J8wYYLXZumTQWcLm60gj/2/65tvvgHC02+tuIrknC22HzRoUESbXa+p\nulA+uzKmlNnvWS77vnBLbFtBhmiPN1aEKhW/LzJq1apVxDn7nS5oFMkREREREZFACUQkxxYh28xs\ndjfD++OPP4C83YBsw4YNQHiRAVtk37JlS++czUy755KNzfrYxqjgbyZ2/vnnA/D55597bRdccMF+\nnzOrIgZBZ+UabYa3Q4cOXpttOGblat3o4ubNm4Hw2eKMrNxokNhGYgAnnHBCpo+zEpYWdbBrFPxr\n2MbaLSFtP2dFQtyfS3ZW3tPdSNcWurvsmrMy9u6mla+88goA3377bcTPHXzwwUDWERwrsZzObObY\n3eCycOH/vlZtOwErRAB+eWD3/R1EVpDBSmxHc/jhhwPhC/FtRt3+3LNnT351MXAsamab1rrf21a+\n2qJnQbV69WoAvvvuOwCaNWvmtdm2F/feey8QfbPUaD744AMgWAUyov3d3TL4sWjQoEHEOftOTiRF\nckREREREJFACEcmx8p3nnXdepo9xN4WymaMhQ4YAsG7dunzsXXRumdtkFe3OPLeCugkZ+DNo4G/O\n6W78ZqW1o5U4t0iOlf+1zWjBLxdcpUoVIPqaHHdz1aCYNGmSd7xx48awNnezTrumspo1WrFiBRC+\nKeEdd9wB+GsC3OhrsrMIgs14g18Su0iRIt65ggX/m8cqV64cAFOnTvXabLbTohDueh137DMT5I0b\nc8Oi1WeccQYQHoVs3749EPxIjl1L0SI5Fpm29Tc2TgA33XQT4F+btjWDRGfva4jcZPW3337zjqNt\nah5k9n1qazjBX6ttbVmtbXWj1Ja1EiQZt12A8MhfTpQuXRqI/vuife8mkiI5IiIiIiISKLrJERER\nERGRQCkQSsJ6tBZOzC5bhJvVX2XAgAHesZuyEQ9WeCBailqhQoUy/blY/mlyOna55ZbvtXLS7mK/\njKpXrw74JWrzSzzHznaVnzx5sneud+/eEc+ZVZ+yE0LPyWPcx7mh9+wUh0iF6y6n7LpzU1MtZD9/\n/nwgb9IScjp2uR03SxUAOProowG46667vHO243ylSpVy9TrR2M7qVsAgN+JxzdnjLT3RFinnF3vf\nnXvuud65hQsXAn7p6byQjO/Xjz76CIBjjz0WCC+MYul7tt2CfX+7/u///g+A+vXr52s/k3HscuLd\nd9/1ji3V2dh3EORtcSWTzGP3xRdfAFC7du1M++D2374XrrvuOgBef/11ry0/SkYneuwsXbZPnz7e\nOdtewVLlrQy3y7ZkadOmjXduzJgxANStWzfi8ZYunZdyOnaK5IiIiIiISKAEovBAVjPcVh7WZpbA\nLzlts0W7du3K0evZ7GhW5VXPOuss7zjjDAtAr169cvSaycqNRGUVwQmykSNHAuH/ptGuRTtnm25Z\nKUvwZ1SsDLC7oDSz59kfm81yF+mnK1t06i6ut/LK/fv3T0if8sK2bdu8YyuocuaZZ3rnrMiFXV+2\n8B2gUaNGuXrts88+G8ibSE482GeVldG+5ZZbvLb8juqkA4skQmQExi11bhGcrD7jVNQia7YZsjvm\nxrYhmDVrVlz7lCjuInor+lGrVq39/pw7PhbBsW1Fgs6yF7p37+6ds1L3Fml1i3UZ20TU/R3ECiNZ\nxMtK6INfJj6RpcsVyRERERERkUAJRCQnq5ltm12PFjmxzZ1yuj6kXbt2gJ/bnV3ubKGbS5sOnnzy\nSQC2b9+e4J7kPbd0dFaeeeYZwM+VthlN8HOmLeqS3Y3KLEKxcuVKwF//BfDUU08BfsnWdNatWzcg\nvMzqTz/9BCTHhmV5KWO5bfA3kh03bpx3zkpNW+n9zp07e22Wc22zeRUrVvTakmlNQk5Y2W377HUj\nOfaZnhcsQlGvXr08e85U4K4zcmdzARYsWOAdW1lfdw1jRlbeXcLZ2sKJEycC4RufW+Q+qzUVQWRR\nCQhfK5KTn0uXCI556aWXgPDNse3z8Pjjj494vG1i/P777wOwZMkSr822r3jkkUcAOOaYY7w2Kyut\nSI6IiIiIiEge0U2OiIiIiIgESiDS1SzMNmLEiBz93GWXXZbnffnxxx+B8LKD1i83RW39+vV5/tqJ\nYAvl9+ett94Ccl7kIdX98ssv3nHPnj0B2LNnT8TjbKfvDh06ZPpcljrUpUsX79wnn3wCKCVtf6w4\nhJtG88QTTySqOwnjfi7ZsaVKumVmrViKlf611D4IT5FJRR988AEQnq5mpdUtrTY3LOXU0tX++usv\nr23mzJm5fv5kZeVlo3GLUzz++OOA/znmpj9aYRBLv5VwVjTJLS5irJSv/Q4SRLZdA8DQoUMBv5Q9\nRC5dsBQ+8NOSbSsPW0QPsHjx4jzvaypwiy8sWrQIgLJlywJw8MEHe22rVq0Copd7N8ma9q1IjoiI\niIiIBEogIjnFihUD/MV4tjgPcr7Bny1OnTRpUkx9ufvuuwH47bffYvr5VJPVAlG3bKjNBARZtAXZ\n7mZYVnLcNiiz6A1Ay5YtgehFNCyCc9pppwGpW+7WjaJYIRAr5xtt07Bly5Z5xxaJyc77qmbNmt6x\nLXi2krYW+QJ/8zOJFOT367fffguER1ktwuIumh0/fjwAu3fvzvS5bNbznnvu8c7Z+zTj8wA8++yz\nsXY76WU1k+t+F7iz8QBff/21d2xFMLZs2ZLHvUtd0aIXxsrGA7z88stx61OiuJkjVkQl2vfubbfd\nBvjfLy7LKunYsaN3bvTo0UD6ZZq4rCiU/fnDDz/k6Ofd7QySiSI5IiIiIiISKIGI5GSc3ShdurR3\nnNPZWss5XLFiRe47FmA2xlnl53fq1Mk7dmfrgsZKkEeLwlSpUsU7/u677zJ9DvtZ+9PKTYO/duDj\njz/OfWcTyN0gcOrUqZk+zjYXcyMyNus2ffr0TH/O1jy5s3e2Gdmff/4J+JtiAmzYsCHbfU93brlz\ne89bKWB3JjW7G9Umks1Qurn8tmZk+PDh3jm75ixK465nsqisbSQbbW2ire+566678qzvycyyGMDf\nKNbK0brRCMuWsLU5gwcP9tqCuMVAbtlGleBvYGwsAgHBjn5Zto6tO4LonzX2+e6uL8zo+++/B8I3\nL7f1J0FjB66TAAAgAElEQVT+PSW/2bpN9/vgrLPOAmDhwoUJ6RMokiMiIiIiIgGjmxwREREREQmU\nQKSrZeQugLKSlJK3LrzwQgBOPvnkTB/j7pwb5DCw7Sbvpj/dfPPNMT2Xpan17t3bO+emCgVV3759\nvWNLFXV3SbYyvCVKlAD8Bcrg77R++umnA1C0aFGvbc6cOYD/72ElkSVn3PF+4403AP8zwE2tTKWF\n9W552VNPPRUIL3VsRQgeffTRHD2vpRBZmmm67Dzvlsru3r074O+C7r4nrTy0m6YmmXMLthj7rrEd\n6IPOiknZZ73LLf9saWrR3nPVqlUDoEGDBvnQQ8mYcp/xOFEUyRERERERkUAJZCRHkoMtBAd/g7wg\nskiLW3bcFtpalMdl0YQXXnjBO2c/a5t6RtswNNW5G0reeuutAAwbNgyABx98MOLxbolfi8i6EYWM\nnnrqKQDmzp3rnXvuuedy0WMxtlg3mkMOOSRu/cgvFmm2jQLBX8Rss8fuDPCMGTMAfxG9/T/4ZcrT\nJYITjY2nRcgk52yrASu377Jztr1A0LVr1y7TNjcL4KCDDgL8wkiTJ0/22izrxDatdQuJ2PtY8pZb\nBCxRFMkREREREZFA0U2OiIiIiIgESoFQMqwMyiDaDrbpKJZ/mniNnaUh2E7hAFWrVg17jLtjfYcO\nHeLSL5PMY5fs4jl29957L+DvqwH+AtFobGG4W8jCFsLbAtSsdqjPbzkdO11z/9H7NXYau9gl89hZ\nqtVVV10V0WYFVdz9RxYsWBCXfpl4jp2lvrtpocbSQwGOOuooAIoUKbLfPtg+VuAXUYmXZL7uYtW+\nfXsgvBCEFQErV65cnr1OTsdOkRwREREREQkURXKSWCrc7b/44ove8RlnnBHW1rJlS+843qW8U2Hs\nkpXGLnaK5MRG11zsNHaxS+axe+uttwBo1qxZpo8ZO3asdzxu3Lh875Mrmccu2QVx7KpUqQL41y3A\n33//DUD9+vXz7HUUyRERERERkbSmSE4SC+Ldfrxo7GKnsYudIjmx0TUXO41d7JJ57GrUqAH4G1yC\nv+bk6aefBvwS/BD/bQeSeeySncYudorkiIiIiIhIWtNNjoiIiIiIBIrS1ZKYQpqx09jFTmMXO6Wr\nxUbXXOw0drHT2MVOYxc7jV3slK4mIiIiIiJpLSkjOSIiIiIiIrFSJEdERERERAJFNzkiIiIiIhIo\nuskREREREZFA0U2OiIiIiIgEim5yREREREQkUHSTIyIiIiIigaKbHBERERERCRTd5IiIiIiISKDo\nJkdERERERAJFNzkiIiIiIhIouskREREREZFA0U2OiIiIiIgESuFEdyCaAgUKJLoLSSEUCuX4ZzR2\n/9HYxU5jF7ucjp3G7T+65mKnsYudxi52GrvYaexil9OxUyRHREREREQCRTc5IiIiIiISKLrJERER\nERGRQEnKNTkiIiKSmgoX/u9Xi5EjRwIwatQor+2ee+4BYMiQIfHvmIikFUVyREREREQkUBTJERER\n2Y+yZct6x7Vq1QKgd+/eEY+rWrUqAPXq1QPgpptu8tqefvrp/Oxi0rj88ssBP5KzYsUKr23WrFkJ\n6ZOIpB9FckREREREJFAUycmgZMmSADz77LMAtGrVymuzGbm77roLgH/++Se+nUsCpUqVAmD69OkA\nnH322Zk+duPGjd7xwQcfnL8dSwFHH300AF27dgWgbt26XtuFF14Y9tgff/zRO542bRoA8+bNA+DL\nL7/M136KSKS+fft6xwMHDgSy/lz76aefAPjjjz/yt2NJqEOHDgBs3rwZgBtvvNFr+/jjjxPSJxFJ\nP4rkiIiIiIhIoOgmR0REREREAqVAKBQKJboTGRUoUCCur3fggQd6x9999x0AFStWjOiLDVWvXr0A\neOyxx/K1X7H80+T32N1+++0AXHvttft9rJuuVq1atXzrUzSJHruGDRsCMHz4cO+cpfYVKlQopuf8\n999/Abj//vu9c9n5d8ipRI/dscceC0CLFi0yfcx9993nHe/bty/Tx7311lsAnHXWWQBs27YtL7qY\nqZyOXbw/65JVoq+5rBQs+N9coF1DAM888wzg93vv3r1e24wZMwB/0f2mTZvytX/JMnbHH3+8d7xq\n1SrALzhwyimn5Pnr5YVkGbtUpLGLncYudjkdO0VyREREREQkUNK68EDjxo0Bf3My8CM4WbGyoUce\neaR3bvz48QDs2rUrL7soKcCuo+bNm3vnrEhFmTJlIh4/c+ZMALZs2ZLpc1oZWoBu3boBfgSoXbt2\nXlt+RHISwZ2lWrZsGQAVKlTI9PFu9CarmR2bQbbnyu9IjgRH9erVAbjtttsA6NGjR8Rj7Lvg0Ucf\njV/HkpQV6wH//TlhwoREdUfSmBVIcqOLVgzDuN8577zzDgALFy6MQ+9ST+nSpQG45pprADjhhBO8\nttNOOw3wy+O7m/zmdxQ7OxTJERERERGRQEnLSM5BBx0E+DnTJ598csRjNmzYAITf7VeqVCns8e7P\n1axZE4Arr7wSgJ07d+Z1t1NO8eLFveNOnToBsHjx4kR1J98MGzYMiF5O+/PPP/eOO3fuDMD3338P\n+GtsoilSpIh3/O233wJwww03AFC7dm2v7dxzzwVg/vz5sXQ9KVmEK6tIl621AViwYAEA48aNA8Jn\n77Zu3QqkZ7l3ybnChf2vRIu4nnrqqRGPs2vTvQ7TVfny5YHwz6xffvkFgBdeeCEhfQoCi+b369fP\nO2e/Z1xyySUAvPzyy17b6aefDsDDDz8MhJc8TxeW9WARxEMOOSTTx7q/29lYWQaGm92Trux3C4BH\nHnkE8CM60dg1edRRR3nnmjRpkk+9yz5FckREREREJFB0kyMiIiIiIoGSlulqkydPBuDMM8/M9DFj\nx44F4LXXXvPOWUize/fuAFSuXNlrs3PG0tYgfVPXLC0QYMyYMUCw0tWsTLRbWtY88cQTAIwYMcI7\nZzugWxjYvbYy7orupldZOpalq7klqEeNGgWkfrqaWzzADXfnxNVXXx1xbtasWQD8+OOPsXUsBblp\nQyeddBIAd911F+Cn9EH+vBe7dOkChKd7rF69GghPf0hWAwcO9I4zpqlZCjNAgwYNgPAy+enKFh67\nRXsmTpyYqO4kPbeozGWXXQbAOeec4507+OCDAShWrBgQvsWFpVPa52Xr1q29NjvXp08fIH3S1cqW\nLesdP/DAA4BfaCa75YZtjKtUqZLHvUsdNo72vdC0aVOvLSflq9evX5+3HcslRXJERERERCRQ0iaS\nYxsMQvSZd3PHHXcA/kIrd3H4ddddB8C8efOA8JKZNgNgEZ3ffvvNaxs8eHCu+i7JyQoJRNvc00pS\ntmzZ0jtn16CVYZwzZ47Xdumll2b6Op9++ikAr776KhA+e1eyZMlYuh4otrjUFuW60nFheP/+/b1j\n+zyzGWA3wvLGG28AsGPHjly9XteuXb1jiyi6M39Dhw7N1fPHw+GHHw74EWeXbWzpvpf//PPPuPQr\nVbnff7GwaIRFqiFyVv6qq67yjlOhwIFFty666CLvXLQtK7Zv3w7Anj17AL80L/hR/V9//RWAOnXq\neG32e0m6sTLuELntgL13AQYMGABAvXr1AHj88ce9Nvu8ys516xYzsO0cmjVr5p2z6/Swww4L+xPi\nvyn6/rhRMHsPuREcY1uj2PYOS5cu9dqs8IgVe4hWyCuRFMkREREREZFA0U2OiIiIiIgESuDT1Swc\nd/vtt3vn3AXx4O9bAn7ILas9TN577z0AevXq5Z1bsmRJ2GNsQSHAvffeC/gLz1OZhcSt/rkbphXf\nlClTMm37+eefAbjvvvuy9Vx//fUXALt3745oK1GiBOCH0N1rOcjclAFLG41WsMDSO9KJfd6Anypr\naRLuNWfXVU7Z/ldWwOX888/32iztY/r06d65jJ+Nyeibb74BwovE2PfEnXfeCShFLTPXXnstkLPF\nyS73vWzXZ8eOHQE/dQvgiy++APxF4s8995zXZsUPLAUzGVkq1fXXX++ds367RWhs7xtLSctKrGMe\nJHPnzvWObe9De+9ayh/4xXxatGgR8Rxr164F/M80l6WZX3755YC/Hwz46eLuv4MtvLff9yxNLhm5\nafIZ09Q+/PBD79iWeEQrKlCrVi3A/9052SiSIyIiIiIigRL4SI7dZbZp0ybTx5x33nnese2Qnh3L\nly/3ju+//37Av2svU6ZMRNsFF1zgnXNnGFKJ3d3b4uYZM2Z4bY0aNcr052zx3S233ALAjTfemF9d\njBubWfzss88AqF+/fsRj3NLFttDRZrnzoqxxpUqVAL/c7aOPPprr50wFbqTUyvn+/fffQHqVr3Vn\nEDt16gT4BTHAL0dr5Y+ff/55r83GKzvcstTDhw8H/AW/7oJwW7j70EMPeeeiRSCTVbTo1rRp0wA4\n/vjjvXMWMf38888B+OSTT7y2vXv3Arkv6JAq7N8/u+V6M3LL9nbo0AHwy4736NHDa/vyyy8BqF69\nOhA+03zzzTcD4UUwNm/eHFN/8kvPnj0jzs2cOTNXz+lmUthngRW9SRdudMEyKIYNGwaEFwuxaJm7\n2N5YUR+7ttxiKf369QP869sW4YO/VcQzzzzjnbPxT4Xy8tHK+n/88cdAeMTLrq3mzZsDUKpUKa/N\njeQnI0VyREREREQkUAIfybFyvdHYrOaaNWtiem531m/SpEmAv6mXzaCCP7NaunRp71yqRnKMRS8y\nbmKZGctdtQ00g+Cpp54C4M033wSil4d0ZxPTZb1MfrBSqxYBdDdttBk2i+C4ZWeDyj5LjjzySO/c\nokWLIh63b98+wI865/QatPftkCFDvHOW927j7l7j9llnM/Gpxt0g2v7ONnvp5uIfcMABgF8+1WUz\nuLaWxy3tm06b0maXm+Fgzj77bMBfv+iyczbjDP7aFncD11TfIDk7Dj30UO/Y3o/p8PfOjG2+bVFq\nNyITLYJjbCPpaBtKGyvlfffdd3vn3BLVqcS+P6KtY7US21999ZV3ziL5GUt0pwJFckREREREJFB0\nkyMiIiIiIoESyHS1iy++2Dt2Fy5mZIsVbaFoblgJ0m+//RYIT1cTny1ms/Q+yDqlMBXYYuvc7vIt\nmbPwuqWpFSzoz8989913gL8INB1Y+fr9FVmwcvcXXnhhTK9jn5HR3qO24NfKi0L4YvBUZKVkwS+v\nailpVjob/HQ1W5TsLtK1YiB33HEHEJ4CY99Nr7/+eh73PL7cIgxZFZzJStWqVYHwHetzwlLawC8Y\n5PYlyGlbdv256ZWWmhpr+n2QjBkzBggvtGIFoGz7C1fGUtxuMQMrcvPKK6/kdTcT5rjjjgPCC2QZ\nS00Lyu+wiuSIiIiIiEigBCqSY7O7brnowoUj/4o2W5efm3OmyyZd7oy6ewxQqFChiMfbbGjGDVlF\nMnLLf9oGera41mYtwV8MGW3hvb0PLSLx4osvem2pUOIzI4suZLXx2qxZs7zjm266KabXadeuHQCn\nn356RNumTZsAf0zd8slBlFUpYitOYDPrADVq1AD88XEX1ltp7bZt2wLBKEZi77GcfufZ94Nt7gn+\n4u5oBQey04dWrVrl6OdSlX02HnHEEd45KxOfzBuixpu7oaqVdj7xxBOB8Os1Y/nzcuXKeceWnRMk\nK1euBMIj7xbdya1k+z5QJEdERERERAIlUJGcypUrA3DRRRd556JtUGZ51DbzkR+ivW6JEiXy7fUS\nxZ1Rd4+zehzEvnFcOrLrJlr+rJUxt9n1ILC/p7uxac2aNTN9vM0EH3744RFtNltnz7V06VKvzdZH\n5GQD4ES79tprgfDNOTNyc6lt3cKKFSv2+9x169b1jh9++OFMX2f27Nlhj5Hw7QS+/vprALp37w6E\nr1mqU6cO4G9W2Ldv33h1MU+5JcJfeOEFALp06ZKj57AxcyNltv7JImPRNmc1zz77rHds3yeLFy/O\nUR9SnRuNSLdNQLNiG8y6m45nfK/ZRr4ATz75JACjR48GoFixYl7bkiVLAH8dmrsZaKqyLUzctYS2\nwbv7d89o3bp1Eecs+mrcEtvJQJEcEREREREJFN3kiIiIiIhIoAQqXS0r7u6t7nE8uTtmW1hUJBo3\ntfG+++4D4JRTTol43F133QWEl8pMdZZGllWKmmv8+PFA9JQ9t1Q5QPv27b1jKy9vpUVTge3gbX3v\n2rWr12bXjFssIFrhgFi415e7i3gqc3dAt0W3r776aqK6k7LmzZsHhKeruQviM/P7778DfjEGgOHD\nhwNQsWJFIHoBAivscMwxx3jndu/eDcDy5ctz1PdUZdeum/ad6uXbY1W/fn3v2AqB9OzZEwgfH7tG\nrOy+e93t3LkT8H9HO/TQQ702SzEtWbIkEIx0NWNjAnDnnXfu9/FFixYFom/XYAUakq3whSI5IiIi\nIiISKIGK5GS18NEtMpCfBQeyMnXq1IS8rqQOm4236A34m5EZd6OyRx55JD4diyMrQelGWGxxspXl\nzS57ji+//BKIXpwglbz00kthf7ql2Fu3bg3AyJEjvXM2C2mFP/7880+vzQo2RCuIYjOgVmRg1KhR\nXtu///6by79FcjjyyCO9Y1t0mxeRHFs0b5/37iaixmaOg8DeW+7fycpm33vvvWGPicYKF4AfybHI\nmhvJsc1D7fFumd+xY8cCfmncoDvnnHMizrnjmA5sU08rDADh0VkIz9rJznvcruF02QIkp84//3wg\n/Prbu3cv4Bf3caNDyUCRHBERERERCZRARXKOOuqohL126dKlAW1yKbGxWfXJkycD/qaPrr///huA\nBx54wDv3448/5n/n4sxyevMit/eQQw4B/Nn0oJUu3759u3dsJXXd0rpWFtoiOO7mk1Zy9qSTTop4\nXlvzM3fu3LztcBJxI6S2BsTd1DOr8sUZHXbYYd6xla3NGIEFfzPacePG5ayzSezjjz8G4JdffvHO\n2Xex5e6fccYZXpvNltsMsBt9qVevHgCXX345EP59ahFKW+/jvp47m58Ozj33XAC++eYb79x3332X\nqO7ETalSpbxjK13sbq1gn++25vmee+7x2rJaS2Preqz0tPs9oagOHH300UD4OiZj78Nbbrklrn3K\nLkVyREREREQkUHSTIyIiIiIigRKodLWs5PduwFbKtUGDBhFttngyJ+kPktps1/mCBTOfR3B3mL/+\n+uuB8LQO888//wAwZswYACZMmJBX3Qw8K31s/x7pxt3VG+Daa6/1jk888cSwNrdM9KJFi/K3Y0lg\n7dq13vEVV1wBQKtWrbxzy5Yt2+9z2Oe+WyikevXqYY9xF+Tbwno3zTAo3BQ8S1Nr1KgRAO+++67X\nZovBb7311ojnsGIQ/fr1A/w0XvBTiKxUvO1AD3456qCz8vrGvbZ27NgR7+7EnRUPAKhWrVpEu103\nDz/8cKbPYdeNpZUCNGvWDPDTVl1WvMaK36QLK2QD8NhjjwFQrFixiMfZe7R8+fJA8o2TIjkiIiIi\nIhIoaRPJOfnkk/PsuWzxmztb0KFDh0wfb7N8W7ZsybM+SPJo06YNEL4xoxUOcBcyx+qzzz4DYNq0\naRHPmTE66EaO7HF79uzJdR9SiS3KBX8hs80Cb9y40Wt7880349uxBLJZz+uuu847V6hQIQB++ukn\nILzEfbKVAc0P0TaOdBewv/zyywCsW7cOCH/fWeSncOHIr1B7T1qpWvd6DPJ78cknn/SOa9WqBfgz\n6+7moHbcsWNHIOtiIFbUAOD1118HYMqUKUD6RG+yErRCKvvjRv+i/d0zFl/o1q2bd2xRRStqUaFC\nhUyfyza2BLj66qtz0ePU5RZqsO8P2z7ALUhjUdtki+AYRXJERERERCRQAhXJsU0Eo2ncuHHE8Qcf\nfLDf53R/zkqtDh48GICaNWtGPN7W37g52pMmTdrv60jqatiwIQBXXnllvj6/zVwuXbrUa3M3O4Pw\njQctv33NmjXeuYULFwL+rGiQnHXWWUB43rZFtmyGz424ZlyvEkRFihQB/HVcbh67lSS39WBW3jhd\n/PDDD97xoEGDALj99tu9c23btg37Mytff/21dzx+/HgAHn/88TzpZyqycbQNKnv27Om12ZqIli1b\nRvycbRpqm/4uXrzYa0uHNSf7k3GbjHTbAHR/5Zyzs44uGlvbZNszjBgxIqbnCYJKlSoBMH369Ig2\n+5y75JJL4tqn3FAkR0REREREAkU3OSIiIiIiEiiBSld76qmngPAyqRbedUvfWUjT0jWyUrJkSe+4\nRIkSYW3uIuY777wT8EN8KjIQnZUSvemmmxLck8Rz0ytt8V6fPn2A6KmQtsi5ffv23jn3OCO7vv/4\n4w/vXKqmqdl7r0WLFkB4yp4tbrYUGbfsrKWpnXnmmUB6pKi5rPy4/elavXo1EHuKR6pz058spdi9\nriy1M2OKkMu+cyzdDeDXX3/N036mMivTPXTo0AT3JBiOO+64sP/funVrgnqSGBMnTvSOBw4cCEQv\n/mFpbW5BAUuFtEIi8+fP99peeuklIHkXz8eTbWPhfu7t27cPgBkzZiSkT7mhSI6IiIiIiARKgVAS\n1iDc3+Ky/XE3/rMFjL169Yrpufbu3esdW7TGNs1zy1vmR2nQWP5pcjt2OVWmTBnv2Ery2iaXbjlj\nmwmwsqxWPjS/xHPsbCOx1157zTtXtGjRTB9vs8a33Xabdy475VDPO+88ILwca0Zu6d977rlnv88Z\nTTJed7Vr1wb8SIzNvAE0b94c8Gf03AXlVtY7XhGcnI5dvN6vVapUAaB79+7euUceeQQI31AwUZLx\nmksVGrvYpdrY2aaMVsjB3tcAGzZsiGtfEj12tj1AtEhONFakJxnKuCd67KKxggMW6SpXrpzXZlkn\nVgQpkXI6dorkiIiIiIhIoOgmR0REREREAiWQ6WpBkYwhzVShsYtdMo6dpUX26NEDCN97yvpr6X+j\nRo3K175kJVnT1ZJdMl5zqUJjF7tUGLtSpUp5x++99x7gp4S7qfnplq6WypJx7Jo2bQr4xaHcgkVt\n2rQB/GI1iaR0NRERERERSWuBKiEtIsFkpVLvv//+sD9FRIKsfPny3vGRRx4JwF9//QX4BX1E8opF\ncEaPHu2dS4YITqwUyRERERERkUBRJEdEREQkCZ177rkR52yW3d2QXCQ3Vq5cCYRHDoNAkRwRERER\nEQkU3eSIiIiIiEigqIR0EkvGMoOpQmMXO41d7FRCOja65mKnsYudxi52GrvYaexipxLSIiIiIiKS\n1pIykiMiIiIiIhIrRXJERERERCRQdJMjIiIiIiKBopscEREREREJFN3kiIiIiIhIoOgmR0RERERE\nAkU3OSIiIiIiEii6yRERERERkUDRTY6IiIiIiASKbnJERERERCRQdJMjIiIiIiKBopscEREREREJ\nFN3kiIiIiIhIoOgmR0REREREAqVwojsQTYECBRLdhaQQCoVy/DMau/9o7GKnsYtdTsdO4/YfXXOx\n09jFTmMXO41d7DR2scvp2CmSIyIiIiIigaKbHBERERERCRTd5IiIiIiISKAk5ZocERERCb569ep5\nx2+99RYA8+bNA6B///5eWyzrGEQkvSmSIyIiIiIigVIglITTI6oi8R9V4Iidxi52GrvYqbpabHTN\nxS5Vx6548eIAPPDAA965Sy+9NOwxBxxwgHf8zz//5HkfUnXskoHGLnYau9ipupqIiIiIiKQ1rcnJ\noFChQgB07twZgMGDB3ttJ598MuDfUffq1ctre+eddwD48ssv49JPSV09e/YE4OCDD/bO3XbbbUD2\nZikmT57sHV9zzTV53LvEO+aYYwAoVapURFvNmjUBaN26tXeuTp06AFSuXBmAI444IuLntm7dCsB1\n113nnXvsscfypsMBdsEFFwAwd+5c79zvv/8O+OMtEovjjz8eiIzeAGzYsAHQOhzJP0WLFvWOV65c\nCUDFihUB6N69u9f29ttvx7djkqcUyRERERERkUDRTY6IiIiIiASK0tUyGDJkCAC33nprRJuFzu3P\nadOmeW0ffvghAF26dAFg/fr1+drPVGDpCACrVq0CoEqVKgBs3LgxIX2KN0txBJg4cSIAxx13HOCn\nRgLs27cv28/Zo0cP7zjV09VsYfEbb7zhnatfvz4AJUqU8M5lJ21l8+bNQPi1ZSkJpUuXBuC0007z\n2tIpXa1x48YAfPDBBzn6uRo1agDh45/qn212za1bt847V6FCBQDatm2bkD4BdOzYEQjvl5smGBQl\nS5YE4Oqrr870MXPmzAFg7969cemTpI9ixYoBMHv2bO9co0aNwh7jvu+mTJkC+CnlkloUyRERERER\nkUBJ60iOzeg1adLEO3f22WfH9Fw2O9+sWTMAnn766Vz2LjV07drVO3722WfD2o466ijv2GaCjzzy\nSCB9IjmVKlXyjnfs2AGER3BiYaVXwY8cLly4MFfPmSjt2rUD4IQTTsjycV999RXgz3K7M21//fUX\nAM8991zEz1nk8PPPPwfgoosu8tpmzpwJwCuvvBJT31PBwIEDAbj77rsBOOyww7y2n376ab8/b+Pn\nStWCA6effjoAo0ePBsLHwrz77rtx7VM0dj27ghTRsff8ueeeG9H23XffATB16tS49kmCz743H3/8\ncQDOOeeciMds2bIFgOrVq3vnxo4dG/bzN910U772MxnZ7yyWEWGfoeBHZO13PLfUu73Xly9fHpd+\nRqNIjoiIiIiIBEpabwY6atQoAMaMGZNnz2mlai+77DLvXLQZ5uxI9Q2j3Nxyi+DkNoqRXck4dnfe\neScQXsY4t/79918A6tWrB8DXX3+d6+eM59jZmpm+fft65yzCOmPGDO/cnj17ANi9e3dMr/PWW28B\nfqQV4LzzzgNgwYIFMT1nNMmwGWiLFi28Y5tBGzFiBOBfg5D1OrADDzwQgI8++ggIL8ttJaSjRXli\nFY9r7ptvvgGiR3CSla377NOnT6aPScbPuozc9XWvvvoqACeeeGLE45o2bQr4azjzWyqMXbJKtbGz\nsv2r74QAACAASURBVNC23su1Zs0awF8Xd/HFF3ttw4cPB/xIjvtd9eijj8bUl1QbO1tb/Oabb+bo\n53bt2gX4UfS8eF9rM1AREREREUlruskREREREZFASZvCA1Y2EPzw49ChQ3P0HJ999hkQuYgeoEiR\nIgCUKVMGCC9P26ZNGyDn5VtTnTs+SZgVGXdWbOGLL74A/JLH4F+T0VxyySUA9O7dO6LN0v8KFkzN\n+Yq///4bgPvuuy9fnr9WrVoAHHPMMQB8+eWXXltepqklEzcl1FIc2rdvD8Dtt9+erec4+OCDgfA0\nNZOxwEiqeOihhwB/e4D9pc5aaqT9aYUqwL9u69atC/iFLfKCW/wgGQoh5IaN8QsvvOCdy5im5n43\nbN++PT4dy2fuQutWrVpl+rjXX38dCC+hb/IyjV787wDjXndWTvqXX34Bwj8nP/nkEwCWLFkCwPjx\n4722WNPVUoG75CJjsQV3KYJ9d2/atAmAefPmeW0Zfy9OhNT8zUhERERERCQTaRPJqV27tnc8cuTI\nbP+cO2t5wQUXAP4GZW4J1qpVq4b9nJXag/AoUjq44oorAC3QzOiOO+4I+zO7spoJlEg2ewQwa9Ys\nAEqVKgXAM888k5A+xZOVs3e5Y5Jbv/76a549VzzZ++79998Hwj+jH3zwQSC8PPaECRMAuPnmm+PV\nxcCxMXaLYRgrNTto0CDvXF5GxBIpu5/Z9rhoj3fL9BorZ2wsErS/cxJp9erV3rFt1G3cKK9tFJwu\n6tSpA4RHEsuWLQvA9OnTgfAsqG3btoX9vBt9tkyKl156KV/6mh2K5IiIiIiISKDoJkdERERERAIl\nkOlqts8G+KHGe+65J1s/a7tNW3j922+/9dosTc24YXYL41lajKt8+fLZeu2gcRf2pUOaUF6qVKmS\nd2x7nERji/5sD5B0Zu/1cePGeeesvv/69esBePjhh+PfsTiLtpN8btlCe4BFixbl+fPHU7TdtzOm\nq0jeGDBgQKZttmfG1KlT49WdlJcxhS1aSptx09YyFjZQUQNYuXJlxLnq1asDfnESCN8zJ8gsTe3l\nl18G/LEAv0iPLUWIxsbJvnPBLyRi+/i5BQviRZEcEREREREJlEBGcpo0aeIdR5u1y4qVusxOuWe3\nBG3Dhg2B6LPutmt1qs+AZlfFihWB8MIDVl5QssfGEMIjk+DvIgzwwAMPAPDvv//Gp2MJZqWNzzjj\nDO9c165dATjrrLOA6OXKrYDIDz/8kN9dTBiLPp9wwgkRbX/88UeOnitjuVUrfw7w8ccfx9A7SSdW\niKdbt24RbXv27AH878UgcgsEZIy2uG0WbcmqUEFW0ZqsuM+Z8fnd57T+pHN0p0aNGgC8+eabABxy\nyCERj9m5cycAl156aby6le8segN+cQCL4Cxbtsxrc8tJZ8a+k93f+yySk4gIjlEkR0REREREAiWQ\nkZzsshlft0x03759Y3oum0nft28fEL45o93ZFi1a1Dvn5rgHTZcuXYDwGfVU3UAw3mxzwaw2qnz6\n6ae946+//jrf+xRvVnZyzpw53jnblNLeQ9HWvmXF3teNGjXyzq1YsQKATz/9FICFCxd6bTZrl0qs\nVH20jWHvvvvuHD1X06ZNs/3YKlWqeMf2b/fee+/l6PWS0TXXXANA9+7dAahWrVq2fs7WP9g6RHc9\nYlA2u9yfs88+G4D69etHtNlmio8//nhc+xRP7nqY7KybyarssxthyVhyumXLll5btA1FjT0uq1LV\nbh/SoQy1O3a2WXK0CI5F/y+66CIA3nnnnfzvXJwcf/zx3rFFs6y0u7u21c0eyejYY48F/N/7XNld\nC5+fFMkREREREZFA0U2OiIiIiIgESlqnq82bNw/ww5C5YSHlc845B/BL5oG/W+yUKVO8c5dffnmu\nXzPZWKpKzZo1Afjwww+9tkTueJtKbKGupWdFs3Tp0nh1JyFmz54NwEknneSdi1ZMICMr454Vd6Gl\n7dpsz/3II494bbGmrSbS+eefH3HO0gzWrl273593d/a+5JJLsv26nTp18o4tFclNYUtVVvo/p1sA\ndO7cOezPHj16eG1WHCOr9I8giJamZn755Zc49iQxskr3ctPXcrrYPzvpbVmxdLVoBZncVLYgpqtZ\ncSjToEGDiMdYOulTTz3lnbvlllsA+P777/OvcwlSsmTJiHP3338/EL3EtqWLlytXzjt3/fXXA1Ci\nRAkAtmzZ4rUlw3WkSI6IiIiIiARKICM5gwcPzrLdFsEPHDgwz17zggsuALK/ODWIbCbYZj5//PHH\nRHYn6RUqVMg77tOnDwDDhw/P9PG2sDRICx+jsUIArj///BPwixHMnTs3oi2nrEzyu+++C4RvdGab\nrCay9GVORSvXa9FUtwR0ZtyIReXKlcPa3HKixq7fxo0be+dyWhAikU499VTv+LDDDsv0cVu3bgXC\nN4bODtvQt3Xr1t65JUuWAHDmmWcCsG3bthw9ZzKzoingfx8a9/pzZ8kzY+Wl27Rp452zMVuzZk2u\n+pnOkmFmPR6KFy8OhEfN3PdhRjt27ACgY8eOALz99tv52LvkYVk3Liu44kb2jX2mtW3bNtPnHDly\npHecDNsNKJIjIiIiIiKBEqhIztFHHw1kvbEW+LOzOd0gLyP3dSz/unTp0hGPe+211wDo169frl4v\n2Vk0wkpmp/MGoBYlsNnHaNxr5brrrsv0cTarZGVZbWY5qK666qq4vM4nn3wC+OWV3Y18bUYv2SM5\nzZs3945t9tL18ssvZ/u5ouVnmyOPPNI7tmijzYyedtppXpttphcEtm6hV69eQM5z8q0kq33+g79h\nq5WVtusMYo9IJgu3PHvG70E3gmCbgZrChf1fQx588EHAH3OXjVlWUbdkZJttxrqpZ7y4JZVTlUWS\nLeLvrhfMaPXq1d6xRR6DuCVDVtzP6yFDhgD+upuLL744pufMztrYeFIkR0REREREAkU3OSIiIiIi\nEiiBSlezlJ9oaRdu2crFixfnyevNmjXLO65atWqmj7Nwte0kG3RWktcKPARV9erVAb9cuO2MDn4a\nSk7Lz0ZjqR5BT1NLFFt0mopOOOEE79gtZGEyXjMHHHCAd2wLxW1X6qzKlp988snesaVibtiwAQhP\nL3QLQiS7zz//3Du2Yhf2ngY/fTHW0rE//fQTAAMGDPDOvfjii4Cf4ud+V6V6ulpWstpCwC1S0Lt3\nbyB6yfho13cqSKY0sKxS+a2wTaqwtHi3OMWtt94KwHHHHQeEX0f79u0D/OvICs5A+qWpGTed+ZRT\nTgGgWLFiQPjyCiu6Yu/PjIVpwN+S5d9//82fzsZIkRwREREREQmUQEVysuIWGVi1alVMz2GLKSdO\nnAhEv5u12TjbFC83r5eqbIYl6KwQgM2E5/frPP744wD8/PPPXtvff/+dr68dZAceeCAAPXv2jGh7\n//33492dmEQrG+2yUp+2yZ0tLgW/UEtW7OeGDRvmnbNoRKpvjvfrr796x1ZO2i3e4L7PcsMtR2sR\nDZt9dv/9pk6dmievlyhu1NCyFmzWvGBBfz719NNPB/ziAvb/kPWmvwcddBDgR86TvSiI2V8hpHjK\nqi853Zg0EdzIp21aGe3z+/fffwfgpptu8s7Z1gvRtigQ+OCDD8L+3/3cKlOmDOBnqET73deiQhYx\nSxaK5IiIiIiISKCkTSQnL9gGgT169Mj0MXfccQcAt912W1z6lIyymo0LkkmTJgH5P3NhM5dfffUV\nALNnz/babFbKyjZu2bIlX/sSJOeffz4QvomhSZXZvqOOOirLdpt5c0sVm82bNwN+DnaJEiUiHvPb\nb78BfmnfoLKxyA+7du3yjm022SI5FqWF1I/kLF261Du27AVby/XQQw/l+vntPZkqEZzM2BrdREim\n9UE50aRJEyB8PXW0zSqt3SLWX3zxhdd2880352cXA83WnB977LERbba578yZM+Pap+xSJEdERERE\nRAJFNzkiIiIiIhIoaZOuVrt2be/YFqNZaplbutMWSNquyoMHD/baLrrookyf39IdnnjiiTzqceqy\nwgMbN25McE/y15dffgmEX1vZsWLFCgBmzJjhnbvkkksAv+R0/fr1M/35aOmSVu7RTXm56667ctSv\nILMiA5aiBv74W3rlsmXLvDY3xSiZuelOzz33XES7lUm14hjubvPvvfce4BcVGDVqVMTPP/3003nX\n2TTllu1u3LhxWFu0BbxBYOVk3dLjsXCv13PPPTdXz5Uolp42evRowN8SIBGiFR5IZPpcdllpejdF\nbe/evUB4qWPb1uOvv/6KeI6gvtfyi1ssxC08k5EVU0m20tFGkRwREREREQmUQEVybCbW3VzMZtFs\ncS34MypWFm/9+vVeW5EiRQC45ZZb9vt67mLKBQsWAOm7qRRA165dgfTZDHTChAkATJkyBYCiRYtG\nPMYt8Wyzm1dccUVE26OPPgr4mxF27tzZa7OIjF3L0Up0H3LIIYC/GRr4mzZ+99133jlbfGmzYEHk\nzkCdd955gB/BOfPMM702u05tfNxyvqmyMePy5cu9Y1uca2WfIfYyyPYcVtBCYueWuHXf1wBz5syJ\nd3fiwmbUL7zwQgCaNm2ao59fu3YtALfffrt3zsoCpxorzZwKJZqTjX2m1axZEwjfUL1Tp05A9I1m\nbaH8DTfc4J277LLLwh6TKsVlEsXNXMqYxWQFVAAWLlwYtz7FQpEcEREREREJlAKhJKz3m9vNJH/4\n4Qfv2GbG84KV57UhczfT27BhQ569jonlnyaRG3Faf23GLZE5sPEcu2rVqgFw/fXXR7RZ2XGAb775\nJqbnNzYT2L17d+9cTtcD2czxxRdfnOlj4jF21m9be3TEEUd4bVYqO6dsps6isQDt2rXL9PE2A2gR\nnJ07d8b0uq6cjl0ybJxrpT/dtV52rbr/LvkpHtecRfNtltfdDNQim+5Mcazsc8/WCgwfPtxryxjt\ndb+f3IyCnEjm7wnbXNXWGoJfatre+272w7hx4wB45plnANi9e3e+9i+Zxy4/RPv72pqcnEaa4jF2\nVvLa1jG5pd5tM1nLyAH/vWcRHPe6M1Zm2s34ifcazGS+7iwTwjYfBz8ia1q0aOEdu1GdeMjp2CmS\nIyIiIiIigaKbHBERERERCZRAFR4wbiqOuzA3Fm65R0t9yYuUhiDat28fEFsoNpVZmsk111yTr69j\n6QRWpACgVKlSAIwfPx6Ak046yWuzcptuGlZO09vyi5U+vu222zJ9jBuez841ZY+P9lgr8jB58mTv\nnJWST5UiA3mtbNmyALRu3TrBPYmPG2+8EYARI0YA4QuP7RpwSxYbS6+Klk5mJZKPOuoo75wdR0vX\ntdexkt6pupg+u2w83QIYDRo0SFR30la00tEmkSWt98dSSi1t0U0/W7Ro0X5/3i0lPXLkSMDfZiFV\ntgmIN9s+JWOKGsCSJUsAWLduXVz7lBuK5IiIiIiISKAEsvCAe7dvM20PPvigdy6rBfE242slZ1ev\nXu21xbowNFbJvDgtmjfeeAOA5s2bA1CoUKGE9SXVxi6vuDN2hx9+OBC+KWu0DSMzisfYWbGGU045\nBQiPJtSpUyesLbt9sj7Mnz/fO2cLmD///HMA1qxZk6N+5lQqFR6wcsbRZkSDWHjA3gfuhoLx4EZS\nrbTyVVddlWfPn66fdXkhXcbOvheiZbaceuqpQM4jOvEcu6FDhwLh3wkZy7G7Vq5cCYSXb7fNu5NB\nMl93Nk72+wP42yzYZsZbt26NS1+iUeEBERERERFJa7rJERERERH5f/buPG7K6f/j+KufvVSWIkt2\nQir7vi/RhpAiS0QRoSwpX0uyfL+kLCEpIb6W7Nl3lZ0kW2RJyJJ9r77x+8Pjc65z3TP3NHM198w1\nZ97Pf7q6ztwzp9M1M/d1Pp/zORKUINPVQpHmkGY2lhJ4zDHHALD44uWra1FpY5cmGrvkKildLU1K\ncc3ZgtrjjjsOiPZpAWjfvj0A77//vjvXokWLvJ/b7/+YMWOA7MUuLG2ymPR+Ta7axi7bvzfpv6fa\nxq6Y0jx2v/zyCwD169d3526//XYAunfvXpI+5KJ0NRERERERqWqK5KRYmu/2005jl5zGLjlFcpLR\nNZecxi65ahs7KzzgF6ixggODBw/OOJdLtY1dMaV57CyS4/fRrpcpU6aUpA+5KJIjIiIiIiJVLcjN\nQEVEREQkYtEaP5Jjx7YFBKR7g1CpW7bBeCgUyRERERERkaDoJkdERERERIKiwgMplubFaWmnsUtO\nY5ecCg8ko2suOY1dctU6dn66mik0Ra1ax64YNHbJqfCAiIiIiIhUtVRGckRERERERJJSJEdERERE\nRIKimxwREREREQmKbnJERERERCQouskREREREZGg6CZHRERERESCopscEREREREJim5yREREREQk\nKLrJERERERGRoOgmR0REREREgqKbHBERERERCYpuckREREREJCi6yRERERERkaAsXu4OZFOvXr1y\ndyEV/v7774J/RmP3D41dchq75AodO43bP3TNJaexS05jl5zGLjmNXXKFjp0iOSIiIiIiEhTd5IiI\niIiISFB0kyMiIiIiIkHRTY6IiIiIiARFNzkiIiIiIhIU3eSIiIiIiEhQUllCWqRaderUCYA999zT\nnevbty8QlZCcOHGia9tll11K2DsRERGRyqBIjoiIiIiIBEWRnFqstdZaABx11FHu3L/+9S8AJk2a\nBMCwYcNc2wMPPFC6zqXUYostBsDZZ58NwLnnnuva+vTpA8C1115b+o5VgM6dOwNw9913A/ENr+zY\n/lxnnXVcW+vWrQGYNm1aSfpZbg0bNgTgmGOOcefsffjXX38BcOWVV7q2n376CYiuyf/7v2he5447\n7gCgW7duddhjEclm//33B+D8889351q2bFnr499++20g+l6577776rB3Us2+/fZbd9ygQQMATjvt\nNACuvvrqsvRJklEkR0REREREgqKbHBERERERCUq9v/28mJSwBdbl0K5dOwAuuugiAFq1apXxGOvf\nb7/95s517NgRiC8KX1RJ/mvKOXYbb7wxAG+99VZG24wZMwDYe++9Afj000/rtC9pHrtGjRoB0KFD\nB3fuxhtvBGCJJZYA4JtvvnFtt956KwA77rgjAFtuuaVre/jhh4GoYEExpHns7H3mp6rYa+fTb7+f\nv//+OxAVb5gyZcoi96/QsavrcbPnP/LIIwG44YYbMtosDffCCy+s077kkuZrrkePHkA8rap58+ZA\n7n4/+OCDAGyyySbu3KhRowD497//XbT+pXnszNJLL+2Or7rqKgC6du0KwIIFC1zbY489BsDYsWMB\n2HnnnV2bpTx//vnnQPbv5kJVwtilVZrHbvXVVwdg8cWjFRn23WHuuusud7zVVlsBsPXWWwNwyimn\nuLb69esD8O677wKw+eabu7b58+cn6l+axy7tCh07RXJERERERCQoVV14YMkllwSgf//+7pzNZuZz\nt2h3+ACnn346ALNnzwbgww8/LFo/Q7D++usDcPDBBwNw6aWXlrM7ZXXggQcCMHr06Iy22267DYgX\nbbBryRbU+5Gcxo0bA9G1aNGJUB1++OFFe65lllkGiK7NYkRy0sYifGPGjAGyF7SwWcxsmjVrBsSj\nGObmm28GYPLkycXpbMocccQRAIwcORKIz9q+8cYbAFxyySUAvPTSS67NZoMtsv3LL7+4tlDHqjb2\nWXXPPfe4c6uuuioAr776KgADBgxwbTUzISyyA7DKKqsAcNhhhwGw/fbbu7YXXnihmN2WCuJHCddY\nYw0gik7bd63/uJoRbICmTZsu9HXs/exHhO69996k3a4oNmYXXHABACeccIJrs3EcMWJE6TuWB0Vy\nREREREQkKFUZybE78jPOOAOIZoYWha3lsT9tbYUvhcufSs5mfwVefvlld/zss88C0Yz7Rx99lPF4\nW0/hz6LssMMOAGywwQYATJ06tU76GrITTzwRiEpKh8TWwOXy5Zdf1tpm6yB69uyZ0WalzP2Nayvd\nxRdf7I67d+8OROsJ7fsC4JFHHqn1OWbOnFk3nasg22yzDQD3338/AE2aNHFtTzzxBAADBw4E8v/M\nsm0aunTpAsTXxEp1sLU2EK23GT58uDu37777xh7/5ptvumPb4sLWcvnRG1sXZtH8XNHt9957L1Hf\nK42/3YKtHx40aFDG4/r16wdE6+jS9r5UJEdERERERIKimxwREREREQlKVaarWXpaMdLUavO///3P\nHVsqUbYUpGrxySefAPDnn3+WuSflZ2WfrTQ0wLx58xb6c1aAwE9zs7QQiVxxxRXueNdddwWgTZs2\nZepN6Vn6AECvXr1qfdyPP/4IRCV9C3X77bcn+rk0Gjp0KBAvHWvjYjud+6WOJZNfKvuhhx4CYLnl\nlgPiBQWsdPTPP/9c0PNb2fhNN90UqNzvUz+VfYsttijoZ63AkS0E/+6771ybpcPvscceQJROClHJ\ncksRrFS21ACiIh7rrrtuxuMsZdQvatGiRQsAvv32WwAef/zxjJ/79ddfAZg0aZI7Z8Uz7PPSfpcJ\nnZ/qbKmic+bMAeLfsVaMwD47/aJS+fxeU9cUyRERERERkaAEH8mxGY/p06e7c1ZmMJfnnnsOiC9q\na9myJRBFgDbaaKO8+mAl9o466qi8Hl+p/E2yarKZvJ9++qlU3Umtr7/+OtHP2SyTzShVo969ewPw\n2WefuXM262aLnA855BDXtvvuuwPR54C/mPKvv/6q286WiR+N8P+9NVmEwja5K9SsWbMS/Vxa2Aap\nEBWf8Mfrgw8+ABTBWZgGDRoA8XK6K6ywAgBPPvkkAPvtt59r++OPPxbp9So1gmMsagjRdVcX/M+3\n448/HogibJVaytyPvtg1ZptrZ/Paa6+5Yyt4kc2yyy4LRJvAW7QQom0ZLEI+d+7cQrtdUez3Y78Q\nj/3O0bZtWyAq4gBRJMf+bN26tWuzqG05KZIjIiIiIiJB0U2OiIiIiIgEJch0tSWXXNId9+/fH8i+\nOC0bW9xtqWV+SsaDDz4IRAtuDzjgANd23nnnAVHo3ufvERCykPbLSKMVV1wRgNVWW82d+/zzzwH4\n/vvvy9KnUrOwuaVa+Wwn6nPOOcedW3/99YFoUa6fwmHnhgwZUjedLQE/9dYWJdvO8D5LuTj44IPd\nOdubKZfNNttsEXuYXv5nu+1746dV5cOKyvjjZHtz+CnSIbM0lbXXXtuds4Xfdr0taopaSOrXr1/y\n12zYsCEAO+64I1C56Wo++8475phj3Dnbq2WttdYC4vvy2ef8K6+8kvFcluLsF20x9j5++umni9Dr\n9LJr5K677gLi16mdsz2tbK+qbJo1a1ZXXUxEkRwREREREQlKkJEci95ANMuUi92lAnTr1m2hj//0\n00+BeFECi2Lks8O4SBJWmtEv1WrlqCt9EfiisFm4MWPGAPFIbj4qsRiGLZD3ZzH79OlT6+MfffRR\nIIpY5MsWmobomWeecccW1bJx8llkbIcddnDnRo8eDcAyyywDxMsCWyTRfs7KrwI89thjxeh62fkZ\nC9ki+FdffTVQ3UVSanPPPfe446OPPrrWx9nO8dmiYBaFts88n13X7du3d+dOPvnkZJ2tAFbcAuDC\nCy8EovLv/hiYTp06AfGozSWXXBJ7zBtvvOGO7Tm++eabIvU4PfwCAoMGDQJgq622AuLfFfZ7sX3O\n+cV90k6RHBERERERCUqQkZydd97ZHVvp2Gxslumaa65Z5Ne018lWqtZmAvbZZx93LtuMoUgu2dZ7\nDRs2rAw9SRfLAS40gmMzVbYOrxIsvvg/H9lWlv6ss87K+XjbcNFmOPNlm6jmKkEdEls3ud1227lz\nv/zyCwB9+/YFYMMNN3Rttgnjf//7XyCKXEA062mf+4cffrhrs1lk26KgUvmfRdm2UrCNOyWTv7bD\nX9db0zvvvAMk/3zyr+VqMXLkSCDabsEvYWzvx/fffx+I1u1A9Dln72tb3whhRnDMyiuv7I7PPPNM\nIPrOyLZxrG3G2rlz51qf00rvp0V1fIOJiIiIiEjV0E2OiIiIiIgEJah0tV122QWIyiRCtEDPN2fO\nHAB69OgBwMSJExf5te11spWqtUWtxXgdqT4WSrdFf375T3/xtBTmuOOOA6IUhbTyF4faIu+zzz47\nr58999xzgaj0Z76sJHK2dDVL37AywX4arqVqXXnlle7clClTCnrtcrCCMbbzOUSpRJZ+ccIJJ7g2\nKzwwf/78jOey/5tbbrkFgPfee8+1WQpRpaerLUyudDUrvmAFGarte3Hu3Lnu+P777y/686+33noA\nHH/88UV/7kph7z3bYgGidLWa2woATJgwAYBevXoBYaeo+XbfffeMc1asy0rh++za/d///ufOWQq1\nGT9+fDG7uMgUyRERERERkaAEFcmxzYsWttnWa6+9Bix6OU9/8WWu17SN+OzPamQLdKVwrVu3BqBD\nhw5AtOhc4nIVGTGVuJC+ZcuW7vihhx5a6ONHjRrljvMpqmKbzPoLyHOV0l9ppZUAuPHGG4H4gvzG\njRsD8cX2fiQqrQYMGJBxzsrI2vvuq6++Kug5LQLklwzeaaedgKjErZUJrjR+wYts7zsrc28ZDbbY\nG6Bnz55AVMLXLzNts8g2Pv6MseTHSsn7i8pnz54NVF9BCH+T3prFoXx77LEHUD0RHONv6vn1118D\nub8zPvnkEwC++OILd27NNdcEoqjZiy++WPR+LorK+8YXERERERHJIahITqn5papthk6y83NjZeGW\nW245d3zHHXcA8PbbbwPRpqAhsAiozZYDzJgxA8h/HYnNmN95551APM/YohTGXytnaydsbU5a2eaS\n+dpiiy3ccT5rtlZYYQUgHpHJxzbbbFNrWyWV5YZovZu9xyDaQLHQCI6xnH+7LiGKaFukLNtmjmlm\nm8/a2gWI/p3++hJ/TRbACy+84I5tTcRuu+0GxDeqtM82Ww9l0UKovLEqtYMPPhiIrx0zTzzxeXYR\nVwAAIABJREFUBADTp08vaZ9KwY8UW0TGSkD7v6PVXJ/t/9029bXvoXwi5iHwf8+w8bDIjEVtAFq0\naAHA4MGDY4/x2Wenld5PC0VyREREREQkKLrJERERERGRoASZrpbPAuRi8EOhNV/TX+Dsl/yVcPk7\nKFtZxaRpO/5zWUlQKwccgoYNGwIwfPhwICrnDlF6j39u3rx5tT6XpRbYn/4i8gsvvLDWn7NF8mn3\nww8/FPR4P12tXM4///xyd6Egdu1ccskl7pwtxF1Ufrra5ZdfDsBWW20FVF4K1hprrAFklo0FWG21\n1dxxrhLZ7777buzPn376ybVZutoGG2wAwIgRI1ybvZeHDBkCwNVXX134PyBg5513HhD93/iFjq64\n4opydKkkrCw7wCOPPFLr46yIxdFHHw1EW45AVAxj6NChAEyaNMm1/fzzz8XrbMrY9y/AvffeC8A7\n77wDxNPVVl11VQCWWmqpWp/L/5xLE0VyREREREQkKEFGcrJtAFpMF198MQCnnHJKra/p3wXffPPN\nddqfcrIZeYBNN920jD0pDX+RY9u2bQHo27cvEP/3L7nkkgC88sortT7Xq6++6o5tYaiVsLRZFYjK\nf9oGhCGwssh+tMZ07doViEdhbHYpG7sGbRHlQQcdlFcf/NK1aZa2zUoffvhhICr4YH9CVKLWNlyu\nFKeeempJXue2224D4tsPVBIrguEXaLAowZZbbunO2eaq+WzTYBs3+sc2Y+wXBbEIjv1f2SbbkPvz\nIUSWOWK/i0C0ONz4Ww1k29ix0h155JEADBs2rNbH+P9uK5ZhW4j4235YJMfO+QVqQvbggw+6Yysn\nPXDgQACaNWvm2uz3WyvC4rdZUam77767bjubkCI5IiIiIiISlHp/13XYI4Gka2qaNm0KxO9Os+Wn\n2yxj7969AZg4caJrqzm7azPyAP379weiGeZcQ2eboUHyso1J/mtKtR7J+Jv++eU+Ad566y13bOVC\nC11fkFRdjd3xxx/vjv18cYjn7to6LNs4EWD55ZcHYN111631+W2TLT+/3SI5W2+9NQBffvllrT+/\n+uqru+NWrVoBUZQI8ttcrxTXnc1AWqnPbM/lbyBo0YMJEyYA0KlTJ9dm7/F8yrj7/bT1Bf7GZouq\n0LHLZ9z88tq33347EJU8tj8hysH3o402I55toze7nnJFG20dmL/GsHv37rG+FEMlfNYVw0UXXQRE\nZbuLUb683GNnJe4PPPBAd85KRvvrVheVRSasjK3/ebvOOusAhX+/lHvskrL3dbYNxm3srZwy5F7T\nmFS5x87Wfe24444ZbbbJrpXVBnj00Udjj7HvY4h+B9x4442B+O8yFuUppnKPXT788tJNmjQBonVw\nlsUC0bi2a9euJP0qdOwUyRERERERkaDoJkdERERERIISVOEBS0P79ttvcz7O0truueceIJ6uZilW\nFhLzQ3aHHXZY3n0JcWfhbDbbbLNa22bOnOmOS5WmVtf8dLCa/IWeFtZt1KiRO2eLjffaay8gvtO3\nFS2w5/dDsla+8fnnnwdyL5i3NBiA5s2bZ/Qhn3S1UrDyndlC8JYa5S+kteN+/frV+vh8FotaCV8o\nbppaXfJ337brY6ONNgLi77/x48cD8UWhlsoxcuTIRK999tlnA/F0NUnO/v+ypRlVKkvjtlQfiFJH\nrST3oEGDXFvSz6ALLrgAiFK1/Oe0a3/PPfdM9NyVYtlllwWiAhY+u6YshbwuUtTKzS/xvu2222a0\n2+8cluKb7fcwS/G97LLL3Dn/2oX474TVyv89w34H8dPUjF+GOo30zSUiIiIiIkEJKpJj/IW6Vt7y\nxBNPrPXx/qZQtkA+16xwtpnjBx54AEj/XW0prbjiiu7Yohi2ILBSTZkyxR3bZnY2C7TyyitnPN5f\nHGvHL730EhBt3ubLVlLZFkhaIQF/NsUvUAAwY8YMdzx27FggPdEb39SpU4Fo8bvP3lf5LjAs5PGV\nXkrVNk60a8j+9PmRbL/UbyFsEalfxKAa2Oc/RAubF7WcrB+R7Ny5MwDXXnvtIj1nmlhE9LTTTnPn\nrrrqKiCK8vibh1rJXys9WygreGGlbgF22GEHIP5dnmtD0kplBY3at2+f0XbWWWcB8QyKUFj07pBD\nDnHnsm1Ia5toWzEa+86EqODPvvvuC8A222yT8fNW5Ofll18uQq/DYdlPxi8q9fTTT5e6OwVRJEdE\nRERERIISZCTHZxuInXDCCXk9Pp9ZYXuMvxmZ5Qu//vrrSboZpO23394d2/qQSl+r5G94ZdEpi5gM\nGDDAtdlmeLfeeqs7ZzO6hx56KBBfK2Mbm/kb49XGL31pM1zmjz/+cMc2659GNlbrr78+EJ9BL6a5\nc+cCUdnZkDfmLSa7HtNQLrcULOpsazsAXnzxRSDaMiBb1Cwf++yzjzu2jV3teykk/saftjbG/p22\nYTJEaxItkv3MM8+4tu+//36hr/Phhx8C0aaOEG1EWnPGOTQ1t2nwv0/teyhE9ruErQ1ZmFyf8/aZ\n5mdl2Bony86o9N9Tiq3mWlh/24E0Zor4FMkREREREZGg6CZHRERERESCEny6mqUH+MUIrNSvhT7X\nXHPNgp5zzJgxAJxyyinuXEglQetCr169gGghaggstcxSos455xzXZukT9idEIfARI0YA0eJciMqf\n5yOEcty//PILEJV0Lka6mr0H/TSE//znPwA88sgji/z81cQ+2w444AAgXoDAX0gfCvue6NKliztn\nn/OWTjV06FDXdv311wMwa9asWp/Txmz//fd35yyly67/UNm4WNqjXwa9d+/eQJRetWDBAtf2+OOP\nA1Habc30LIhSXf3P1vnz5wOFfY5WiiOOOMIdW3qv8a/JkK+padOmATB58mR3zlLYCi1vb4UZ/DSr\nO++8E4DPPvtsUboZlPXWW88dd+rUKdZWSQW2FMkREREREZGg1Ps73zqtJVSqxa620ae/yaeVnLZh\n8WeGbAGqzcTXtST/NaVeKFy/fn13fOyxxwJRiVBbIArRYtNcM5/FVAljl1alHLuGDRsC0LNnz4w2\n24gSoHHjxrU+h5Wuff/994HyRm0KHbu0X3NWStWfNbcy3JtvvnnRXieN71cr8LHzzjsD8Q1VreCH\nRRqyfSecfvrpAGy11VbunJX+/eabb4rWzzSOXT6spO8qq6ziztkGn5ZlYSV9IRpH67u/Iebo0aOB\nwkvEp3nsbCPf++67z52za9K+W8sZVS332Nli+K5du7pzthm2FQnxo4Qff/wxABMmTACibQzKodxj\nl4/u3bu7Y8tasS0J2rRp49oWtcR+oQodO0VyREREREQkKLrJERERERGRoFR1ulraVUJIM600dslp\n7JILLV2tY8eOANx///3u3HXXXQdAnz59ivY6lXDNNWnSxB1fc801ABx00EG1Pv69994D4KijjnLn\n/P0liqUSxi6t0jx2l156KRAv1jNv3jwAjj76aCCesldqaR67tKuEsRs4cKA7vuiiiwB49NFHAWjX\nrl1J++JTupqIiIiIiFS14EtIi4hIMg8++CAQLyFdrb799lt3fPDBB5exJ1IN/BK+xhZ+lzOCI9XB\nL/rx+eefA3DIIYeUqzuJKZIjIiIiIiJB0ZqcFKuEvM200tglp7FLLrQ1OaWiay45jV1yaR472/S5\nUaNG7pxtd5GGSE6axy7tNHbJaU2OiIiIiIhUNd3kiIiIiIhIUJSulmIKaSansUtOY5ec0tWS0TWX\nnMYuuTSPnaWrff311+5cy5YtAViwYEFJ+pBLmscu7TR2ySldTUREREREqloqIzkiIiIiIiJJKZIj\nIiIiIiJB0U2OiIiIiIgERTc5IiIiIiISFN3kiIiIiIhIUHSTIyIiIiIiQdFNjoiIiIiIBEU3OSIi\nIiIiEhTd5IiIiIiISFB0kyMiIiIiIkHRTY6IiIiIiARFNzkiIiIiIhIU3eSIiIiIiEhQFi93B7Kp\nV69eubuQCn///XfBP6Ox+4fGLjmNXXKFjp3G7R+65pLT2CWnsUtOY5ecxi65QsdOkRwREREREQmK\nbnJERERERCQouskREREREZGg6CZHRERERESCopscEREREREJSiqrq4mIiEhlmjZtGgAtW7bMaBsx\nYgQAJ598ckn7JCLVR5EcEREREREJiiI5C7Hnnnu648cffxyADz74AIDBgwe7tvHjxwPwv//9r4S9\nExGRYllqqaXc8UMPPQTAHnvsAcT3Z5gxYwYAY8aMKej5BwwYAMAKK6wAQMeOHTNeLwQWwcm2p8Vu\nu+0GQKNGjQD4+eefS9cxkUW06667uuNnn30WgE6dOrlzm2yyCQDPPPMMAC+99FLJ+iaZFMkRERER\nEZGg6CZHRERERESCUu/vbPHkMqtXr15JXmexxRYDYN1113Xn9tlnHwBGjx4NwO+//+7aDj/8cCBK\nU1trrbVc2zvvvANE6W1ff/31IvcvyX9NqcYu7TR2yWnskit07DRu/0jLNWcpVAA//PBD0Z/f2PdD\nu3bt3Lk333wz0XOlZeyOOuood2zfn9n6Nn/+fADatGkDROnf5ZCWsatElTp2Sy65JADHHnusO2f9\nsn/TZptt5toOOuigrD8PMG/ePCCe5rrEEksAMHfuXAAaNGiQ0YdKHbs0KHTsFMkREREREZGgVGXh\nAYvgnHHGGQBceOGFGY85/fTTgfhM27hx4wB48cUXAXjsscdcmy20fPLJJ4F4UYK77rqraH0Pxf/9\nX3R/3bp1awCeeuopIFqUC3DYYYcB8N///tedS2HwsehWW201d2zXYJ8+fQBYfPHa37Z2/QEMHToU\ngNmzZ9dFF0tq4403BuDAAw8EosXgEF035ssvv3THNqMs/zjppJPcsc1k2uL3Tz/9tCx9qhRffPGF\nO27YsCEQj/zUZMUJ3n///Yy2Sy+9FEgevUmT5ZZbDoBWrVrl9Xgr0lPOCE7IdthhByBaAA/R5+Ze\ne+0FwF9//ZXx+NAXyNv36KhRowBYZZVVXFvNSE6+LKrjZ/wcffTRQDTWIVlnnXUAOO6449w5y2iy\na+y1115zbY888ggAV111FQDfffddKboZo0iOiIiIiIgEpWoiOSuuuKI7vvLKKwE45JBDan28zaQP\nGzbMnWvbti0AH374IQB77723a7OojkV0OnTo4NruueceID57Uq0sCmH/BwC9e/eOPcYfp549ewLR\nGAL88ccfddnFkvHzePv16wdE180WW2zh2mx26dFHHwXiMyU2G2ozJOedd55rs+t08803d+emT59e\ntP6XkkVDN9xww4y2XXbZBYjGyZ+NW2+99QA488wz67qLFcEfv4022ih2Llskx8b23XffdefmzJlT\nl10sq+OPP77Wtueee84dDx8+HID69evX+vjPPvsMCD9CtummmwLxKGFN/me2/50qhWnatCkQ/X5y\nwAEHuLbu3bsDsMYaawBRxorPPhv99R22JjnESI5FXAFOO+00IIrg2DpqiL4r1157bQA++eQT1zZo\n0CAg+n3Pz+Ax/tYhH330EQC33Xbbov8DymiDDTZwx/b7Sa9evYDsES875//usuWWWwJw4oknAtCl\nSxfXZiW265oiOSIiIiIiEhTd5IiIiIiISFCCT1ez9Ci/XGDNNDUrAwjw/fffA9HC+LvvvrvW57YQ\nJ0ShTAv5Hnnkka7NdsW96aabCu5/KGyB3mWXXQZkpqj5/LC57SQcSooaRCku1113nTt36KGHAtG1\n+MADD7i2m2++GYDmzZsD8UIW3377bey5999/f3dsYfZ7773XnbMUpUpjKQDZUgXMqquuCsRD4pai\ncPDBBwPQvn1711apqXtJWBqW/7779ddfAfjtt99q/TlbpPvjjz+6c1aoxb9GK52lGfvfEzXZdwPA\nlClT6rxPlWL55ZcH4ilQNcvd2gJkgKlTp5amYxXAUsyylQfeZpttgHiKqZXdbtKkyUKf2x9zK9yy\n5pprJu9sBfIL+FjqrX3e2XYhEBWrWXnllQFYZpllXNvMmTOB7AVErGjSzz//XMRel9dFF10ERIWO\nAJZddtlFek4rTmLFvkDpaiIiIiIiIokEH8mxmTm7O81m4sSJ7thmViwC5JejzcWiOjY76pdBHjBg\nAAB33HGHO/fnn3/m9byVzBZ9QxTBsXK1ubz88svuONcsc6Xp0aMHEC3iy1bi02ZFbYEpwBVXXAFE\nZRhzlbncbrvt3PG+++4LwO23376oXS87KyFuJXf9hfDGNmGzqA9EBQeszKW/KLIaIjl2HWWLUNjn\n3uTJkxf6PP642cLmSucvzLbolC089j399NNAFBmVuG7dugG5FyNn26ahWm277bbu2LI7/C0VkrJI\noxWveeWVV1ybLYK3SI5ll/ht1cIiXNl+t8u2ibt9J1vkx9/01goi3XfffUXvZyn4EasxY8YAUbZD\nvtEb28LBPidPPfVU1+YX/IJ42W4b17rcdBkUyRERERERkcDoJkdERERERIJS7+8Ubh+fbRFeIfza\n6LZA1GrB+ywNyFKpAD7//PNFeu1zzjkHgH/961/unKW++btjW1pbLkn+axZ17IrB9n+xXb0BTjjh\nhNhj/B2Cbd+Nxo0bA9FiPojvMl6INI6d1d63dB+/Fr+9drNmzTL6cuONNwJwyimnAPFCGcYW9vnj\nZft0+Cls+YSG0zh2Fla3/Qjmz59f62OtyAXATjvtBMATTzwBwFtvveXabBFvMRU6dnU9brbPlBW5\n8F/P9kHw0/tqssW22T4/7XOtGMpxzZ177rnu2D63s7EUW38hd5qUY+z8he+zZs0C4u87e/77778f\ngIMOOsi1pWm/uHKMnf97gBWOyfZe+umnn4D4Z3bN1LIJEya4Y/u8t+8A/3UsNdW+W/09jUaMGJHg\nX5HO74mahgwZ4o4HDhwIwLXXXgtA3759a/05K1QD0ffuL7/8AsA111zj2iwlMN9lDabcY2f71zz0\n0EPuXM3UsmzsOjr//PPduRdeeAGIfi+ZPXu2a7NCDtn+vba/1ttvv11Q3wsdO0VyREREREQkKEEW\nHjjssMPccbYZyLlz5wLRzNyiRm98dofrl/K1O1abpYd4+enQnHfeeUBm9AaiQgJ+OW2bUbFZpqTR\nm7Tzo1eQfZGzFaewBfMQzZTmYiWCl156aXfOCg7U9cK+UiikhLgf6TriiCNibbmiFqHwi1bYDtXG\nypFD7uvKxi1XkYGzzz4biM+WVgJbmG39Xxgr4evvAG5j55dnryZ++V0/glOTRRrSFL0pN7/csG2R\nkG2W3oqr5PP5n43/HWvfrZMmTQLglltuSfSclcZKZ/uy/X5h2T8WcTzxxBNdm43VuHHjgMxtGyrF\nzjvv7I4tguMXF6j5HvWLY/3nP/8B4hEcY7/f2veARW8gKqiR7f1fjGIb+VAkR0REREREghJUJMfy\n9k8//fScj7OZkccff7zO+mLl+CAq/XvMMce4c/5MfShs8zI/klbTySefDMDYsWMz2qZNm1Y3HUuJ\n/fbbD4ChQ4dmtNm6m9dffx2I8qsXxmZnLIfYz9H2S3FXE3+z3wMOOACI8qmHDRtWlj6V0vXXX++O\n/dLPAB9//LE7tnVNtmGeX07UIuBWljub8ePHL3pny8DWS+ab457t/WrZAN999x0Q3yzVZoOzbR4Y\nimwZEtn415uxjbPPOussIP493LVr14U+p20HEULp41ybGydlW1ZYlMhn0Qj/eq02tv7ONo+G6HPS\nIg62cSjkt346zWyrCit3DdFnvR9hsbUu9p71f4+2tXU2Zn6GhGXsWHlof82MPX+2dTSliu4qkiMi\nIiIiIkHRTY6IiIiIiAQlqHQ1K8Nou5v7LL0AqiNlpVQsRQ3grrvuAuJhYGPpQq+++mppOpZCVmzC\nL0qRhL/jspWztHFd1OeuZJamZuWSARYsWABEYzZ58uTSd6xELMXCymZnYyVAAS6//HIgSmux3dAh\nSuXKVa5z+vTpyTtbRn5p3aSsTL591vmfeVau3BYo+/8fVnil0vmpftnS/mqe80tIW3EV449PPiks\n//3vfwHYbLPN3LlBgwYBUYn5atSyZUsgSsf0F3aPHDkSiNKiq5kVyujTp487Z9fr4MGDy9KnumDF\nFKwQlG0zUZtnnnkGgG7dugHRZxxA27Ztgeg6ylWQJhdL74XSpQEqkiMiIiIiIkEJKpKTy1dffeWO\n/ZleSWbrrbcGougNZI/gGJv1/fTTT+u2YylmM+W28DZbeUvjLxq1zbasBPWxxx7r2myzW7+kazXw\nyyRb0YWLL74YiM8G33rrrUC4pX79BbJPP/30Qh//7LPPuuNcs+a5Sn9WOtuszkpDQ7Qxr23AmM0b\nb7zhjq1MqkUh/A2orZCD/fnAAw+4tjPOOAOICoxUKj/Cl8/mfBZlyPb4bIufc7HH9+/f352zRdUv\nvfTSQn8+JA0aNHDHVsDBzn3wwQeu7YILLgCqL9JlxS0gd5aDfd7Z92mlFxsAWGeddYDc/24/smLf\nowceeCAQ39B+9dVXB/KL8Gdj21j4hUVmzpxZ0HMkpUiOiIiIiIgEJahIztFHH11r24wZM0rYk3DZ\nZpO2KVSu6I1vvfXWA6B58+ZAtNFZqBo3bgzAoYce6s7ZWrBsm+dZyWhbt+Nv0uU/B8RnUWxG+dRT\nTwXipcttxjokRx55JBDNiANstNFGscf07t3bHfvllEPUuXNnd1zILLj/eNsU+ZRTTnFtNguc7Tlt\nVrhS9ejRA4hvjmdrtfIt3W522203AFq0aOHO2cZ59h7eddddXdvdd98NRLOllR7RWRi/LHk+bO2s\nbZjpf1baZ2o2tmagWiI59evXB+CGG25w56yEr22cbGsrIMzvglzs9wzbEBtyfz7mKnUcsuWXX94d\nv/POO0C0difXJr+Fsoian0lQKorkiIiIiIhIUHSTIyIiIiIiQQkqXS1X6lTNspXlMHr06HJ3YZFt\nt912AOy11161PubMM88E4rtiT5gwAQgrTc0WFrdr1w6IxgaiBeFrr722O2flO4cPH57xXLYA8JJL\nLgFgyy23zHiMlYv2C2fccsstQLRI8Msvv3RtIVxvNVlaXs0UNd+ee+7pjkNNV7NrL9uu5rn46YyW\nOmUpU1byeGHyfVxaffHFFwDcdttti/xcVnbV/gR47733AOjXrx8Q/z+yNBorhGGfHRCli4TESs76\nBWpqsoIqEO2kbuPjp/o9+eSTddDDyrLEEksA0QLuLl26ZDzGvkOmTp1auo6lhKXFn3766UD8d5Bc\nnnvuOQDmzZtXNx0rA/tdwLaX2HzzzV2bbbey2GKLuXOW+m7+/PNPd2wFK6z8fq6CNP772dLKR40a\nVfg/oEgUyRERERERkaAEFclJk2zlgf0y1pWkSZMm7rjm7Kdt8glw0kknAVHJ1B9//LEEvSstf+bD\nZinbt28PwJw5c1zbwIEDgXgE0RaEWrnZ7t27uzaLxFg0ctq0aa7t7LPPBqJomL840hbi24Zf1ieI\nyixbaeUQHH/88UC8MMOmm24KRP9OP3oWKlvQ7W/gmYvNpPfq1avO+iT/sFlh+9MvS23XrUXi/I2r\nKymSM3bsWHdshVGyzZpb6Vn/+/D+++8HYL/99gPipWRDLfVeLLaBZbZsACujHdLnfaEuvPBCIMqE\nyLfwhWVe3HnnnUC0oW8l++abb4Aow6RDhw6uzbJt/O9R+73CIvx+VMvKS1s0KFeBBj9yXY5CAzUp\nkiMiIiIiIkFRJKfILCe0ZtnfSmZ5wBDfhBFg1qxZ7vjmm28uWZ/KxZ8JtwiOzcD6/+dvv/02EI+C\n9ezZE4giXrZZl8/Kz1511VXunK0hyObNN9+MvbZtagjRBqH+rJ+fZ1uJnn/++YxzNfOobQPQkFl0\n4K233nLnWrduDcQ33LUZ9yFDhhT0/DU3A7XS5gAjRoxI0OPq5Zc19teLVTL/c99Ktj/11FPunG0a\naGwDZIjKGdt6m2wRf1sz4Ee67DmzbVRb8/VC4o+dfT8Y///BvgNCWldSk61pA9hggw2AeOl7Kwu/\nYMECIJ5dUfN3l48++sgd2+8uoa7hBHjooYeyHte04oorAtG6JoDNNtus1sfbemL7f7DNy9NCkRwR\nEREREQmKbnJERERERCQoQaWrWYqPH2YzliIE8TKqxWJpao8//jgQ353ZUpfmz59f9NctBX8H+Zr8\ncsbVIFfJXr+EtIW9LfQL0cJcSzXyd2O28tJJFzxaUYOOHTu6c7awN/RdnP2dvQGmT59epp6UjqVh\n+KXc7TPHL+HplxQvRM0dwCtpUXza+Ivpa6arDRgwwB3nSiFJMytV7Ker7bHHHkD2z55VVlkFiBYl\nT5o0ybVZ+qWlx/ifqfZc2Xan99MpQ2FFaKwkNES70Nv7f//993dtIaep2ViceOKJ7pxtJ+CbMmUK\nEBVhOPnkkzMeY6lsr7zyijtnBQsELr/8cgAOOeSQvB5v21gUoyR/XVAkR0REREREglLv7xRO8yZd\nRLj00ksD8YWethjXX6Rom7V17twZKHwWyMrpWdlBiBb92Wyq/2847LDDgMIXRCf5rynmAkwrw+iX\npNx9992BqJzx4Ycf7tr8ctLlVldj5886brPNNkC8rLSx680iLBBFd2xmd/LkyQX3sRTKfd3lw19I\nb5FGK83tL9SdOHFiSftV6NildcG0zXbav8cvP/rYY48V/fVKec3Z51qDBg3yerwV/vC/J7bYYgsg\nXoK1Nn5Zd1ssbfzNkVu1apVXf2pKy/vVL9dr3w877LADEC9ek6sv+fxb7PGvvfaaO2ffS7/99lsB\nPU7P2GVjUa2WLVtmtFm2ymWXXVaSvmRTyrGzf2e2yIzPLzQA8WIDtqGlRcbOOeecRH0phrRcd/5n\noG39YdFTixpm64NlnkC0rUOpIomFjp0iOSIiIiIiEpSgIjnGL9v75JNPAlFEx2ezPoXegTZq1AjI\nPoNv6338TZAsV9GPJuWj3Hf7VnrYX89kevToAcC4ceOK9nrFVIqxs/UQa6yxRkabzSjjDb38AAAg\nAElEQVTZ7EglKfd1l43NEm+//fZAfD2TjbXNbpZzbUNokRxbi+OvRfNLVBdLKa45i+A88sgjAKyw\nwgp5/ZxtVulHXXbccUcg+i5I6owzznDHSWfl0/h+NcOGDQOisYfoPZytL/n8W1599VUA9t13X3eu\n5gx+vtI4doMHDwaiDaL917PPNltvWejvFMVUyrGrGVnOl5U3Bhg1ahQQba5dTmm57vxtLGbMmLHQ\nx9sGo7aurhwUyRERERERkaqmmxwREREREQlKUCWkzbfffuuObXG4pVcBXHvttUC06CrfBag1+aVq\nLS3JdiT+4YcfEj1n2llxgffff7/MPSm/pOWepXBdu3YF4IYbbgDi5djPO+88oHJL8KaR7SpvqWl1\nkaJWarZQvVevXkC8zL8Vh9lkk03cOfteWGuttWJ/Loq5c+cCUTGXO+64Y5GfM8369+8PwOKLR79q\n7LrrrkCUctWnT59af3727Nnu+P777wfg3HPPBeD7778val/LyU+/bdu2LZA9PclS6+39Wc50tbTw\ni0188MEHQPQ9YampEKWdSlTMwr/u8kkDq8StBBTJERERERGRoARZeGBhz7nyyisDuWeQdtppJyBe\nMthYFMOfhbPyhMVU7sVp2QoP2Iyuv2Atjco9dpUsLWNn5WchKkm73HLLAfFSorYJcBqEVnjg4Ycf\nBnJvglsMabnmfFZcYNtttwWgTZs2rs0W4FofcpW29bc0sPK1FpUohjSOXaVIy9j5WSE1y4xnM3r0\naCCKSpZDKcfuzDPPrPU1bSwgXmggzcpx3VkGE8CRRx4JwFJLLVVrn/yNpMeOHQuUt+y2UeEBERER\nERGparrJERERERGRoFRNulolKnco3dLVevbs6c7ts88+ALzwwgtFe526UO6xq2RpGbtPPvnEHTdv\n3hyIdgFv166da/vqq6+K/tpJhZauZmlZHTt2dG2vv/560V8vLddcJdLYJZeWscuVrvbjjz+640sv\nvRSIChxVyz45oSnH2L3xxhvuuFWrVhnPaX2yNLUhQ4a4NttjKA2UriYiIiIiIlUtyBLSUhyTJ08G\noFmzZu5c2iM4Eo4nn3zSHdsu52maUQqZLaS3XdebNGlSzu6IBM3fbd4iOS+++CIAffv2dW1Tpkwp\nbcckGHvuuac7tlLQTZs2defmzJkDREVmpk6dWsLe1R1FckREREREJChak5NiynlNTmOXnMYuuVDW\n5JSarrnkNHbJaeyS09glp7FLTmtyRERERESkqukmR0REREREgqKbHBERERERCYpuckREREREJCip\nLDwgIiIiIiKSlCI5IiIiIiISFN3kiIiIiIhIUHSTIyIiIiIiQdFNjoiIiIiIBEU3OSIiIiIiEhTd\n5IiIiIiISFB0kyMiIiIiIkHRTY6IiIiIiARFNzkiIiIiIhIU3eSIiIiIiEhQdJMjIiIiIiJB0U2O\niIiIiIgEZfFydyCbevXqlbsLqfD3338X/DMau39o7JLT2CVX6Nhp3P6hay45jV1yGrvkNHbJaeyS\nK3TsFMkREREREZGg6CZHRERERESCopscEREREREJim5yREREREQkKKksPCAiIiKVrXXr1gA8/fTT\n7tyuu+4KwNtvv12OLolIFVEkR0REREREgqJIjkjKNWjQAIDmzZsDcNRRR2U8ZurUqQDccccd7txf\nf/1Vgt6JiMSdcMIJAOy4444ArLDCCuXsjohUKUVyREREREQkKIrkLMS//vUvdzxkyBAAbrnlFgAu\nvPBC1zZ9+vTSdizFmjZtCsDXX3/tzrVr1w6Axx57rCx9qjQjR450xzvttBMAG2200UJ/7uWXX3bH\nH3/8cfE7JlVhhx12AKJ1Ez/99FM5u5M6G2+8MQAdO3YEYJVVVnFtp5xyCpB707qePXsCMHbs2Lrq\nYskdd9xx7ti+Gxs1agTAGWec4dree++90nZMRKqWIjkiIiIiIhIU3eSIiIiIiEhQlK5WwzrrrAPA\no48+Gvs7RAu5Dz30UAB2331317bXXnsB8O6775akn2lkaWoPP/wwEE/X2H///QGlq/mWX355d/zv\nf/8bgBVXXBGAzp07u7Z69erl/ZznnHOOO+7Ro8ci9rA81ltvPQDef/99d+7//u+f+ZhsxRTuvvtu\nAFZaaaXY37Pxx/Kmm24ClIplxowZ446POOIIACZNmgTAfvvt59p++eWX0nasTJZcckkAunfvDkQp\nfABdunQBYNlll834uVwFP+yaXnrppYvWz3Jr06YNAJdeeqk7Z8VSxo8fD8Dw4cNd24IFC0rYO6lG\nDRs2BKBbt27u3NChQ2NtufjfEx988AEAHTp0AODDDz8sWj+l7imSIyIiIiIiQan3d67VkWVSyMx1\nMay77rru+JFHHsk4l4+vvvoKgLZt2wLwzjvvLHK/kvzXlHrsfFtssQUAr7zySkZfttxySwCmTJlS\nkr6keexsnKyQBcA+++xT9Nex6Eehyj12FmGxGXT/+XP1rZDHANx8881A9pLcSRU6duV8v1oUwqJ/\ntnEjRJ9jpmvXru7YZueLqdzXnLEIBEQzt7fddlui57KIjkW2AU466SQAPv3006RdzFDusbNCC8OG\nDXPnbPbbPtdmzpxZtNcrpnKPXSUr99hZNLRFixbu3BVXXAFA48aNgfhnWj4+//xzAFZfffWMNisu\n1bJly8I7W0O5x66SFTp2iuSIiIiIiEhQqnpNjuX++zNtNSM4FpWAqFzouHHjANh7771dW7NmzYBo\nE7Q+ffrUQY8rg91p+2W1VWI7uraefvppIL/cYIDffvsNgNGjRwNw4403ujYrZ26zSyGUZ23SpElJ\nXsdmmS3K+Nprr5XkdcvJXwfWr18/AE477bSF/ly2mc2QWFTLZoIh95q2N954A4B58+ZltFnkxx4z\nefLkYnUzlWxNju+AAw4A0hvBKafzzjvPHa+99toZ7bYO2DZSzTcybY+75JJLgPgaqe+++y55h1Nk\n6623dsd9+/YFojXS+bruuuuA7Nk2zzzzDBDPsrD1xOuvvz4QrceDuolql5tFyDbddFN37sADDwRg\nww03BGCrrbZybbYW9osvvgCgV69ers0yo8pJkRwREREREQmKbnJERERERCQoVV14wFLRbCG478EH\nHwTiYUtLZ7GQ3UMPPeTa1lprLSBabGo7WkO0wLlQlbY4zcbl1VdfBeC+++5zbYcffnhJ+5LGsbvq\nqquAKKUxFz/Fxcpgzp49G4A111wz43GrrbYaEIWVAe69995E/Sz32FkhgOuvvz7j+YtZeMAed8MN\nNwDxMHtSaS08sNxyywHRNQjxwg4QLz9uj+/fvz8QT8taZZVVAPjhhx+K1r9yX3M2LrnSjP33pBUl\n+PXXX4vWh6TKMXbHHnusOx45cmTGc9rn0ZdffrlIr1PXyjF29v0IsPnmmy/0dQr9PDN+kR8/vahY\nSjl2lqZm6WSQXxn2wYMHu+P//Oc/AMyfPx/IXep9scUWc8e2LYgtbxgxYoRrO/nkkxfah2zK/XmX\njX3mX3nllUDm90Ntfan5b3nhhRfc8U477VTMLmZ9vYVRJEdERERERIJSNYUH7C4cohnbbAsmbbb8\n1FNPBbJv/GSL6P073eeffx6IyvaeddZZri1pJKfS2LjYnxbZkX/kKjQwbdo0AM4++2wgvmlqtsXN\ntbFF9JA8klNuY8eOjf0JUYQq10af2Rx33HFANPPsL6Y0dTHblBbLLLMMEH2e+Z9Ztinj7bffDsAF\nF1zg2vwINkQbY0KYpUxbtWq10MfYQnCIFtumIZJTDtttt507tuvhzjvvdOe+/fbbkvepUpx44onu\n2Ao0/Pnnn+5cIZ9xu+22mzv2S3hD9LtMJbPf22xM8t1E14ov+EV65s6dm/fr+hvWfvzxx7Gft0hH\nCCziCvDss88CUeGL33//3bVZVo4Va7jrrrtc2worrABE3x9+8S77/vnjjz+K3fW8KZIjIiIiIiJB\n0U2OiIiIiIgEpWrS1XbZZRd3bKkb2RxzzDFA9jS1mn788cda21ZeeWV3bCHXfJ6zklkBB1tMefzx\nx5ezO6lj+93YdTNmzBjX9uSTTwLxNLXa+HudLL74P29hCwf7eyOEpNA0NfPoo48CcOGFFxazOxXj\n4osvBuCkk07KaLMx8fftqCZ+Oq0VjsmXpW/YXmlpX2BfbNkWJb/88svu2BZ3SyZ/nPzjJHL9LmP7\nNFWyn376CYBPPvkEgFVXXTWvn7M05aeeesqdmzVrVq2Pb9GiBRD9/vfcc8+5tnbt2hXQ48oydOhQ\nd2xpZpaS5n9n+AUfatO+fXsA9thjD3fOxtWuU/+75qOPPkrY68IokiMiIiIiIkEJPpJjM3RWCtVn\nd/n+TucTJ07M+7ltdgGiBYA33XQTAGussYZrs1LTdlcbuhRWJU8FK0bx73//G4DPPvusoJ+3CNmE\nCRPcOYsY2nPmii5WC7/4gkW2GjduXOvjbQfsUPhFT/xFzhAVtoAoylOtPvjgA3dss7zNmzfP62db\ntmwJwMyZMwH4/PPPXZvNaL7//vvF6GbFqJYCO2niRzasAIQV/gnhc23OnDlAFDFdYoklXNvpp58O\nwPrrr+/O7b///gA0atQIgAceeMC12ZYhhx56KBAvzGCR2Q022ACIf25aUZIQM3H8AiLff/89APvs\nsw8AX3zxRUHP9b///Q+IFxmwiJgVXfr6669d22mnnZagx4VTJEdERERERIISfCTn/vvvB+L513YH\nf/TRRwPxWbhC+CUJLQJk0SHb0BCiknz+hpjjxo1L9JqVwGaU/NK8o0aNKld3UsOiLEmjLTbzYZsx\n+vz1PdXK1t2dcsop7lyu8tBW8rJSS23XZBvT+XnPVtLeSn760Ztcm+FVA//fb6V8/bLlFpHJxdbE\n+Wt6bDsBm2n2nzNEtl7u559/LtpzWqTMX39oEQqVp4Y999wTiK9/sAwKi/SHtE7MogN+lMCPShvL\nqLHNPPfbbz/X1rt3byAaH/868jNvIF7S2yIUobPf2wrdIsDKetvWLJdffnmtz+2vVS8VRXJERERE\nRCQouskREREREZGgBJmudvDBB7tjP03NWGpP0jS1QlnKSLNmzUryeuVmYfNsYy/5sTQYgOHDhwNR\nioJv9OjRQOGLBCudn4ZgqQa2E3WuNKy33nrLHY8YMQKo7PSXfv36ueMBAwYAUaoGwPjx4wE44YQT\nAKWo1caugb59+7pzU6ZMAaJyyWuvvXZez2UpVueccw4AkyZNcm0hLl6279FCy0ZbMRBb6AxRmrdt\nR7Diiiu6tjfffBOIFi/76XEXXXQRAFOnTi2oD5Uq16JtP9Wq2tQsdWxbM0D0nWppVdnY2B100EHu\nnBUXCZ19blmBBv+9VPN9tcwyy7jjjh07AtGyjGyFpyxF/9xzzy1ij/OjSI6IiIiIiAQlqEjO6quv\nDsQXpNnd+8MPP+zOWbndupCt8MCCBQuA0kWOyq3QhWsS6dq1KxCVzATo0aNH7DFfffWVO7YZzGqZ\nvWvatCkAgwYNcuds1teiFLlKmI8cOdIdV3IEZ9NNNwVg4MCB7lyTJk2AaCYOog15rTxoMVj0KFe5\n5datW7vjzTbbDKiMzwV/1tZmHb/55hsANtlkE9eWazbYWITRNqSFKGoRUkTHrjs/+pxrsbZFcG64\n4QYgKvoAud+7bdq0if3dv54ssmuFhiAqA2z/f9Ui6cbJoXvkkUeA/CI5/iaiIbNiNRB9p9oWDP7v\nIP4xxN97ud6z9jlgvw9//PHHi9jjwimSIyIiIiIiQQkqkmObPG288cYZbbYpINTtrLdf0tH8/vvv\nANx222119rppos1A87Puuuu6Y5tFOfLII4FoHZfPNpX181qrJV/YZmptnCx6U6hKn+W0CI5Fpm0W\nHaIITocOHdw5ey/aJnfbbruta/M30YN4xNA2b8vG32y0Nv76DD+KXomuvvpqAHr27OnO2RivtNJK\nQHyTwpr8tTz2HrafDyGiY2uWrCQ75N4I9dprrwWgc+fOAHz66aeu7ZprrgHiG23XxjZ+BGjXrh0Q\nX0vx6quvAvHv/kpn63rbtm2b0fbYY48BMG3atJL2Kc38bTtsXaJE/MinfX9YJMeyACC+6SzE1xn2\n6dOn1ue3rQv81yk1RXJERERERCQouskREREREZGgBJWuls13330HwHvvvVenr2OLIq3MrxUbALji\niivq9LXTxhal+SFNiVLQ6tevD8DNN9/s2rbbbrtaf84WyJ955pkAvPPOO3XVxdSyRdxJ09TM448/\n7o732msvoLIKEFiqT7Zy9FZit0uXLu7cscceC0SL/5PyP88mT54MRJ+pfrrRc889B8C8efPcOSvF\nXOls6wH/2FKiNt9887yeY7311gOigiH+dgeV5IcffnDHlrL3wAMPuHOWFuk/zlgBB0ursvchwJw5\nc/Luw7PPPuuOreiIpawD/PTTT3k/V6Ww97GloVZCMY9yWG655YB4AaitttqqXN2pCF9++SUAEyZM\niP3pW3nllYHcKaCWogbQu3fvYnYxEUVyREREREQkKEFFcqz8rs8WMhYyQ5Qvv6TlfffdB0RlVadP\nn+7ayrEBUjnZLNNGG21U5p6Uj82wtWjRwp2zzQEPOeQQIHeBBj+6sPvuuwPVGcEx+Wz0aZGyXI+x\nhfsQlbKtpEjONttsU2ubRW1y8WfWn3/++VjbuHHj3LF9btpmjFZ+FWDffffNr7NVwN7LfpnofDcN\nrWRDhgxxx/be9AtZWHQnWyTHzJ49Gyj8u9lKVdvrQvTd72+KPGrUqIKetxKcccYZtbZdddVVJexJ\nOlmE27Ikdtlll4zHWLTZL7Ry/fXXA9F37XXXXefa+vfvD8Bvv/1W/A5XCNuexTIh/N/t7PeYO++8\nE4Bu3bqVuHe5KZIjIiIiIiJBCSqS07Jly4xzxZzdWGqppQA4/fTTgXhJUVszYLPCfjnNamNRDL+8\nbYgaNWoEwDrrrJPRduqppwJReVVfPiW27echvvlntXr77beB7NHBd999F4hK0u68886uzWbojB/l\nufzyywE4+uijgbqJ9hablfXMlev82muvueNLLrkEiDYD9Tdp/Pnnn2t9jssuu2yR+lktrAS0/z5/\n4YUXFvpzVhLdNqwEGDFiRJF7V3esrDbA9ttvD0RRLYB7770XiKIt/vrDxRZbDIi+r/1S+h999FHs\ndfwNRpdcckkg+gzwZ4x//fVXIColHSpba2L8yFU+113obrnlFgB22223jDYra2+fibNmzXJtRxxx\nBAD33HMPAMccc4xrs6i2rXmsFhaNhWhduWWm+L/D3HrrrUB8zNJEkRwREREREQmKbnJERERERCQo\nQaWrFZOlpvmlV62Eb6dOnYD4okoLy1sYP4SdrJPKJx2r0ljZZ0uJAujXrx+Qf/nYQtx0003u2Er1\nfvbZZ7U+3hZKbrjhhu7cxRdfXPR+lUvHjh0BOOCAA4D4NWapMVbK2E/DsgXz2dJY7Jz9/9mO4Wlm\n/8/+wti6YCkd/uJuqd3cuXMLerylYR144IHuXCWlq/msnKztmA4wePBgIEr1sXQgyEw5tXLaEJWx\nNVb4AqK0NitP7aee3n777UCU1hqShg0bumNLkbaU8NVWW821Lb300kCYpbNz2XXXXd1xrq0Y7Pva\nLxJivv76awA+//zzjDZLa86WAhci+2yyNDSICjIYvxBN3759gcI/A0tFkRwREREREQlK8JEcm4G3\nTUGzsagNRLMmVva5T58+GY+fMWMGAB06dHDnai6YrGY2y7Tmmmu6c7aJ4+uvv16WPiW19dZbA9EC\n9latWpW8Dzbzmaskd9u2bTPOhRTJsSjN8OHDF/pYv4CAzd6FviC52PxNU6uJX7zGSnLnKtttGjRo\nUNDrWIGaEN6jU6dOjf0J0WawVpTA36DW2pZYYomMtlwsemuz7ueff75rs01yQ+QXtllrrbWAaCzs\ndxGIii9UG//3MItmZXP33XfX2rb88ssD0LRp0+J1rEJZcZua0RuINvq0xwD8+OOPpelYQorkiIiI\niIhIUIKP5EyYMAGAYcOGuXM2M2KbAfozJZb7bxYsWOCObdbE1uR8/PHHddDjyjVo0CAgmmXy86mt\nvGClRXJsRttyodPGctFtY8ds+cYSRRdtw1CIcvqtTSK27qFaWGlUP4JlGwsWk63jPOywwwB44okn\niv4aaWCRFfvz8MMPz3iMbcGwyiqrZLTtscceADz11FPunGVjhBy1KZRfyruaN6usjUUeIHfJfLum\nsm0eWi323ntvIFpj57O1dZYZ4W9FkHaK5IiIiIiISFB0kyMiIiIiIkEJKl3NSsD6KWe2UHzs2LF5\nPYelsHzwwQcAXHDBBa7ttttuK0o/Q5ctNahSjRw5EihuWWxbAOmXu1x11VVjjxk6dKg7tmvSUohe\neukl12a7OFfCotMtt9zSHffu3RuIdph+7rnnXNvvv/++SK/jpxycccYZQPT/55edtXMhljxfVNOm\nTQOisuV+eeAQLbvsskC0ALkY7D35xx9/uHPdunUD4Nlnny3a61SqMWPG1Nrmf+9K7dK+6LsULFUb\n4MQTTwRgySWXBGCZZZZxbVZIJJs999yz1rZnnnlmUbuYWv6WE7ZthY2dFd8CGDJkSGk7VkSV/1uo\niIiIiIiIp97fKZzGTLoQ2MpVDhw40J1r3779Qn9u+vTp7thmkNIQtUnyX1PORdRWMvrll18G4uPa\nv39/AKZMmVKSvlTa2KVJscfOIjgPPvigO9ekSZPYYyZOnOiObfM1/5zNWFqp3myLlW3jyh133NGd\nsxLy2fppM+1WgnTy5Mm1/hvyVejY6Zr7R1rer/vtt587Xn/99WNtO+ywgzved999geharbmJJcDT\nTz8N1P1nXlrGrhJVwti1adPGHb/xxhuxtiOPPNIdjxs3rmR9gnSOnY2HbTVgxaXyZRFsv1CGFZwq\n5maXaRm7t956yx1b+fw777wTgO7du7s2vwBXuRU6dorkiIiIiIhIUHSTIyIiIiIiQQkqXS00aQlp\nViKNXXLFHrvrr78egKOOOqqg5/TT1SysvsYaawDRXlXZ+pCr/34/be+mfIuS5EPpasno/Zqcxi65\nShg7P12tZupjjx493LHS1SLt2rUD4gV9LrvsMiBaYN+8eXPX9uKLLwIwfvx4AGbOnFmn/Sv32Nl1\nY9/NAHPmzAFg4403BtJb1ELpaiIiIiIiUtUUyUmxct/tVzKNXXIau+QUyUlG11xyGrvkKmHs/GiE\nRXKaNm0KKJJTqco9dpYlsfbaa7tzXbp0AeJbVKSRIjkiIiIiIlLVgtoMVERERCQUs2fPdse2hsIi\nOB9//HE5uiQVaIkllnDHiy/+z6/+fln8WbNmlbxPpaBIjoiIiIiIBEU3OSIiIiIiEhQVHkixci9O\nq2Qau+Q0dsmp8EAyuuaS09glp7FLTmOXnMYuORUeEBERERGRqpbKSI6IiIiIiEhSiuSIiIiIiEhQ\ndJMjIiIiIiJB0U2OiIiIiIgERTc5IiIiIiISFN3kiIiIiIhIUHSTIyIiIiIiQdFNjoiIiIiIBEU3\nOSIiIiIiEhTd5IiIiIiISFB0kyMiIiIiIkHRTY6IiIiIiARFNzkiIiIiIhKUxcvdgWzq1atX7i6k\nwt9//13wz2js/qGxS05jl1yhY6dx+4euueQ0dslp7JLT2CWnsUuu0LFTJEdERERERIKimxwRERER\nEQmKbnJERERERCQouskREREREZGg6CZHRERERESCopscEREREREJSipLSIuIiEgYllhiCXe89dZb\nA9CnTx8AJk6c6NpefPFFAKZNm1bC3olIqBTJERERERGRoNT7O8muRHVMmx79o9I2jGrdujUAb7zx\nBgD/93/RPfT5558PwLhx4wD48MMP67QvaRy78847D4Bzzz03o23w4MEA7LLLLgt9nueeey7jOYsp\njWNXKbQZaDK65pKrhLE7+eST3fGwYcNqfdwLL7wAwE477VTnfYLKGLu0qoSxO+2009xxp06dALj6\n6qsBuPPOO0vaF18ljF1aaTNQERERERGparrJERERERGRoFR1ulq2VJ9sqUTGUoqeffbZ2J91pdJC\nmp07dwZg/PjxGX2xf8thhx0GwO23316nfUnj2NXFW2233XYDinstlmPsGjZs6I7tfdmhQwd3bv31\n14893k+F/Ouvv2p93kmTJgHw+uuvAzBjxgzX9tBDDwHw2WefJex1pmpKV1trrbUAGDt2rDtn12Oh\n0vh+rRRpHruTTjoJgCFDhrhzyy67bK2PV7pa5Ujj2G2//fZAdN0dfPDBGY+ZP38+AG3btnXn/BTw\nUkjj2FUKpauJiIiIiEhVq5oS0s8884w73nXXXRM9h0V57E+L7EDdLACvNM2aNVvoY5ZZZpkS9KT8\n7BrLFRksBruuK3WWZ9tttwXgmmuucefatGkDxGdsas7e+NGbXDM7NiO84447ZrSNGDECgLvvvhuA\n4cOHu7aXXnopv39AFbNrPOnnqcStuuqqAMyePbvMPUlmvfXWc8dWCrpBgwYALLXUUhmP/+abbwDo\n2rWrOzd16tS67GLq2PhYFgREn1UbbbQREI9q2Wedfd77n3127r333gPg4osvdm12ziLaIbExBDj7\n7LMB2HvvvWt9vJUz98uaS6bmzZu744MOOgiALl26ALDddttlPN4Kipx66qkl6F3+FMkREREREZGg\nBBnJ8aMqizqT7kdraj6X/3cr/Zs0Jz0E3bp1W+hjhg4dCsTz+EPkRw4LYddbXUeA0mKPPfYAovLj\n5WCzVE2bNnXnbMbqu+++K0ufKsF+++1X7i6UxKWXXgrAgw8+6M7lyuG3aPUGG2wAwO677+7aLFqz\n+eabA/GoTceOHQH4888/3Tmbqf/1118B6N+/v2vz+5MG+++/vzteYYUVan3cp59+CsDxxx8PxDcD\nDZl9vgwcONCds4hDixYt3LmaUZpcEe1sUWx7rptuuinjcfa5du+99yb8V6SPnxNt/JsAACAASURB\nVEGSK4Ij+bHsCr/Eth/VgShSC9Ea7GzRnZo/X8z1r/lSJEdERERERIKimxwREREREQlKUOlqdbHY\n2099szK92VKR7LWtrZrT1qpVoSlquQpX+H/PtbC+rsuY1xVL2+nZs2dGmy3CnTJlStFez8pRt2/f\nPuOc2Xnnnd2xlaxWulqm5ZZbDojSk2bOnFnG3tSdAQMGANFCWj8d19IsLf3iggsucG12XdUsew7Z\nF4zX1LhxY3dsj1txxRWBdKer2Xhl88svv7jjY489FoCnnnqqzvuUJvXr1wege/fu7txKK60EwLvv\nvuvOXXHFFUD0OThq1Khan9NPO7My3YMGDQKyF6OxIgYhpKstvfTSABx33HG1Pubmm292x506dQJg\n+eWXr9uOVajLLrsMiFIa/eI7a6yxRq0/Z6lofgpbzbZZs2ZlPE+pUtcUyRERERERkaAEFcnJdybd\nZtBttjzfzYVs1tyiNLkiOv5MfMjlpf3yjdnKhFaDQkvp5rOBZ77XjB8NqiS24HratGkAvPnmm67t\ngQceKPrrPf/88wCcc8457pzNdNqfftRm3rx5Re9DGvjXVdJiKTUj5TbzHAKbxYTMUqgWfYRo08F+\n/foB0KpVK9eWdNNfm7G/5557Ev18uTRq1AjIXcbeykVD9UVwzJw5cwBo165dRtv06dPd8e+//w7k\njuBkM3r0aCCKlPmFVOya9F+n0m266aZA9pLFc+fOBaBXr17u3EcffQQokuPziwvYZ59Fi/0tFXKx\niEy2yIwV9TGrrbZaxs/VNUVyREREROT/27v3eKvm/I/jL1Nuo35UaKjcxiUal5BSiVESya3GLaM8\nXMatiJhucqk0ZCiXcp1C7mlyTTJIGXId10lIojEhuiCM+P3h8fmu795nnd3e6+xz9trf/X7+Y1lr\nn72/fc/ae5+1Pp/v5yMSFF3kiIiIiIhIUIJIV8snTShXKN1P+bEUjlxpQPks9o4rfhBi2tqWW27p\ntv3weCUpZpqasfNwTcq18IDxe2vUhq5duwJw8803A9C0aVN3LDut6IwzznDbxSx6kAbnnHMOkPm5\nVMi54/+e7LmWLVsGwKRJk2o+wBJr27YtADfccIPbl53Wcs8997jtPn36AJlpaibXd439nPGLB3z1\n1VcFjLi0tt12W7c9efJkIHcakPUAKgb7zrF0JYjSS6dPn1601yk2S0Orrc8W6zhv38P+eTh79myg\n8BS4NMvVE2fUqFFAuGnHNWVpatYTB+Doo4/OOJaU31PH0nktNc0vZlBXFMkREREREZGgBB/JyWdh\ndtIIi3+nxIoQ5HtXPxStWrVy2/6iskoSd/7E3SXP5855oUUMpCq/uIBFLnItBreiBIWWAC8HFoGJ\nW0Saz2fjVlttVe3P2106i+iUG4veQBRRsfLYEJ0zFsHp37+/OzZlypSMx3z99dfumC1wfuCBB4Bo\nQTjAkiVLivcPKKEjjzzSbbdp06ZOXtM+Z/faay8g806+RUnOOusst++2226rk3GVUsuWLd22vdft\nnPziiy/cMYtkh8TKuPsskjd69Oi6Hk7qWYloiIoM3H///W5fTSM4ca9jUR2LMpaCIjkiIiIiIhKU\nICI5udYv1NU6mFmzZgHxd+DtbnKIa3Lq168fu12JivH7zaeRbbmWja4tlu8/bNgwAFq3bp3Xz9ka\nnLvvvhvIbFhYzmzNDFSNwFj0BfKLLFrTQIvoQLQGp9zX4lx33XVuu3HjxlWOn3766UB0t9NfM2N3\nPS3X3H/vL1iwoOhjFTjzzDOB+N+VNdo87LDD3L5KiOT07NnTbWevBfPX/tx55511Nqba5GeLxK0B\ntvYDq1evXuNz+aXzrXGvNVKNc8UVVwCZZbhnzpy5xtcpNYum7L333m6fNe6MK7+d9PnvvffeKq9j\nxo4dW+PXSUqRHBERERERCYouckREREREJChB5BeVyyJtP6UhlNS1Y445ptRDCEI+BQcsvSiUcwei\nMrB+WpWln/rFAmzxt3Wd91NUcxUVsBSOpUuXApnpCP6C8BBYmlpckYATTzwRyD/FzNLU7Pfzr3/9\nyx0LJV1yjz32cNt2DllKCkSFA+JKO0+YMCHjv5XGT43KVTI7qebNmwNRKilAkyZNqh2D/f46derk\n9h177LFVniMUVnBg0KBBbp/Ngf3X3sMh2X333d32DjvsUOW4zYu1DujQoYM75rcPABg8eHBBrz1u\n3DgA3nzzTbevS5cuAHz++ecFPVddsvQxe09BNC+Wbluoo446ym1feeWVQJS25hczMElfpxgUyRER\nERERkaAEEclJA7vLns/C8ZD4d9Sz7+j96lfRNfRPP/0U+xj5RaUWHLAFn/vss4/bl31HEqJGZdmP\nyd6ujhUGefbZZ5MPNuXiIjgWgbHCAX5Tz2nTpmUcO/vss90xe5yVh/bPvYULFxZtzGlhdxr9SE45\nNeesa4W+//Jld5stQta+fftqXyfudf33d4gRHGNRWyu4AFW/W0P8rDv44INzHrfPMP+zrDpW6h2i\nojM//vgjkBnxt0jI0KFDgcwGwEcccQRQfk1W84ms+I1CreS0zYVfXMAiNwMHDgSgV69e7pgVOCgl\nRXJERERERCQoZRvJSdu6hHzKsYbIIjRQ9c5a3LERI0bUzcDKgH8O57MWJ8RzzO4orVq1yu3z704W\ni91x8yOPts+agZY7W3fjR3RsTY3912cRGWuA6TfCNLaGx6I+ofryyy8BRW9KzaIvfgRHqrLPrrho\n1qhRo4DMUsehsHVyEH3erbPOOgU9h0W8rEQ8wJNPPlnt4+1Y3759Adh6663dMYsYlUMkx9bMACxa\ntCjn8WzZkR8/s8LK6Vvkx48AFaNEdU0pkiMiIiIiIkHRRY6IiIiIiASlbNPV0iZt6XNp9emnn5Z6\nCCVn50q+RSr8zsyheeGFFwDYfvvt3b569eqt8ecaNGjgtk866aSMY6eccorbbtiwYcYxv1v6o48+\nCsDDDz8MZKZSzp8/f41jSBtLLfPTGq2AgHWCt0ICAK+//joQfx5aetqAAQNqY6ip4KdIWgGMtm3b\nun1z586t8zFVkk033RSIOqVDVNq20GIGr732GgB9+vQp0ujS6dRTTwVgk002ATLnydKwQk4t9dPK\njj/+eCBqK7AmVjxlww03LP7AUszSyaxYBWQWDqiOXwr6qquuAqLv6zhWnMB/TClLRxtFckRERERE\nJCjBR3JsQXcaFm0r2lPZConghBy9iVOTCN/5559f7f9bJMIW6vrN4SzK07t3bwC+/fZbd6x///4A\nfP/994nHVSp+ieexY8dm/Nfn39mDzIaftqg3ZHHltJ9++mm3z96vfllp+YXfENEWMW+xxRbVPr57\n9+5u295TVibab+BZiNmzZ7ttWwhtpYBDYlEbiKLUcWX2rflniAUH4kyZMqWgx9v3QqVFckx2GwaA\nZs2aue1cUZpcrNDAueeem/HftFAkR0REREREgrLWz8Xs5FUkhTaMzPVPsDzM2oii+GV//TuAxRpD\nkl9NXTXbbNmyJQAvvvii25dd+tcfy9KlS4GoUVRtNyorxdz5v18rVZyrNHScYp6vdk76Y7AIUa7I\nZprPu6SaNGkCwODBg90+i2TY2P1/d8eOHYHC724VOnd1PW/W+BOi88NKR1u0C+o+8l3qc87WOowZ\nM8bts0ifRRn9Y7feeiuQjshBqefOomA9evSo9jHfffed27aS7Z07d67yOGsg7bcfyGYRnJNPPtnt\ne//99wsYcaTUc5ePG264wW1bJCfuMyuftYzFVA5z57P1IRa96Nq1qzuWq4S0seahfgnpnj17AlEU\nLV/lNne5WLaErdvx1/skjQ7lUujcKZIjIiIiIiJB0UWOiIiIiIgEJYjCA5aCE5cyZou8ayNdLd8S\nwGkoelBsJ5xwApB/d/p33nkHqP00tVIotCR0LpbmVgxxqXL2Hklr6Lu2WLpkpXa0tzQ1P63C9lmK\nZIifU/myjuX+++Lyyy8HYLPNNgPgr3/9qzvWrVs3ICqbmoa0tVI588wzAdhnn33cPkuBNOutt57b\njktTM7lSUaxMtC2gXrJkSeGDLUN+Gmn2/IwaNaquh1NxrDBNixYtgMwU/RkzZpRkTGli6WrPP/88\nUDspajWhSI6IiIiIiAQliEiO3YG0/+a6gw01L89rz59rUbn/GpV8h7QSFCOCY+yc8u/Y2fkza9as\nNf58vpGgtJRWtyagfoTBooSvvPJK0V7HFuwOHTq02sf4ZaxDa1o7ceJEAHbbbTe3z5qHqrR95MYb\nb3TbM2fOBKJmlbvvvrs7dsABBwBRA9nsctyVZPHixUDm55M1n03qvffeA6IMAIgafVZK1MwWcvsl\npO17wSLTt9xyS90PLGBW+ML/TLSmo/Xr//Lnsn9O+m0HKslRRx3lti3CNXDgwFINJydFckRERERE\nJChBRHJM3NqcuKiL3Q2xu9h+1CXXXc18ygJnR5VEaiqfyGGhSn1+2noQe6/+5je/cccaNGiQ6Dlt\nfdgFF1zg9g0fPhzIneu/YsUKAE477TS376OPPko0hrS5+uqrgejcsXK/UBkNP2tiwYIFAHz44YdA\nZiTHWAnZSo7kGL+k8w8//ABEa5byZe87K+kd4hrONbH2DLYWx//ssm1bB/HFF1/U8ejCtPbaawPR\nd8ewYcOqPMayDdLW7LIU/M87W4tz3333lWo4OSmSIyIiIiIiQdFFjoiIiIiIBGWtn5O0Xq1lxew8\nX8xF4fkoZmneNHfF3XLLLQG455573L6ddtoJgA022KDKWKxLdTFTrnKpy7mzlKu4f5ufFpZd8KKu\nzlN/DPmUC66LuWvXrh0Ac+bMqXLszTffBGD+/PkFPWfz5s0BaNu2bZVxxf2brLiAlbQt9PXiFDp3\ntfF+Pfzww922pVgsXLgQgNatW7tjy5YtK/prJ1Xqz7qGDRsCme/RCRMmALD55psD8WO0Rfe2+LYU\nSj13cZo2bQpE3eH974nsufLTRC315a233qrV8Zk0zp0VcOjYsSMQLYaHaNF7q1atanUM+Ujj3OVi\nhRws1eqJJ55wx5YvXw7Ep1c+8sgjQFRKuhiFL8pt7oylSdpcQpS+Z6nRta3QuVMkR0REREREghJk\nJCdObdw1t7vi2c9fLOV2tW93kM8++2wAOnXq5I6FHMkx/r8t6cJ+iwrFlYu289Z/7uzHxb1uoWOp\ni7mz0tEWyWncuHGV58o1Dv/18nmcLdD1SwTfeuutQHGLDJQykmMNGK1por/PIjgW0UmbUrxfL730\nUrd9+umnA5nnYfbr+GN8/fXXgagk+fTp02s0lpoot++JNEnL3Pml7fv37w9AkyZNgMxo92WXXQZk\nRiFKJS1zly/LNLHS8Nbk17d69WoAhgwZ4vaNGzcOiIppFEO5zZ1ZtGgRkNnw0y8nXRcUyRERERER\nkYqmixwREREREQlKxaSrxYnrP2K9cOLSheq6B065hjTTQHOXXF3OXYcOHYDMxfK2kLEY6WojR44E\nYPz48QB89tlnicaZr1Kmq02cOBGAvn37un3Wa8Pvj5NGpXi/WrEBiNIvGjVqVOVxzz33HABjxoxx\n+6w4xqpVq2o0hmLQZ11ypZ67PffcE4C5c+e6fVZo4KeffgIyiwzMmzevaK9dU6Weu3JWbnOXXXDA\nLzxw3nnn1elYlK4mIiIiIiIVraIjOWlXblf7aaK5S05zl1waSkiXI51zyWnukiv13O2xxx5AZiTH\nnn/q1KlAfFnjNCj13JWzcpu7++67D4jaNLRv375kY1EkR0REREREKpoiOSlWblf7aaK5S05zl5wi\nOcnonEtOc5ec5i45zV1ymrvkFMkREREREZGKposcEREREREJii5yREREREQkKLrIERERERGRoKSy\n8ICIiIiIiEhSiuSIiIiIiEhQdJEjIiIiIiJB0UWOiIiIiIgERRc5IiIiIiISFF3kiIiIiIhIUHSR\nIyIiIiIiQdFFjoiIiIiIBEUXOSIiIiIiEhRd5IiIiIiISFB0kSMiIiIiIkHRRY6IiIiIiARFFzki\nIiIiIhKU+qUeQJy11lqr1ENIhZ9//rngn9Hc/UJzl5zmLrlC507z9gudc8lp7pLT3CWnuUtOc5dc\noXOnSI6IiIiIiARFFzkiIiIiIhIUXeSIiIiIiEhQUrkmR0RERMIwbtw4t92/f38AhgwZAsDo0aNL\nMiYRCZ8iOSIiIiIiEpS1fk5S5qGWqYrEL1SBI7m0zF3btm3d9tChQwE45JBDqn38vHnzAOjcubPb\n9+mnnxZ9XLmkZe7KkaqrJaNzLrk0z12jRo0AWLx4sdu33nrrAdHn2nbbbeeOffvtt3UyLpPmuUs7\nzV1ymrvkVF1NREREREQqmiI5KRbi1f7YsWMB6NevX5VjPXv2BGDatGk1fp1Sz93f//53ALp37+72\n1atXL++f//HHH932hRdeCMAVV1xRpNHlVuq5i2Pnxvrrr1/l2BlnnAHA+PHjM/7f37d8+XIAHn74\n4VodpyI5yaTxnOvYsSMAd911FwDrrruuO/buu+8C8Nvf/haAmTNnumP2b6lf/5clr717967y3B98\n8AEACxcudPvss+KHH34oaJxpnDvTpEkTAD7//PMqx2zc+++/v9s3a9asOhlX9hgKoffsL9I4dwMG\nDADguOOOA2CPPfao8to27hEjRrhjF110Ua2OK1sa565cKJIjIiIiIiIVTRc5IiIiIiISFKWrZena\ntSsQhTkvu+wyd+ynn37KeOw777zjtu1xd999d9HGEmJI8+233wZghx12qHLMUpIefPDBGr9OKebO\nUtQADj300IJ+9vbbbweihbo9evRwx1avXg1Aly5dAHj22WdrNM41KfV5Z2k+p512mtt35ZVXArDO\nOuskes5vvvkGgNmzZ7t9Z511FgALFixI9Jxx0paudtBBBwHwyCOPAPDee++5Yy1btqzV1y5Eqc85\ns9NOO7ntV199FYC11167oLEk/Upt0KABAKtWrSro59Iyd3Fypat9+eWXAOy8885un4qslI9Sz902\n22wDwOTJk92+Nm3aAPD+++8DcM0117hjU6dOBaL3+J133umObb755kUbVz5KPXflTOlqIiIiIiJS\n0Sq6GajdNbcrfIB27doB0d07P3qTfQW54447uu1JkyYBUYOzww47zB0r5p3icvWHP/wBiBbqhsj/\nncfdbZg4cSIAI0eOBGDlypXu2LJlywD43e9+B0TnIcAmm2wCRCWoazuSU2oDBw4EMqOoNbXBBhsA\n0K1bN7fvjjvuAKBDhw5Fe520ss+xFAbuU8UvbJEdwfG/C1566SUAXnvtNSDzLqsVubCIdPPmzd2x\n3//+90BUqMCilgDff/99zf8BKeMXAclm0dW6jt5I+bLPcYBHH30UgK222srtO+WUUwC49957gfio\n6IoVKwBYunSp22fvy6effrra17a/YT7++GO3zz4HLNsiBPYZ2KtXL7fPsmwsA+ekk05yx/75z3/W\n4egKp0iOiIiIiIgEpSIjOSeeeCIAo0aNAmDTTTd1x/73v/8B0RoJ/w7dCy+8AMAnn3yS8RiADTfc\nEIiiOyeccII7dvHFFxd1/OXCL536l7/8Bci8c2m++uoroPzv6DVr1sxtW0nK0aNHu312Byh7bZfv\n9ddfB+Dwww93+2ytT6dOnQDYb7/93LFnnnmmZoNOIVtHkos/B9kldy3iBbD33nsD0Lhx4+IMrgz4\n5+FNN91UwpGUnxtvvLHaYw888IDbPuaYYxI9/5QpUxL9XLmxO76DBg2q9jF1VRK/3Oy6665AFPm3\nvzeg8LWeofHXb22//fZA5mecZdTkYtGdG264we3bd999gfhIjkVwrr/+egA23nhjd6x9+/ZA9Ldh\nOdt2220BuPzyywE48sgjq32sv9bJvq/j1t2lgSI5IiIiIiISFF3kiIiIiIhIUIJPV7PSgNYBF2D4\n8OFAtFhs2rRp7pgtFrVFybn43XQt9e3oo48GoG/fvu7Y3/72NwAWLVpU8PjLmT8/m222WbWPe/zx\nxwF48cUXa31MtclPt/PLHyfhh7+tHKaFxvfaay93LMR0tWOPPRbITA96/vnnAfj666+BzMWOP/74\nY8bP++W3rWv9/fffD0DTpk1rYcTp4qdh2OefpUg+9NBDJRlTufDLyrZu3TrjWK5FyZLp4IMPBjIL\nOWSbMWNGXQ0n9WzhO8D48eOBKOXv6quvdsc6d+4MROXG89WiRQsgWpCf1tSiNfELF9lSgqQL3y39\nzNenTx8gKn4D0KpVKwAWL14MREVDoGqqdDk777zzgPg0Nfs7Y8899wQy/7YbN24ckPk3dpookiMi\nIiIiIkEJvhnoEUccAUR3cn3WIM9f5J2U3WGJuztlhQ7yiQ75yrVhlN09njdvntv361//OuMx1mgP\n4MADDwSiAgTFUK5zF8caWFok5+WXX3bH2rZtW/TXS8vc+QVBrHFgdtQmjpXchqjctpUZXXfddd0x\niw4Vs4R0KZuBWglzP5Jjc2iRHL8B6AcffLDG57QiBocccojbl2txflJpOeemT5/utq0xtLHFyQBz\n5swp+msnlZa5s/L3EL23/JK/Jvt7N1chltpW6rk74IADABgzZozbt8suu2Q8xv/Mq1evXo3GYN+1\nfjQiqVLMnX8+2b9ho402cvvsb6033ngDyN1Y1/9+sSIPtojeojYQRTEsW8f/uyapUp93ZsCAAW7b\n/n1W6MgyniBqg2LfB37hAWtSbt+7tV0KX81ARURERESkoukiR0REREREghJ84QELX/r+/e9/A1F3\n3GKwztf2X3/Rqt/xuhLYArbsFDWfn5pWzDQ1Ccdnn32W6Of8oh+2eLcSbLnllkBmGsavflWz+1i2\n2N5f8PvRRx8BUcGQkNjCWp+lplkKlsSzBdoQn6ZmrGdaKdPUSsG6xPupaX6qlZk/fz4QFQl59913\nC3odSx+yIkgQpXaVe/GMb775xm13794dgHPOOcfts3+npeJeeuml7pilYVl/Hb+wzU477ZSx79xz\nz3XHrL9dSKwAj9/P0f52te9P6xnps55NI0eOdPssZd56OMUtDSklRXJERERERCQoQUZyNtxwQ7e9\n4447Vjm+cuVKoLhlFG1hdFxUwsoJjx49umivl2Z2ZyXXArEVK1bU1XCC4y8sl2gx7kUXXQTAn//8\n51IOp2Ts/RZ3h7zQu+a9evUCoHHjxlV+PoW1amrM7mg2atSoyjGL/PvfJfXr//LV+eGHHwKwfPny\n2h5iatlc+He/sy1cuNBt+4VTCrHffvsB0LBhQyD6vUBUZj+Ndt11VwCuvfZaANZbb70qj7FjEH2O\nLVu2LNHr+VFXY1HIfAq3lAv7W8vmC+Cxxx4DovmcMmWKO/bkk08C0KlTJyBzLizj5/bbb6/FEafH\n6aefDsBuu+3m9lkEJi6Ck80veGRRISsrrUiOiIiIiIhILQoykmOlVAG23nrrKsf9XEypGb+sYc+e\nPdf4eGv4eeaZZ9bamEJld4vffPPNEo+k9Py1E2eddRaQmV+cD7vjaY34yj1fPR+TJk1y29nrFdu0\naeO27U6oHxUPmUUJ4sq02trN3r17u30WvbB1Y5MnT3bHrrvuOiCzOXDI9t9/fyDz/Mn28MMPu+18\nGij269cPyGwwaHeP7XfkRxRtnZi/Bi8tjRrtc3vu3LlAZvuEq666Csg8V5KuVbJ/u72vrXEywC23\n3JLoOcuNzbE1zJ4wYYI79qc//SnjsW+99ZbbfvTRR+tgdOnhR3CMXz5/Tdq1a+e2LZMiu3lyWiiS\nIyIiIiIiQdFFjoiIiIiIBCXIdDW/q7nxF5m99NJLdTkcVwoyRH6K2j333LPGx1soPWl54Eph4XaI\nOolbmlrShbsh8VPLcpWrzcVKLT/xxBMAbLzxxu5YqAvJ/TQDf+E2ZJabrrTyvlOnTgWgT58+1T4m\nriS+tQcYPHiw29e/f38gWsTslwz2F+CHIi71xdji8EGDBlX7mBYtWrjtO+64A4AOHToAUSqML67w\nhZVP94v7WCuDUrPfuaXF1hb7brWF4Lfeeqs7ZqV/K4UVpzjwwAOrHLvkkksAOPnkk90+K9N9zDHH\nAFGRgkqyePHiNT7GUkXLKY1ZkRwREREREQlKkJGcCy+8sMq+WbNmue1nn3226K+57bbbAvHlG22x\nfYj23Xdft21X+XZHuNLuBhfTzjvv7Lb/7//+r4QjSae111672mN+6VVrwGd3i8eOHVvl8XF3i6V6\ndid0xowZJR5J8XzxxRdAZsQ/+xybPXu2237mmWeAqNS2NROEKLJoZVp79Ojhjtki/TSXPM6HH/U7\n8sgjq32cLf5ftWpVlWOXXXYZEM0T1PwOsV90aMSIEUDyUszlwC9Hbc0YTdpK+dYli8hahA+i4gKj\nRo0CouagAHfffTcQFaUaMmSIO3bTTTcB+ZVWLhfvvfdeop+zz0T/fWYs+8QiiQBLlixJ9DrFpEiO\niIiIiIgEJchIjl8G1LbjSoMW01ZbbZXx39A1aNAAiNaLQNVmhH7u9Nlnnw0kv4NQKaxMqp/Hb+66\n6666Hk5qTZw40W1369YNgO+//x6ARx55xB2zu3X+nfZQWdnnTTbZxO2zUturV69e48/7Ea2WLVsC\nmXdCTW1/lpbCCy+8AMDuu+/u9tmd8aeeegqAt99+2x2z8rwWcfUbhWavGWnWrJnbfvzxxwHo2LEj\nAP/973+L8w+oY5a5AJnrB7NdccUVVfbZXXZrI2DrJ9bE7grb+glr6ujbZptt3LatsQs5knPqqae6\nbXvP2nqS2shYSTtr5jtw4MAqx/yIKsAbb7zhtrt06QJE0dprrrnGHbP1TA8++GBxB1tC9h7yI9fX\nX389EJ0/9hiAefPmAZlrD7NttNFGABx11FFun9/ktlQUyRERERERkaDoIkdERERERIISZLqany5g\n23FlJ2vKD41bWM5e57bbbnPH8imtXG6sHOY+++xT7WP8ErV33nknUDnFze537AAACjdJREFUCKz7\ndPv27d0+S6vKZfPNNwfiF+B+++23QGZKZDmVpPUXK//xj38E4kv29u3bF4BFixZV+1z+YmVLmbTQ\nu4XWK9Xw4cNr/BxWoMFSior9/Gnlp6T529WxLur++9BSc+NsvfXWQLQ4t1zT1dbECitYiq0t6AY4\n/PDDgfi0RyvSc/PNNwOZi8Nt4bcV93n11Ver/Pw333zjtq3oQYisTYZf+Me89dZbAHz33Xd1OqY0\n2GKLLTL++9xzz+X1c59++ikQffdYsQGAYcOGATBnzhwAli5dWpSxltItt9wCwHHHHef22d90fipq\nEn5Km9LVREREREREiizISE5d8ReCb7fddkBUitQWcUFYpQcteuVHqqrjz0HIiz+NNbKDqKmYH72o\nKVts/+WXX7p9tpDZzrtx48blfA77PdgiQf/3Utu/I/+ukV84AKKF31D4HUi7c5lL9+7dC3pOkXx8\n/vnnAKxYsSKvx1vE56OPPqqtIaWC3Q22u99xrRWMH5E5+OCDgegzzi+RbNHxXN89fpQxVyS43Fkk\n+4gjjnD7bIG83wTU2F36xo0bA5kN0UOaJ2tObu/HU045paCft/PVL15jTWU7d+4MwH333VfjcaaF\nlXGH4jWr9du1pIEiOSIiIiIiEpSKieTENQFMynIOd9llF7fP7ujZ3eq4fOEQWCneXA0q7W5lPtGe\nkBx//PFuO27tkeWLr7/++kDyKI/djYPM6AhA//79c/6snZdWKtc/T9u0aZNoPPnKHitEUU5/3dpn\nn31Wo9fxmzhahPXEE0+s9vG2LqJS1otJza2zzjpAFDm1XP41Wb58OVD+ke3//Oc/btvWwFkJY1+u\nCI7x75pbBMjW7fjPafuMlYwHOOecc4BorUHo4r5/raFl3Fqyp59+utbHlAbWnNeyAT788MNEz2ON\nQyGK5FiUMaRIjh91sX+fNUL11xm2a9cOiMpo+2sJrWXBBRdcAKSvTYgiOSIiIiIiEhRd5IiIiIiI\nSFAqJl3N0skK5ZfrtXSkoUOHAplpMVbqMsSwsJ8yYKU9c+natSsAq1atqrUxlSPrBHzssccCmelt\nxsqe+p3CrbxlHCtFG1fqt0GDBkBUbhQyO7rH/X9ds7LY77zzTtGe0zqdQ35FCUaMGAHAypUrizYG\nCZst2LWO83455FztCurVqwdA/fq/fPX6HcfLyddff+22x48fD2R2iS+EXyzAvlttnuJY2m/v3r3d\nvoceeijRa5cb+2yzwjb++fPYY4+VZExp8sorrwBRarSfRnrjjTfm/Txx34vl1K4hX35RrOnTp2f8\nN1+77bYbEKWrpY0iOSIiIiIiEpSKieQUqkWLFgDMnDnT7bNGbsYW+gEMGjSobgZWAn7jRVtkFsei\nZR988EGtjymN1tRw9rDDDgMyy34auzs5YMAAIL4MaC6XXHJJlX1dunQBomIREEV19txzTyD/Zmm1\nxZqe3n///W6flf30Fzdn22uvvdx2dvPFuLvAdqfd/x1Z0QVrVCsRm6+44hhWoGLGjBl1OqZis2gK\nQL9+/YDMMqr2ORa3eD5pw7zmzZsD0KxZMyCMUtKTJ08GMiOo9jnWsGHDgp7LfidxTbytzLxFXq18\nfiWx6L9lV/h33dNWurcUbEG8fX5ZSWnIL5LTpEkTIDNKaNkVlRItLFTaI1yK5IiIiIiISFAqJpKT\nKwLhr62xO1BWctaaX0LUoOzcc88FYNq0ae5YiPn81ojNci7jLFmyxG0feOCBtT6mNFu9erXbjrsD\nbvn7cSyyMn/+/KKN58knn8z4b6lNmjTJbXfr1i3jmEV0oHZKdNq6JrsLDNFdv3wbOVYSu4MeV1b7\noosuAmDp0qUATJgwoe4GVkR+lKBHjx4A7LvvvkV/na+++sptW9QxhAiOsXLYF198sdtnUZe4dSIW\n+Tn00EOB+HLIFtn1I7xTpkwpzoDLjP/3ydFHH51x7MUXX6zr4aSanSP2N5o18AS49tprM475rFn0\nsGHDAGjdurU7dt111wHhtgUJnSI5IiIiIiISFF3kiIiIiIhIUComXe2mm25y27aobO+99wYyywX6\nC9UAFi9e7LatLOGcOXNqbZxpYotwO3ToUO1jRo4c6bbzKdcbMn/RspVCtXLaPgt7++mOlvoTMj/1\nxFKFbDHoRhttVOPn//jjjwF44403qhwbPHgwoHO0mKxDdrmmq/ml1S1NzT8/LFWvUaNGQFQ0ADJL\nRkN07gEsX74cgDFjxgDwj3/8wx3LVUwjJFYUIC5tVwpjBWsA2rZtm3HM/w6R6LPf/i45//zz3TFr\ns7DffvtV+TkrzmPva78VSCGlpyX6uxpggw02AKLCSqWgTyAREREREQlKkJGcqVOnuu0zzjgDgM02\n28zte+qppzIe7y+utTLIl156KVC+dymTatWqldv2o1+yZn6E76CDDirhSNLJX+htUR27622lOwGu\nvPJKIPM9+/bbbwNRE8Y4CxYsAGDu3LlFGnHlmj17NhCVrPULQ4TCb6R48sknA9GieMhslAeZd3Rt\nQb0VrQixCbSkQ69evarss89Sv9iNRA3IrTjKgw8+6I69/PLLQGZLhWzWhNv/uy+kIiG1wUpsWzTb\nWldAFM22v8NLQZEcEREREREJii5yREREREQkKGv9vKY27SWQvaizJqx7ui0Eh2gBqaWm+Yvnr7/+\n+qK9dk0l+dUUc+7KmeYuOc1dcoXOXdrn7d133wUy+4UNHz4cgCeeeAKAV155pcavo3MuOc1dcmme\nu6ZNmwKZhVQ23XRTAIYMGQLA6NGj62QscdI8d2kX4tzZd4T/fWDnp6UBFkOhc6dIjoiIiIiIBCX4\nSE45C/Fqv65o7pLT3CUXWiSnruicS05zl1ya587ufg8cONDts4IghxxyCAArV66sk7HESfPcpV3I\nc3fttde6bSsGdPXVVxft+RXJERERERGRihZkCWkRERGRcvXJJ58AsGzZMrfvmmuuAUobwRHJpV+/\nfqUeQgZFckREREREJCi6yBERERERkaCo8ECKhbw4rbZp7pLT3CWnwgPJ6JxLTnOXnOYuOc1dcpq7\n5FR4QEREREREKloqIzkiIiIiIiJJKZIjIiIiIiJB0UWOiIiIiIgERRc5IiIiIiISFF3kiIiIiIhI\nUHSRIyIiIiIiQdFFjoiIiIiIBEUXOSIiIiIiEhRd5IiIiIiISFB0kSMiIiIiIkHRRY6IiIiIiARF\nFzkiIiIiIhIUXeSIiIiIiEhQdJEjIiIiIiJB0UWOiIiIiIgERRc5IiIiIiISFF3kiIiIiIhIUHSR\nIyIiIiIiQdFFjoiIiIiIBEUXOSIiIiIiEhRd5IiIiIiISFB0kSMiIiIiIkHRRY6IiIiIiARFFzki\nIiIiIhIUXeSIiIiIiEhQdJEjIiIiIiJB0UWOiIiIiIgERRc5IiIiIiISFF3kiIiIiIhIUHSRIyIi\nIiIiQdFFjoiIiIiIBEUXOSIiIiIiEhRd5IiIiIiISFB0kSMiIiIiIkH5f1A6nO45ed8sAAAAAElF\nTkSuQmCC\n",
C.G.Vedant's avatar
C.G.Vedant a validé
       "<matplotlib.figure.Figure at 0x7f72c868b828>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# takes 5-10 seconds to execute this\n",
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 49,
   "metadata": {},
C.G.Vedant's avatar
C.G.Vedant a validé
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAAKoCAYAAABUXzFLAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJzs3XeYFMXWx/EvgoCCgICAIGDCgKgYQAwElSBJwYwJAwZE\nEYwgBhADKpivESMCBjCBIqKiiAEFc7wY8YKBoEQVkXn/8D3dNTu9w8zs7nRP7+/zPD7bds301hY9\nofucOlUhkUgkEBERERERiYmNwu6AiIiIiIhIadJFjoiIiIiIxIouckREREREJFZ0kSMiIiIiIrGi\nixwREREREYkVXeSIiIiIiEis6CJHRERERERiRRc5IiIiIiISK7rIERERERGRWNFFjmPVqlUMGjSI\nhg0bUrVqVVq2bMljjz0Wdrcib+XKlVx88cV07tyZLbbYggoVKjB8+PCwu1UQXn31VU499VR22mkn\nqlWrRqNGjTjssMOYN29e2F2LtA8//JDu3bvTpEkTNtlkE2rXrs2+++7Lo48+GnbXCtLYsWOpUKEC\n1atXD7srkfbaa69RoUKFwP/eeeedsLtXEGbPnk23bt3YfPPN2WSTTWjWrBkjR44Mu1uRdvLJJxd7\n3uncS++DDz6gV69eNGzYkE033ZSddtqJq666ijVr1oTdtch799136dKlC5ttthnVq1fnwAMP5M03\n3wy7W1mpFHYHouTwww/nvffeY9SoUeywww5MmDCBPn36sH79eo477riwuxdZS5cu5d5772X33Xen\nV69ejB07NuwuFYy77rqLpUuXct5559G8eXMWL17MmDFjaNOmDdOnT+eggw4Ku4uR9Pvvv9O4cWP6\n9OlDo0aNWL16NePHj+fEE0/k+++/57LLLgu7iwVj4cKFXHjhhTRs2JDly5eH3Z2CcO2113LggQcm\n7WvRokVIvSkcEyZM4MQTT+Too4/mkUceoXr16nzzzTcsWrQo7K5F2uWXX85ZZ52Vsr9nz55UqVKF\nVq1ahdCr6Pv888/Zb7/92HHHHbnllluoW7cus2bN4qqrrmLevHk8++yzYXcxst577z3atWtH69at\nGTduHIlEghtuuIGDDz6YmTNnsu+++4bdxcwkJJFIJBLPP/98AkhMmDAhaX+nTp0SDRs2TKxbty6k\nnkXf+vXrE+vXr08kEonE4sWLE0DiyiuvDLdTBeKXX35J2bdy5cpE/fr1EwcffHAIPSps++yzT6Jx\n48Zhd6Og9OjRI9GzZ89E3759E9WqVQu7O5E2c+bMBJB48sknw+5Kwfnf//6XqFatWqJ///5hdyUW\nXnvttQSQuOyyy8LuSmQNGzYsASS+/vrrpP1nnHFGAkgsW7YspJ5FX5cuXRL169dPrF692tu3YsWK\nRN26dRP77bdfiD3LjtLV/t/TTz9N9erVOeqoo5L2n3LKKSxatIg5c+aE1LPos5C5ZK9evXop+6pX\nr07z5s358ccfQ+hRYatbty6VKilAnalHH32U119/nTvvvDPsrkjMjR07ltWrV3PJJZeE3ZVYuP/+\n+6lQoQKnnnpq2F2JrI033hiAmjVrJu2vVasWG220EZUrVw6jWwXhzTffpEOHDmy66abevs0224x2\n7drx1ltv8dNPP4XYu8zpIuf/ffrpp+y8884pX5B22203r10kH5YvX87777/PLrvsEnZXIm/9+vWs\nW7eOxYsXc+eddzJ9+nR9icrQr7/+yqBBgxg1ahRbbbVV2N0pKAMGDKBSpUrUqFGDLl26MHv27LC7\nFHmzZs2idu3afPnll7Rs2ZJKlSpRr149zjrrLFasWBF29wrK8uXLmTRpEgcffDDbbLNN2N2JrL59\n+1KrVi369+/Pt99+y8qVK5k6dSr33HMPAwYMoFq1amF3MbLWrl1LlSpVUvbbvk8++STfXcqJLnL+\n39KlS6ldu3bKftu3dOnSfHdJyqkBAwawevVqhg0bFnZXIu/ss89m4403pl69egwePJjbbruNM888\nM+xuFYSzzz6bHXfckf79+4fdlYJRs2ZNzjvvPO655x5mzpzJrbfeyo8//kiHDh2YPn162N2LtIUL\nF7JmzRqOOuoojjnmGF5++WUuuugiHnnkEbp160YikQi7iwVj4sSJ/PHHH5x22mlhdyXStt56a95+\n+20+/fRTtttuO2rUqEHPnj3p27cvt956a9jdi7TmzZvzzjvvsH79em/funXrvKymQvlOrLwOR7qU\nK6VjST5cfvnljB8/nttvv5299tor7O5E3qWXXkq/fv349ddfmTJlCueccw6rV6/mwgsvDLtrkTZ5\n8mSmTJnCBx98oPe2LOyxxx7sscce3v+3bduW3r17s+uuu3LxxRfTpUuXEHsXbevXr+fPP//kyiuv\nZMiQIQB06NCBypUrM2jQIF555RU6duwYci8Lw/3330+dOnXo3bt32F2JtO+//56ePXtSv359Jk2a\nxBZbbMGcOXO4+uqrWbVqFffff3/YXYysc889l9NOO41zzjmHYcOGsX79ekaMGMEPP/wAwEYbFUaM\npDB6mQd16tQJvDJdtmwZQGCUR6Q0jRgxgquvvpprrrmGc845J+zuFIQmTZqw9957061bN+666y7O\nOOMMhg4dyuLFi8PuWmStWrWKAQMGcO6559KwYUN+//13fv/9d9auXQv8W7lu9erVIfeycNSqVYse\nPXrw8ccf88cff4TdnciqU6cOQMqFYNeuXQF4//33896nQvTxxx8zd+5cTjjhhMB0IvENGTKEFStW\nMH36dI444gjatWvHRRddxC233MIDDzzA66+/HnYXI+vUU09l1KhRjBs3jq222oomTZrw+eefezcQ\nGzVqFHIPM6OLnP+366678sUXX7Bu3bqk/ZZ3qPKgUpZGjBjB8OHDGT58OJdeemnY3SlYrVu3Zt26\ndXz77bdhdyWylixZwi+//MKYMWPYfPPNvf8mTpzI6tWr2XzzzTn++OPD7mZBsVQrRcWKZ/Nbi7Kx\nK5Q7w2Gz6EO/fv1C7kn0ffjhhzRv3jxl7o2V3NZc6/QuueQSlixZwieffML333/PW2+9xW+//Ua1\natUKJtNE7yr/r3fv3qxatYrJkycn7X/44Ydp2LAh++yzT0g9k7gbOXIkw4cP57LLLuPKK68MuzsF\nbebMmWy00UZsu+22YXclsho0aMDMmTNT/uvSpQtVq1Zl5syZXH311WF3s2D89ttvTJ06lZYtW1K1\natWwuxNZRxxxBADTpk1L2v/CCy8A0KZNm7z3qdD89ddfPProo7Ru3Vo3XjPQsGFDPvvsM1atWpW0\n/+233wZQwZUMVKlShRYtWtC0aVMWLFjA448/zumnn84mm2wSdtcyojk5/69r16506tSJ/v37s2LF\nCrbffnsmTpzIiy++yKOPPkrFihXD7mKkTZs2jdWrV7Ny5Urg30W4Jk2aBEC3bt2SyhCKb8yYMVxx\nxRUccsghdO/ePWXlan3wBzvjjDOoUaMGrVu3pn79+ixZsoQnn3ySxx9/nIsuuogtttgi7C5GVtWq\nVenQoUPK/oceeoiKFSsGtsm/jjvuOC9Fsm7dusyfP58xY8bwyy+/8NBDD4XdvUjr3LkzPXv25Kqr\nrmL9+vW0adOGuXPnMmLECHr06MEBBxwQdhcj75lnnmHZsmWK4mRo0KBB9OrVi06dOjF48GDq1q3L\nO++8w3XXXUfz5s29VElJ9emnnzJ58mT23ntvqlSpwkcffcSoUaNo1qwZI0eODLt7mQt5nZ5IWbly\nZWLgwIGJBg0aJCpXrpzYbbfdEhMnTgy7WwWhadOmCSDwv++++y7s7kVW+/btix03vTyL98ADDyTa\ntm2bqFu3bqJSpUqJWrVqJdq3b58YN25c2F0rWFoMdMOuu+66RMuWLRM1a9ZMVKxYMbHFFlskevfu\nnXj33XfD7lpBWLNmTeKSSy5JNG7cOFGpUqVEkyZNEkOHDk38+eefYXetIHTq1ClRrVq1xIoVK8Lu\nSsF49dVXE507d040aNAgsckmmyR22GGHxAUXXJBYsmRJ2F2LtK+++irRrl27RO3atROVK1dObL/9\n9onLLrsssWrVqrC7lpUKiYTqNoqIiIiISHxoTo6IiIiIiMSKLnJERERERCRWdJEjIiIiIiKxoosc\nERERERGJFV3kiIiIiIhIrOgiR0REREREYkUXOSIiIiIiEiuVwu5AkAoVKoTdhUjIZQkjjd2/NHa5\n09jlLtux07j9S+dc7jR2udPY5U5jlzuNXe6yHTtFckREREREJFZ0kSMiIiIiIrGiixwREREREYkV\nXeSIiIiIiEis6CJHRERERERiRRc5IiIiIiISK5EsIS0iIiLl29FHH+1tjx49OqmtSZMm+e6OiBQY\nRXJERERERCRWymUkZ6+99gJgxowZAPz+++9e23XXXQfAfffdl/+OiUigKlWqAHDhhRcCcNJJJ6U8\n5tdffwWgbt263r6hQ4cC8Mwzz5R1F0U2qFGjRgCceeaZALRp08Zrs+2RI0d6+2688cY89i58jRs3\nBmDMmDEAHHXUUSmPefvtt/PaJ4k/+75n51/nzp29ts8++wyAm266CYDnnnvOa1u6dGm+uig5UiRH\nRERERERiRRc5IiIiIiISKxUSiUQi7E4UVaFChVI71qabbgpA9+7dvX333HMPADVq1Eh5/D///APA\ngAEDABg7dmyp9SVbufzTlObYlaaTTz4ZgAcffBCAl19+2Wvr1KlTqf++OI1dvkVl7CxFDWDQoEEA\njBo1CoC///7ba7Pt5cuXA7Dlllt6bZbacsABBwCwfv36Uu+nK9uxK+Rzbty4cUk/AV566aWcjhWV\nc6407L333gAcc8wxAJx11lleW6VK/2aIV61atdjnL1myxNtu1qwZkJxSXVShj52lCAG8+eabKfuM\nvZbPP/98AN55550S/+5CH7swFerY2evRvuMB7LzzzkBm/Zs0aZK3ba/xbBXq2EVBtmOnSI6IiIiI\niMRKLAsPtGjRwtu2yMEee+zh7bMr4qArwooVKwLQvHnzsuxiuWMT+exOert27by2Aw88EICZM2fm\nv2MhsEiDG8Hq3bs3EHxuvvvuu4BfFKO8ePzxx73tww47LKmtb9++3vbEiRMBv6DI3LlzvbZ9990X\ngPbt2wPxPscsSnDHHXd4+/bbbz8AevToAcCCBQtKdGz3+McffzwA33zzjdeWaySn0FgWwJAhQwBo\n1aqV19ahQwcgecyy4RbOsIIZdsw4sfLQbmnooAiOefLJJ4HSieBIvG288caAX3gG4IgjjgBgxx13\nBOC///2v12afu/bZYRlAkPpd8NVXXy2DHheGwYMHA3Dcccd5++xz18bQioaAXygoTIrkiIiIiIhI\nrMQqkmNX35a/D8kRnGwMHDgQgK222srb98EHHwBw//33A37JWgm2+eabe9v77LNPUtu6deu87Vzv\nLhcay9+1OWGbbbZZymOCIjmHHHII4N8xf+KJJ8q0n2GzyJ4b6XrjjTcAf/6HG+UxrVu3LvaYK1eu\nLM0uRtKJJ54IwOmnn+7ts/Pp0EMPBZKjPNlwz7miUbW//vorp2MWsttvvx0ILmWeCfvs+P777719\n06dPT3mcvQ9Y6emFCxfm9PuixEplB72G03HnQpQHFr1zo3gWkS76GIDXXnut2DZ7Ty36mLjZeuut\nAbjtttuA5LnYxspFu98TLbqzaNEiAB544AGvzSI5a9asAeD1118v5V5HU8eOHb3tq666CvAj1htt\n5MdHimZEnXvuud62jePnn39eZv3cEEVyREREREQkVnSRIyIiIiIisRKrdDVLA+rTp0+pHdMmqwEc\nfvjhAHTr1g2Atm3bltrviSM3lcPCyGb+/PnetjtxOW522203b9vKkbuTGjNRuXJlwE+TtDLnAJMn\nTy5pFyPHUsvccZoxYwbgpxoEsRQF1xdffAHAV199VZpdjIztt9/e27788stT2teuXQvAiy++mNPx\n69evD0DLli2LPbZNCI+7c845x9vOJE3tjz/+AODjjz/29tlYPfLIIwAsXry4NLsYWW5BgaLptj/+\n+KO3vf/++wPJqURBj4uLoJS0K6+8skTHCmLHjGO6mrvUgC0xEJSmZl555RUA/vzzT2/f119/DcCI\nESOA5MJIVqDg7LPPBuCHH34ojW5Hlk3RsJRc8NP5VqxYASS/ht9//33AT5d2/z2+++67su1sBhTJ\nERERERGRWIlVJGfKlClAcnm7IDZpKpOFAd0JVvZ4K8vq3lF/9tlnAT/aI3DkkUcW22Z3TOLOon4A\n1apV2+Dj0y34Zc93yyfHMZJjkxSvuOIKb59FaW0MrHwx+OeSlex1y0RfeumlQHwLD7iLFTdt2jSl\n3e5a2p3KbPXv37/YY1tULddjFwp7TVoZ/CBu2fIJEyYA8MILLwDxjSJmwiI4bpEB22eRGSslDf5i\noFYm2m2LCzfiUtKS9m5kJl0kJ44lyI0bJTzqqKOS2txJ8d9++y3gR1N33313r82WIahTpw6QvICv\nfQeM8/ID4BeKmj17NpA8rlbwxIoBffnllynPf+655wB4+umnvX22XIaNfRgUyRERERERkVjRRY6I\niIiIiMRKLNLVbF2Ia665Bkit212UrXfjTgovjpvSlu64tg6FTdD98MMPN3jsuLIQpf0MMnXq1Hx1\nJ1Tz5s3ztm1toIoVKxb7+L///htITlsr+nh3UqUVxohT2pqtRzB+/HhvX7169QC44YYbAOjatWux\nz3dD43FdHd1WnnYnyBp3LZUBAwaU6PdY6m9QGuWcOXNKdOxCYZNue/bsmdL20ksvAclrQ7grqZd3\ntvr5vvvum9IWtBq6pRJdcMEFZduxELkpZrbtppNZ+q21ZVssYEPff+KmYcOG3rYVQ7HvbW7K/LRp\n0wC/WItbjMU+XywF19LXyhMr3NOkSZOUtlNOOQUITlM74IADAJg1a1ZKm6X9XXzxxaXWz2wpkiMi\nIiIiIrESi0iO3S1Pd4fcXVna7oTbFevAgQO9NlvN9qOPPgL8CA3AqlWrABg5cmSxv+f5558HklfM\nDSrtGmc77LADANtss01Km939zaToQxxY6WPwV4q3yGP16tW9NisTfdlllwFwzDHHeG1WujJIv379\nAH+1dDtHC42t6A7+hEd3oqdN/rRxSsct+24TUe0O8Weffea13XHHHYAfPSsEtvq2lTB279papNDO\nIUh+38uFHT/o7nDc7xhbKdSgu7pLliwB4KKLLgIUvSnKCgYUnQgOcNNNNwGppaQhvpHX4hx44IGl\ndqx0E+NL8/dEjRtBsHLtllFjJfDdfePGjQP8ifbgZw3cfffdZdvZCDv44IMB/3393nvv9dpefvnl\npMe60R73ce7zi26HRZEcERERERGJlVhEcmyRxJo1a6a02UKT7jyGn376KemnW462KDfv3BZJsrxP\nd9EuW7iwQYMGgF8Gtzyxv93+PYLYvCm3/HZ5YTnB9tONPFqkwnLXe/XqldExba6ELTxYaKpWrQok\nz2GrW7dusY+3hdhsTgr4ETIrp/zrr796bVbG97TTTks5lpU+tjl6//vf/7L/A/LM5oUEzSe0O5QP\nP/xwXvryySef5OX3hMXu6gYthGqlucvj+3xx3JKzo0ePTmp7++23ve1s5tu0adPG27a7x3asOC4O\nWhLpykTHcRHQIEOGDAH8yEzQdxH7zLTlBcBfRFR8QfMwDznkEABuvPFGb5/NWTRuZoQtrRImRXJE\nRERERCRWdJEjIiIiIiKxEot0te+++w6AXXfdNaVt2LBhQOmsym3pLFYW0y2nd/755wN+yNgtNrDF\nFlsAfom+uKpduzYQXHDAVtF99dVX89qnKLEUo7322gtITpO0Sc77778/kPmEPVtJvFDT/2wifVCK\nmlsK2ooEWKnsBQsWeG3uCstFWSj9hBNOAOCWW27x2iyUbmlJbgESm8QfNS1atCi2zS1XXlK77LIL\n4Kfouv766y/An+QbxNIvwU/lLbSiGOnG2gqDrFixAkgu9uCmS5YHlqZmn4vuPksps8/HbI8VVLjA\njmnFDaD8FSww6YoNBKUbxZ1NQfjtt9+A5MIDRf3888956VOhsgJJ4H+nsyUL0hUAclN433rrrTLq\nXeYUyRERERERkViJRSTH7hranYtFixZ5bfPnzy+z32vlosG/S3nQQQcByZOx7G5U3CM5QXd9jZV5\nLNQJ8pmwO9bg39l1yxk3a9Zsg8fI5O7bG2+84W0/+OCD2XQxcqzggEW3wH/tWIEGgN9//z2n41uE\nyybjW4l48Cel9u/fH0iOBNsimIU0ubk0IzlW3twKQ7gmTZoE+GW/3QnPNoZ77rmnt89KMBf6uRrE\n7nY2bdrU23fmmWcCJS/fXShswcWgqMvNN98MpI+0uKWkrdCAW8SgKGtzo0NuVKc8sNdcULEBW0w0\n7mrUqAEkl8e2CfH2vn/nnXd6bYcffjjgLx7qLvNhC5fbUgOlkflTaGzs3Iis6dSp0wafv2zZMsBf\n1iIqFMkREREREZFYqZCIwmo9RWSbS/r+++8D/pwHd2G2zp07A2VfHtbKV99zzz1Acslquxtsfcm0\nP7n80+Q7D9e90zt16lTAv7Pyyy+/eG377LMPkL874/kYO7v7c+KJJwLQt29fr22nnXZKOWYmfbLH\nBz3WIpTuuZVuXkSuCuG8Kw12R2/hwoUpbTbPz/4dwS8dn062Y5ftuFmZ6KCy97feeisAL730UlbH\nDGIlVYPmOZqgc9Ui50899ZS3b+jQoRv8fVE851q3bg34r2/LRwf/vAjKTbd5YxbhKGthjJ1b2tkt\nD21swc+gctEWibH5hFY2P4jdWQc/U8Ae77blGsmJ4nmXCZuLExTJsc/fsi4bHcbYuRky9l2rbdu2\nKY+zLJvevXt7+2zJhttvvx2Arl27em0WlbbvLO7yIPfdd1+J+hwkiufdxhtvDMABBxwAJEfjzc47\n7wzAKaecktJmEdk+ffqUVReB7MdOkRwREREREYkVXeSIiIiIiEisxKLwgE10mjFjBuCnEYE/2bus\n09WWL18O+JMh27dv77XtsMMOAFxzzTXePje1qZBdeOGF3rY7ARDg3Xff9bYLaQJ3Ol26dPG2LTxr\nk7TLmp3fZX0ui18mOYLZvEBwv6wEtlsKO136Y1FBqZXpnmeTc1988UVv36OPPgokv/YLlf0NQX+L\nlZe29MGWLVt6bZZOaj/dAjVxYeloLvc93i3VDsmFBN58882kfe7zrFCBFbdw29wCBeVVujQ1KzhQ\n1mlqYdhvv/0AmDJlirevVq1aKY+z9+2rrroKSF5awbatMMh2223ntQ0ZMgTwpxT85z//8dos5c3K\nxq9cubIkf0pk/f3334B/jgWVJ7dUP9dnn30GwNlnn12GvcudIjkiIiIiIhIrsYjkWPlZu6P+0Ucf\neW12t3GzzTbz9pXllbhd7dsCoC5bLNPtT6HfFXD/pqLcuyFxYYvLQv4iOMaif7aAJvglkW0xUSt9\nDDB+/HgAHnroIW+f+9qQ4lkxE7u7FRVz5swB/PcZm0xb1tasWeNtDxgwAPAXYS3097BcfPrppwDs\nsccegP9aA/81eMghhwDxiuTYBP+gYgFuIQCLwFi0xqI37j57fFDRAHuMG72xEtV27KCiBnFXNILj\nRm2GDx+e177kk5U3Dore/Pnnn962ZfXMnTt3g8f85ptvvG0rBT969GgABg8e7LVZ9sa1114LwLnn\nnptV3+PAivTYotouKzJjC7BGjSI5IiIiIiISK7EoIW1++OEHwC8H6HIXATz44INz61gGLI8xqKyh\nu6Ch5X7aHeMgUSwzaCyK4V6926Ks69evB5LHIN1icGWhrMZu7Nix3nZQGcV0x8ykT1a61xY6g/S5\nrpnMuXAXPbM7VulE+bwrTelKSE+YMAEILtWcTlmXkDb2/mERHYBDDz0USC5rbAtSWklsd4FKy1+3\nRdxOPvlkr83mERr3LvHIkSNz6nM6YZxzm2++ubdtkSobk2y5c3I++OADwL+b3KpVq1y7mJF8jp1F\nVoIW/mzSpEnKvqLzb8CPxOy///4pj7ey23YnPd3zSmOeZyG817mvPbe0MSTPg833XJx8jJ2VM371\n1VeB5Mi1RXDcebKzZ8/Ouk8ue99zy8XfcMMNAFSrVg1IPm8ziRgFKYTzzvXII48AfiTH5qCDn1ny\n008/5aUvKiEtIiIiIiLlmi5yREREREQkVmJReMBYOC8orOdO2LOw7rPPPgvAY4895rUVDblZUQNI\nDmECnHTSSd72brvtBqSmbLnOOussbztdmlohuOKKKwD/73VZSdl8p6jlw7Rp07xtW9l3k002Kfbx\nQefi0qVLgeTCDEUnjdr5BH543E2JSXf8ooJSJ8ur+vXre9uDBg0q9nGW+hpVL730UtJPl6XhASxa\ntCjjY/bo0cPbLpquNn369Gy7GHnPPfect92gQQMArr/+em/fxx9/DMCSJUsA+Pbbb1OOYQVkbCVw\n16677grATjvt5O378ssvS9rtyLECAm76WFC6WdHHjxkzBghOfTNuqWorSx2X5Qg2xD4Tiqaogf8d\nJo7lojNlRaVKmqLmstTdbbbZxttXs2ZNwJ+K8MUXX5Ta74uyjh07ettHHHEE4KeK3XrrrV5bvtLU\ncqVIjoiIiIiIxEqsCg/Y3bjWrVt7+6y8XdDx7U9fvHix17Z27dqkx7qlp93J4MVJNxH82GOP9bZt\nsbN0ojw5zcrGbrrppt4+m7RrpVNnzZqVl74EycfY2R3aoIVd7a64Wz72k08+Afy7b0ET3oO0adMG\ngOuuuw5IjiimO9/sLr4t0AgwdOjQDf6+fJ53NkneLRVrERa7qwawYsWKnI5vrPSoLfoGcMkllyQ9\nxi2Be9FFFwHZR3TyVXigNFmhFneRWfs7Hn74YSCzIhslkc9zzj4f3njjDW+fW6yhKHuv+/XXX719\nVsjGCkBstdVWxT7f3g+hbCJi+Ry7t956CwguIZ2rTBcDLQtR/oxNt/CnFRwIM5KTz7Gz88CNUv/8\n888A7L777t4+i7pmomrVqt62vY7t/Nt66629Nvsctc/00liGIcrnnXEXebbxsWUD3FLSf/zxR177\npcIDIiIHthicAAAgAElEQVQiIiJSrsUqkmNatGjhbVv53D333DPl+Jn86dmWAA469tSpUwE47bTT\nvH02LyOdKF7t2x3Lr776Cki+G/L5558Dfi56mKI4diVlZbsPOuggb5/NMbF97qJ7difws88+y+r3\n5HPsbBFTO5/cY/33v//19lmOvy3CGMTmSLl3y21uic1/ct8HinIX8M3mjqCrECM5Nu/BnaNkf4eV\npS7rBS3zec6deeaZANx99905PT9TtnCr3QWFkkckg+Rz7Cyq/Pbbb+f0fPDvyttdc/sZhih+TqSb\nizNixIikx4QpjPPOzcyxzz63zL9FANetW5dyDPusadasGeCXRQY/GmTPe+GFF7w2++xxy++XVBTP\nO2Pz0N35x3Xr1gX8z88PP/wwL30JokiOiIiIiIiUa7rIERERERGRWIlluprLJsZ369bN22elK61Q\ngbuKbrq+ZJOutnr1am+fTRTPNsQXxZDmgAEDALjttttS2i699FIguQxrWKI4doUijLFzJ3raKtJ1\n6tTx9lkagaWwzZs3z2uzVdKtlLe7an2lSv9WyQ96jVv6gU0Md9Pjcn1bLKR0NSvGYOlDtqK3u2+P\nPfYAkotAlIV8nnNWGtUtdmF/e7oCBJmyAgXnnXcekLxEQVkI4/Xqloa2159bjMDSmu2nm5IWZnpa\nUVH8nEjXpygUHDBhjJ2Vcwa/xLtb9MNSRIPSQi29zVLT3O9oNsl+9OjRSccpK1E876zIln1Pdcto\nz5gxA4BevXoB+S824FK6moiIiIiIlGuxj+Sk069fPwCaN2/u7Rs4cGCxfbGhsjvAd9xxR7HHdidS\nuxO4shHFq32brGeT/dasWeO1derUCYjGIqBRHLtCEfbY7bPPPgBcddVV3j538vaGWJlL8IuQ/Pnn\nn0DyxNWxY8cCyaWTS6qQIjkWKbPIg9sXe31PnDgxL30J+5yzzwD3/d8WqaxduzaQXE7cFsD77rvv\ngOQovRU0KIsiA0HCHrtCFpWxc8tEW8GYfP3uXIU9dlaM4Nxzz/X22bIOVtjJXYjXSsbb0g3ucgr/\n/PNPqfUrE2GPXRArsGDRLJcVk7LiUmFSJEdERERERMo1XeSIiIiIiEislOt0taiLYkjTQsQ28dGt\n1z9q1Kgy/d3ZiOLYFQqNXe4KKV3NJtnb+l22lhD46yKUdcEBo3Mudxq73EVl7NzP0aLr47hFBqzw\nQBREZewKURTH7ttvvwWgadOmKW2HHXYY4K/5GCalq4mIiIiISLmmSE6ERfFqv1Bo7HKnsctdIUVy\nokTnXO40drmLytili+RE9d8qKmNXiKI4dv379weCC2pZmW4ruBImRXJERERERKRcqxR2B0RERETE\nF6X5NxJ/d911V9LPuFAkR0REREREYkUXOSIiIiIiEisqPBBhUZycVig0drnT2OVOhQdyo3Mudxq7\n3Gnscqexy53GLncqPCAiIiIiIuVaJCM5IiIiIiIiuVIkR0REREREYkUXOSIiIiIiEiu6yBERERER\nkVjRRY6IiIiIiMSKLnJERERERCRWdJEjIiIiIiKxooscERERERGJFV3kiIiIiIhIrOgiR0RERERE\nYkUXOSIiIiIiEiu6yBERERERkVjRRY6IiIiIiMRKpbA7EKRChQphdyESEolE1s/R2P1LY5c7jV3u\nsh07jdu/dM7lTmOXO41d7jR2udPY5S7bsVMkR0REREREYkUXOSIiIiIiEiu6yBERERERkViJ5Jwc\nERERKV8WLlwIwLJlywCYMGGC1zZx4kQAvv/++7z3S0QKkyI5IiIiIiISKxUSuZR5KGOqIvEvVeDI\nXRTHrkaNGgC0atUKgD59+nht8+fPB2DQoEEANGjQwGu78sorAbjjjjsA/y5nWYni2BUKVVfLjc65\n3BXq2O29994AnHfeed4+e08M6l/Hjh0BmDlzZqn1oVDHLgo0drnT2OVO1dVERERERKRci/2cHLtb\nNHfu3JB7IuXdqaeeCsCYMWOKfczvv/8OwB9//OHts0jOTjvtBMAJJ5zgta1fv77U+ylijjnmGAAe\ne+wxb9/OO+8MwJdffhlKn6Jo+PDh3ra9Xs1rr73mbb/++uspjy+vLr74YgCOOOKIkHsicXP66acD\nfvYD+J+pu+66KwA//vhj/jsmeadIjoiIiIiIxIouckREREREJFZila7WvHlzAM444wxvX8+ePQGY\nMmVKyuNtkrfkn6URArz33nuAn3p13HHHeW2PP/54fjtWhtwJtgCLFi3yts8//3wAXnnlFQCaNGni\ntQ0cOBCAvn37Aslj8uyzz5ZNZyNmk002AaBu3boADBgwwGuzdJftttsOSJ6gaZMUe/XqBcBLL73k\ntf35559l2ON4+PTTT4HktEgb72uuuSaUPkWJpZ0VTVFzdejQIXDbfX7UtWnTBoDPP/8cgBUrVmT1\n/OrVq3vb7777LuCn36abSLx48eLAbRFTsWJFb/uuu+4CoF+/fkDy52Pbtm0BqFmzJqB0tfJCkRwR\nEREREYmVWJWQPu200wC4++67M3r8d999ByTfSbJj/PzzzwD89NNPXtvq1atz6leu4lhmsH379gA8\n8MAD3r6tt94a8O8Wf/31116bTXLOVhTHziINFtEZNmyY17Zy5cpin3fmmWcCcOeddwLJE7532WWX\nUu9nVMaud+/e3vall14KwJ577gnA2rVrvTa7Izd+/HgAatWq5bVZxMfu9p1zzjlem931K01xKyHd\nsGFDIPmu57fffgtAs2bNSu33ROWcS8eNwmRTxnjEiBHetr3/mQMPPLDE/Yry2FWtWhWAG2+80dt3\n9tlnJ/UhqP8WtTn++OO9fRblLk1RHruoi8rY9ejRw9t+7rnnAJg2bRqQXNTCXrOW3bNkyZKMjl+7\ndm2gdJduiMrYFSKVkBYRERERkXItVpGcf/75B8i8rO5GG220wce7USFbsNHKgH700Uc59TNThX61\nv8UWW3jbNl/KStHa3ArwSzsuXLgQgJNPPtlrmzNnTk6/u9DHzmVj9csvvwB+lBH8yIa1lYaojN0P\nP/zgbTdq1AiA66+/Hkguyztjxoxij2GR2Hr16gGK5GTLIg3uXfSlS5cC/rw6998pV1E554JkMu/G\nZZGbdPNtLCrknse5ivLY2ZhdccUVxfYhqP+33347UPbzZqM8dunYHEM3UrHPPvsAcMkllwDw9NNP\nl2kfwh67OnXqAPD99997+6xPFn1Zt26d13bAAQcAMHv27GL7ZfNeL7jgAq/NMieOOuqo0up66GNn\nx3r00Ue9fTYX2r5fuJlLloViY2ffhcH/3vbZZ58ByXOGy+LyQpEcEREREREp13SRIyIiIiIisRKr\nEtIWGs80rSATZ511lrdt6W0WlnvnnXe8NrdstfyrXbt23vY999wD+OUbXZbucsIJJwBlnwZYaCzM\nbiHmLbfc0muzMHJppqtFxTHHHONtV6lSBfBTRbNlqazloWyoFQsAfwL333//ndOxvvrqKyA5RcDS\nRLbZZhugdNLVosgmKhct+xzELSCQSQpaaaSpRZm9Xlu2bJnV85544gkALr/88lLvU6FySyR37NgR\ngKeeeqrYx9tnrZsSft9995VR78Jjyy5YcQuATp06AclpaqZompp9nwM/xc/K4o8dO9ZrC0q1LCT2\nvcFNtzvooIMA6NOnj7fP3uPr16+fcgxr23///ZN+BnHPOyuWlOkUkrKgSI6IiIiIiMRKrCI58+bN\nA5Kv0IPMnTsXgOnTpwPBV+qHHXYY4N8VAf8K18r2uuV7rfS0RZGsL+AvoBbXO57FscneABtvvHGx\nj7OiBBaxUCQn2Q477AD4d1Ns4jf4k/7iyI2UZmPbbbf1tu0u3/vvvw/A1KlTS96xiKpU6d+38/vv\nv9/bZ4sw2kJ4kp5bGjqTCI4VGYh7ZCYTlStX9rbtM/XQQw/d4PPcCc5WaCBdSf3yxh3DyZMnb/Dx\ndifdLdtt33UWLFhQyr0Lj0VP3Sj1G2+8scHn2fdDN1PAIjgPPvggAP379/faLAugUB177LGAv8SC\ny42w/P7770lt7lja54ctH2CRWvC/v1nE8bbbbvPabMFtK3DgLv2Qr+iOIjkiIiIiIhIrusgRERER\nEZFYiVW6mtlQGMxC6RbCDfLss8+mHOuQQw4B0hcZsHQ1N2XOUhnc8Gimq+0WIps0mm6dCJeFiv/z\nn/+UVZcK2sEHH5z0/zaZHMpfCmQmBg4c6G3XqFEDiHeamrG1hDp37uztW7NmDeCn1lrRFAmWSYoa\n+O/pmb7HlQdusYAhQ4Zs8PEvvfQSANdee623L44FVLJlaX82hkOHDk15jKUEue//V111FQDVqlUD\nYJNNNvHa3O24OPfccwF47733vH1vvvkm4KdouWvoGEuLd9O3HnroIcCfdhAH9h3ULYpiLAVv9OjR\n3r6g8ywT9v0t6PmDBw8G4MQTTwTg3nvv9dqC0ufKgiI5IiIiIiISK7GM5ARxJ1W5Ex03ZMqUKd62\nrfp90003AcllGa2sr5VvtQm/4JdSnjNnjrfPShxaVMldJbZQ2WQ9u7sZFFGzEsDuasyK4KRyyz3u\nueeeIfYk+uyOVY8ePQA455xzvDY7B+01G2d2Z9NlhSmsFLSk5xYQSBfVsYIDAttvvz0Axx9/fFbP\ns2Igs2bNKvU+FQorjGKFjgAuvvhiAPbYY49in2cFGmzswb+jbpYtWxa4HRd2/nTv3t3bZ1HBr7/+\nGoC77rrLa7Oy0Ba1cQu0xHEJEIvo9evXL6Xt7rvvBnKP3rjse/BJJ50E+BkFADvvvHPSY2vXru1t\nT5o0CYC//vqrxH1IR5EcERERERGJlXITyRk3bpy3XXRRqExZfvs333wD+Asquc4880zAn78D/h3m\nJk2apDzeSusVaiSnVq1a3rYbfSjO1ltvDeReHjju7FxxyzC6dz8ABgwYkNc+RZG7qOyFF14IwKWX\nXgr4r1OAo48+OmVfnDRu3NjbPvXUUwF/8TeAL7/8EgheHK+k3N8TF+5is+kiOVZqOiiiY9Gg8lJW\nesKECYD/3r4hNsb2eg3Su3dvAG644QZvny30GDTPolBZJGbixInFPua3337ztovOddp99929bVti\nwMr8nn766V6bO48zLuzvnTZtmrfPsm0uu+wyIDlSYeOxatUqIHnpEHex47hwo4OQnM106623ltrv\nsdejzXu178BB3GVXbFkRRXJERERERESyoIscERERERGJlXKTrpYv99xzDwBPPfVUyr6ePXuG0qey\nYJPMLL0K0q+qbqHSiy66CIB58+aVYe8Kj6Ud2CS+Bg0aeG0WSl+6dCkAH3zwQZ57Fx2WpjZ37lxv\n37bbbpv0mBkzZgRux0mlSv++ddsK3eCPjZvecvXVV5fo9xRNlXTFMcUjW7ZkQNA+S2WLe5lpOw/S\nnQ8rV670trt06ZLxsd3X9ieffAL4KZitWrXKqp9RtNNOOxXbZqvFuxPri6Z577rrrt72Tz/9BPiv\n/3fffbfU+lko1q5dC/ipaO73EyvkULFiRSA5XdK23fO00LnnBiSnLNt3iVxtttlm3ra9nvv06bPB\n5z388MPetp3fZU2RHBERERERiZVYRnLchThNvifJuhP9bBKce+fJSk0XKpssZhNEN8QWP3VLR5dX\ndn62bNnS22eLz9arVw9Ivitqd+ZsEuXy5cvz0s8osvPOjdC0aNECgN122w1InnBpd9Xt54YWCo46\nKzRgk73322+/lMd899133ra959hP9w6evRZtYbigsTn88MNT9tn5t2jRouz/gIgLiroERWsyYc9r\n3769ty9oYb5C1LVrV2/bnfxeHCv3C/7d9mxtuummST/jIN3Yffzxx0D6Ij1u8SOLetmSDIX+XlcS\ntvipGwm0MtFbbbUV4JfqBr/UsX12ZLPMSFT9/PPPSf9ft25db3vy5MkAnHDCCd6+P/74A0jOBCjK\nzle3NHebNm0y7tMFF1zgbZdFMZwgiuSIiIiIiEisxDKSE3QHI9/5482bN/e2rUy0O8+iUO+y2N81\nevRoIDhqZvs+//xzb1/nzp3z0Ltoq1OnDuDfBXXzU4u69957vW1buKvonZnyyPJ4zz777JQ2iyra\nYm/g51pbWVV3DkshGjVqFAD7779/StsPP/wAJJfLtrLSe+21V7HHtJL6AwcO9PZ9+OGHxT7+008/\nBeC///1vpt0uSBbVsVLQVjY6W24patsu9PLStogl+KVg07FINfivU4twBX02uDn/xbW5SzIsWLBg\ng30oNO7i4cXZe++9U/bZe5zdmS+PnnjiCSA54v/II48AfjaAOyfE5s9ZaWX3vbBQlx+wxU/HjBmT\n0hb0PmSltW1uVxCLBhXSfDhFckREREREJFZ0kSMiIiIiIrESy3S1MDVq1AiA6dOne/vcNDVjJZUL\nYfX6dKl3QWl3lqZ2/PHHe/vShUDjrGPHjt72NddcAwSnGBhLAXr++ee9fTae2U7YtQmW1atXT2mz\nMqxxYhPp3XPSJuhbSkyhp6tZCfaPPvoISE4DsqICVuQDoEqVKoC/Gr07+dQm2Vr65Msvv+y1WZny\n7bbbLqUP1157bcn+iAJjKR1BxWuyLVQQl3S1bJ1//vnetr0v2Xhmm0pun7GPP/64t2/fffctaRdD\n8eOPP6bss0nv7uTuTPz6669AcuGR8sbe5+w9zV22w9LUzHXXXedt2znZv39/AN58802vrVA/Myxd\n8ZZbbgFg0KBBKY/ZfvvtU/a5BZGKsqIE999/v7fPXoe2/EXTpk1TnjdlyhQgnBLdiuSIiIiIiEis\nVEhEcEW3XMs929X7c889l9J2++23e9vuXaXSYqX1LNLhRj/szrJFb8AvZ5iupHIu/zRlUSrbLRca\nNLbGSspaScEwozdhj93NN98MwMknn+zts8UaM+mb2xcrv2p3Zt577z2vzRbIswnmLltoLmhBR1sQ\nLUjYY1ea7By0srP2b1BWsh27KIybRRbdu57dunUD/IIF7t9Vv359IDliVFJxOueyfX3n4/eV9u93\niynYZ0K1atVy6kOuX0HcO/O2EKEb2cxE2OedfQ+w4jIAy5YtA2DHHXcEghdu7NWrF5C86Lh997CF\nusta2GMX5OijjwbgscceA5Ij1zauQaxYkhVh+eKLL7y20047rdT7mc+xs8IgblbJ4MGDczqWFWZw\nM03atWuXtC/ofcAyEIKKIGQr27FTJEdERERERGJFc3JyYHmbdrcT/FxQu3vusrs0bg6x3TEoBO4d\n3qJsbgD4C0uVl/k3NWrUAPzcXjsvipPNnRj3sXvuuWdSW1D5YHu8W2Z67ty5QHL0Lds870LklrSN\n6t3+KLHzxH6CPyfH7hRrHNMLmpsTZ+6cotdffx1I/jzMREkjOTbfDPw5FYXmlVdeAfzyveCPS6VK\nxX89Cyrha6/Z8qx169aAX+Y+00U9LdvmpptuAvxIEMAzzzwD+PNKCs3ff/8NwLRp07x97nZJ2dIY\n6SK548ePL7Xfly1FckREREREJFZ0kSMiIiIiIrESy3Q1m0Tm2mabbbztLbbYAoDFixdv8FhuuV+b\ngJ8uNcFSPtwS0ldcccUGf0+UnXnmmd520ZLRs2bN8rbjWJY4nY8//hiAxo0bA8FpF+6qypZ+YPvc\nNpsYbz8txAzJBSsgedKfuf766wFYvny5t89SIIJSKAuVFUxwJz5byoc566yzvG17rVtRDMmMTeQ2\nCxcu9LazLWVeSNzzykpBB5V9PvDAA5Pa0pWNdtnz4sQmz0+aNMnbZ8VnJL1vvvkGgJ133tnbZ+m2\nv/zyS7HPO+qoo1L2PfTQQ6XbuQJkJe/t/apo2egN+eeff4DkwjxBZfSlcCiSIyIiIiIisRLLSE7Q\nApU9evTwtu+55x7AX4gr3cRHd9K9FRcIOr5NvrRSvgsWLMiy19EwcOBAb9vKIAdFxmyRxbIox10o\nmjRpAqQ/f2ycwC+5a5P/3XPE7ny2aNECSI6KlbRIhTuhvFDZOThkyBAgeBE9Kw/tLnpm0Vq3DLoE\ncydvH3rooQCsW7cOgNGjR3ttK1asyG/H8siNyLhRnaL/n81k+REjRnjbcVwE1ArNuJ8dFl2tWrUq\nkFwMpKTs89ctcGOfv4XKjZRmwhZxdMcgzhHWTNnn7QMPPAAkLxngZjkUJ2iJgUyeJ9GlSI6IiIiI\niMRKrCI5djfHFsUCv6yxy6Izdnc4KDITxMoR2hwbt6SgXe2X5gJ5YXDvUAaNi+0rbyVTg9jcD1sg\nq3Llyl7b/PnzAb+8NMC3335b7LHeeeedpJ+SbOjQoQBcdtllABx22GFeW61atQB4+OGHAT/iCnDL\nLbcAfklRKd6xxx7rbdu5bCXJ7RyPK3s/Kxq9KQmL2pSX98p58+Z52/aatAwKe/1CdvN17rzzTm/b\noh22OOZ9992Xe2cllp588kkALrjgAsAvCQ0wcuRIAL7//vuU59WrVw/wF8l0FwO1Y0r2bOzC/F6s\nSI6IiIiIiMSKLnJERERERCRWYpWutmbNGgCmTp3q7bP0qxNPPDGjY1i53nHjxqW0ffXVV4BfuCBO\nGjVqBPjlQF3uxPX+/fsDhVtYoTTde++9gF9CukGDBl7b5MmTgfQpapKeW7pz2LBhgP8ar1Gjhtf2\nyCOPANC9e3cAXnrpJa9NKS0bZitVu699W3XdLR8fZ5ZS1r59e29fSVPX4lguOlv2Wex+JkvpsXRS\ngGbNmgHw4YcfhtWdyOjWrRuQPKXAlny45pprAGjVqpXXZq9VK5ThFqqxpRgke1akxgrYhEGRHBER\nERERiZVYRXKM3UUHePHFFwF4/PHHUx5ndyvdyfZWXKCkZXsLjU3qtOgE+JP26tat6+0LWqyyvLv8\n8svD7kIsWYlu8BdnswnNQa9nu2tn0UZILrEqwbbccksg+XVuBTBmzJgRSp/C4kZfii70mS6y45aJ\nLi+FBiR8e+yxh7e9+eabh9iTaFm2bBkA+++/v7fPiqfYMgT2WQJ+yXPL+NHnRumwhcjte6NlYuST\nIjkiIiIiIhIrusgREREREZFYqZDIZunmPLE0svIul3+aXMdu7NixAOyzzz7ePls92J3I7a6FEGX5\nHLu4ieLYWVEBW/9gzpw5XpulWt59991AuJMcsx07nXP/iuI5Vyg0drkrtLGrUqUKAH/++SeQ3P86\ndeoA8Ntvv+WlL4U2dlESp7Hr3bs3kDxNpKiGDRsCyYUycpXt2CmSIyIiIiIisRLLwgOSvX79+oXd\nBZFiPf/880k/RUTKG7trbnezLYoNsHbt2lD6JLIhbdu2BeDJJ5/M++9WJEdERERERGJFkRwRERGR\niLOlLeynu3yBLX8hkk9fffUVAE8//TTgRxsBPvjgA8BfyiUMiuSIiIiIiEis6CJHRERERERiRSWk\nIyxOZQbzTWOXO41d7lRCOjc653Knscudxi53GrvcaexypxLSIiIiIiJSrkUykiMiIiIiIpIrRXJE\nRERERCRWdJEjIiIiIiKxooscERERERGJFV3kiIiIiIhIrOgiR0REREREYkUXOSIiIiIiEiu6yBER\nERERkVjRRY6IiIiIiMSKLnJERERERCRWdJEjIiIiIiKxooscERERERGJFV3kiIiIiIhIrOgiR0RE\nREREYqVS2B0IUqFChbC7EAmJRCLr52js/qWxy53GLnfZjp3G7V8653Knscudxi53Grvcaexyl+3Y\nRfIiR0REROLn9ttvB+DII48EoGnTpl7b2rVrQ+mTiMST0tVERERERCRWdJEjIiIiIiKxonQ1ERER\nKTOVKvlfNdq2bQtA7dq1Ac01EJGyo0iOiIiIiIjEiiI5IiIiUmb69Onjbe+2224ADB06FIC//vor\nlD6JSPwpkiMiIiIiIrGiSI5IBFStWhWA4cOHA355VYDly5cDcN555wEwe/bs/HZORKQELHrj+vXX\nX0PoiYiUJ4rkiIiIiIhIrOgiR0REREREYqVCIpFIhN2JolRS8l+5/NOEOXYvvPACAF27dgXglVde\n8do6d+4MwPr16/PSl0IbuyuvvDLp5/z58722rbfeGoD3338fgH333bdM+5KPsdtiiy0A2GuvvQDo\n1auX19auXbuUfrzxxhtZ98n19NNPA/4YAixevLhExwyS7dhF9b2uS5cuALz44osAjBo1ymuzCeOl\nKcqv1w4dOgBQpUoVb9+ee+5Z7OP32GMPIDnl1Fx99dUAXHHFFaXWvyiPnaXhvvfee96+atWqAbDf\nfvsB8PPPP+elL0GiPHZRF/bY2XnUu3dvb59t2+eJ+/usv8888wwA559/vtf2ww8/lFq/MhH22BWy\nbMdOkRwREREREYkVFR6QEmnUqJG3vcMOOwD+lfZBBx3ktbVq1QqAOXPm5LF30XbMMcd42xdffDEA\nN998MwAXXHCB13b33XcDcPLJJwOw3XbbeW3ffPNNWXezTNgdt7vuugtIvjtjd6zcfTvttFPSvqA7\ndEHPs339+vUD4Mcff/TaLOL45ZdflvjviZt//vkn6ae9tuPKolNDhgxJaatcuTKQfM5tvPHGSfuC\n7i4G7evUqRNQupGcKLOo8y677OLtu/TSS4FwIziFYLPNNgPgsMMO8/ZZlLBZs2YAdO/e3WtbvXo1\nAPfddx8AEydO9No+/PBDANatW1eGPS579jkAMHnyZAB23HFHb18mr0eL8uy///5eW//+/QE/4i/x\noUiOiIiIiIjESrmO5NidEncxskqV/h2SNWvWhNKnQlO/fn1ve9tttw2xJ4WjYcOGADz88MPevpde\negmA66+/PuXxH330EeDfUXbnAxRqJGfWrFkALF26FEieH2O51pnOmbG7e3Ys9y5e06ZNkx7r/r/N\njwiaO1He2dylJUuWhNyT/LC7u9WrVy/T31O3bl0AmjRpAsCCBQvK9PeFzY3mm5UrV4bQk8LRpk0b\nAO68804Adt99d6+taITC/X9737SlBuwn+PNlzzrrLAAWLVpU2t0uU3vvvTcAzz//vLfP5nUGRe6L\n+8GiNPsAACAASURBVH93nz0f4J577gFg3rx5QPxfl8beh8DPEDn++OMBP2robgdFyiw6OH78eMAf\nQ4CHHnoIgFWrVpV21zOmSI6IiIiIiMSKLnJERERERCRWYpWuttFG/16zbbPNNt4+t0xgUTYJ9Ouv\nv/b21a5dG/BDbt99953XZuG4008/HUhO1Spq7ty53rZNkFuxYkUGf4XElaVCWgj377//9trOOecc\nIHgVcLcUd1zYZH9LQ3DTojbddNOUfelYupo9/vDDD/faggobGLdsddzZOO+6667evgcffLDYxx9w\nwAFAckqH5Oa1117ztj/55BMAfvvtt5B6k18tW7ZM2Rf0Hlfe1alTx9u29Nnddtst5XGWkjtz5syU\nNnvf7NatW0qb7bNiN1bgplBYmpo7Tvae/vnnn3v7rDx0ugICVvTGLYVvx7XvdpdffnlpdDtS3FRc\nK2YxYsQIb5/7vbmodGmSFStWBOCkk05K+gn+d/Lbbrst126XmCI5IiIiIiISK7GI5NhkqJ133hmA\njz/+OKvnuyV5jZU8dgVNCs/E4MGDAT9yBPDLL7/kdCwpXPXq1QOgY8eOQPIiZukmOlrBgTgK+rsz\nKfphk2zBj1JYadqgkqJB/+/ecYoru3tnUZs///zTa0sXybHJp5KZ//3vf962le6dNGkSAF988YXX\nZmV+4659+/YAHHLIIUBy5Orll18OpU9Rduyxx3rbgwYNSmobOXKkt23FCIKiYZYpcNlllyX9LGTj\nxo0DgosM2HIABx54oLcvk+i/FVWxcxP8RantMyROkRw7L6677jpv39lnn53VMay4gH1+WvRmQ264\n4QbA/0y///77vbZcFkTNhSI5IiIiIiISK7rIERERERGRWIlFutpRRx0FJK/wm46ttJyuXn+jRo0A\nfzJfSdhqzzNmzPD22Vonhb4C8Q8//OBt23oubl1/8dmkT2Nr42T6PDtXLExfnrRr1w7wiwW4693Y\nJMpMVru+9tprvX3lYXVrK8rQvHlzwE/VkLLz2GOPAf4q8+VR27ZtAT+txZ0cXl6KLmTihBNOANJP\nzF6+fLm3na5og30+WEpq0BoxYa5Xkgt7/7L3b/e93dZay3YtLzum/Szu+HFh0ySyTVFzz0krumW2\n3nprb7tKlSoAPPLIIynH2HjjjQF/HSK3CItb8KssKZIjIiIiIiKxEotIjjvxrDju1f7+++8PwPff\nf1/s4++9914A+vTp4+2zqI6VgnYn9lnpQbdEa1EW0QG/TKTd9StUVtIS/FWUy1skxyIJ2267rbfP\n7mq4kcBLLrkEgLvvvhtIngSeib/++guAd955J/fOFgCbBGqrdEPqxFP3LmXQPlN0n3t3KpMCB4XO\nLZMqxbM7lVbEIltbbbWVt21lbG3StBs9/OOPP3LtYkEpOjHZxiRTVmylQ4cO3j57D5g+fTqQ/R38\nKLLSzkERhPvuuw/wyydnylanT3fMQmHnjf0cMmSI1xb0fp+ORW6eeuopIPmz2Y5l3/vipEaNGsW2\nuZlE9tl44403Asnf7f7555+k57lLpFjWUyYOPvhgb1uRHBERERERkRzEIpJz1llnAbB+/fpiH+OW\n7kwXwTFnnHEGkJxneNFFFwHwwAMPAPDss896bVOmTAHgvffeA6Bu3bppj2/lrgudW37b5hmVN1ay\n2F1Yy0qCXn311d4+K3t86623Apnn/9o8FFtIMO4snz9o4bd0822K+39337vvvuvts4WC4zY3xy0V\nWnTB00zngZU3Tz75JJA8b65NmzY5Hatx48aAX472rbfe8tpeffVVwI/KxtWhhx6a8WPdcvBWutzK\nJgctRmt3gLt27ert++abb3LqZxiuuOIKb9vOt6D3rGuuuQZILk+eji3gm0lmS6GwMTDu+5ltu9Fq\nN/oA/meJ+3iL4ASNuS3r4L5Pxu3zweUuUD9s2DAA1q5dW+zj7TPZooWQ3dIqn332WbZdLDFFckRE\nREREJFZ0kSMiIiIiIrESi3S1TNJ+cp3gP3v27MDtomzl9vIwmdlVs2ZNb7t+/foh9iQ8tqqvO5HR\nUhLclEYLpX/11VcbPOaWW26Zsv3GG2+UvLMF4JZbbgGS01iKpl25k7ltRXkbX0s5AH/1cEspdEtP\n24r0Nqn1xBNP9NoK8XVsaQP9+vVLaZs/f37ST4C+ffsWeyy3RGh58NNPPwFw+OGHe/ssTcXKbz/3\n3HNe25w5c5Ke76YgVa9eHYCqVasCMHXqVK+tR48eAEybNq3U+h4VtrI6+KVjTdB71ymnnAIkv5aL\nfoa4aeY2+Xn77bcH/LK04K9eXwhLMpx22mlp2//73/8C6Ze4CGLve7Vr1y72MVbUZd68eVkdOyrc\nAhaW0uimhBddRiDbAjWWHjl58mSvzQoV9O/fH4DFixeX8K/Ir80337zYNvdcsZLc6cqU2/tXpqn2\nlpZrn8Nvv/12Rs8rTYrkiIiIiIhIrFRIRHD1o2xLA1rBgXR/il31AwwfPjynfmXiu+++A6BJkyZp\nH2cFDexuVpBc/mmyHbuScosNuGUFi9p3332B1DugZSWMsbM7t+AvkupOnLVJd+nKjBubgAvw6KOP\nAnDXXXcB2S/qla1COO8yZdE1Kx9qhUEg9c6ee0f58ssvz+n3ZTt2uY6bRVpuv/12b5+Voy0L7t3n\nhx56qNSPH6dz7qSTTgLgwQcfTGmzwhf2flgaojJ2bvTv22+/TWpzy+tbJMai3JtssonXZpGbJ554\nAkj+3LZxDfr8tuNnUlTIFcbYWTQFYMyYMYD/vQH8ghUWXUxns80287ZnzpwJJE8KN2PHjgXgzDPP\nzKHHwcI+7+zccAsPZBPJcfufyfNsEW4rWAO5FyXI59jZOfL777/n9PygPmTaf/seU5pLpWQ7dork\niIiIiIhIrMRiTk4m7C4QlG0kJ1NuaUOJB3dxT5tX4pbAtEXsMtGpUydv2+5cfPjhhyXtYrljc2ve\nf/99AC688EKvbfTo0YB/d8ot624RuKjmX9uCu270xuYjuHe6LHJqOebNmjUr9phW9hxS8/rPO+88\nb9vushfivKV8sCi9RWvcu+f77LMP4M8xy3aRzELlvrZsLo1FcNwytt27dwfgzTffBJLn+RSdl/fl\nl19625lEPaLCnQ9jryu39HG6v8WiQDvssEPS8yH9IqBB0Z1CN2rUKCB5Hl3RpTnsfd9lr7mi5anB\nn9dk0TTwswBsPqebZVEI5aUtOmrzUsGP+jVs2LDUf99xxx3nbUfh/U2RHBERERERiRVd5IiIiIiI\nSKzEIl3NJniefPLJxT7Gndy41VZbAZmvJFwWxo8fH9rvLk1uqoGl9gStUm1pMvkqPBC2Tz75pETP\nr1ixordtY2yrpUvu3FSOomkdbjqMrXh977335qdjWbLUR7dwyZNPPgnAH3/8kdMx3UnbVhbd7Lbb\nbt72wIEDAT9dRIKde+65AOy9997ePivUcuWVVwLRSOfIB3fisU2EXr58OZCczmdpapYidN9993lt\nLVu2TDqme/5ZqdpC89FHH2X1eEt1s59HH310sY91Py+s9G+c2DnipmHZe7qlorml3TNh6WduGpql\nn1qamvs5MWzYsKTfF0VWmOvrr7/29h1xxBGAX9oZoG7duoD//fjzzz/32izNtlGjRhv8fTNmzPC2\no/C6VCRHRERERERiJRaRnIULF27wMfXq1fO27e6ZXZHnK6LjLsTn3qEqZO7dASsh3bVr15TH2V04\nK4csySzSePDBBwPJkxvN4MGDAXj44Ye9fVaSVjKzZMkSb9sKDkS1FHE6VuTC7jKWhiOPPDJl32+/\n/QbAAw884O0rzd8Zptdff93bXrRoEQB9+vQpteNbIQi3NLktQGsLjLpjbm2Fyv0ctnL5u+yyC5Bc\n6thYKfxXXnnF23fRRRcB/h14d0Hgosd+/vnnS6PbBckKD7Rr167Yx7z88sve9tq1a8u8T/l2+umn\nA8nv37ZdmhFSK2YQ9Dlh3yGjHMkJYt8b3CIBmcikfPMBBxzgbbsLKIdFkRwREREREYmVWERybJFE\ny9G0fMPiWDnFCy64AIBp06Z5bZaLnwl3wU+7q7DlllsW+/hDDjnE2w5zPlAYbL5AeWHzaOxuLqQu\nxuXepXz77bcBaNGiRbHH7N+/P5C8MOOCBQsAv4zmp59+WpJux54bBSt6V8rNQX7qqafy1qeoqFmz\nZsq+O+64A4hG2f3SYndfW7du7e2z16n72rr//vtL5fc1btw4ZZ+VRnbniha6v//+29u2TAUrpR/k\nhBNOAOC2227z9tWpU6fYx8+aNSvpeW7Z5fKiSpUqAEyYMAGAWrVqeW0bbfTvPWubr1d0Xl3cWAnx\nfK1nb78nX78viixzx13ctyh3nnYUKJIjIiIiIiKxooscERERERGJlVikq9kKwSeddBIA//zzj9eW\nrsSilUJ1S1j++OOPGf9edzJl/fr1k9q++uorb/v2228H/NSi8mjAgAFA+SkhbakVVjIW4Jtvvkl6\njJ2v4K+mbOeImwppE3QtPcNNx+zZsycAL7zwAgCdO3f22twVwaPGyoyPHDkSSC7ZaatUW0nykrCU\nQFvJOmjyqO2bPXu2t88tUBB3lra13XbbhdyT/LB/Z3dleXv93XzzzSmPzzVtrU2bNoCfZlqe/Oc/\n/wH80rNBBR2CCtTYa9Emyl988cUpx3RTgMubbt26AX4hHzd16uOPPwagX79++e9YCGwZjvPOO8/b\nZ69je7+3z5Js2ecS+J/hQZ8db7zxRk7HLzT2WrXPiKCUvR9++AGA9957L38dy4AiOSIiIiIiEisV\nEhGcRVXSkq7uQopWEMAttXjMMceU6PhBbGL91VdfDfglSQGWLVuW0zFz+acJsxyulfQMukNnbRZ5\nKGuFMHarV6/2ti3K06BBAwDeeustr83uggYt8ti9e3cApkyZAvgFDMA/593IZibyMXZW7MMiT+7v\ntGiquxDnddddl/GxrQAJ+KU9DzvssJR+2u+0O/vnn3++15brHcBsxy4K5aut5KdbUtnYOWSLNJaV\nMF6vbpEZK93uWrNmTdLjrr/+eq/NCse47/PGFmi1CfWbbrppsX1wF7AeN25cpl1PEuX3uu233x5I\nLvds42Gf0+65ZaVtn3jiCcC/O1xWojx2xi3JawVRateunfI4K6gxderUvPQrKmM3dOhQb9u+f1nf\n3EI+mWQ2WATILedux7K+u3+3fV5nG/mPythlyqLZ9t7m9t++X/Tt2xeAiRMnlmlfsh07RXJERERE\nRCRWYhnJCeJGd3bccUfAn0ez6667em3NmjXb4LHsqvbnn3/29tmVfGnmCxfa1X7Hjh2B4DLciuSk\nciM5RUvJ2h0TSC57XJSVDbW7fa+99prXZtEPu7sFwdGgovIxdjfddBPgL3C6fv16r83+JnefzUey\nO5ljx4712ixKY3OV7PXt9qvo3TiAL774Iul5pTGHqRAjORZ5DboDbHMaJ0+eXKZ9COP12rBhQ2/b\noqVuqex0ERgrN24lVd3+d+nSBYCqVasW+3ybc+JmFeS6cF4hvNdFVZTHzpbGcBdsLLo4qs3XhOTI\ndz5EZezcyL19PthngPv7rM0WCnU/J4p+dgRF/O1zyf08vfzyy3Pqc1TGLh03CmYLvVeuXBlI7r9F\nvIMW/C0LiuSIiIiIiEi5poscERERERGJlXKTrlaICiGk6bKSqe6keWOrYbdq1Qrwy12WlUIYO7dE\nsq30bePiFsrIZAVhS8d0Q+lWftUNy1t6TTr5GLu6desC8Msvv6T8zqAJnunSztJNDC26zy1gYNsW\nbi8NhZiu9uCDDwLJJc2NlVJ107jKQlRer+5yAnfeeecGHx+UWpkJm2C/7777ZvW8IFEZu0IUxbGz\nNMn58+cDyWmVdp5ZsQYrPAOwww47ADBv3rwy7Z+J4thZCWlbqsKWKoDsPieCPl8szc19n8z1syOK\nY1fUsGHDvO2rrroqqQ9u/x9//HEgOa2yLCldTUREREREyrVYLAYq0bfxxhsD/p1PgQsvvNDbvvba\nawF/In4m0RuXlXF0y2m++OKLQHCZ27BZoQ4rwWmLmQLsvffeQPLd8aJ3sdIt6umW87QiGCeeeGJp\ndLvcWLVqFVB+FrszdrcW/JKozZs3T3lcNpNs3RLuVlY6kyiRlB8WhQE/smqFkdz3wZUrVwJ+4RX7\nf8hfBCfKrOR4hw4dgOSy7FagoGjxBkj/+WILVR955JGl2teosqySXXbZJaPHW0GHqNI3ThERERER\niRVd5IiIiIiISKyo8ECEFcLkNFfjxo0Bf62WbbbZxmu79NJLAX/V8LI+7Qpt7KIkjLGzQgQAJ5xw\nAuCv4A3Qtm3bpL4FrX9g69zcd999XtuCBQtK1K9sFWLhAUtxdItWnHPOOYC/VkdZK4TXa5UqVbzt\nadOmAXDggQcCwYUHbC2da665xtv32GOPlXq/CmHsoioqY2dFewBmz56d1OaubXbzzTcD/B97dx4o\n1fz/cfwZKbJnL1mS7FvZl0IUqUhCluxbJFshe2QptNkptChb9l1U+FLIlpCvJXwr2UlC6feH3/tz\nPnPn3Lkz585y5szr8c89nc/cmc/9dObMnPN+f94fLr300rz3IVdxGbtsde7cGYC2bdum/BuClDTj\npzzHoUANFG/shg0bBqSuwVS1DzNnznT7LJ031+IrUanwgIiIiIiIVDRFcmIszlf7caexi05jF105\nRnLiQMdcdBq76OIydn6U0IpTnHDCCQAceOCBru2pp57K+2tHFZexK0dxHrvrr78eCIoghfVh2rRp\nbp8VCioWRXJERERERKSiKZITY3G+2o87jV10GrvoFMmJRsdcdBq76DR20Wnsoovz2K288spA6jyl\n1q1bp/ShW7durs0WAy0WRXJERERERKSi6SJHREREREQSRelqMRbnkGbcaeyi09hFp3S1aHTMRaex\ni05jF53GLjqNXXRKVxMRERERkYoWy0iOiIiIiIhIVIrkiIiIiIhIougiR0REREREEkUXOSIiIiIi\nkii6yBERERERkUTRRY6IiIiIiCSKLnJERERERCRRdJEjIiIiIiKJooscERERERFJFF3kiIiIiIhI\nougiR0REREREEkUXOSIiIiIikii6yBERERERkUSpW+oOhKlTp06puxALS5Ysyfl3NHb/0thFp7GL\nLtex07j9S8dcdBq76DR20WnsotPYRZfr2CmSIyIiIiIiiaKLHBERERERSRRd5IiIiIiISKLoIkdE\nRERERBIlloUHREREJHnOPvtsAK6//noA1l57bdf23XfflaRPIpJMiuSIiIiIiEiiKJIjIiIiBdO5\nc2e3fcEFFwBBKVi/7Y477ihux0Qk0RTJERERERGRRFEkRwpm1113ddsTJkwAoF69egBsvvnmru2T\nTz4pbsfK3DrrrOO2GzZsCMCiRYsAjaWUlr2/V1hhBbdv4cKFACxYsKAkfaqt6667DoA+ffq4ff36\n9QPgsssuq/H3jzzySLc9evTolDb/OQcOHFirfsZRy5YtAbjtttvcvjXWWAMIIjmTJ08ufsdEpCIo\nkiMiIiIiIomiixwREREREUmUikxXa9SoEQDHHHMMAF26dHFt2223Xcpjl1oquA78559/AHjnnXcA\nuOaaa1zbww8/XJjOlrHWrVu77WWWWQYIUhQkd82aNQPg5Zdfdvssde3vv/8G4NZbb3Vt55xzThF7\nVxxNmjQBUsdgo402qtVzvv322wDssccebt8ff/xRq+csJ8sttxwAjRs3Tmv78ssvgSAdMkyDBg3c\n9nHHHQfA0KFD3b4BAwYAcOGFF9a6r8XUsWNHAM477zwg9dzVvXt3AH7//fe031t99dUB6NWrFwBL\nL720a7Pn+OuvvwCYOnVqvrsdK08//TQAq622mttnY3DUUUcB8PHHHxe/Y5JI9n3Nvm/Yexfgqquu\nqvb3LM17r732AmDOnDmF6qIUmSI5IiIiIiKSKImM5HTr1s1t+3e2jV3t+3cgTdVIg0Vv/LZtt90W\ngDFjxrg2u0t50EEHAfDNN99E6rtUjlatWrntBx98EAiOsbvvvjvtcVtuuSWQOqnbHm93rk477TTX\ntvXWWwOwzz775L3vxWZ3w2+55RYAmjZt6tpqGx1s0aIFEEQ0oLIiOR06dABg3LhxaW1W3vfxxx+v\n9vf9EsB+BKcc+ZP/Tz/9dADq1KmT9rj1118fgGuvvTan57ciDJ06dQJg0qRJkfoZR8svv7zbtghV\n1SIDAEOGDAFg7NixRexd+bBj68QTTwSCMYQg6vXII48AQdQQYNSoUUBQhnvw4MGF72wMLLvssm7b\n3rNhRTwyfU40b94cCAok+Z/N33//fV76WS7sszXse8NWW22Vtu+DDz4A4L777gNg/vz5Bexd7hTJ\nERERERGRRElkJGeHHXZw2/5d73yrWzcYPovuHHbYYQDccMMNBXvdcrHZZpuVuguxtMoqqwCp0Rq7\nI2d3m3r37p32e7NnzwbghBNOSGuzUrb+mFvefxLY33XAAQeUuCfJYefGqHO3VlppJQB23nnnjI/b\naaedIj1/Mdmd3KOPPtrt8+8QQ3D3HILojkXun3nmGdc2a9asan/vrbfeAuCnn37KR7djxY/obbLJ\nJkBwPpsxY4Zru/rqq4vbsTJjUTCbx+RHEm08LXPEn+tkj7OxTzqbQ/jCCy+4fZtuumm1j//tt9+A\nYP6qZT8ArLjiiim/b5/RkOxIjn+Ou+iiiwA4/PDDgdznutocbIumAfz888+17WKtKZIjIiIiIiKJ\nooscERERERFJlESmqx1yyCFZPc7Cl346ga1unYlNVD7jjDPcPkvJuPzyywHYc889XZuVIq00/krf\nFma30ozluvp5bey4445AUMrSJpiG8VPZPv/885R9c+fOTXv8lVdembbvs88+i97ZmLFUvYkTJwKw\nyy67uDZL0/jhhx8AGDFiRNrvnXXWWQBsvPHGBe9rudhvv/2A4Lj02XnQT8OqylIHe/TokdbmH3vH\nH398rfpZKJaiBvDss88CsOaaa6Y9zsqV+wVtjKUL+elnVlyg0vTt29dt23vSftpyDZDs9J98sEID\nt99+OxAsWeGz4gI33nij22fnuDvvvLPQXSwZv8y9pamFpajZ+/Gee+5x+wYNGgQERaH8z99XXnkF\ngHXXXRdIXU7gv//9bz66HksXXHCB27Z0tTBPPvkkAM8//zwAJ598smuzgkh2fvQL+Bx88MH562xE\niuSIiIiIiEiiJCqS07VrVyC15GKYX3/9FYBTTz0VgAceeCCn17GFo+zuHwR3jy1q40dyevbsCcCw\nYcNyep0ksmjE119/XeKeFF/79u0BaNOmTVrba6+9BgR3Q/73v//l9NwNGzYEUiep/vjjj5H6GUf2\nt+y9994AtG3b1rXZBNKnnnqq2t+3O3tW5tJnEV2/XHzSWAlu/1znjyEEi3ZCUMjCJun6bJLu2Wef\nXe3r+XeYbUHRuPEj8RtssEFau93xtb/l0EMPdW32HrY7y1OmTHFt9vnw6quvAvH9+/PFCg74E94t\ncm9ZElrwM3tVSx1b1KYm3333HZDMSJmdv/yS7WERHPvc3H333YH0IiA+v83GzCI5FtlJKvsO7Jd9\nNzYufiERKxO9ePFiIIgyQrAky6effgoEC6r6+vTpA0C/fv3cvpdeeglIzfgpREEWRXJERERERCRR\ndJEjIiIiIiKJkqh0NSsI4Nc/D/Piiy8CuaepVeWH1mztkueeew6A7bbbzrVZiPWrr75y+x577LFa\nvXacHXXUUdW23XbbbUXsSbx8+OGHADz44IMATJ8+3bVZMYJc2arYtmaJn+pw//33R3rOcmATIGti\nKVlhk+MtZG9h+TjU9M83S/OwAgz+Cul2rFgK36233uraqqap+ZNJn376aQBatmyZ9no2kTXbFJtS\n6N+/PxCkK1fH1sqwc5Y/6bmqsNXBrUCIPxZWmCZJbHKxnypr6T/ZFgGqjp+SZBPrbc2syZMnu7Zr\nrrkGSEZBG0tzrCntHlInyFvhlSSmq9l70U9tCmP//1VT/mpiY2cGDhzoti2d2da4uvnmm12bpW+V\ng7XWWstt169fH0h9z1q6o30evvvuu9U+V1gas73X/bRVe49uv/32ANSrV8+12fpqfrEXpauJiIiI\niIjUIFGRnNNOO63atvfff99t+yuy5otNjLar/Lvuusu12VVzo0aN8v66cWR32iSVRXDsZz4cccQR\nQBC9nDBhgmubOXNm3l6nHKywwgpAarlaK4v5xRdfAMFqzhCU5rY7dOXOzjOrrrqq22fRGYvg2F1J\nCCaPnn/++dU+p01M9SNndgfOvPfee2575MiRQLyLOJxyyikA1K2b+eNv/vz5AIwbNw6Ae++9t9rH\n+tFru9tskR+/tLIVzmjVqlWu3Y4Vv9zsQQcdBKTePb/66qtr9fyjRo1KeW6ABg0apLyOTS6H4DOn\ntpGjOLCxs0IqfjQrUwEHK2du73U/c6TcWcTEL6ZjxXZ8tkSAld22MtM+ex9PmjTJ7bvllluAoKDI\ngQcemPZ79h4fPXq021dOxX0uvvhit23fFyx6A8GSAJkiOJn88ssvaa+TackGG0cr1FIoiuSIiIiI\niEiiJCqSk4mfb+5fveabLZo0bdo0t8/mCiWd5Xf6eZfGcjPtal+is4VnATbffPOUNn8huEWLFhWt\nT6W0xRZbAMHcCT9P2qI0tjhlbefhxYW9x5o1a+b2nXPOOQAcd9xxaY+fMWMGAIcddljavjCWA29z\nTcIWDLW7pZ06dXL7vv322+z+gBK49NJLAVh55ZXT2qz07NixY90+m0uTzWKA/qJ6VjbZFlT1ozYW\nBbvkkkuA8EV8y0GTJk3ctkVY/GUBxowZk/Vz+WVsbRwtGuZHh/z5A1X/7Ze7LXc2p8b+Pv/4yRTJ\nsTk8SYzk2HxJP7Jn3+ns/O+zaLZf9t3YPn9O17LLLltjH6yMcrl9rtpinf4CnsafA1PbjAabA/RI\nTwAAIABJREFUZx4WvbFj2uasQ+YMgnxSJEdERERERBJFFzkiIiIiIpIoFZOu9tFHHxXldSws54fu\nLV0tm5BoOevSpQsQvhK6hXp///33ovYpSSzsbBNSIUgrstB7tqWVk8TSM3bbbbdqH7PVVlsVqzsF\nZRNGLT3Hyj/7/BKyln513nnnAZlTLWziMgST7W2ivM/SAm2CtJWnjjs7P1lZ7Tlz5rg2G898FKGY\nMmUKAPvttx+QWmjEJvfaCuB+MYNySi/yi8tYSpmf/pNLGWM/1e/CCy9MeU4/Xc1WobfPcr/EsqUx\n+WlrljZYrjKVQa6amlbT45PCymtDkEI7ePBgt89Subfeeusanyvb4h/2mWrFCP7888/sOhsTdr6r\naWmVXPhln7t27QrA+uuvX+3j7b179NFH560P2VIkR0REREREEqViIjk20ROgXbt2Je/DoEGDStKH\nQmrdujUQTJhcaqngGrrqpNGks8mQ/kRJm6BtC2P5bKys9O6bb77p2my7W7duQOodd5uQaYsM2gKX\nlcRfEK86Fl3s2bOn2/fHH38UrE+FYmXyM50//IICL730EgDt27cHUhegtQVk//rrLyD1jmhYBMfY\nc9hk/XLRoUMHAIYPHw6klnYuRBnxhQsXAkEBAggiOTbZvnfv3q7NPzbjzn/PWQQh17LRNhHaL0dt\nz2WfF/5z+p+fkBrJsYVpbWFSKN9Izttvvw0Ed8jDslDWW2+9lJ+Q7MVAw9j520rCQ7CMgBX48JcM\nsGPDsh+yZQvNllsEx9iixBZhhiDi5UcCrQiKLZZs5y+fRVr94jZ+8Zuqv2fP5Rf+KjZFckRERERE\nJFHqLIlhImfUu/5Wntiu5qtz1VVXAXDZZZdFep1sjB8/3m1bLucTTzzh9vl3+KsT5b+m2BETf6zt\n77O7fH5fLIfT7jYVWjHHzhag69Gjh9tnUa1s+2Gvnc3j/X7aAmV+6dvaKofjzmf51yNGjAAyl2xv\n3ry5286mNHCuch27XMfN7tL6C37mYt68eW7bFg+1eTp+hLAqfy7PjTfeCASLzd59992R+uIrt2Mu\nF/5cTJufYxEdf9FUy1fP9b1czLGzOS8PPfRQ2uvXtLhqVRbJ8e/y2nPZgr5+NGbBggUpv+9HcqZO\nnQoEuf8A3bt3r7EP5XrcWeTKvztv/dphhx2A1GUsCqEcxs4vL23HRq6RHPuemM9y76UYuxVXXNFt\n2+dI2Dwdawvro0V+wvpiS7P4C5LbYuX5lOvYKZIjIiIiIiKJooscERERERFJlEQVHvjPf/4DwL77\n7pvxcZbiY+U7P//887z3xQ+p2ba/2mtS+KuHV50A7k9yTmLpaEvdGDlyJBCsQg9B6NY/Diytxybm\nWZleCFYe7tevHwAnnXRSVn0ol/K9hfT+++8DcOKJJwKp47r22msDwSR7W/Ueggmr5VSAwFLK/DSn\nXPilPzOx4gU28dtPQfBT3qRm/kRcK0Jg6Wp+cZamTZsWt2MRbL755kDtUmes1Kyl//hpaJZilk3R\nAEvZgmACfrkWG4jK/3+IQxpd3PTq1cttZ0pTs9TlqpPoIViawNJ7y7UAwW+//ea2BwwYAMCpp57q\n9tlni1+MIBcnnHACAE8++WTULhaEIjkiIiIiIpIoiYrk2BVkTZEcu5NkCwTmM5JjpfXatm2bt+cs\nVwMHDnTbYeUIy5EVGYD0CI4/ATvbSIyxCIO/mF02jjzySABef/11ICgHXIneffddAPbcc0+37+mn\nnwZg2223BYIoLsDFF18MlNcijFaG/KabbgLgzjvvdG0bbLABECwaC3DFFVcA8MYbbwCZy8vagr0Q\nHI+PP/54HnpdOptssonbtnLr3377bam6w8cff1xtm5W7tbKrcWQRxLBMhWeeecbtsyIKYcebRVzt\nzvE777zj2rKJxNg50halhSDyWGmRnBjWjYoFK+x06KGHVvuYu+66y21bcQErTuBHVe273C677ALA\nxIkT89rXUrBy7EOGDHH7zjzzzJTH2HcLgA033LDa57IFWv2FWuNEkRwREREREUmURJWQ3n///QF4\n4IEH3L7llluu2sfbVftee+0V6fXCPP/880DqYnqW82+LewE8++yzNT5XnEs02l3jhx9+2O3bZptt\nUh6Ta0nRfCrU2NniigCtWrUCggjOGWec4doy5e02btwYSF0Ez+aHWL/9xUBtXoRFCa0kuf94W+xy\n2LBhNf4NNYnzcZeJzb+xuXYQzBOzMr7XXnuta7O7d3///Xfe+lDoEtK5srKhFtHadddd0x5jETBb\nLBNgzpw5Be1XVfk+5uy94ke6Pv30UyAosTt//vycX7O2LN8907wmf55ONkrxfvVf06I7fr9tX9jd\nXXtP2nP4ywrY0gvWP3+pBSsZbb/39ddfuzZbYDnXhTDL9Vxn85GsdDYE/TrnnHOA1MV9CyGOY2dz\nhF944QUgfOFtWwzYn69j88IsUj569GjXZstk2LxZP8pjy5bkKo5jZ+xz9KmnnnL7tttuu5TH2Pwb\nCKKnFikvNJWQFhERERGRiqaLHBERERERSZREFR6wiY9vvfWW21e1rDHAr7/+CqSutFxb3bp1A8LD\no5Z6lE2KWrmw9J+qKWpJtfvuuwPQunVrt++TTz4BMhcZsLQ+CCbE9+3bF4CNNtrItVnBgOuvvx6A\nxx57zLXZ8fzEE08AqekdVhbz4IMPBlJTtew4T7odd9wRCFInLR0wzIgRI9x2PtPUSsU/vsJWsbaV\n6cPS1GzCt6U/FjtFrZDs/9lPbfjxxx8BWLx4cUn6lCQ20R+C4g5+WXMbdztvhhUqsJ9WgACCogSW\nmhP2e/bafvp3rmlqSRGWuuMX26g0TZo0AcK/h1nBEfuM9UuXGyu0MnfuXLfPykqvuuqqACy99NJ5\n7HH8WBp+1RQ1gEWLFgGpnxXFSlOLSpEcERERERFJlERFcoxfyjcskmMaNGgApC5+lM0dIStHaz8B\nbrzxRiBYdNAvS3vEEUdk0+3E8CftJYUVCfDvnPmLTkLqQmJt2rQBgqIBkLpwKqQuDmsle/0oZHXa\nt2/vth999FEgOM5vvvlm12ZlXMuBvRcB7rvvPgBmzZrl9ll5Y5sUaXd8IYgq2kKX/oRkW5TVCjv4\nz1nObLz8yJ2Ngy1aB0GZfPPee++5bZtkm8QFZS3a2bBhQ7fPSsDa+d4/ToqlY8eORX/NQrDy6xB8\n9vlRRYvqhE2Wrrov02P8ktt2Xohzie1iC1sM1O7ESyrLvLCfkjvLliqnrCRFckREREREJFESGcnx\ny/rZXAdbsBGCaIstBjVt2jTXZovs2UKPm266qWuzO4FDhw4FwstTWwTH7m5Ban5nUvj50FV99NFH\nRexJcdiCYH4kx+bnvPbaa0DqIoxWdtJfBNWODYvs+VEby3XNxpQpU9y2LQJqd4j9uRdWUt1fpC+u\nLr/8crdtEYaoJk+e7Lat5Pfbb79dq+eMm0aNGgHBnIeaWGlev8x5KRfFLDSL1vjz0uw9aYtG2/sD\ngnO0P68kKvtcsJLHVtIXMi9XYFHZcuAvumlLMfgL7Vrp56rlon02t8b/uy1yY58hfiQnbA5FpQsb\n13wcw+UqU+aOnTNPO+20ah9jn+Fhi19Onz4dyLw8RDmzOcLXXHNNWtuXX34JwPnnn1/MLuWFIjki\nIiIiIpIousgREREREZFESWS6ml9+98orrwTgkksucfv81DWAFi1auO3bb78dgL333htInbydaaVV\nC2Ha4y2FKalKMWm3lKyYxbHHHuv2WbqapV3cc889rs1SOL755hu374033sh7v6qWjj7yyCNdmxXG\niHO6mk2g90tzR2Upe35Bh1zSAJOoT58+AAwaNAiovFSWffbZx21PmDABCIox+O/NO+64A0hNb7PU\n5UxpfVau/NRTT3X7LN2yefPmNfbPT9Wy93K5sWI9gwcPdvv8bSkcv/DAUkv9e8/6mGOOKVV3Ss4+\nd8NYYSC/OE82LE3tiiuuAOD333+P2Lt4s3NYWKre8OHDgdT00XKhSI6IiIiIiCRKnSWZwhMlElZS\nsrYOOeQQt23lgKuWV62pL1WHaurUqW772muvBYLFpPIhyn9NIcYujBVksLscEESzrHxyISIX2cr3\n2FlZXn8BT2N3hEu5+KZNcrafAJ999hmQ+0TJYh53Fsl5+eWX3b4ddtih2sdbCWRbUNX3/PPPA6Vd\n7DHXsYs6brYgnRVRqY4VYYl7BKcYx5wtGmvHWljhmEKzu8D9+vUDYODAgbV+zjh/TsRduY6dnTet\nQBJA586dgeD86RdUKoQ4jp0tMTBp0iQANt5440jP8+GHH7ptK4pji03nQxzHzs5F5557blqbZULF\noXx7rmOnSI6IiIiIiCSKLnJERERERCRRKiZdzWf10q1IgK2fAHDhhRemPNZf2bnqUNk6OxCssJ1P\ncQxplguNXXSlGLtVVlnFbdu6IgceeKDbZ2kIljpw66231ur1CqVY6WpJo/drdBq76Mp97E455RS3\nbUWW7Pw5evTogr52nMeubt1/a2rZmnQQFB7o3r07EKyhCDBu3DggSFPzU9MKUbwmjmO3zjrrADBz\n5kwAll9+eddmxVfmzZsHpH7ftSJdxaJ0NRERERERqWgVGckpF3G82i8XGrvoNHbRKZITjY656DR2\n0ZX72O2+++5u2ybbWyRnyJAhBX3tch+7Uorz2A0dOhSAM844I+21rd8DBgxwbRdccEFR+mUUyRER\nERERkYqmSE6MxflqP+40dtFp7KJTJCcaHXPRaeyi09hFp7GLTmMXnSI5IiIiIiJS0XSRIyIiIiIi\niaKLHBERERERSRRd5IiIiIiISKLEsvCAiIiIiIhIVIrkiIiIiIhIougiR0REREREEkUXOSIiIiIi\nkii6yBERERERkUTRRY6IiIiIiCSKLnJERERERCRRdJEjIiIiIiKJooscERERERFJFF3kiIiIiIhI\nougiR0REREREEkUXOSIiIiIikii6yBERERERkUSpW+oOhKlTp06puxALS5Ysyfl3NHb/0thFp7GL\nLtex07j9S8dcdBq76DR20WnsotPYRZfr2CmSIyIiIiIiiaKLHBERERERSRRd5IiIiIiISKLEck6O\niIiIJM+BBx4IwGGHHZbyE2DQoEEAnHfeecXvmIgkjiI5IiIiIiKSKIrkiEjZWGeddQCYPXu22zd+\n/HgA+vXrl/b46dOnA7B48eIi9E5EamKRm0MPPRSA77//3rU98sgjJemTiCSTIjkiIiIiIpIodZZE\nKdhdYMWqB77nnnsCcNlll6Xty8YVV1zhtidOnJjyMx+SVEv9tttuA+CUU04B4IILLnBt1113Xd5f\nrxRj5x87uRxHvssvv7xWfciHOB93L730EgCtW7fO6vEvv/wyAP3790/5d6GU0zo5Vc9/YcfsXnvt\nBeT3vBYmzsec2WCDDdz28ccfD8DIkSMB+Pzzz11b3br/JkhY/7baaivX1qlTJwDOPvtsAFZYYQXX\nZudB/9yYjXIYu0cffdRtd+zYEQgiOF27dnVtkydPLmq/ymHs4kpjF10xx+6ggw4CUqOk3bt3B2DU\nqFGRnrOUtE6OiIiIiIhUNF3kiIiIiIhIolRk4QFLWckmpSgsJS0szc227fFxSDuKk9deew2Ak046\nqcQ9yZ9s0n1yZWlYliYk/9p9990BaNWqVU6/Z+No4zp48GDX1rt37zz1rjzZ8ZrpuLVzZSWnmTRu\n3BiAF154we1r2rQpABdddBEAY8aMcW377rsvAGuuuWaNz/3PP/+47Rhmjtdahw4dANh///3T2saN\nGwcUP0VNKod/bsslVdn/3lfu3+WaN28OpJ5rdtxxR6A809VypUiOiIiIiIgkSsVEcvyr+GzuuFvU\nJuwqPmwSrt3Nt5/+xGjdlYcDDjig1F3Ii2yPI/9OkKl6LPm/XzUa5N/VLdbk7zj78MMPAZg0aRIA\n22yzjWuzYgSZWCSoZ8+ebp+Vl7733nvz1s9ykm3xhkp39NFHA0H0JsyRRx5ZrO6UhZ133hmAxx57\nLK3tvvvuA6BXr15F7ZMkn33G+lk2UYT9frlGdOzz7dNPP3X7vvjii1J1p+gUyRERERERkURJfAlp\nuzMelo9pd8bt7nBYW7Z3zzMNY9Q78eVeonHFFVd029OmTQOCu6F9+/Z1beVUQjrT8+YjjzfsTpQd\nN8WKCMb5uFtuueUAqF+/vtv3888/1/h7Tz/9NADt2rVz+yZMmABA27Zt89a/uJeQjnq6L3Q/43jM\nLbPMMkBQ/ni//fbL23PPmzcPgAEDBrh9r7/+OgBvvPFGTs8Vx7Hr3LkzAA8++GBa21FHHQUEc3JK\nqVBj50eabdkEe62PP/448utl6q89LpvH2Fwy//H+ufG9996rsV9xOe6izrvJVT77Hpexi8r/LmJl\n8K2sfo8ePVzbnDlz8v7aKiEtIiIiIiIVTRc5IiIiIiKSKIkvPJBpApqlqeVjQpmF78LCpbbPD/FV\nwiTyLbbYwm1nmrRbTgodMg5LV7NwvLWV6wTIfPjjjz9SftbE0mZatGiR1rbuuusCsPLKKwPwyy+/\n5KOLsVTINI6k2mSTTYDMaWoLFy4EYKmlgvuF9erVS3nMs88+67bHjx8PwNixYwFYsGBBfjobAw0a\nNHDb5513XrWPi0OaWqH5pe5PPvnkWj1XIdLVwh6zxx57uO1s0tXiItsiA1WnJ/jfwaouD5Lr+TKs\niJClryfhu559Vt5zzz1A6rFSt27qZcT999/vtuPwXlckR0REREREEiWRkZxsy/zm8464Xa3b1XvY\n3QW/L0m4uq+OXdlfcsklaW2LFi0CYMSIEUXtU7nxixjUthxmpdhggw2AoEQtBIuehUXgPvvsM6Ay\nIjj5WKi2EvhRmGzKQvfp0weAzz//3O1bffXVgaBsub/o7K+//pqXfsaRjQXATjvtlNLmT0auBP45\nZfbs2QA0atSoVN1JtGyXcsjm+17V73H+vkwyRX7K7bveYYcdBqQWRVl22WWB4NxWThTJERERERGR\nRNFFjoiIiIiIJEoi09VqSs0o5HojFpoMSzGqlBXGu3XrBoRP2D322GMB+O6774rZpbLjh9aVrpbO\nX4PpiCOOAODmm28GMheH+OSTT9x2UlNosk3XlXQ77LCD2/bTr6pjE7RfffXVtLZRo0blr2NlwE/H\nsvegFVZ44oknStKnUhk5cqTbtonuHTt2THucTeD+6KOP3L7vv/8+L32w9XkANttss2ofd+uttwIw\nefLkvLxusWRKP7PvYbVdry5MWJGBMGHrL8aN/1nZpUsXIDh2qxYUAHjnnXeA1HS+qVOnAsH6T59+\n+qlrs7XG/v7773x2OyeK5IiIiIiISKLUWRJ1CewCilqmN9tJtsVYObamO/HZ9KFcV8W1q/yLL744\nra1ly5YAvPvuuwXtQ7mOXZiqf0ulrD6//fbbu+1dd90VgK5duwKpd42t4EA2LOoDqaUu8yXXscvn\nuEUtf5qNpB9z9evXB+Chhx5y+9q3b1/t42fMmAEEWQH5uvseRanHzixevNhtW5+GDh0KwDnnnJP3\n18uHuIxdPtn50I+eWSTH+v7FF1+4tg4dOgDBnfhslXrssjnfRV22w/8OadvZZlTY959M0aBSj51p\n2LCh286UXWPRmgMOOACAH3/80bWtsMIKQHgBH/u/2WeffWrf2f+X69gpkiMiIiIiIomSiDk5dqWd\nKYJTyHk4Yfy7BmF3AJK4sGPjxo0BOO6449LaXnnlFQCmT59e1D6Vq7Djws+DrQQ2twvgrLPOystz\nnnnmmW77+eefB+Cnn37Ky3OXWq5zt6ougFfJLGqYKXrj++uvvwBo1qwZkFpaNdc74kn2wAMP1Or3\nd955Z7fdpEkTAJ566ikgWQup5tOYMWOA8Hk4s2bNAmD06NFuX7ker3b+8r9rVT2XhZ0TM533co3a\nmHJd6D1smQ/zxhtvuG1bVNuP4Ji4l5VWJEdERERERBJFFzkiIiIiIpIoiUpXC2MpPuUUQixXlqZm\naWu//fabazvmmGMAWLRoUfE7VkaihsuTaPPNN8/qcTNnzgSCMr6PP/64a7Nj8N577wVS019uuukm\nILuV7ePKT2vMJu3MT6vIJs23Ulhp+2xtu+22ALz22mtAauEBKyt9++23A/D000+7tj/++KM23Yyl\nk046KW/PZYVpLI2mTZs2rm255ZYDgvHs1KlT3l63XK2xxhpu285xW221VbWPt3TMck1RCxNWqjns\n3Jav81y5pqb5rLz46aefntZmaWoHH3yw2zdv3ryUx/i/17Nnz2pf55tvvqlVP/NBkRwREREREUmU\nRERyMt31LtWVdk134sv1DkBV9erVc9vt2rVLaVu4cKHbtgmPklnY3abaLmxWrq688kq3ve666wLB\nROZHHnnEtdlCen4J26qaNm0KpJYu33333QFo3rw5EESEkizTJF2Jzp98a9EH+zlixAjXNmjQICAo\nQZ0EVkJ2qaWCe6b//PNP1r9v70MIigrYYr9h5WKtjO3ZZ5/t9tm4VgqL4Dz33HNu3zbbbAOEj5mV\nRk9SBCdT4YCoMhX3SdLnb9++fQFYeuml09ruu+8+AHbaaae0tuOPPx5IXejdFvw0v/76q9sePHhw\n7TtbS4rkiIiIiIhIoiQikpNJsSMmdrUfdkfBv0uQlEiO3VWDYMFGM2TIkGJ3p2xlmotTaaWjzX/+\n8x+3nSnPPBsW5fFL2tp71eYU9O7du1avUQrFmrsVdnfYzmF+Tny53u384IMPgNS/pXXr1nl5brv7\nCdCxY0cAtthiCwB++OGHvLxGKc2ZMwdIjd7Y8WJzQPxytMYiqOPHj3f7ll9++ZTfj+Fa5bFg85Es\negNBJM3+H/zP5meffbaIvSuOQix6HFaWutLYZ8pqq60W6ff9ReALveh7NhTJERERERGRRNFFjoiI\niIiIJEqdJTGMB9epUyenx1f9E/z0nmKlT9jrZFph1y89mI0o/zW5jl1tffvtt27bJt++8sorALRt\n29a12QrhxVIOY+enNGYKvRe7X+Uwdrlq0KABAA8//LDbZ8fnzz//DEQPz/tyHbvajlvcTt/lfq5b\ndtll3famm25a4+M32mgjAM466yy3r2rabhgrSpCPtJi4jJ0/qb1Zs2ZAsEL6lltu6dqsHK0tKzB8\n+PBq+5fpbzvooIPc9pNPPhmpz3EZu2yddtppAFx33XVAcF6DoF+33HILAOeff75rW7BgQd77Uoqx\n8z8nMxUZsPdVpikCmZ4r1376v5/Ne7rUx12fPn0AuOaaa/L2nLZcgz8WhUhXy3XsFMkREREREZFE\nSWThgXxNGK2JHyXKNAE4iRPHrXznqquumtZmkxyLHb0pF3anI1P0Jtc74ZLZjTfeCKRGF41fBr1c\nxHWCf7mXpfbL3mdzF9Ie8/zzz7t9++yzDxCUjl5ppZXSfq9Lly5AsiY4+yXfbWHKhg0bAqmL8Np5\nr1evXtU+11133QXACSeckNZ25513AtGjN+XMIoZ+BMfYIsgWwSlE9KZUsl242D43s3lf+UVGqj6v\nf37N5lybaySn1K6//nogtYS0jZ0VQ/nwww9d2+jRo4FgId5NNtkk7TmfeOIJIB7FBnyK5IiIiIiI\nSKIkMpJT6LuJdicq29cphyv7bDVu3BgIIjn+nYChQ4cCMHDgwOJ3rAxkE8GxqF+SjpliqVv339OZ\nf0f5qKOOAsLn2/z9998A9OzZswi9yy87PopVQjpbcY5at2zZEgjKN4fxF7J79NFHs35uy0cHePvt\ntwGYP38+EB7JSaIxY8a4bYvw2zIC/uK977zzDpBa/rgqK+seln/fv3//2ne2jPiZKf6is1XZgqhJ\niuCYbDNlSvW5GdfIenWszLg/JyfT/Jytt94agLXWWiut7c8//wSCeWJxo0iOiIiIiIgkii5yRERE\nREQkURKZruazMGLUcGK2ZX5N1BKq5aJFixZAkLbmszQNW11eUmUKuecyYTJbduzGMfXNJs5ayV4r\nNQuw7bbbAplTM3ybbbYZAB06dACCid81ue+++wC45557snp8nISdZ+z4KkS6rn8M+RN2q4pb2oZf\nVGLChAkArLjiitU+ftGiRW579uzZKW2WjgtBapCdB/fff3/XZumPjRo1qvZ1brrpphr7Xs7Gjh0L\nwMEHHwxAq1atXNt2220HZFcK1n/M66+/DgQToyuFn9a3yiqrpLRNnjw5dDtpCnFOK1aBqiTYcccd\ngfTjD4K07+nTpxe1T9lSJEdERERERBIlEZEcm3gWdqc8bF/Vu43+XQLbtqv8bO8gFOJOfFwss8wy\nbtsWkTL+hNtKLOmZL9mWyKxJpsVoIT4RxgsuuACA4447DoA//vjDta2zzjpAeJnUqCy6aHfzAc48\n88y8PX+p+P+3uZ57Mi1gXFVcjptc+QvoZYrgGCteAbDeeuultPkTc3v37g0EkaKwUvqZ/PLLLzk9\nvtxYtKVr165A6qRke8/nysrW2v9jkyZNXNvMmTMjPWc5uOiii9x21eiXv7hxktm5LR8RHTvvlXu5\n+2KyhXvDPPjgg0XsSe4UyRERERERkURJRCTHrvIzRV/8u5W1Lbua9Hk3VVm5aIBdd901pc3Pz//5\n55+L1qdyVLW8rn+cxq0UcKG1adMGyDxvIR+mTp0KwK233grAyJEjC/p6Ei/+gsRWTtwWtsuVH9EO\nK6VanRkzZrhtK68/b968SH0oNxbROfHEE90+u5Nu8zubN2/u2i6++GIgPOpmC4ta9GzOnDn573AM\n+XMTLZJj88VsAcZK5s+tyTQHO5ulP+y7XdzmFsbNp59+6rbjPlaK5IiIiIiISKLoIkdERERERBKl\nzpJs6jgWmT9ZNAq/1HNtJ5eVctJ2lP+a2o5dGJskDumrTZ988slue/jw4Xl/7ajiMnaZ5FrwIpvV\n5GszEd0UY+zq168PBJOJrUQlBCVmfZbW1qlTJyD1b/v444+BoAy1PxHyww8/BIpX1jyQeEPXAAAg\nAElEQVTXsSv2MeezYyyb0viF7mcxjjl7/BFHHAEUPnXRjku/pHkhUqzK4VwXV3EcuzXWWAMICg5Y\nSXII+mtFMC655JKC9iWTYo5dLueqKIo9BSGOx10mw4YNA6BHjx5AauGUvn37AkEJcz89txByHTtF\nckREREREJFESGcnxRb0DEIeS0HG52h8zZozbPvzww4Fg4tn222/v2ubPn5/3144qLmNXjjR20ZVT\nJMeEnSOTfGfTfs8v+9yrVy8gmNwOwV1Liwx+8sknWT3/XXfdBQRRG3+B0ULQ+zW6OI5ds2bNgOB4\nW2qp4F70P//8A8ABBxwAwLPPPlvQvmRS6rGr7VdX/7udZUkU6/teqccuV5tvvjkQjM9qq63m2mwx\nUPsceeONNwraF0VyRERERESkoukiR0REREREEiXx6WrlrNxCmnGisYtOYxddOaarxYGOueg0dtHF\nZeys2ADAPffcA0C7du3SXs/6a2uTjBo1yrXNmjUr7/3KJC5j56/TkqlwT5zWN4zL2JUjpauJiIiI\niEhFq1vqDoiIiIgIrL766jU+xsr2fvnll25fsSM5ceFHckSqUiRHREREREQSRXNyYkx5m9Fp7KLT\n2EWnOTnR6JiLTmMXXRzH7rjjjgPgzjvvTHs9W9x4wIABAIwePbqgfckkjmNXLjR20WlOjoiIiIiI\nVDRd5IiIiIiISKIoXS3GFNKMTmMXncYuOqWrRaNjLjqNXXQau+g0dtFp7KJTupqIiIiIiFS0WEZy\nREREREREolIkR0REREREEkUXOSIiIiIikii6yBERERERkUTRRY6IiIiIiCSKLnJERERERCRRdJEj\nIiIiIiKJooscERERERFJFF3kiIiIiIhIougiR0REREREEkUXOSIiIiIikii6yBERERERkUTRRY6I\niIiIiCRK3VJ3IEydOnVK3YVYWLJkSc6/o7H7l8YuOo1ddLmOncbtXzrmotPYRaexi05jF53GLrpc\nx06RHBERERERSRRd5IiIiIiISKLoIkdERERERBJFFzkiIiIiIpIousgREREREZFE0UWOiIiIiIgk\nSixLSIuIiEjyrb/++m777bffBmDRokUAbLvttq5t7ty5xe2YiJQ9RXJERERERCRRFMkRKZL69esD\n0Lp1awB23XVX19amTRsANt98cwBWXXXVap/nyiuvdNuXXXZZ3vtZTHan9oQTTkhrmzFjhtu2cVlu\nueUAOO6441zbuHHjAPjxxx8BePzxx13byy+/DAR3hkVy1aBBAwDef/99t2/DDTcEoHPnzkDqMbfs\nsssC0KFDBwDuu+8+13bggQcC8MwzzxSwx+WlR48ebrthw4YAjBo1CoCffvopq+dYaql/79f6CyYu\nXrw4X10UkTKlSI6IiIiIiCSKLnJERERERCRR6ixZsmRJqTtRlR9yLgRLJ7j00ksBuPDCC13b999/\nD8Dw4cMB+Oyzz1zbww8/DMDChQsBWLBgQUH7GeW/ptBjF5WlaF1xxRUA3Hjjja7NT/XIl7iM3dFH\nH+22L7roIgA23njjtNf73//+B8DEiRMBePfdd11b3759AVhllVUA+Oeff1zbPvvsA8CkSZPy1udC\njV3Xrl3ddrNmzYDgPbjMMstkfM5s+mSP9x/70ksvAXD88ccD8M0339T4PLWR69jF9f1abHF5v4a5\n5pprADj//PPT2n7//XcAPvjgA7fPUiq32WablMcA7LbbbkBq6lttxXnsMllnnXUA+Prrr90+Szuz\ndNR77703q+dq3LgxAGussYbb559Dq1OuYxcHcR47Ox5OP/10t8/SR7fYYotq+2XfRSwFuup2vsR5\n7OIu17FTJEdERERERBKlIiM5F198MRBEFXI1ffp0AAYOHOj2jR49uvYdq6Lcr/b3339/t23jY9GI\nN99807V17NgRgO+++y5vr12KsbM7uABjxowB4IADDnD7/vzzTwAeffRRAMaPH+/aXnvtNSB8DOxu\n5lFHHZXWtt9++wHwwgsv1KrvvkKNnT8ROJfIDAQTkP/++++0x9mdtm7dugGw8soruzaLEP32229A\n6p1hi+D+8ccfNfYlW3GP5DRq1MhtW3GLmTNnAuFjm4kVjejfv7/b1759ewCuv/56t69Pnz5A5rGJ\n47muXbt2ADz99NNpr2fRhyZNmqT8G4JMgV9++QWAk08+2bVZpDaf4jh2mdiddIuy+tEXOw/acWTv\n20KJ49hNnjwZCKJ+vqFDhwIwf/58IPWcesMNN9T43E2bNgXgkEMOSWvzX69Tp04prxMmLmNXr149\nt23ZAkOGDAGC7xvZ9sv+pq+++sq1DRs2DIBBgwbVvrP/Ly5j51t++eWBIAoWVgxop512AmDKlClp\nbfYdxP9uZ+fAfFIkR0REREREKlrFRHJ23313t23lO600aFR+WVq7c9+7d28Afvjhh1o9N8Tzaj8X\nTz31lNu2u6Jh8yaOPfZYIL/RsFKM3d133+22jznmGADeeustt++MM84AYOrUqTk9byVEcn7++We3\nbREWv3yszTnKJtpn878AbrrpJgA222yztMdZeWm7++f3Iaq4RnLWXnttIJhfAtC9e3cgiMTY/Khs\nnXvuuUBqGXO7G+jPEdt3332BzCV943Ku86OxVvrZyj7bfE2Ali1bAtC8eXMg9e7lSiutBBR+/peJ\ny9hl4kcQ7Vxl78lff/3Vtdm4+nNhCymOY2fvnbBITqa+5POrnJ0nLrnkkmofE5exO/vss922n12T\ni7DvJcaiifaZno85xHEZO4tSAey5555A+JylXHz88cdue/vttwfyO39dkRwREREREalousgRERER\nEZFEqVvqDhSLpZFB7dPUTN26wfBZKHPu3LlAaolkP82hEuQaVrXSyoUo3lBMV155pdu2SbUPPfSQ\n2xd1gruNp/20Ywzym6ZWaH45TwuJ25jcfPPNrm3WrFm1eh0rxw2wwgorVPu4vffeGwhK/eazDHdc\nrLnmmgAMGDAAgCOPPDLtMbkel5aCYCmolqIGwRj6qW/ltPK8/U0QpKkZK6AAQaEBv+CA8dOvKp1N\n/PbHrmrqqD/OxUpTi7MHH3wQCIoEWKltSWWppZnSbP3UJkt1tqVAZs+e7dosxbRXr15AajGDFVdc\nEQg+y3fddVfX5qejx91qq63mtq0wjJ8Cv/TSSwPBEil+WXybjuF/thor7jN48GAANt10U9e2xx57\nAPDcc8/V/g+ISJEcERERERFJlERGcvwr1hEjRgDBoolh/HKnNtk0jJXUsyv57bbbLu0xtmCcldqD\nYGLuq6++WmPfk8Amw/t3Rav68ssv3Xbnzp0L3aWi+Pzzz0O3a6tLly5AcFfKn5BfTm677baivE6b\nNm3c9nrrrVft426//XYgeREcP8Jsi6BaBMcvE21FGUaNGlXjc/oT8i0qbuPsTyq1Igbldq6zwgz+\nsgIWObUyuuUUNY2Lc845B4Azzzwzrc3ef6+88kpR+xR39r60pQZ23nnntMfssssuQDBZHILPh/r1\n6wPhxVYysaUxIIh2xJkVPrFIS5hbbrnFbVuUJhMbM1s41GcL1V511VVunxUbuv/++7PocWlYifYH\nHnjA7fOL85i3334bCDIuci2QtO666wJB1gDAhhtumFtnC0CRHBERERERSRRd5IiIiIiISKIkKl3N\nVjr3V5K39XE+/fRTt++6664DgjSLefPmubb33nuv2ue3kPtee+0FwLXXXuvabDKu8cPIti7Plltu\n6fbVdnJ1nF188cU1Puajjz5y235ddfmXX6veUoUsHSHqWgBJZ6uB+5PrM9XUt9SqpPGPHfsbLU3N\nX9PGzoOZWJEWS3uD9NXSbcIpwIQJEyL0uPQs9W6rrbZy++zYsfN+2KRbCWcp3bY2mM/WFOrZsycA\n//zzT/E6VkZsnSW/eI0J22fs+0m26ZXffvstEBRiAfjxxx+z7mepZLNeip9alg1LnVxrrbXcvh12\n2CHlMf7Uh8033xyAJk2auH3+9Ic4sLVwwlLU/CIKVvQjm7Xowtjnr18ow1LfrJhGPtaPzJUiOSIi\nIiIikiiJiuRcffXVQBC9geDq1FbdhvCyn7mwldIvv/xyt+/JJ5+s9vF2N9QmYUJ2k+DKjZUC9e+G\nVmWrytvkSgl33nnnVds2bdq0IvYk/lq1agUEd43C7vBZJMOPsCbtzryVi+7bt29amxWreOyxx3J6\nzhYtWgDhK59bqWS7g1du/GIK/qrpxiLw/oRdqd6yyy7rtu3usZWQts9MgO7duwOwaNGiIvYu+Syq\nYMWPMhk+fLjbtsyAcoje+KwssX9u8ouuQFDeOFu2lMEmm2zi9lWN5PgaNWoEpJ4/LMrmF1cqBYtG\nhRXIOuuss4DU4gK1jaj+9ddfQGohGxsXK0CgSI6IiIiIiEgtJSKSY6X9bEEnn82xqW30Joyff/78\n888D0LZt22ofX653PLNl5XozLbZq5aInT55clD6VGyv/GRYNy7QAYaWwhcb8Ur+Z3nMWbbDjbsqU\nKQXsXfH5+c+2AHHVOTMAH374IZD9/LeNNtoICMr8rr766q7N5jeOGzcOiJ7DXWp+tNQiVv7fYgvl\n/f7778XtWJnyI15299giqP5Cz9lEUG0RX/9YvvDCC4Gg3Le/iOjEiRMj9rq8+Z+1tgC1/16tyiI4\ndicfoi9SXWq2EOecOXPcPn9uDKTOD+7Ro0e1z2XzpYcMGQKEz1/JxI9KWkSj1NZff30ANt5447S2\nxx9/HMjPfDhbONU+h/3P5jhQJEdERERERBJFFzkiIiIiIpIoiUhXs8mNRxxxRFqbv+JtvvlhSSux\nOmPGDCA8dS7pbIVw+xlGaWqZrbrqqkD4ZEErw2iTyCvRYYcdBkCXLl2yevy9994LwKRJkwrWp1JY\neumlgdSUnUMPPbTax1s5WUvLqslxxx0HBOmBPis9bat9l6uDDjoobZ+tDg5BqrOlIvsszcPKZ9t5\nH4IS3pYimHSNGzcGYOedd05rswIzmY4V//Nim222AYIV5MNSbcygQYPc9i677ALAwoULs+12WbNx\nevjhh92+qmlqfiEBm1Bvq9GXa4paGL9MtKXXmhNOOMFtP/HEEwCsttpqABxzzDGuzcpnZ1OW2mfv\n+xNPPNHtmz17dk7PUQqPPPIIAJ06dXL7LLU0E0uj33///d0+K7Fv00biJp69EhERERERiajOklwv\nXYsgUyQgTMOGDYHwCbAWybGFxwrtvvvuA4I7zr7mzZu7bSttnUmU/5pcxy6fbFExu1MSpmqJx0Ip\nt7EztpDbiy++6PZZv2ySuY1zocR57MLGx9idpLDJlHY3/r///a/bZ5NM/X21levY5Tpu9jda2dRL\nL700p9+Pyo/AdujQAcjvhPxSHHM2cRmyj3BVZWPgF3SwUr62WLS/ELUVa8inUoydRRIhKKhz2mmn\nuX0WbbbPvEylYx999FG37d9ZBrjnnnvc9vfffw+El9e38un2GAjKxWcqShCXc51FwwAOPvjgGh9v\n73v77gPB32LLNPhR3tdeey0v/fTFZez8Y9HOi2ELktsxaMUa/BLy1q9Mf5MVOOjatavb98knnwC5\nZ1cUY+wssjd+/HggdWmVfLJCIvZeveiii9Ies+OOOwKp59yoch07RXJERERERCRREjEnJxPL1V15\n5ZXdvl9++aVU3Ukc/+6d3TmwK21/ztKsWbOK27EyY3NxbEFb39tvvw1U9lwcY3ck7S45BOWO7W58\n06ZN037PFgP2FwU+9thjgeDuus2vgPjOp7DF7YoVwTH+4ng2B7LcSyvvtNNObtsiZH5JXlu00uyz\nzz5uu1mzZkCwAGbLli3Tnj+slOrIkSOBYO6Af9fTyp2XgxVXXNFt22eAf4fV8vTDIjh2592OYT96\n8+abbwLBPAt/PpSVqLVIjl+2Nyx6a/N54lxe2ubWvPrqq26fH2GIwsoDFyJ6E0eLFy922/a+svl2\n/lIMmUprV80C+O2331ybjWf//v2BIHoTdxbVtDLsNs8Sgmi8fT+G9Dk1H330kduuulCsvU8Bbrvt\nNiA8W8q+a8+fPz/3PyBPFMkREREREZFE0UWOiIiIiIgkSuLT1awUr4XnAMaMGVOq7iSGlVo96aST\nqn3MDTfc4LZtQmCl8YtNtG/fHgiOSX8ioKV6hKVanX322UB8VlIuJRuDsMmNtkq6rV4NQYqLOfzw\nw922rQhtYXw/bcYmrvqlb/30mFKxMp/t2rUDoHfv3mmPeeqpp9z2tGnTqn0uWx3cjq+wlCuz1lpr\nuW0rkZzNyvVx5qe52Lafyjxs2LCUx1f9NwRpW2El3+148ssgd+zYEYDTTz8dSD0/WFqJnyoTV337\n9k3b56emVf2MXXvttd32OeecAwRpZ6+88oprq1rW20+B6dWrV0qbXy64ajpNubDJ5H6aZC78FCNL\ntbLSyH6JZNO6dWsgNT0uSRYsWADA119/DaR+FmRiY2dl488991zX9vLLL+ezi0U3b948ICj972/7\nZd/9Ag6QOV0tW/b54xdmKTZFckREREREJFESEcmxkolWvjlsUdA77rjDbduVebEWbbISokkqeGCF\nHGziJKRP3quUiY9h+vXrBwR3ySGYNG6lKP0FY20yd1h5RFvEzO6A+mVok7SoW23Z5MY33njD7fO3\nIfh/AWjTpg0ADzzwAJBa+vzWW28F4IsvvnD7wspWF5u9t6wvtemTFbsIO18aK4RhUQYIIjlhi2RW\nGou6hC1ybPv8u+02EfrJJ58EUgthWMnf0aNHF6azedSqVau0fWETsu3usB9xtHPi+++/D6SWTLZj\n0SKuu+22m2uzKO5DDz0EQJ8+fTL2MVMUM25yLYtrRT8seh3lOZLCPxaHDx8OwIYbbhjpuS677DKg\n/KM32ar6+RiFfa/ZbLPNav1chaBIjoiIiIiIJEoiIjl2d/O5554D4NBDD3VttviklfoEePjhh4Hg\nLlrU8nb+4kxWbtR/bWMlgP2FysqdLXjn3z2y/wcr2Rl2dzOJ7G6ln6duczr8O0I2L8lyXf05ICNG\njKj2+S1qdtdddwGp88tsbkopc17L1YQJEwC48MILgWDhYN/YsWPdts1DSworC21zxXyWs3/NNdcA\ncPPNN7u2uXPnFqF3yeGXN7ac/zvvvBOAyy+/3LVtu+22QHlEcvz3hS30Zz8BzjrrLADWXXddIDWi\nbSxy6i8G6kduIHWhXis5ne2Cqva5myQPPvggAAMHDgRg6623TnuMvZ/97zU2R8VfmLbcWantxx57\nzO3zS5tLcdjc4r333huA7777zrWFzRktNkVyREREREQkUXSRIyIiIiIiiVJnSQxnq/lpYFGccsop\nbjssBcVMnToVCMqxQm6rTvuT/qoWFfjzzz/dtq0qa6kK2YryX1PbsavJ8ssvDwQTZ/fYY4+017YJ\ntPaYUijm2Fl5VL+krj1XixYt3L53330XCFZOv/fee9OeY8CAAQC89NJLrs0mwYdNprTiGVYa9PPP\nP4/0N/jieNzli61UD3DYYYcBqcUIMqlaYjNMrmNX7HFr2LCh27ZCLZa2++2337o2mwyej4mp2YjL\nMecXWLAysvvttx+Qn8Ix9evXB4K0Iz/19MgjjwRSU8GyUYqx848jS8P2nzPq14oXXngBCCaAf/DB\nB67NJtvnUynGztISISjla0VQfFZQydJpAUaNGgXAwoULa9WHfCj1e9ZSwv2Uz6r8VNFrr70WCMqU\nW8q93y97riuvvDJv/QxT6rHLJxtXKwTif88NK61fW7mOnSI5IiIiIiKSKIkoPFCVlZgE2H///YHU\nUp1WhMAmSvp3zQcPHgwEZXsz3b2zhd3C/Oc//3HbuUZw4szGx4/gVOUvIlUJ7C6cf6fFtm2CMQTl\niO1usb/Alt2ts0iOz6IPVs7XFhIEaNy4MRAsqOffESyHYgT2XvTfS5999hkQvQSsLXIJsNdeewFw\n7LHHArD99tu7NotKZrozZH0pd1Yu2o8SWETRIjh+Kd9iRXDiwhbF8yf916tXDwjKu0eN5NgEaQgm\n4loExz8HlFOhFn8sLALll3T2lxaoyqJY9jkxadIk1/bWW28B5bEgaq7sePKjBGERHGMLEfufIRLo\n2rVrjY854IAD3Pabb74JpC8467NsC8meLW1h33lyyYYqBkVyREREREQkURIZyfnhhx/ctl21+2UG\n/TxoSM0btHkS77zzDgBDhgxxbXYnwKJDPXr0qLYPdrcqaWzuR1h+qOVPJ2nR02xYSVM//9fu1vlz\ncizC8MgjjwDQv39/15ZN1MJKVFvUBoJ5T+ussw6QeueqHCI5tiCqH2GwBU4XLFjg9mWTh2vHpN0x\nhdxKivqvYQsVZrrrV04s4mfRG58dv5UWvfHZsebPpbTjyBY99XP/H3/88ZTf9+dIWHTSSsT7v7fx\nxhsDQaTCSsBD6py+uFu8eLHbtveu/zlqkZzbbrsNgPPOO8+12fs7htOBC6pXr15A8P2hOjZX7oor\nrih4n8qNlSsG2HTTTWt8vB+ZtUV5Laot+WXvZ3vPx4UiOSIiIiIikii6yBERERERkURJZLpamOOP\nP95t28TvYcOGAeGlYS30fs8997h9lgZnK9DXrZs+fFbWMNtVmcuNhSTDUg0mTpwIBCVFK4Wlbvgp\nV5ZG5pd9tpWA58yZU6vXe/HFF932yy+/DASrDZebv/76C0gtzmGpLg0aNHD7cklXyzUNxl7bL3lu\nJWyTIqxQiBUcuOOOO4rdndgJS0+cMGECEKSYjRkzptrff+qpp9y2rTgfltL7zDPPAEGaWhImOlsx\nj549e7p9559/PhCke9v7vBLZuFhJ8jCWogZBGvz8+fML27Ey9Pfff7vtRYsWAZlL+6+22mpZPa99\nZ0lSkSj5lyI5IiIiIiKSKBUTyfGLEdx+++1AEHmYMWNGVs+R6a7As88+CwTRoSTdhbESqgDLLLNM\nCXtSPmxisd0hzif/btbRRx8NwAMPPABkfyzHhS1416pVK7fPStH6Cw5W1ahRI7dti8+a6dOnu22b\n5GylaX22yOqsWbOAwiw2WGp2zrIS2r6RI0cC5VGgolheffVVt22LNh511FEAdO7c2bVttNFGKb/n\nF/wwVuzm0Ucfdfus6EjcyqzWhr23/FLZErDCE5YBEsaP5CTpu0O+TZkyxW1bQZBMS3lky/6Pvvrq\nq1o/VyXo1q2b27aMJssMsP+XuFAkR0REREREEkUXOSIiIiIikigVk64WZubMmQCsvvrqbp+lHbRt\n2xYIVnMOYyvQA1x11VVA6joLSbH++uu77RtvvBEIxswKLQCMHz++uB0TV8QgbGJ5OfFTxZI26T8O\nlEqUHT8V1FJNLX3SforkwtK9wwqiWDGaL7/8sphdSoTu3bsDqd/DTjvttJTH+O9nS082flGpQqSV\nJ1m7du3S9k2dOhVInRoSB4rkiIiIiIhIotRZEsNlh8NKb1aiKP81Grt/aeyi09hFl+vYFWvcTj/9\ndACGDh3q9lnBBr90dqnomItOYxddMcZuwIABAJxyyikA9OvXz7XdcsstQFAgpZzouIuu3Mdu7ty5\nbnvNNdcEYNSoUQAcc8wxBX3tXMdOkRwREREREUkURXJirNyv9ktJYxedxi66uEZy4k7HXHQau+g0\ndtFp7KLT2EWnSI6IiIiIiFQ0XeSIiIiIiEii6CJHREREREQSRRc5IiIiIiKSKLEsPCAiIiIiIhKV\nIjkiIiIiIpIousgREREREZFE0UWOiIiIiIgkii5yREREREQkUXSRIyIiIiIiiaKLHBERERERSRRd\n5IiIiIiISKLoIkdERERERBJFFzkiIiIiIpIousgREREREZFE0UWOiIiIiIgkii5yREREREQkUeqW\nugNh6tSpU+ouxMKSJUty/h2N3b80dtFp7KLLdew0bv/SMRedxi46jV10GrvoNHbR5Tp2iuSIiIiI\niEiixDKSIyIiIsk1duxYAA499FC3b4cddgBg2rRpJemTiCSLIjkiIiIiIpIousgREREREZFEUbqa\niIiIFEXXrl1TfvoTqtdaa62S9ElEkkmRHBERERERSRRFckRERKQoTjvtNACWWurfe6wff/yxa5s6\ndWpJ+iQiyaRIjoiIiIiIJIoiOTVYbbXV3PaECRMA2Hrrrat9vOUXf/PNN27fWWedBcDDDz9ciC7G\nlr9o0y677ALAG2+8UarulIV69eoBwXgBtG/fHoA99tgDgCZNmri2Zs2aAfDnn38Wq4tF8+ijj7rt\njh07Vvu4xx57DAjuDK+33nqubdSoUTW+zp133gnA/PnzI/VTkqN169Zuu0WLFiltPXv2dNvrr78+\nEBx7r7zySqTXs2MPkn38tWrVym3vvvvuKW2DBg1y2z/88EPR+iQiyadIjoiIiIiIJIouckRERERE\nJFHqLPFzimLCLylZbJbycs455wBwyimnuLamTZsC8OWXXwLhKQqWyrbNNtu4fV9//TUAbdq0cfs+\n++yzGvsS5b+mlGNndt55ZwBef/11t++www4D4IEHHihKH8ph7PxyqZttthkAF154IQD77rtvVs9x\n//33A3DCCScAsGDBglr3q9Rjd+CBBwIwfvz4nPpkfci2//b42bNnA/DWW2+5ts6dO2fX2SpyHbt8\njpulMS5cuNDt++677/Ly3BtssIHbtvQiS5Xcc889XVvUdKNSH3P7778/AGPHjnX7VlxxRSC3Yy/X\nx9uxB8FxP23atCx6HCj12GXj3nvvddtHH300AL/++iuQemz9/PPPRe1XOYxdXMVx7JZeemkAttpq\nKyC1qIV/XgQ4/fTT3fZFF10EwFdffQVA//79Xdubb74JwNy5c/PWzziOXbnIdewUyRERERERkURR\nJAdYbrnl3HafPn0AOPXUUwG4++67XdvVV18NwN9//w2ET/ZeZpllALjjjjvcvu7duwPQq1cvt++m\nm26qsV/lerVv0Rpb7A3gwQcfBODQQw8tSh/iOHYWJbTJzf6xZZPl7U7mp59+6jLbea4AACAASURB\nVNrsWNl+++2B1AnQxu5EP/fcc7XuZ1zG7vPPP3fbL774IgDDhw+v9vEWUVh33XXdvoYNGwKpxQjM\nrrvuCgR/72+//ebaJk6cCOQe0Sl2JGellVZy2xZZnjFjhtvXrVu3Wj2/GTdunNuu+h7u0qWL237k\nkUciPX+pj7nrrrsOgHPPPTft+a1v06dPd23+sVIb7777rtu2KG6uBQhKPXbZ8CNWa6+9NhCUkr79\n9tuL2hdfMcZu5ZVXBoJiRH4GyMyZMwE46qij3L4NN9wQyHyM2XP+8ssvOfUln0p93DVo0ABI/Z5h\n37X22msvAN555x3XdumllwLwySefAKlRHvtsDvPf//4XCLIrZs2aVeu+l3rscmURst122w2Af/75\nx7XZ+WrIkCEA9O3b17VZNo//+NpSJEdERERERCqaSkgDhx9+uNvecccdAWjZsiWQegcqGxbl8e8I\n7rPPPkAwLwWyi+Qkic1LqjT+fAXL+7W5Wb///rtrO/nkk4GgxLZ/19g89NBDABx00EFun19OOmn2\n228/t23Hzx9//FHt46dMmZLT89ucn06dOgHBHAyA999/P6fnKhU/QmV56DZ3MB+23HJLIDWiZXfS\n2rVrBwSl9cuZlRr3z9vG7kb67zuVOs7OscceC8Aaa6yR1mbR/aQbPXo0APXr1weC903VbWN3xP3l\nK4zdzbd5TE888YRre+mll4DgvOnf8b744osB+Ouvv6L9ETHhlyK3JQZWXXVVt6/qXX7/XGjLENg8\n60zRG5/NPbRMinxEcspB48aN3bbNX7rgggtq/D0/Uvn4448DcO211wKlWUJEkRwREREREUkUXeSI\niIiIiEiiVEy6Wr9+/dy2pZQNHjwYSE2LsTKeixYtqtXr/fjjj247U4pNpbBJl5XC0l6sWAUERSks\nnGspahBMhszEjiMLAUNqGcyksUm5+bDKKqsAQdoGBO91S3Gw0vAQpC/FnU2wLZTzzz8fCI5dgJdf\nfhkIikEkwSWXXFJtm527lKKWOzs+beIyBGW6f/rpp5L0qdjOPvvslJ+NGjVybZYq6zvmmGOqfS5L\nV7O0Hz/97Pnnn6/296wAy4knnphtt2PF0tT8wiZ2Tg+biG6pbFbMA4Lj7Zprrkn7vTgUbCo1GwNb\n/sQ/nlZffXUgGLNM34/9NEA7vtu2bQtAixYtXJtf+KGQFMkREREREZFESXwkx4oK9O7d2+2z8rwW\nyfELAkh0NgneL+lo/ve//xW7OyVlZRX9O+A2odRKWeZahnb55ZcHgsm85cbuZEJQZrwQx4WV6Ibg\nrqmVhrfFeiG442R3lG699VbXZmVD48r63qFDh7S2qGWcfXbnzkqGJp3dxfTv6NoY6y5v7tZff30g\ntViDsQhgDFevKAg7l1jU3Y9qWTECn733tthiCwC23XZb1zZ06FAgKDJihUFqYmWp7fFhhW3izKLu\nfpEB4y+3YIUc5syZA4Qv82ELZ/tLFFiEy47bSmTf38IWI7Zoti2DkukzZtNNN3XbFiG3pQyuuOIK\n12bfzQt9HlAkR0REREREEkUXOSIiIiIikiiJTFezSXYQFByoV6+e2/fYY48B+Vu1OoyfppRtPfZy\nd9ZZZ5W6C7ExfPhwIHVF+ltuuQVIXR8nF+eddx4QpK2VmzvvvNNt17YYh612DXDAAQcAweTUo48+\n2rXZ+95++qHx+++/Hwhq//uFB+Kubt1/T922CrcvHymAlnJg63EknR0X/vFhq3RXSlpVPh1//PFA\nsPbUvHnzXJut91WpFi9e7LYXLFiQ1v7VV1+l/HzmmWfSHmOFB7JNV7P0onJLU8uGn1qcyzm8f//+\nbtsmxoelq/36669AsF5WkvjrDo0YMSKl7a677nLbVkApm/H1CwrYeeDZZ58FUteHtGkNlrpeKJXx\n7VtERERERCpGIiM5fiGBjTbaCEgtV3nbbbcVvA/+5Geb9GeT4ZLKJq6FsbtSlcJKLA4cODBvz2l3\n78NeJ2yCZdxYMYYoWrZsCQSluTfeeGPXtt122wHBBPHvv//etX3wwQdAUBL6vffec21TpkyJ3J9S\na9OmTbVt/t9fCLayukh1qkYALbINhc2gqBRrr702kLoMQSaFvlteaCNHjgSgZ8+ebp99Htp3PIB1\n110XyG7JCr8ARNhnq7Ey3bNnz86hx/G2xhprADBs2DC3r2nTpkDwXvXHOur3C/s9+/ydO3euaytW\nZEyRHBERERERSZRERXIsj/yQQw5Ja/PzDYtRzjisLLXNAUgqu4sSxnKIJTqbe+K77rrrAJg4cWKR\ne1N4/vulffv2ACy33HLVPn7SpElA6sKOr732WoF6V1phiwjaee3uu+8u6GvPmDGjoM8fNzb/yy/3\nWw6R02Lz74zvtNNOKW1hufw2t9DKywKst956QBCd9efu3XjjjYA+SyAoK20R7jB+1DrqPNC4sL+l\nR48ebp8t7Ny8eXO377PPPkt53Lhx4/6vvTuPu3LO/zj+MmgQRTEzCpMs2bOLLE0yD+skhhohISay\nVGIsIRqVbNlajG2UhtBCgzJCEYbElIhsNXYlO42f3x8en+/1vc597tM5132W63zP+/mPy3Wd+5zr\n/nadc+7r+/l8Px93LHMM/EbKe+65Z72vHVIEx3Tv3h2ISpEDvPvuuwD06tWraK9j625sXdOjjz5a\ntOfOlyI5IiIiIiISFN3kiIiIiIhIUIJKV7Nydf6if3PllVeW5RysdLQVG4CoTKRfPi9EmSHffv36\nVehMwtKnTx8A2rZtC0QLISFK0QqRn3aaTxlfe9/7JaRtAaqF4quddfTOllJw0003AbB06dIGv85u\nu+2W6OcspSukdC5LE/U7z1dz0YpSOeigg9y2pRBZsR0/9dTS0yz97Ne//nVBz3/00UcD2Usrh65p\n06YAHHPMMSt9bO/evd12taerGb+s8WOPPQbAtGnT3L7NN98ciNoVnH/++e6YpUq9/vrrQDytOZdJ\nkyY14IzTyZZ2+Es3Dj300KI8txUwgOjv7rfeegtQupqIiIiIiEiDBRXJsTvuM8880+3zm3KWg0Uz\n/EVtVj6v1pSjwEM1stkmv4lZJv/6ufzyy4GoRPJHH33kjtlsVog6duzotqdMmQLA2muvXe/jremu\nH+WwJm9DhgwB4g1Jq4VfbMFmcO139RdmT58+vWivmblwPJdOnTq5bWsa5xdG8MuGptXMmTOBePTQ\nxtiagj7zzDPumJW0feWVV+o818KFCwGYOnVqaU42pfbaa686+2yWfcWKFW6fNWG0CI4fZXj++ecB\nmDNnTp3nsgitlUP2F5yH3p7B2PvK/90z3X333QAsWLCgLOdUKVbMwh8Lu0as/LHfLNWPbK3M3Llz\n3Xa5soBKzRpiAxx//PFAPBo6f/78Bj2/leG25toQNVe1SE4lKJIjIiIiIiJBCSqSYzPkfvRm4sSJ\nAHz22WdlOYdx48bV2ffGG2+U5bUroW/fvpU+hVTzGydaA7fmzZsD8WvyvvvuA6JI4D777OOO2QyM\nNf4cMGBACc84Pfz1Rm3atAGixm+2TgmitUr2GH/9jpWktfVw/jE/vzvNzjnnHLftrzeC+PqbbbbZ\nJvbflbHcdBs3X2YzR5+VLbcZO3/9zp133gnA559/ntc5pMXIkSMB+PHHH92+bNeMyfx3sCgrRGsw\nc62Nsn/Thx56yO3zo3LVyNaL+ebNm1fnWOa1ZWtpASZMmFDv81tk18pL+yW9a8VJJ50E5F4zZ5+R\nVra3lljWjP33sssuc8es5HQ+/Obl9n6udv7atzXWWKNoz2t/b9sau5NPPrnOY4qZZVAoRXJERERE\nRCQouskREREREZGgBJWulo0tGs2nBG1DnHDCCQCsv/76ALz44ovumIXxQpSrU/Ds2bPLeCaV5xcL\nGD9+PBBdDz5LkzrllFPcvnxC6VdddRUQLbytJbZ43f779NNPu2O2uHHDDTcE4Nprr3XHLK3DurH7\nJUWtaEO2buxp8qtf/areYy1btnTbliqWLytF7i9IzYeNt5Wz7d+/vztmKV7+QvNqYGlqlrYGUZEH\nSy/NtdjbZ4Ui/H+bTNaJffjw4W6fv2C3mjRr1gyI3n8+W8xsZbizHcuVorb33nu77a233rpB51mt\n7H3mb/vpkcb+1rEiKxJPPy3EYYcd5rYt5bxnz55A9bYjsAJGvg4dOrhte6/NmjWr3uewv2f8FOdu\n3boBcPrpp9d5/CeffALA6NGjCz/hIlEkR0REREREghJ8JKeU7M4eYNSoUUBUdtTKZEL1LyjNpV27\ndnX2LV68OPbf0NnMrZUrhmj23Z8VOfDAA4HoevBnVp544gkgWjSajRUe8AtrVNuMeSnYzJr996ij\njnLHbJbYIjoWhYCoeIG/sD+N/PKbfgSrlGymzmbu/EX0Nr4zZswoy7lUihX/2GijjYDsn3Xm6quv\ndts2o24LfXNFymwWFKLiIy+88ELCM66MJk2aAFFhFd9rr70GZI/k2Lj471drO2BFBaxUN0SLpb/6\n6isgrIazufhNaK3ISrbMFPsuWL58eXlOLMXat28PZF8En41FGqxFQffu3d0xi3a89NJLAGy//fbu\nWDW1yfDbJ1hD3fXWW8/ts3LSF154IQCdO3d2x3beeWcgKhPtf6blatNizT+XLVvWoHNvCEVyRERE\nREQkKKv8VOrFKglkyzfNhzU4uv32290+a5zo5/M2dKbD7uztLhWiO9yuXbsC0axcQyT5p0k6dkll\nO0ebPbfZgkoo59jZv/URRxzh9tlsrN/Q0mYgbX2In4M/ePBgIDpvv0GeRYosSjh58mR3rEuXLonO\nOZdquO7yZbPv2fKMr7vuOqC4kZxCxy6t42ZrRuw97M9YbrzxxkV/vZCuOWNRGj/CYbn+9h3i/962\nhtEvH5+PSo+dfff5DTytCeN5550HxBuF+jPESVgJc399XVKVHrt8jBkzxm1bZCLbeT/11FMAHH74\n4UDpIzppHDv7rrTv31zruF5++WW3bU1Wv/vuOyBqDgx11+L5/5+roXculR47yzzy1wUnZY14bU2e\nZaVAlN1iWSjFUOjYKZIjIiIiIiJB0U2OiIiIiIgEJajCAxZq9NniT7+876RJk/J+Tn9hloWBrZSv\npQ9B1Fl34sSJBZxx9cq1CFeiBeKWogZR2op1rfYLD1gI9pFHHgHinZotxcXSM/bYYw93zBal2usk\nDZ+XW69evYDofWnleovBTye4++67geyh/rSnO5WbLboF2GGHHWLHnnnmmXKfTslYCt7QoUPdPisK\nsnDhwqK9jqX8HXvssW6fpanZd4cVKahmlorywAMPuH2WrmapZbn478NcqShTp07N+zlDsv/+++f1\nuGnTpgG1XXjA2jPkSlN77733ANh1113dPis1bd+tVhY9G7+IxogRI5KfbAVZYSxbzgHQr18/ABo3\nblzvz1n7Cv+z03/fQ7xQTjHT1JJSJEdERERERIISVCTH7jL9WfAtttgCgHHjxrl9Z511VmyfX+LZ\nZtisgIA1twNYd911Y6/nz24OGjSo4b9AFfHLfkpdd9xxBxCVsoSohONWW20FxIsLnHvuuUA0++uX\nXHz22Wdjz+0vuLXFvnPnzgXizb2++OKLBv0OpWTNT20MrEwvwJIlSwp6LotmWYTM3rsQzcjZDLGN\nE8Q/JwTWWmstt20zoTZu/qLyame/0yabbOL2PfTQQ0BUPtVnC5StfO/KjlkUzArh+LPC9toWwbFZ\nZYC+ffsW+qukihVPgSirwsYz1+xwtujNokWLALjiiivcPmt2G0L0qxSsBHAt879vM9kC+U6dOgHx\nRqH2t51FOLI18Ta5jlULa+9xySWXuH0WnbH2F1Y2GqIiW9kaSFuzZGuq7T9nGiiSIyIiIiIiQQkq\nkmP8/H4rHWuNxCBq/HTBBRcA8bxByw9u3bp1nee1Gafx48cD6W8iWEq5ysgWo3x2tRs7diwQXx9i\nTbOssaIfdZk3b95Kn/Piiy8G4jOZNlNq0Qz/9aqhqaCd7/Tp090+Gx8riQpRo8/jjjuuznPYjHyL\nFi2A3Hn99u8CtZ27vjIp7CxQUvZ5b5/tEH0X2Ayl30jW2HXZqlUrty+fsXv//fcBuOuuu9y+ani/\n5uJ/j9qssJ+7L6VVzPVk1coiFH6U1nz55ZcAfPzxx0B8rdM111wDxBt91sciiqGxjKbM5trZDBgw\nwG1bM2B7r6etQaoiOSIiIiIiEhTd5IiIiIiISFCCTFfzF8naAlorrwiw+eabA9nTDzJZaBPg+uuv\nB2DIkCFFOU8J17bbbltn30svvQRE108+KWo+WyjpL5i3sqpW/rfQ56wU67g8cOBAICoQ4vPLlCdN\nn/r++++BqOy7LTCXwqS5iEWhZs+eDUC3bt3cPitGs+eee9Z5fK7viXy+Q/wFzpamZu0I/K7rIoXy\nCyr5BZRqlRVEmjFjBgBt2rRxxyw12r4j/WI3udi4dunSBcidxhU6a8lyyimnuH1PPvkkADfffHNF\nzmllFMkREREREZGgBBnJ8dld93777ef29ejRA4DOnTsD8UX0U6ZMif28lf2FePnZWmfFBfzZdiv9\na6W8a8XkyZOBeHMxW/joRxU7duwINHxWfMWKFW47s7x0tbBo1ttvvw1EZbUhKi9dKJtR8t/DVjb0\nnnvuSfSctc4KQowZM6bCZ1I89jnlF0ix2Vo/onj11Vcnen5r8muFLWzBM8Ctt96a6DlFICqGYZFt\nvwF6rRULyebDDz8EombTfrPOnXbaCcgvguO3cLD3rJ8NVKus8I8fwe7ZsyeQ3kI+iuSIiIiIiEhQ\ndJMjIiIiIiJBWeWnFMY4LSRb65L802jsfqaxS05jl1yhY5emcVtnnXXc9osvvgjATTfdBMTTPkpB\n11xyGrvkqmHshg8f7rb79+8PROftpz/6i8HLoRrGbv3113fb1kvuiCOOAODUU091xyzFedKkSUCU\n+gxRn6xiqoaxy8b6enXv3t3ta9asGQCff/55Wc6h0LFTJEdERERERIKiSE6KVevdfhpo7JLT2CVX\nzZGcStI1l5zGLrlqGLumTZu6bSuN3LZtWwD69Onjjo0cObKs51UNY5dW1TZ2TZo0AWDx4sUAXHfd\nde6YtbTwS+WXkiI5IiIiIiJS0xTJSbFqu9tPE41dchq75BTJSUbXXHIau+Q0dslp7JLT2CWnSI6I\niIiIiNQ03eSIiIiIiEhQdJMjIiIiIiJB0U2OiIiIiIgEJZWFB0RERERERJJSJEdERERERIKimxwR\nEREREQmKbnJERERERCQouskREREREZGg6CZHRERERESCopscEREREREJim5yREREREQkKLrJERER\nERGRoOgmR0REREREgqKbHBERERERCYpuckREREREJCi6yRERERERkaCsVukTyGaVVVap9Cmkwk8/\n/VTwz2jsfqaxS05jl1yhY6dx+5muueQ0dslp7JLT2CWnsUuu0LFTJEdERERERIKimxwREREREQmK\nbnJERERERCQouskREREREZGg6CZHRERERESCksrqaiIiIlJbttxySwBOO+00AI477jh37IADDgBg\nzpw55T8xEalKiuSIiIiIiEhQVvkpScHuElM98J+plnpy1Tp2zZs3B+DEE090+37zm98AsN9++wGw\n00471fm5448/HoBx48Y1+BzKOXb2c40aNXL7Dj30UAAuvvhit2/77bePPX7JkiXu2GWXXQbArbfe\nCsD//d//JTqXYlCfnGTS+H598MEHATj44INX+tg+ffq47Q8++ACASZMmlebEMqRx7Apxww03uO2u\nXbsC0KxZszqPW758ORB9RhZDtY9dJWnsktPYJac+OSIiIiIiUtN0kyMiIiIiIkFR4QFgxx13dNvd\nu3ePHevQoYPb3mWXXVb6XJdffjkAI0eOdPuWLVsGwPfff9+Q00y97bbbDoCZM2cC0LRpU3dsypQp\nAJx33nkAvP7662U+u3Rr1aoVALfccgsAv/vd7+o8xsLV2cK1ltJWbY466igAxo8f7/bZ++S+++5z\n+8aOHRv7Of99OmrUKABatmwJwKWXXlqSc61llioJ8MQTTwBRWuC7777rjh144IEALFy4sHwnV0T7\n7ruv2957772B/NIjbrzxRrf91VdfAfD222/XeZyNz4cfftig86w266yzjtseNmwYAG3btgWgXbt2\n7ljmWPvX0WeffVbKUxSRACmSIyIiIiIiQanJSE6LFi0A6NGjBxBfNJo5I+4v9spnRm/gwIEAXHTR\nRW7fiBEjAOjXr1/CM64OrVu3BqJZO3+8bDH5iy++CEQRL/nZ9ddfD2SP4OTjnnvuKebplIQ/m2vF\nAvbZZx8gHqm58sorAZg/f369zzVjxgy3PWvWLCCahV999dXdsRUrVjT0tFNtrbXWctuHHHIIABMm\nTCj66xx22GFu2yI49v7eZJNN3LEddtgBqL5IzhprrAHEP//967UQjRs3BqLIts8W1FtUolauz2uv\nvdbtO+GEE/L+eb/4iB/ZrQWWReJnk/gRVYAnn3zSbSuCDSeddBIARx55JBBFTrPx/7a79957Afjh\nhx+A+HfP0KFDi36eUj6K5IiIiIiISFBqJpLjz4bcfvvtQDQD6ef6Tp8+HYB///vfAOy+++7u2D//\n+U8AXn311Xpf54ILLgDiud3W0MzP237rrbcK/yUCMHHixEqfQmr4a7xsFj6FFd2L5vHHH3fbW2yx\nBRCtxendu3dBz/XCCy+47aeeegqA/fffH4Cdd97ZHXvuueeSnWzKjRkzBoiXE7dti1RDFEVOat11\n1wXqziD7vvzyS7ddresmzj77bAAGDx5c0td55ZVXgKhsct++fUv6epVmn2u5ojd+NMLWbpq5c+eW\n5LzSzCIyl1xyyUof6/9dU6uRHFvXCdGaVvt+uPDCC90x/3MK4pEc+y62SHS3bt3cMftOtrVkIbH3\nJ0R/D++2225A9vesZU34a2jtb+Y333yzVKfZIIrkiIiIiIhIUHSTIyIiIiIiQQk+Xc1KFttCZ4gW\nJlso0w+9vfPOOw16veeffx6IFtgDbLrppgCcdtppbt8555zToNepVpaWdPrpp1f4TCrPT937xS9+\nnm+wRd3ffPONO2YL8S0dyxbr+9Zee+2SnWex7Lrrrm773HPPBWD48OGJnuuXv/yl27ZF47Vk2223\nBeLpambjjTcu2uusuuqqQO7ra968eW7bLwgRigULFgBRiqW/b/vttwfiZbTXW289ILou/TSOrbfe\nGoDOnTsD4aarWfrP6NGjgdzd2jt27FiWc0oz/33jp6AleY6kxWuq1SOPPOK27bvR/g4rtLBHo0aN\nADjrrLPcPvs78eGHHwailNNq1rNnTyBeECSz0Eq21Hkrq9++fXu3z9Ik01pMSpEcEREREREJSpCR\nnAEDBrhti+Cstlr0q/7hD38A4LHHHgPgu+++K9prL1++HIiXLpw2bRoAG2ywQdFep1r5/w61zo/2\n2Uynld71F0w+++yzQLQI3GZTfFY607/208YvK2wNcpPq1KmT27ZZJStAsGjRogY9t0SsBLAfxcj0\n4IMPlut0KsIWw9v1BVEkxyJqixcvdsfsfbrmmmsC8SIztnA3dLYYuUmTJkD2WeG0zvyWk82CZ4ve\nWNPdQYMG1dmXrThBZslpe2zo/IIClh1hmQJ33HFHQc9lJaSt8BREEQ6L2lZrJMeixxC1rPBbEBjL\nIsl2LBv7W8W+39PWzkKRHBERERERCYpuckREREREJChB5Q5ZQQG/9vePP/4IwEYbbeT2ffLJJyU/\nF3+xqW37/TssBJpZu11qR5cuXdz2b3/7WwC++uoroHr7jeTSpk2bBj/HHnvsAcCoUaPqHLP3md+1\n3rYtjdTGF6Bly5YALF26FID333+/wedXLpbemG1Bd65F3oWy/jj+c2YWyfDTuEJkxWv8Yhc2LpMn\nTwbixRdysVQOG7sQ2Lj4fVqaNm0KZE9Ts7SW1157rfQnl3K5euFY/6BsaWc21n7/qlpNV/NZaqn1\nK7z//vvdsXz+1rI+OdaHzNfQolSVts0227jtbKlodr3Y2NmyDp8d89/X9nf3qaeeCkQFGgC++OKL\nBp51wymSIyIiIiIiQQkqkmNlmf0Su9dccw1QnuhNfeyuN9uddK1FcvxO9RLxS9DWx48E1gK/NLQt\nbrQuzC1atKjz+BNPPDH2X99///tfIFowDrDvvvvGjvXo0cMds2IPFglOix133BGIykRnmynPtq9Q\nzZs3B6LZOf85LQph+4rxepU2f/58AL7++mu3r3HjxrHHnH322XV+7owzzgDiJYBvuOEGIFp87wux\ndYD9TrmKnvhFR37/+98DsGTJknofb9EhK2EO8bL6IbNCA/lEYizaA1EEx4/u1BqLjP3rX/8CoE+f\nPu7YkCFD6v05ywz405/+BMTLKVu7i6effrq4J5syViDrueeei/3Xly2DYsSIEUBU2MA+SyEqyLLX\nXnsV92QLoEiOiIiIiIgEJYhIjjVfs7v2OXPmuGN+E1CpvNmzZ1f6FKqWzdBlmzm32ZSQ7Lnnnm7b\ncoGNv7Ymcz2Evx7OojTGX3czdOhQACZMmADE15bYbOrgwYPdvjSso5g7dy4A7733HgAbbrhhncf4\nUa4tt9wSiM+k58Oe134+m9tuuw2Iz9xVKyuD7TcBtEZ5mU3yfFYm2l8HaiXerQytHyH88MMPi3TG\n6WHrGHLxS/nmiuAYW3PiZz+88cYbAMycOROI1kNVM2vc6ZeQ9tc2JZG5NgdqZ32Ofd5369YNiK4V\niNa52uf82LFj3TGLkH///fcAdO/e3R277777SnjG1cUvlW/86DfEv3/+97//lfycVkaRHBERERER\nCYpuckREREREJChBpKvZIkUrF+sv7kzTwn6/8/W3335bwTORamLh35AWeuejUaNGdfZZmpqfamAL\nQ5M6/PDDgfiCXUsZ8cPzt99+e4Nep5j+9re/AVEXboiKmXTt2tXtswWf9PItcgAADV5JREFUVrrY\n756eayG3PVe2z6mpU6cCUWpXSJ9lflrVihUrALjzzjsLeo4mTZoAsP/++wNRKhxEi+6XLVvWkNNM\nlWzlzK3MuF13V155Zb0/P2nSJLd92GGHrfT1+vfvD8TbQmSmpVYLSyNLmk7mp7ZllqOuxXQ1Y2m9\nfuEBK0Jl3yt+YRFbZN+rVy8g/5LwtaZdu3ZAvLy0pfqllSI5IiIiIiISlCAiOb179479/6efflqh\nM8ntmWeecdtpaJJUbP4C20z2uxe6AFrggQceqPfY448/DsDHH39crtMpG78QgEVZLJJjM3XFMGvW\nrNh/IWoA2apVq6K9TjFZVOnAAw90+4488sg6j7PZbpv99hul5nq/2qJ7f7bc2Hs4pAhONuPGjYv9\n12eNZK3xnR9RyyxQ4Zd+txl1mwnNp3R82mWLMGeWGfdZlHD06NFAPHqTT5TannvgwIFu35///OdC\nTzsIfulyqctvWbHuuuvGjtn1B1Ep+DQslC8Vv0CMRfH9pqAWCbS/JdZff313zAr/WFuHbFkWaaVI\njoiIiIiIBCWISI7djfo5wZWWrYxriOVDt9tuO7dtaxuM5WVDVJrxhx9+KM+JVZjl9vqlZXfaaad6\nH2/XbraZTH/2PdPSpUuBMMfVjxT4UZZSsfUSEG9CmGbWrBOgdevWQPxzcIsttgBg7bXXBuDYY491\nx2zb1jDecsst7li2dRaZx2qZrQGxSNr48ePdMSs5na208rbbbgtEkRxrHBqqKVOm1Nln60is8aLP\nyvxaY0L/s8/KLZumTZsW6zQrzl8/U6zojL9Gx7Ytkpg5lqGxKESu9XTDhg1z2yFHcIz/XjzzzDOB\nKGIP0eeWrffMxj77/RYOtnYxM1KWForkiIiIiIhIUHSTIyIiIiIiQQkiXc2kobTu6quvDsQ7Z2+y\nySZAtEg1VJnj7y/AtQ7tIbKUvSuuuMLtszQ1P7Un1/WZK10t8zG+o446CoDNNtsMiC/Wf+ihhwB4\n5ZVX3D5LB5Eo1ah9+/ZAVGwAonLvfgpXGn3++eduu1OnTnWOr7nmmkBUxjhbyuRVV10FQL9+/dy+\n5s2bA9mvxzR8zqbF+++/D8TLj2+wwQYA3H///UBUxttnYz1mzBi3z1J6Q2Kd5/1S7EcffXTsMX6b\nh+OPPx6I0qomTJhQ4jNMh3IVELC0OP/1Qkxd22effYB40Q8rmLJo0SIgXta8e/fuQJR6FTorXHPE\nEUe4fQcffPBKf87+vrjuuuvcPit4c8wxxxTzFItGkRwREREREQlKUJGcNLCZA78hqZUAtiZ6tchv\n+BYKa0Jri/f8GbGkM+BJH2Mz9P7M1UknnQTAI4884vZZQYQ0NcmtlJEjRwJRpNVnUZ4lS5aU9Zwa\nYvny5fXuO+GEE4B4SejMBaYWvYHqKhGaNp988gkQjW+2SM7GG28MxCP+uRpmViuLaPsFWDJ17tzZ\nbdv1ettttwH5zS6HIFcxj1xNPXM1A/XZd1OtNAW1v7/84jUWVVywYEGdY1Yi+c033yzXKaaCX77d\nCkcdcMABAHzwwQfu2ODBg+t9DssmyXYNn3baaUU5z4ZQJEdERERERIKiSE6RXXzxxQAsW7bM7Rs0\naBAQ5uy5rWfIxh8Dmz0Jic3Q5sppfvnll922zaLde++9QFRaHKIc2aQsSmizyBBFmPwmYLXq/PPP\nB6K1SxAv8w5Rw0wIbw2ZXQP+tXDooYfGHvP3v//dbVupY+Ov/bnrrrtKcYplZ+snIV4+vD6PPvqo\n2959992BqJS0lV8FmDdvHhCt68rl3HPPdds333wzEC/PWg1mzpwJwB//+Ee3z9oHZDZGzcaPLuTz\n+JdeegmonQaguaIvuSI59nfHyp4jJLY2brfddgNg8uTJ7lhmA2l/reqtt94KRFGMEFsyrIxl2xSa\ndZOr8W8aKJIjIiIiIiJB0U2OiIiIiIgEJYh0NVtAbGU5e/fu7Y5Nnz69LOdgr3nQQQcB8UW9lr4Q\nol122aXeY36KS4gL+jLTfXzt2rUD4PXXX3f7LF3R0tQuv/zyvF7Hyhj/9a9/rfcxtkjwxx9/zOs5\nK81ShWwxaDFSoFq2bAlE70GfLYD0U9Ts32bEiBFA/D2bT9pMtfNTKSG+uHT8+PH1Pjbz56qNpeJZ\n6WyI0lRymTZtmtu2dBhLV2vatKk79p///AeAHXfccaXP6XcJty7t1ZauZt+//mfPjTfeCOSXwuK/\n1zIfP3v2bLdtRUAsTS1boY1a4xclyFQrKWq+9dZbD4BVV10ViL/HMw0ZMsRtjx07FoiK0IT490qt\nUiRHRERERESCEkQkx2a+rJlaly5d3LEzzjgDgBtuuKFor2elg0ePHu32WRMzW9h7yimnFO310swa\nbNWyXOU//fKoVg61a9eu9T6HLXi06xbqlvoNgc20WdO2YcOGuWN33303EC/DnotFZ2wRd58+fep9\nrB9ZszLRoRUZKJRFY/3Ps8xrOtc1Xm0sAuBHCfKJ5GQrTmAzx/74WHnoQl122WVA9F1SLSyCYxEd\niIoDTJw4EYgapObLsh+srC2okXE2iuTEWWNK+5zPlUVzzz33uG2LPFoRIUVywqFIjoiIiIiIBCWI\nSM7HH38MwDHHHAPAnXfe6Y5ZszV/pu0f//hH7Ody8XP4t9lmGwDOO+88ADp27OiO3XHHHQCceOKJ\nBZ9/Nfvoo4/qPbZixYoynkn52SzlcccdB0CzZs3csWeffRaIX3eWb54tT90iOGeffTYQZvTG9913\n3wHQt29fIFrjANF71hpY+mzt0ddff+32bbXVVkC8jG8m+7fyn7Pa1j6Uyr777gtAkyZN3D67Rr/5\n5hsAhg8fXv4TKxFb2+GvibP36cCBA8t6Ln5ZW78xaLWzz7+TTz4ZgIsuusgd89/r9Vm8eDGg6I0k\nY9Fa/3siF4vqZrYVkOqnSI6IiIiIiARFNzkiIiIiIhKUINLVjHVqtXQ0iMLl1v0d4PTTTweizvPW\nvRqirt/WvdkvA2rlBY11yYXci51DZgtMsxk1alQZz6T8Zs2aBUQLts8///yCfn7q1Klu+8EHHwTC\nT1PLZOkEfnduW+B96qmn1nm8LfTOxcqBAsyYMQOIPhMsTU7yY13UH3744QqfSfH5aaP2Wf7YY4+5\nfVaqeLvttgOidGWICmcUasGCBUCUKt2jRw93bNmyZYmeM83sM27OnDlun72vLYXtySefdMemTJkC\nxBeFi+Tr008/BaBt27YArLHGGu5Yrs/+t99+u7QnFrBf/CLdsZJ0n52IiIiIiEiBVvkpn25dZdbQ\ncqX+AuRDDjkEiEdd1lxzTSC/RmX+uSxduhSAm266CYChQ4e6Y99++20Dzji7JP805S71arOcEF9E\nC9C/f3+3bQ0Xy6WcY9eqVSsg/jvadecvfBwzZgwQzVL6UbA0NfGs9HVnz2XRVIhKe1pJbr9oQKNG\njYAoGmTRWCh/U89Cxy4NpZmt+EO24gI2E++XQi+FSl9z+ejZs6fb/stf/gLAZpttBsQj+bl+l3Hj\nxgHFLXpRDWOXViGNXebvUurzTOPYbb755gDMnDkTiEdme/XqBUQRncaNG7tjr776KhAV/rFCNaWS\nxrFLyhp5W+EvnzVML2YmQKFjp0iOiIiIiIgERTc5IiIiIiISlCDT1bLxOy4PGDAgti9bh+mbb74Z\ngEcffdTts1rq5ardXw0hTUsVAmjfvj0Q9ZqYPHmyOxZyulpoNHbJhZauZqm5pe7homsuOY1dciGN\nnRVZ6dChA1Cb6Wpml112AeD+++93+7744gsA5s+fD8SLSrVu3RqANm3aAPDOO++U9PzSPHaFshS/\nq6++us6xhQsXArD11lsX7fWUriYiIiIiIjWtZiI51Siku/1y09glp7FLrhojOWmgay45jV1yIY3d\npZdeCkRl361YC8ATTzxR9NerhrHziwsMHjwYgObNmwNw7LHHumNWLt6KA5VaNYxdvlZb7edONNdf\nfz0Qb/3w3nvvAbDpppsW7fUUyRERERERkZqmSE6KhXS3X24au+Q0dskpkpOMrrnkNHbJaeyS09gl\nF+LY2Ronv2z3l19+CSiSIyIiIiIiUjS6yRERERERkaAoXS3FQgxplovGLjmNXXJKV0tG11xyGrvk\nNHbJaeyS09glp3Q1ERERERGpaamM5IiIiIiIiCSlSI6IiIiIiARFNzkiIiIiIhIU3eSIiIiIiEhQ\ndJMjIiIiIiJB0U2OiIiIiIgERTc5IiIiIiISFN3kiIiIiIhIUHSTIyIiIiIiQdFNjoiIiIiIBEU3\nOSIiIiIiEhTd5IiIiIiISFB0kyMiIiIiIkHRTY6IiIiIiARFNzkiIiIiIhIU3eSIiIiIiEhQdJMj\nIiIiIiJB0U2OiIiIiIgERTc5IiIiIiISFN3kiIiIiIhIUHSTIyIiIiIiQdFNjoiIiIiIBEU3OSIi\nIiIiEhTd5IiIiIiISFB0kyMiIiIiIkHRTY6IiIiIiARFNzkiIiIiIhIU3eSIiIiIiEhQdJMjIiIi\nIiJB0U2OiIiIiIgERTc5IiIiIiISFN3kiIiIiIhIUHSTIyIiIiIiQdFNjoiIiIiIBOX/AazvmSKI\nVIPXAAAAAElFTkSuQmCC\n",
C.G.Vedant's avatar
C.G.Vedant a validé
       "<matplotlib.figure.Figure at 0x7f72c6b00048>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "# takes 5-10 seconds to execute this\n",
   "metadata": {},
    "Let's have a look at the average of all the images of training and testing data."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 50,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average of all images in training dataset.\n",
      "Digit 0 : 5923 images.\n",
      "Digit 1 : 6742 images.\n",
      "Digit 2 : 5958 images.\n",
      "Digit 3 : 6131 images.\n",
      "Digit 4 : 5842 images.\n",
      "Digit 5 : 5421 images.\n",
      "Digit 6 : 5918 images.\n",
      "Digit 7 : 6265 images.\n",
      "Digit 8 : 5851 images.\n",
      "Digit 9 : 5949 images.\n"
     ]
    },
    {
     "data": {
C.G.Vedant's avatar
C.G.Vedant a validé
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAACBCAYAAADjY3ScAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXmsVdXZxh8EGQSZp4LgBIoXUYyKQypiLVJRUqmxjbbG\nVq0V0Yqp81BB/SppQqJtorFRYxWlRk3baGtJW1HjgIgjiDOiOBQBleHiUHrP94c+Zz933dfj5Ubu\n3mf7/BJyD3ufYe13v2utvd5pdahUKhUYY4wxxhhjTEnYJu8GGGOMMcYYY8zXiRc5xhhjjDHGmFLh\nRY4xxhhjjDGmVHiRY4wxxhhjjCkVXuQYY4wxxhhjSoUXOcYYY4wxxphS4UWOMcYYY4wxplR4kWOM\nMcYYY4wpFV7kGGOMMcYYY0qFFznCxo0bMWPGDAwZMgRdu3bF2LFj8ac//SnvZhWeDRs24Pzzz8cR\nRxyBAQMGoEOHDpg5c2bezaoLHnjgAZx88skYNWoUunfvjqFDh+L73/8+nnrqqbybVnieffZZHHXU\nURg+fDi6deuGvn374qCDDsLcuXPzblrdceONN6JDhw7o0aNH3k0pNA8++CA6dOgQ/lu4cGHezasL\nHnnkEUyePBl9+vRBt27dMHLkSFx55ZV5N6vQ/PSnP/1SvbPu1eaZZ57BMcccgyFDhmC77bbDqFGj\ncMUVV2DTpk15N63wLFq0CJMmTcL222+PHj164LDDDsOjjz6ad7O2iE55N6BI/OAHP8CTTz6J2bNn\nY7fddsMdd9yB448/Hk1NTTjhhBPybl5hWbt2Lf7whz9g7733xjHHHIMbb7wx7ybVDddffz3Wrl2L\ns88+Gw0NDVi9ejXmzJmDAw88EPPnz8d3vvOdvJtYWD766CMMGzYMxx9/PIYOHYrGxkbcfvvtOPHE\nE7FixQpceumleTexLnjnnXdw7rnnYsiQIVi3bl3ezakLfvOb3+Cwww5rdmzPPffMqTX1wx133IET\nTzwRP/zhD3HrrbeiR48eeP311/Huu+/m3bRCc9lll+H0009vcXzKlCno0qUL9t9//xxaVXyWLVuG\ngw8+GLvvvjuuueYa9O/fHw8//DCuuOIKPPXUU/jrX/+adxMLy5NPPonx48dj3LhxuO2221CpVPDb\n3/4Whx9+OBYsWICDDjoo7ya2joqpVCqVyt/+9rcKgModd9zR7PjEiRMrQ4YMqWzevDmnlhWfpqam\nSlNTU6VSqVRWr15dAVC5/PLL821UnbBq1aoWxzZs2FAZNGhQ5fDDD8+hRfXPAQccUBk2bFjezagb\njj766MqUKVMqJ510UqV79+55N6fQLFiwoAKgctddd+XdlLrj7bffrnTv3r0ybdq0vJtSCh588MEK\ngMqll16ad1MKyyWXXFIBUHnttdeaHT/ttNMqACoffPBBTi0rPpMmTaoMGjSo0tjYWD22fv36Sv/+\n/SsHH3xwji3bMhyu9gV//vOf0aNHDxx33HHNjv/sZz/Du+++iyeeeCKnlhUfuszNljNw4MAWx3r0\n6IGGhgasXLkyhxbVP/3790enTnZSt4a5c+fioYcewnXXXZd3U0zJufHGG9HY2IgLLrgg76aUgptu\nugkdOnTAySefnHdTCsu2224LAOjVq1ez471798Y222yDzp0759GsuuDRRx/FhAkTsN1221WPbb/9\n9hg/fjwee+wxvPfeezm2rvV4kfMFS5cuxR577NHi4WivvfaqnjemPVi3bh2efvppjB49Ou+m1AVN\nTU3YvHkzVq9ejeuuuw7z58/3g1QreP/99zFjxgzMnj0bO+ywQ97NqSumT5+OTp06oWfPnpg0aRIe\neeSRvJtUeB5++GH07dsXL730EsaOHYtOnTph4MCBOP3007F+/fq8m1dXrFu3DnfffTcOP/xw7Lzz\nznk3p7CcdNJJ6N27N6ZNm4bly5djw4YNuO+++3DDDTdg+vTp6N69e95NLCyfffYZunTp0uI4jy1Z\nsqS9m9QmvMj5grVr16Jv374tjvPY2rVr27tJ5hvK9OnT0djYiEsuuSTvptQFZ5xxBrbddlsMHDgQ\n55xzDn73u9/hF7/4Rd7NKjxnnHEGdt99d0ybNi3vptQNvXr1wtlnn40bbrgBCxYswLXXXouVK1di\nwoQJmD9/ft7NKzTvvPMONm3ahOOOOw4/+tGP8K9//QvnnXcebr31VkyePBmVSiXvJtYN8+bNw8cf\nf4xTTjkl76YUmp122gmPP/44li5dil133RU9e/bElClTcNJJJ+Haa6/Nu3mFpqGhAQsXLkRTU1P1\n2ObNm6tRTfXyTOyYDqFWyJXDsUx7cNlll+H222/H73//e+y77755N6cuuPjii3Hqqafi/fffx733\n3oszzzwTjY2NOPfcc/NuWmG55557cO+99+KZZ57x2LYF7LPPPthnn32q/z/kkEMwdepUjBkzBuef\nfz4mTZqUY+uKTVNTEz755BNcfvnluPDCCwEAEyZMQOfOnTFjxgz8+9//xne/+92cW1kf3HTTTejX\nrx+mTp2ad1MKzYoVKzBlyhQMGjQId999NwYMGIAnnngCV111FTZu3Iibbrop7yYWlrPOOgunnHIK\nzjzzTFxyySVoamrCrFmz8OabbwIAttmmPnwk9dHKdqBfv37hyvSDDz4AgNDLY8zXyaxZs3DVVVfh\n//7v/3DmmWfm3Zy6Yfjw4dhvv/0wefJkXH/99TjttNNw0UUXYfXq1Xk3rZBs3LgR06dPx1lnnYUh\nQ4bgo48+wkcffYTPPvsMwOdV6xobG3NuZf3Qu3dvHH300Xj++efx8ccf592cwtKvXz8AaLEQPPLI\nIwEATz/9dLu3qR55/vnnsXjxYvzkJz8Jw4lMxoUXXoj169dj/vz5OPbYYzF+/Hicd955uOaaa3Dz\nzTfjoYceyruJheXkk0/G7Nmzcdttt2GHHXbA8OHDsWzZsqrxcOjQoTm3sHV4kfMFY8aMwYsvvojN\nmzc3O864Q5cHNVuTWbNmYebMmZg5cyYuvvjivJtT14wbNw6bN2/G8uXL825KIVmzZg1WrVqFOXPm\noE+fPtV/8+bNQ2NjI/r06YMf//jHeTezrmColb1iXw7zW1Mou3qxDOcNvQ+nnnpqzi0pPs8++ywa\nGhpa5N6w5LZzrWtzwQUXYM2aNViyZAlWrFiBxx57DB9++CG6d+9eN5EmHlW+YOrUqdi4cSPuueee\nZsf/+Mc/YsiQITjggANyapkpO1deeSVmzpyJSy+9FJdffnnezal7FixYgG222Qa77LJL3k0pJIMH\nD8aCBQta/Js0aRK6du2KBQsW4Kqrrsq7mXXDhx9+iPvuuw9jx45F165d825OYTn22GMBAPfff3+z\n43//+98BAAceeGC7t6ne+PTTTzF37lyMGzfOhtdWMGTIELzwwgvYuHFjs+OPP/44ALjgSivo0qUL\n9txzT+y444546623cOedd+LnP/85unXrlnfTWoVzcr7gyCOPxMSJEzFt2jSsX78eI0aMwLx58/CP\nf/wDc+fORceOHfNuYqG5//770djYiA0bNgD4fBOuu+++GwAwefLkZmUITcacOXPw61//Gt/73vdw\n1FFHtdi52hP/l3PaaaehZ8+eGDduHAYNGoQ1a9bgrrvuwp133onzzjsPAwYMyLuJhaRr166YMGFC\ni+O33HILOnbsGJ4zn3PCCSdUwyP79++PV199FXPmzMGqVatwyy235N28QnPEEUdgypQpuOKKK9DU\n1IQDDzwQixcvxqxZs3D00Ufj29/+dt5NLDx/+ctf8MEHH9iL00pmzJiBY445BhMnTsQ555yD/v37\nY+HChbj66qvR0NBQDZU0LVm6dCnuuece7LfffujSpQuee+45zJ49GyNHjsSVV16Zd/NaT8779BSK\nDRs2VH75y19WBg8eXOncuXNlr732qsybNy/vZtUFO+64YwVA+O+NN97Iu3mF5dBDD/1Subl71ubm\nm2+uHHLIIZX+/ftXOnXqVOndu3fl0EMPrdx22215N60u8WagX83VV19dGTt2bKVXr16Vjh07VgYM\nGFCZOnVqZdGiRXk3rS7YtGlT5YILLqgMGzas0qlTp8rw4cMrF110UeWTTz7Ju2l1wcSJEyvdu3ev\nrF+/Pu+m1A0PPPBA5YgjjqgMHjy40q1bt8puu+1W+dWvflVZs2ZN3k0rNC+//HJl/Pjxlb59+1Y6\nd+5cGTFiROXSSy+tbNy4Me+mbREdKhXXbTTGGGOMMcaUB+fkGGOMMcYYY0qFFznGGGOMMcaYUuFF\njjHGGGOMMaZUeJFjjDHGGGOMKRVe5BhjjDHGGGNKhRc5xhhjjDHGmFLhRY4xxhhjjDGmVHTKuwER\nHTp0yLsJhaAtWxhZdp9j2bUdy67tbKnsLLfPsc61Hcuu7Vh2bceyazuWXdvZUtkVcpFjjDHGmPqk\n1gMZz23pw4r3LTfGbCkOVzPGGGOMMcaUCi9yjDHGGGOMMaXC4WrGbEU0bIOv07/p6xSGafBvU1NT\ni3PGGNNeRGPXNttkNtNOnTo1+9u5c+fquS5dujT7q+f4HRzjPvvss+q5jz/+uNnfTz/9tHpu8+bN\nzT4HeGw0xtiTY4wxxhhjjCkZ32hPTi2LenSOpJb1rzr3TbEopbLS/9eSQb3LJ7JkbrvttgCAbt26\nVY/x9XbbbQcA6N69e4tztHyqTGix3LhxIwBg/fr11XObNm0CkFk3adEEgP/9739tv6gCoPpD2fJv\nrT4b9b1aXrBa/fmbSirLLa3sU0ZZRjKoNU+0xjsbHauHuUOvrWPHjgCyMQ/IvDQc63r06FE917t3\nbwBA//79m/1fv4Nj14YNG6rn3n//fQDAqlWrAAAffvhh9RzHwf/+97/VY+zrRZWhKQ5pX7XOlAd7\ncowxxhhjjDGlovSeHK7QaW0CMmtR165dAQC9evWqnuvbt2+zY3qOVnZa1tWivnbtWgCZdUnPffLJ\nJwCaW9nr1VJAeVIW6qno2bMngMxqp7HWtKpFsdaUZ+qV0PepV6IosqNXIZIF9WbgwIHVY0OGDAEA\nDB8+HAAwbNiw6jm+j7LT66UuvfXWWwCA119/vXqOx9555x0Aza2bjY2NAJrrXVFI+6VagSlH9XRR\nnrT6qmWY/ZjfqddL71fUL2klppxUJyn/ouhaa9hSz3R6bbU8Z+qlTI+prvJ15FFUL1oR+Kq8Eupk\n+ldfc4zTsY7jAdHrplz4V2VH/dNcE77mubz1MZIT+7DKgB6c7bffHgDQr1+/6rlvfetbAIDBgwcD\niD057JM6b69btw5AJl89F3l4zTeDaGyijtCjCLSMpFB9JeyXfGbT12lf1Pc7F6y42JNjjDHGGGOM\nKRVe5BhjjDHGGGNKRSnD1aJSllEoEd3mO++8c/Xcbrvt1uzYoEGDqucYFsMQmLfffrt67tVXXwUA\nvPjiiwCAFStWVM8xUVKTKIsYQvRlRGEsDCtgOAKQhWMxDIHhawpdvxo29MEHHwDIQorU3RuFuuTp\nDlZZULfo/taQjB122AEAsMsuu1SPjRw5stnfHXfcsXqOMmMYlv5OGq62dOnS6rnnnnsOQPNQGkLZ\nMQwQyDdkSPslwwgYkqYhK5TFTjvtVD3G/shj1DUgCzFl+IqGOzJZmSF+r7zySvUcjzHUb/Xq1dVz\n7ONFCzFNw4U0ZCcKG0pDe1Sv0r6l59LEcY59+l38vIZvsH8z3EhfM9wjbzlGsqPMNESS4xf7NfUM\nyPSVc4nOL5Q5f0d1iDKgTHRO4PjH0Gcg00ke01C2POQYhT1GZaIpD8pQw3Y57/KYyo7XRz366KOP\nquc4DnI8q9fw0tZuHbClhStqnasHubSG6NlOxyY+j/C5TedYzh0ME9f5mt/FcZ9zAgC88cYbAIA3\n33wTAPCf//yneo7PLjrHpiH29SL7NAxZw245Vqr8SZqKEIUvR4V/2gt7cowxxhhjjDGlolSenGgF\nSisRy1UCWeL3qFGjAAB77rln9RyP8T262qe1nJY5WokBYOjQoQAyy54mvHH1quUtacmrl1U+SS3J\n6kFIPRoqO6KWS0JZ1CoBXBQiCya9LwMGDKieo6dBiwtQR6iLasGkxYMWzKgcK79fPRxMxuVf9ZDR\nKqVJlHlYUiizKDGZOqJyGjFiBABg9913rx7bddddAWQeMrWq03oXJZJSBrwfqpO02qdla4Gsrxah\n4EUtT2pkPVfvKuXM9+s1UC/UCkkoG8pLPW206vHz2qdpeY9KoOedPJ8Wu4gswNqHqWvsb5wTgMwb\n0adPHwCt39AyLYSxZs2a6jnOJ2pFZlspQ/UKtWc0QOpV+CqLOsdE6g+9s0DmwaHMdV6kZXzlypXN\n/gKZfDjGqVcrspoXxePPexgVWaHeRMfSz6Xfm8LrjTyslBX/qszrIXk+8lKnOgZkfXWPPfYAAIwe\nPbp6jnMI9U+9trx29s933323eo5eIY6BHFOB7L5pP+Z4SFkXZSuHaB6J5mSOaXxeATKPGOdRnWOo\nS4xYYsQJkHm/2Hd1rqB8tvYziT05xhhjjDHGmFJRCk9O6l1QLwpXpWqF4+p+r732AtDcYszVK2OJ\ndfXLFSctVxpnnFpR1HpOTwWtBHq+nnJzgNobJ9IqwFW+WttT+WjcOS0BlEmRN3SLPDm0YKpnhjqo\n7aYeRJvZpXkCqsOpx0GtL9RvWrM0D4rtUe9OHkQeVsqM16ZWNV6fWsAoK+qG5sOlG6+qDChH/rZ6\nJNh/eT/4F8gsykUoSRtZhaNcQ+qCeq3pWaaM1PpNq1qUO8I+TBmph4O/HXltIq9Q0fpu5HmgXmiu\nF3PnOD/QswNkMtZ+Sqi31FWVCWXM31arMF+rjlLGPJd3X462ZGB/1WvhNdAKrvpDneR3qRWcnhta\ng997773qOeprtK1A3vNE+gwSWch53TovRvlefM1xLJpXojLabAP1TvOZOLbRsq7WduZ96fNJ3l5X\nknqudesAjk0a2ZB6cPS5j3MMox40B5PXG+WVpHllXxUtkXrL8vaQpeMekMlC9Y7emr333hsAsO++\n+1bPMdqJY6COneyXzHF95plnqucWL14MAFi2bBmA5vM29VM9jlvDq2NPjjHGGGOMMaZUeJFjjDHG\nGGOMKRWlClerVdaYoQcA0NDQ0OxYFHZG966WQqX7kb8ThcXQPaquYrpF1fXO8Jt6C1cjUdgaXeeU\ni4Yo0J3L61b3bq3SoHmHIaTU2hVew+zoxtbiFHRjM7FYXbN0j/O7VLeY5Exd1hAFhjLwr4ZJRGWD\n8yQK/eS91v5CGWhYgLrH9fNAdp0MB9GESRY0oHte9ahWeeWiyAyoXXhAQ1kYIqRJ3ml57SicjLqq\nsqG8+XnqoL6PYxdD+/TYVyWF50GtwgOUXVTqmPLUMDJeSzp26WuWMtdzaehyVEJaj3FMqRUm3J7U\nCj3VUCKGYVGemhzO91NvNISF4VScK3UMiMJ/igLlEsmC8yDHb92yglsMaMgV38fPaShvrXC1dB7S\nuYdbWyxatKjZe/X9Ou+yH+eRNB+F56ZbDgCZTmmIKcOpOH/qOMRnOuqbhouzX/HZUUN++dtRiCnv\ns4at8t7kPYekz8UqO4aRcssUADjggAMAAPvvvz+ArFADkF0752ndpiHVEd12hXMxn4G1P3NcjLZp\n+DrHOXtyjDHGGGOMMaWiFJ6c1IqiHgQmU0XlaGkJ0JUkrR9c7WsyMi1sXLWrxZjfyZW9Whfo3Xnt\ntdeqx5hgqSvieiJacVMuUdlQJpfSsqIresqVstD7UUSrHWHbeE2auMkNw9QqS/2kzKLN7GgFUtnR\nmsXEcvVU0koTbdJVNKJNEZkEql4wWti0rGpqFVMLJvscrXiUE9Byo0u1OtGSxPumfZFtzdtynpIm\nkap1jtetukOLJK9DrbupHmpfS8dStc5RTrTOqbWUMlVPbeqNyIvUk6PWV3oBde6gF0L1iVBHOT9o\n8jx1ml6byMvDcyqnaCPV1FOU93hYK7E+KurBv3qO+sMxkt4bPRZtsUCdjzYWzLsMcloeOtp8nLLQ\nAhb06uim0exr0cbQ7Kv8q+MgxwJ+Tj2VlDkLDkRziP5OUcpvp57DqOy76hZ1kWOOepn5/LV8+XIA\nzZ9B+F30/EdROlFJ70gXiyI7tpO6qN5U6p0WF+Br6p96WF9++WUA2caoOl9zzKReq3yo+5RnFGmy\ntSn+k5ExxhhjjDHGbAFe5BhjjDHGGGNKRSnC1ehupWtMQ8UYRqbuYA1JAJoXBKBbjq5NrSdPFzrd\nf/qdhGFxUeJ4lMxWr0QuWcqF16vJynQbM5RD98lJ9z/IOySjFlGIBEMBVCYMgdL7TFcy36cuX0K9\n0XAC/mZa6EC/i22JdrLOO0wobSPQMjRRQ3qisAC6uSPXO8NARowYAaB5MiXHAuqWhhQydCtKiizK\nPhFAHIKQ7kkFZGEGGkbLUA5em94DJpGy/2mIDb+XoW86ZjJEi2FqGpKZ7vYN5Nufo2ISDH2J9nXR\nMYtyZPEFvc40aV53SOfYxrFOdS4N59NwNd4bvUfUQ/aXvGSZhvpp2AnDpLRPpnqj76esGKamIeHU\nG46beo/YhrRoib5WvdvaxRpam1jOENlorGMfVP1J9w+hHgFZP+Z1qnzS0Hx9BuGcEY3Fkd4VYdwD\nWu4/pAUvouILJCpow/GefTcKz2Vf1xA4/nY03kWhznkWC1GdZJ9j/9SiKtQRTePg8/OKFSsAAAsX\nLqyee+qppwBkMlT5cL9Jjp2qd3wf55ZoX6etjT05xhhjjDHGmFJRt54cXQWmCe+6yy29LWqho+eH\nFqQXXniheu75558HkO3eqom6tA5ECYH8flr/dDXLFbImsKYlceuNyDrB62RSm+6mS0sHZa6eHFoz\ni+zBIXrdqWVOLYvpzvRf9h2E+kC90YTytEylfj7dVV2thLQ85W2V4+9r0n96TD1QUclLehZYanXU\nqFHVc9yNmceicsdMmNT+TOspk8bV4l6EZPnI0pUmk+qYwrFHPTmUJRPlNUGer9k32X+BzCvEZFL1\nGLEEOq3KamlmX47udd6k1mC1gnOs0qRwWsYpl6icLvVEPQgcB+j51+RnWoHZT1Xv+f06DvJ13qX0\nUy+YemY4ZmlxCnpyKDu1qLO4AD2oKlfO4dTvKOKB+qr9lbqofSYqZPN1oveC9ycqoc57zutV2fFz\n6s2iTvD9OmalHln1sI4bNw5ApssqO8qKfVXvR61SvnmTekMiL2fklaIeRGXiOUbp/MKIH0YD6OcY\n6UO9Va8b75HqItuVR/ltjfKgnvH5QfsnCyzoMxrHqcWLFwMAHnvsseo5enc4/6hXiDrI79S5gnrG\n+6H3KpLP1tA7e3KMMcYYY4wxpaJuPTm6YuVKlRZc3WyLljldtXPVzbwbem+AzKvD1bpaxlNrglow\naSml9U43A6M1VS2Has2pJ1LLit4H5j/QAqpWSnpuUiuwvq8o1qPWQktEZFGixVOPUVZRCVtaQ2kB\njTZ0pM6oXClHWgu/yhuR5gW1B9FvpV47jdWlXNTyNHr0aABZmct99tmneo5xxXy/6iStoJSFluel\npZdW1yJ6H4A4J4fji+oJPdiak8gxinqiHlTqLa3mKm9aNDl+au5IaknXc5E3Ng+dS39bX7Nvag5S\nVH6blkm+T63ztF5SBqq/tAJrCXTC8SDyeEWbXRZlE9DW5DOp/qS5ODpXUgf5XboRJj/H71RPOOVP\n6zAt6/q+KGeyPTaj5e/yHmqOBvsedUTHJ16THuP7eX3qfaXe1Mrppb5qZAFlzucaeiCA7BknD89D\nROQho1x1rOGcp14pju/szzoWUmf5fKhecPZ19lnNxWbJ6VdeeQVAtv0HkHk/8t5+IM1dAlr2Vc2j\nUa89oceKUQ/aZ/n8zD7O+RgAxo4dCyCbM/QeUQep03nIyZ4cY4wxxhhjTKnwIscYY4wxxhhTKuo2\nXE3DA+iGY8KtFh5gIqO6sVn2c9myZQCAF198sXqOrki6QqNwI4YjqHs3LRMZhRxErsQ8Qzm+DjQM\ncOTIkQAymatbl+7faJf0erp2bWva7uj+algBwwgYaqQuY4ZaslBGVPKc36nuebrLGY6g4VjUyWgH\n6TwSmWv9lvZnJi5qAQGWhaabXMtEUz68NnWJ013OMARNtGS4AnVY3fNFKmeuekV9Yts1UZ7jnpby\npSyoA5oUyhANXj9LgQLAmDFjAGThWxq+kSZyR2Vd9VhUeCIPKIMotCMKIU2Lhmh4G3WO16Tn0v6t\noV38zkgmUeGBooyNtcLVKAtNRua1pwnvQCZ3hrfofE19ozxV1/gdTNLX+5MWYAGysJn2KMCS3k8N\nFWMfjMLVouIIDO1hmJqO6fwdfpeGIDFMnGOchoQzTJzhalG5/KIQhaulxTyAbB7UwgzcpoPPghzj\ngOZzBtB8/qX8uYXISy+9VD3HFAaGcWnIL++fhpDnWSQkmuujYiHUH30O47Wwb7MYA5DNEQwtZYia\nvmZoIMP6gJbbNGj/dLiaMcYYY4wxxrSBuvXkqBWHlkuu3jV5lKtSTbTjivzVV18F0LwkYLoxZZS0\nHVn9aHliu9RCx9VyvXovInidKmt6H3hOS6cyeY/yLYKFvC1ESeDUAy02QSuRWtqop7R8aqIuLfLU\nYT1HHaZVNNqUkBYu1bvU+pqeB/KzGqdWdfXkRJYnto0WSJa0BJqXXwXiUqj8fi2vTH1NZQjEnpy8\ndDby5FCXolKeaqGkdY5Wc9VRyolFL/bYY4/qOZblpu5pkjfbQOuefmeUxJx6KPLyHqaFY/R+0zqr\nHiteO69XrZDpOKYlZyl/3jcdM9IEap0TakUB5D1fpGOJ3nN6DrScMftuVGCBHlp6cNSTw+/l57SQ\nSuqF1vtHr4fehzRaYmvC+5OWkgZabugaeXLUE8Dr0gRuknqktZQ+X7NfcrNVIIteqRVJERXpyFvv\nUnmqTOjZU08On0f4fp1/qWfsz+rBoueGXghG+QDZmMDf0zbUKhaSN6lORt5F1VPKqqGhodnngCwC\ngM8lWtyL/Zl6rfMx52mOrxpl0V7zgT05xhhjjDHGmFJRt54c9aIwDjPdgAzIVouRJycqZ5xu5KRW\nF1pRaPnnf089AAASB0lEQVTk7wKZZYWWpGgzsGjDqHqD8qAMNHeEMqB1QK3tLE9Yr+WiiXoc6L3j\ndatXix4DLWHJ19GmjbSGUHf1d9K4dvXk0OpHPdeytdRF1eFU/u3pnYgshfyr7aClTC1CjJWmDDQX\nLM2xUGtuOjZoTgote+nmhEAm8yjWur1IZQRk4x7/qpcuah9zd+iZoUdHoUxUH+khiizx/J1auS3t\nYT3fUtJytCz7D2SbP2v/oSWcXonIqxd5S1MPr5aqZX/lb2uuStHi+xVeJ+WjOUgcs7RvUQZsv/ZX\nWoOZL6H9lV5VyiUqy8/f1u+krHXcTNveHkTjKu9n1LbUOwVkfS3yaNPTxbL5++23X/UcowH4bKFe\nSXpyOK7lnR+3pVA+Ucl11RG+L900GWi5mbbm1vBZhTLTst2p16PIUShRCXV6oHW8o/dLPbKUlT6z\nEMoz/Qtk8uT3M2oHyPQuynFvrzHNnhxjjDHGGGNMqfAixxhjjDHGGFMq6jZcTV24DAdg4pS6vxk2\npqEoDE9hmFoUHkA3sobF8fvpzmPJRiALN4p2eKZrUBPxo6TCoqLufso2DTkAMvc63cAs7ABkbvK8\nwy7aSqQPDFNjEp6G7rHUouoIQ6b4V0skpzt8a4JeGjKkLvs0EVhLJDO0RL+LruuohO3WujeUXRTW\nxGP622yjJrvT3U2d0u/ia/Y9DQ/iPeHvqSueIZeUmYa5crzQ5Ob23sk6Sjrn/WK7tGgKdUDHGepA\n1GbKizqtoVocNzl2MbRXf5O/own5/FwUlpB3SdU0lE77BcNUNBSU8uTnolBQ6ozqHPsyw6l0PkqL\nNeg53g8NBUnLdedFGjoZFd2JStTymCaA8/2Uv+oww5qpRxoSzsIGkR5FCf95hBVF4WppWWkdc6Oy\n0ul4puW6GZLGsr1aLIT3hGOklvKlXDkPF6V/tpaoQE3aB4FMRzim632gnrH0tIZDc67hXBsVwuHf\nqH/mHZ4b6R31jWOa9jOOQ/rsy2I2HOdUR9JCDlrwhs/RHEOZDgJkz4Lsz9HzhgsPGGOMMcYYY8wW\nULeeHLUk0dIRJVpzBakWWVqQos0SuYqNLFC0ytN6optL0eIUFTrgClotB2xDPVhP1IJJqwktSmpp\nS62/TDoDWibqqsyLLANC640m6tEjQ28Bk0GBLKldy6rW8jimibpqYUnLmWsyJeVP2as1lRYr9SpS\n7mkp261Ban1TPaJVLPLy8DrVqq5FO/S79fspT70mypr9X+WaJvbq/WBbo2Th9iLytvE62Le073Cc\nUR3ltfFa9R6knkiVDa+bCblLliypnmOSPq3DmtDK9mlhlTwTdfX+cZ6gBy+aJ9R7SNJN9fQ76NHW\n76KVNNId3g/eh2jzUf1c3hbi1hBZ2SlrjnmqD+yfHJ8ij21UlprfFW0syM99VXnf9iLyvqbl7IH4\nnqfjkvZn9lUWElHPPa3mLH+skRSUMcdRvR9p+4pEWthDi01w7tNyxpyLKbPIW0O9U08uvRHsxzrH\ncl5Iy6IDLedtbXMe8owKXrBvcLwGMs+MFljgmJZuggxkMuAzjvY9ypXzgnqMUs9hrc3Utxb25Bhj\njDHGGGNKRd16ciLLb7QyTGODgWyVz5Wrfi4tkaw5J9xsa8yYMQCyvAsgW+lytawbca1cuRJA81Wz\nlpguEpGFXGOCaT1hTKZaIhmjz+vV0txpudlaFsoiWpSiTfAoA+Z5aI4NLWzUI32tukhoWePfKBeE\nn1PrHa01UftojVIrIfVOvTtbm7T0K5D1F/UskGjzMsog3VgSaNnH9Tspj0gW/I7Uy6jvK4IuqieH\nVjnmyNAqCWQyrVXOWOPXOX7xulXevO5042Qgs9TRg6NWPepjVHI6D1QW1AX2W+2HvIYoFy4q95/q\njH5XavmtlScSlVUvIqmHWeUUbUScWoX1nG7eCDSPlmCEQBQpwDGLHgu10vOYjpt5blegv5mWAY/O\nqZ6mnjHmSgBZCXjONep9fe211wBknhx9BmFfpU7r5yJPThHGPaCll17HL+qI5r1ybqQHQfOS6JXm\ntatXKP09navSeUXvFb+rKJEp+tvpBqrRNg1aRptzRBTZwOdgfr9GVnAsoHw1J7RWHmt7RfXYk2OM\nMcYYY4wpFV7kGGOMMcYYY0pF3YarqestDTXQcwxR0LAzJk/RTaauN7rqmFCqIWkjR44EkO0MriEK\ndJ0z+Yp/gSx8S0OE1F1cBKLdyyMXMcMHeEzDEJiAlpYBBVomWEalUYviIo9I3eZA5u6mLDSsgPqj\n4RbUxShcje5jhiNpqF+6W7C2QUvXftl3akhTWmpya8o8TdjWEIC0zK6GAFCnNMGTryPXO+VJWWsp\nb77m/dBQNn4Xxw3V1yjsKi/91GtNS3FqcYaoiAOvl7vRa2hAtBM2YYgW+7KGIPBzUUnc9tCrLSEq\nCMBQHw375LXoGE3Z8lxUeIChb9rPqdvUd71HadhlFMpWxLAhto19RnWGc5/qyK677gogmys1NIhy\npx5FhW3Yp7WAD0vUMnSS4TFAFgqeZ8n3LyP9/Sh8U/sQdZZ9Vp9dGKLF0CJNJn/xxRcBZGFrKjvK\nuta4lrecSK2iMjrfcUzXfsx7zlA9fQ7j8wllp7/DvpoWfdD3R+W+ixxiyvtJmURFCTTUmP2QstCi\nH2l5e32mYJ+jLhatD9qTY4wxxhhjjCkVdevJUasrLRZMaFTPDJPCR48eXT1GKxw9OpEnh9YBWgv0\nc1yVaqm8l19+GUDt8o26ws0zGTeC1gm1qrHggCaG8jXlpNdE6xCtfGotSpP21IKZJj4WJYkvQtuW\nWl7V0ks5qYWXMuP1qrcm1WG1lKbWe20DLTKUp/YLWmn0HvF8e3oSo41UabFNPYP6Pm0jryEqeU0P\nGa2cTM4FMk8OraJqgWLSJf9GpZBVh/MiSiaNdCEqdZx6dyIvIq818hjRs6FyL3LJWUK56DXxNa3C\n1Bcg0z/VOc4L6ZYDQKZz9N7q5ng8x/erd4hypMw1gZ8eo2ijxryh7NheLR7A5G6W1AeyebOhoQFA\nc28EvTu8Ti3sQJnTS/Pss89Wzy1atAgA8MILLwDIIiSArF8XpXR5RK17qfMuxyp6HLkdAdAysV49\nOSwSwrlEn2solyJ7CyNST44W8uHziXpWqJ9Rmei0kJIWVKL8o+ICabGkqHCE6lpR5FnLgxh573id\nlBP1EGj+DAg0L1jAeZOe3KIV1bInxxhjjDHGGFMq6taTo7GELKdK70lUypfWIyCzKnGVr6t9Wt+i\nErJcqTLekxYlAFi6dCkA4KWXXgLQfCNMWvKKaKFLV+9q6aWlQ8sS06JCq4B6I2g54l+1HNAywr/1\nVkKaeqHWMeoDY9K1pCljhyOLEGP09f3phrFq/aXeRDkXPMf3R5ufaenyWptzfd2k+T9qCef9j0q1\n0yKslrbUMh/lR9ArpLlRfB9loNZfxmuzP6t1iuNLETw5SmqBU10gWiab/ZmyVG9aWg5UreC0xtWS\nQ/TbRdnst9ZGqux/2kZ6HiLd4XdEnum0XDSQyZEWdfUeUg+pazqe0MtTlPLbCttBvdC+Qk+O3mfq\nDccg5ugAmdeMctIxi3M451P+BVp6KqJy0UWRV0SU90o90jmWuRAcEzU3gjKmDJinBGRy5JysFvV6\n8L5GpJuB6tgWPaNRnpSZ5oHyfeyzOhbyGZB6q9+ZRktEUShF1ruIVK5AJit6bXQs5PxBndK+x/Et\nzfsCam8C317Yk2OMMcYYY4wpFV7kGGOMMcYYY0pF3YaraSIsQ32WLFkCIE6uVXciE07pltOk53Qn\nWA1vYXEBhqmxZCOQJUrSPa9hCEV2pacudHVf0p2rx3gNdFdGpaDp+o3ORcl79eBC5z3UMDLqBmWn\nYY9MCNWSl2m4moaRMZE3SpikzNMESG1XWoJav0vb3J4J9byvaRu1ndpPCPvjzjvvXD3G8AOWotUy\n2tRPykllkIaWPvfcc9VzaQKzFh5gKE096Cap1Yc5JqruMPSAxzRcja95z2r15SKXUVU9p17wfmvf\nZMijlqOlzjEBV5PDCXVbdY5zB3Vv+fLl1XM8xnAj7ZtpgZEiwrZpuArDxbX/sIzxP//5TwDNQ64Y\n+hKVQU/D+VQ+HBOj+bTI/TSdY1WPOJ6p3jHcnsUsdKxLx00N9UvDhqLw+CLLKYL3mNeic0hUEIR9\nmqHLKjvCfqYlzxn2lxYuADKZU+frNQxQx2nOESofjoEMU9NiAwwNjAqmpOGRUbhtNFe0V2izPTnG\nGGOMMcaYUlG3nhy1UnBFzvLNmgxPK5MWCWBZWVqXNJmNliN+Tq1wfE1LoJbRrLWaLfIqP7XwRGVk\n1dpOCxutRVHyMa9dLSVpcvNXlTMsGpHVkRZFWjB14zFaRdSrSFlF5Z5poeKx1sonTerXfkFZq4W+\nPb2K6WZkqkfsc1FCaVSWk99BC53KlTJjf2SCMpB5X5kcTUs60LpE3aLzVZaxtGBDVIKb1633gHoS\nWS/TohWRV7YofVl1iNZHelmj61XPAZPlaVnX5HB+L9+v2wlwHKDO6aaV1NGoNHe0aV9R0TamYxeQ\nWcJ57TpPpHNGrZK8kSyKoluthX2Q+qYJ79Qp9eTwNT1ekYc1LdsLtIyuqBdPV0qU9M+5QwtesM9p\nWWl6H+jRiQoPsO/p8xuf7eiB1HmCXtd0c2CgPjw5UcELzp8qH+pi5LnmNacFGvRY9OybRp9Ec9PW\nxp4cY4wxxhhjTKnwIscYY4wxxhhTKuo2XE3dg3STMWlRQw4YOvDwww9Xj9ENzKQrdePR1dYat1xU\nD7zIbssItpvXoq5GhiGoS5zhRVESfOp+VLcuvysKV6sH0tArIHOhM0xACwnUSspujZu2lh7VKtoQ\nfS7vIg/UKQ3NSY9pGAJDBrjDOZCFITBRV/ss+yPDzvS7qLscEzRhmp9rjz2Dvm5q7b6tOpom0uo9\nYF9mWILqZZroq4mmHBOjAiNF69cqH449lIWO39QTDU9OE3A1STfdJ0zHSI4D/B0N00znjnoNKYqI\nxpmi6UN7Ec2LDFdTPeJ4xr9AFs4WhflShznGaWh+rcIM9QplwOvU5xOOQwwnA7L+y1SEKMSU/ZJF\nooAs9C16huQYGD0jFbnPps8g0R5DGpKmYZRAHL7NYzqPpIWFWjsftJfs7MkxxhhjjDHGlIoOlQIu\nRYtckrQ9acutsew+x7JrO+0pu8gjSCtTlKxc63eiZOVaicxbY+jb0u/8OnWOMlK5UZZR8mn0fpIW\ntIjKgn6dSbd59Fe9bnq1tPw2ZacWUML2RvJJd0Hf2kVWPNa1nfaQXVpwgIndQFZIheWiAWDw4MEA\nslL6qpP05NDToNED9GjQq6hFclIr+9cxDuahd/r51ox3kUct8jLW6rOk3vpsre1B6E1UXUy3VNGi\nBOk2A+rloax4TKMl6IWk1y0qYLOlurilsrMnxxhjjDHGGFMq7MkpMLbQtR3Lru1Ydm0nT09OPVNk\nnav1O0WYPossu6LTnhb1aAPGKCeHeSS0pKunIi0FrznDtKBHVnNa4Ovd+1oW2lN20eciL3Wao9ka\nD7aSevj1deTxbi8Poj05xhhjjDHGmFLhRY4xxhhjjDGmVDhcrcDYHdx2LLu2Y9m1HYertQ3rXNux\n7NpO3snz0bE0YTw6V6uEfJRYvzXKSVvv2o5l13YcrmaMMcYYY4z5RlNIT44xxhhjjDHGtBV7cowx\nxhhjjDGlwoscY4wxxhhjTKnwIscYY4wxxhhTKrzIMcYYY4wxxpQKL3KMMcYYY4wxpcKLHGOMMcYY\nY0yp8CLHGGOMMcYYUyq8yDHGGGOMMcaUCi9yjDHGGGOMMaXCixxjjDHGGGNMqfAixxhjjDHGGFMq\nvMgxxhhjjDHGlAovcowxxhhjjDGlwoscY4wxxhhjTKnwIscYY4wxxhhTKrzIMcYYY4wxxpQKL3KM\nMcYYY4wxpcKLHGOMMcYYY0yp8CLHGGOMMcYYUyq8yDHGGGOMMcaUCi9yjDHGGGOMMaXCixxjjDHG\nGGNMqfAixxhjjDHGGFMqvMgxxhhjjDHGlAovcowxxhhjjDGlwoscY4wxxhhjTKnwIscYY4wxxhhT\nKrzIMcYYY4wxxpQKL3KMMcYYY4wxpcKLHGOMMcYYY0yp8CLHGGOMMcYYUyq8yDHGGGOMMcaUCi9y\njDHGGGOMMaXi/wF5m/0aE3+CBgAAAABJRU5ErkJggg==\n",
C.G.Vedant's avatar
C.G.Vedant a validé
       "<matplotlib.figure.Figure at 0x7f72bf4aca90>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    },
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Average of all images in testing dataset.\n",
      "Digit 0 : 980 images.\n",
      "Digit 1 : 1135 images.\n",
      "Digit 2 : 1032 images.\n",
      "Digit 3 : 1010 images.\n",
      "Digit 4 : 982 images.\n",
      "Digit 5 : 892 images.\n",
      "Digit 6 : 958 images.\n",
      "Digit 7 : 1028 images.\n",
      "Digit 8 : 974 images.\n",
      "Digit 9 : 1009 images.\n"
     ]
    },
    {
     "data": {
C.G.Vedant's avatar
C.G.Vedant a validé
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzkAAACBCAYAAADjY3ScAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAPYQAAD2EBqD+naQAAIABJREFUeJztnXmMVtX9xh8WWRxk3zoIuLCJiLghmp+ItUhFSaXGNtoa\nW7VWRCum7mIFtZU0IdE20diosYpSo6ZttLUkrahRBBVBAcENUVzKKssMLqVzf3/o895nzhxehikz\n977X55OQebn3Xc793u85557vdlolSZLAGGOMMcYYYwpC66wbYIwxxhhjjDF7Ey9yjDHGGGOMMYXC\nixxjjDHGGGNMofAixxhjjDHGGFMovMgxxhhjjDHGFAovcowxxhhjjDGFwoscY4wxxhhjTKHwIscY\nY4wxxhhTKLzIMcYYY4wxxhQKL3KEmpoaTJs2DdXV1ejQoQNGjRqFP/3pT1k3K/ds374dV199NU45\n5RT06tULrVq1wowZM7JuVkXw9NNP4/zzz8ewYcNQVVWFfv364Xvf+x4WL16cddNyz9KlS3Haaadh\nwIAB6NixI7p3747jjjsOc+bMybppFcc999yDVq1aoVOnTlk3Jdc888wzaNWqVfTfwoULs25eRfD8\n889j4sSJ6NatGzp27IjBgwfjlltuybpZueYnP/nJLvXOuleeJUuW4IwzzkB1dTX23XdfDBs2DDff\nfDN27NiRddNyz0svvYQJEyZgv/32Q6dOnXDSSSfhhRdeyLpZe0TbrBuQJ77//e/j5ZdfxqxZszBk\nyBA8/PDDOPvss1FXV4dzzjkn6+bllk2bNuEPf/gDDj/8cJxxxhm45557sm5SxXDXXXdh06ZNuPzy\nyzF8+HBs2LABs2fPxpgxYzBv3jx8+9vfzrqJuWXLli3o378/zj77bPTr1w+1tbV46KGHcO6552LN\nmjWYPn161k2sCD766CNceeWVqK6uxtatW7NuTkXwm9/8BieddFK9YyNGjMioNZXDww8/jHPPPRc/\n+MEP8MADD6BTp05499138fHHH2fdtFxz44034uKLL25wfNKkSWjfvj2OOeaYDFqVf9544w0cf/zx\nGDp0KG6//Xb07NkTzz33HG6++WYsXrwYf/3rX7NuYm55+eWXMXbsWIwePRoPPvggkiTBb3/7W5x8\n8smYP38+jjvuuKyb2DgSkyRJkvztb39LACQPP/xwvePjx49Pqqurk507d2bUsvxTV1eX1NXVJUmS\nJBs2bEgAJDfddFO2jaoQ1q1b1+DY9u3bkz59+iQnn3xyBi2qfI499tikf//+WTejYjj99NOTSZMm\nJeedd15SVVWVdXNyzfz58xMAyaOPPpp1UyqODz/8MKmqqkqmTJmSdVMKwTPPPJMASKZPn551U3LL\nDTfckABI3nnnnXrHL7roogRAsnnz5oxaln8mTJiQ9OnTJ6mtrS0d27ZtW9KzZ8/k+OOPz7Ble4bD\n1b7mz3/+Mzp16oSzzjqr3vGf/vSn+Pjjj7Fo0aKMWpZ/6DI3e07v3r0bHOvUqROGDx+OtWvXZtCi\nyqdnz55o29ZO6sYwZ84cPPvss7jzzjuzboopOPfccw9qa2txzTXXZN2UQnDvvfeiVatWOP/887Nu\nSm7ZZ599AABdunSpd7xr165o3bo12rVrl0WzKoIXXngB48aNw7777ls6tt9++2Hs2LFYsGABPvnk\nkwxb13i8yPma5cuX45BDDmnwcDRy5MjSeWNagq1bt+LVV1/FoYcemnVTKoK6ujrs3LkTGzZswJ13\n3ol58+b5QaoRrF+/HtOmTcOsWbOw//77Z92cimLq1Klo27YtOnfujAkTJuD555/Pukm557nnnkP3\n7t2xatUqjBo1Cm3btkXv3r1x8cUXY9u2bVk3r6LYunUrHnvsMZx88sk48MADs25ObjnvvPPQtWtX\nTJkyBatXr8b27dvx5JNP4u6778bUqVNRVVWVdRNzy5dffon27ds3OM5jy5Yta+kmNQkvcr5m06ZN\n6N69e4PjPLZp06aWbpL5hjJ16lTU1tbihhtuyLopFcEll1yCffbZB71798YVV1yB3/3ud/j5z3+e\ndbNyzyWXXIKhQ4diypQpWTelYujSpQsuv/xy3H333Zg/fz7uuOMOrF27FuPGjcO8efOybl6u+eij\nj7Bjxw6cddZZ+OEPf4h//vOfuOqqq/DAAw9g4sSJSJIk6yZWDHPnzsVnn32GCy64IOum5JoDDjgA\nL774IpYvX46DDz4YnTt3xqRJk3DeeefhjjvuyLp5uWb48OFYuHAh6urqSsd27txZimqqlGdix3QI\n5UKuHI5lWoIbb7wRDz30EH7/+9/jqKOOyro5FcH111+PCy+8EOvXr8cTTzyBSy+9FLW1tbjyyiuz\nblpuefzxx/HEE09gyZIlHtv2gCOOOAJHHHFE6f8nnHACJk+ejMMOOwxXX301JkyYkGHr8k1dXR0+\n//xz3HTTTbj22msBAOPGjUO7du0wbdo0/Otf/8J3vvOdjFtZGdx7773o0aMHJk+enHVTcs2aNWsw\nadIk9OnTB4899hh69eqFRYsW4dZbb0VNTQ3uvfferJuYWy677DJccMEFuPTSS3HDDTegrq4OM2fO\nxPvvvw8AaN26MnwkldHKFqBHjx7RlenmzZsBIOrlMWZvMnPmTNx666349a9/jUsvvTTr5lQMAwYM\nwNFHH42JEyfirrvuwkUXXYTrrrsOGzZsyLppuaSmpgZTp07FZZddhurqamzZsgVbtmzBl19+CeCr\nqnW1tbUZt7Jy6Nq1K04//XS8/vrr+Oyzz7JuTm7p0aMHADRYCJ566qkAgFdffbXF21SJvP7663jl\nlVfw4x//OBpOZFKuvfZabNu2DfPmzcOZZ56JsWPH4qqrrsLtt9+O++67D88++2zWTcwt559/PmbN\nmoUHH3wQ+++/PwYMGIA33nijZDzs169fxi1sHF7kfM1hhx2GlStXYufOnfWOM+7Q5UFNczJz5kzM\nmDEDM2bMwPXXX591cyqa0aNHY+fOnVi9enXWTcklGzduxLp16zB79mx069at9G/u3Lmora1Ft27d\n8KMf/SjrZlYUDLWyV2zXML81hLKrFMtw1tD7cOGFF2bckvyzdOlSDB8+vEHuDUtuO9e6PNdccw02\nbtyIZcuWYc2aNViwYAE+/fRTVFVVVUykiUeVr5k8eTJqamrw+OOP1zv+xz/+EdXV1Tj22GMzapkp\nOrfccgtmzJiB6dOn46abbsq6ORXP/Pnz0bp1axx00EFZNyWX9O3bF/Pnz2/wb8KECejQoQPmz5+P\nW2+9NetmVgyffvopnnzySYwaNQodOnTIujm55cwzzwQAPPXUU/WO//3vfwcAjBkzpsXbVGl88cUX\nmDNnDkaPHm3DayOorq7GihUrUFNTU+/4iy++CAAuuNII2rdvjxEjRmDgwIH44IMP8Mgjj+BnP/sZ\nOnbsmHXTGoVzcr7m1FNPxfjx4zFlyhRs27YNgwYNwty5c/GPf/wDc+bMQZs2bbJuYq556qmnUFtb\ni+3btwP4ahOuxx57DAAwceLEemUITcrs2bPxq1/9Ct/97ndx2mmnNdi52hP/rrnooovQuXNnjB49\nGn369MHGjRvx6KOP4pFHHsFVV12FXr16Zd3EXNKhQweMGzeuwfH7778fbdq0iZ4zX3HOOeeUwiN7\n9uyJt99+G7Nnz8a6detw//33Z928XHPKKadg0qRJuPnmm1FXV4cxY8bglVdewcyZM3H66afj//7v\n/7JuYu75y1/+gs2bN9uL00imTZuGM844A+PHj8cVV1yBnj17YuHChbjtttswfPjwUqikacjy5cvx\n+OOP4+ijj0b79u3x2muvYdasWRg8eDBuueWWrJvXeDLepydXbN++PfnFL36R9O3bN2nXrl0ycuTI\nZO7cuVk3qyIYOHBgAiD677333su6ebnlxBNP3KXc3D3Lc9999yUnnHBC0rNnz6Rt27ZJ165dkxNP\nPDF58MEHs25aReLNQHfPbbfdlowaNSrp0qVL0qZNm6RXr17J5MmTk5deeinrplUEO3bsSK655pqk\nf//+Sdu2bZMBAwYk1113XfL5559n3bSKYPz48UlVVVWybdu2rJtSMTz99NPJKaeckvTt2zfp2LFj\nMmTIkOSXv/xlsnHjxqyblmvefPPNZOzYsUn37t2Tdu3aJYMGDUqmT5+e1NTUZN20PaJVkrhuozHG\nGGOMMaY4OCfHGGOMMcYYUyi8yDHGGGOMMcYUCi9yjDHGGGOMMYXCixxjjDHGGGNMofAixxhjjDHG\nGFMovMgxxhhjjDHGFAovcowxxhhjjDGFom3WDYjRqlWrrJuQC5qyhZFl9xWWXdOx7JrOnsrOcvsK\n61zTseyajmXXdCy7pmPZNZ09lV0uFznGGGOMqUz4QBb+jaEPLXV1dbt8v/ctN8bsKQ5XM8YYY4wx\nxhQKL3KMMcYYY4wxhcLhasb8jzC0IhZOoWEXrVu3rvd3T0My/vvf/zZ4j0M4jDFZwvGsbdv0cWKf\nffYBAOy7774AgPbt25fO8bUeIzt37gQAfPHFF/X+AsCXX35Z7xj/D6RjI8PdjDEGsCfHGGOMMcYY\nUzDsyUF5azv/6vtoPVerEV/zr1rYy1n6i0hjPBtFlIVaMvm6Q4cOpWP77bcfAKCqqgoA0KlTp9I5\nfR+QWjQBoKampt7fHTt2lM7xNa2b+rlKlXEsWTn0fmm/5HWGf3d1rDHnvuk0ppIP5abvLaIsY7II\nj+n/90R2jdXVvKH9j2OdemY4tnXp0gUA0LVr19K5bt261XtPx44dS+f+85//AAC2bNkCoP5Y9+mn\nn9Y7t23bttK5mHcnNhcbU64/V1IfNI3DnhxjjDHGGGNMofjGeHLatGlTek2LEy3qtCwBQK9evQAA\n3bt3BwB07ty5wXfRgrR58+bSsU2bNgFIrU20ugOpdYlxw0Dlxg7T4sGYa/VA0DJHeapngx4GyuDz\nzz8vnePr8G/sc0D+rCyUBfUJSC2Yffv2LR3r378/AGD//fev938A6NOnD4DU4qn6Qd169913AQAr\nV64snVu9ejUA4N///jeA1MoJpHLMo66FHpl27dqVzjGOnzIE0v7Ys2dPAKlXTD/L6/zss89K57Zu\n3Qog7auUJQBs374dQCon9YJVihV4d16D0CtWzruq1nmOl7HvD71qsXFNj8VyyfJAuWsDUhmwf6un\nguMez/EvUH/cA+JefeoaPRdA6o2ora0tHQt1M2sZxryslJPKh2Mh+y3nVT3GsY79HUhlwM+vX7++\ndI4yoHdH5cw5tpyH1xSTmMef/VG9hNQp/lX9oY5Qj3QOCfPDtM/ytc6xRdG3xpZ9zzv25BhjjDHG\nGGMKhRc5xhhjjDHGmEJRyHC1mCtdXeJ0lx9wwAEAgCFDhpTOHXLIIfXOaSgbYUjQBx98UDrGEKK3\n334bAPDee++VzjFUhuExQGW50su5gzVsKAzD0nCjMBRDw6oYUqShRIRu4zy6gykLusSpV0Aqi0GD\nBpWOUbd4jDoGpOEclKdeI8MzPvzww3rfDQCLFy8GACxfvhxAGr4GpGFCmoybpexiIaPsl5qYzBC/\nwYMHl44NGzYMAHDwwQcDSMP7gDSklHpKfQKATz75BADwzjvvAABWrVpVOvfWW28BAD766CMAaagp\nEA9hy4pYUnusMArDL/QYQ/koew214LWFeqyv+Z0aihmGvmloR1gkA0hlyd/Ouv/GwvPCEGYgHb/Y\nr7V/hwn1Or/wuzhG6tgVhsNo8jznCeosAHz88ccA0rFR71+WcozpXbnQZYaZ6mstvEI4ZvGv6hbn\nDsqw0kpIl0t4j/XxxhTpaWpBlaz74J5SLqRWxy3qG+eQgQMHls4ddNBBAIBvfetbAOrPOfwuzh1r\n1qwpneOz3Nq1awGkoeH6ftVTjquxkOc8y52ypSxihZR0Die8JvZBHaPCfplF/7QnxxhjjDHGGFMo\nCuXJ4WpfV6C0sGniI63Bo0aNAgCMGDGidI5eHVrL1doUJjarJT5MiNZEVFqMdWMzWjfzvLIvR1iA\nAEhlRVn36NGjdI7XTmu5JiZTnuWsBHmRU8xKTh2LFbDo3bt36RgtwdQRtd5RPjEdpozpvaBHCEi9\ng7FiGJSreiNU7i1FrLgAdYVeGPVO0Wtz2GGHlY4deOCBAFIZqG7R+k5LsuoKvYphYQcg1TfKJyan\nWJn4libmmY5Zz+lB0GN8zffrNWqBD6D+/aGO8v6oV5aWU1rSVefohdDfCeWbdV+mPDVRPqaHHN+p\nQwMGDCid43jPz6kHiP2Vv6MeB/bTmPeaFuLYJpnsy+ohy8LLGLOox4rQhB4cnX/ZB/ldqoecHyiL\nDRs2lM7xNWWgn8ubJycW/RArtR0WsIgdCwtZAPF5kddOvVD5hN4vfRbh6zx6HMoVqOEcol59ev9H\njhwJADj00ENL59ifOQ+rzCkX9k8tGERd5jwf83BoPw4911nMubsjjMgB0uvj3KqFkfjM3K9fPwD1\nxzv2R3q6NMKJURKUj0YzUebN3WftyTHGGGOMMcYUikJ4crjap5UzZlGiJRhILcT05DBWE0itAvwO\nXWVyZc7fU2syrc8xixKtcLqKVUtKUaCVhdZNtZozr4R/1dJFy1NsQ8u8lZ+NeXJomVMLHS0k2m7G\nlDPOXmN7eZ3UYc11ojU0VvqS5yhrLXlO60ljNidsTmJev1B2aqHj+7W/MB+Jll59f5hPobILz1VX\nV5fO8XUsJ4fWKbXCZ0XMKhx6EYGGmywCqSyoMxo7Tvmyv+nv8Ds4xqklnr9JfVaLcSx2O2v9I+E8\nobH87Ec6TzB3jtZhje8Pc3Fi5cdjcuW8wvsQ89iq/vI174eWl25JwjwRbTflGCv5Tk+25uRQZmF5\ndyDtixwj161bVzrHPsl5YncW8pacM0Ld0vGJ8mH/VO8++5XKh+fZ97SP83vLXRt1S71gHD+ZX6I5\nJxz3dGzIS/5c6HFQDwJzazSyIfTgqGeWcwHnRc3dDCNr9PmN94h9LxaRU27bi7x4cnRMjuUR01tz\n1FFHAQDGjBlTOjd06FAAqW5q/6ccucUF84QB4NVXXwWQRjPpMw+9Ziq75vDq2JNjjDHGGGOMKRRe\n5BhjjDHGGGMKRaHC1ehC05AdJkppKV+6MhmmpqEYhG5zLXVMN2UYlgWk4QR0+WmoDd2jMVddXlyZ\njSV056o7my5lhnJoOF/ozleXb5hIqiUI85ZIGiv1yTbG3NiakEg39vvvv7/L99M9rzrJEBrqaywU\ngm58PRdLWM2CWLhSGKKo/YwJjBqaExYViOkdQ001rIj9n/0zVjY4TBTX11nqX0xuYRKzhlyxv2ki\nLkOIKG8dl8KS2/p7YYgNQ0OAVF4M5dNQLfbdcmVEs6JcSBHDhTSckYnKPKbhWJQBQ3xUf6m3DM1V\nmVPWYQEC/Q49RjnyfmufVhm3FJSdhp6GugKkYS2xQiFh+WxNVOZrzpU6BoSFFrQvx3SrMSWY9xZh\nQRANMaMsOC7ps0gYEqnvYyhRLAya6LXxeqkX+ryxYsUKAMCCBQvqvReIh1VlGWpVLjxXQ3HZL7UA\nFF/z2UxDkBmyx1A9DZPkfeM4oIUHwucabQPnJR1L+P4s+meMWHgur08LM4wdOxYAMHr0aADp3Knf\nsXHjRgD1n12og5SFjqGcyxl2quNkSz3v2ZNjjDHGGGOMKRT5MPU2gdhqP1YummU/WRgASL0tfJ+u\nJJnwyNU+V/9AamGjRU8tMrSysw1qTWYCoG4Qyt8Jy7hWCrHNnWhxilmUafWlrNW6SU9OrORx1omP\nIdqe0Buh5V1pudBkzvXr1wNIZabvp3xoUdJNAmmVYklHtciEG3hpcqFaOvOA9jPKhfLUe04LuFoi\nQ9S6SX3TgiOExygXLSQQehCzLrXdGMIiDmpVpOVXLXDUHcpUrz9MkI+VBaZlU/sy9Z2f1zGMr9XS\nlxeLZliONla0IebJ4Tnt+xzT6anVeYLnOMapN4L3gfLh/4F4EjPHAb4vK70s5wWjDmoSM+XIOVY9\nUBwbWW5cPTkcI3XcJKFnWuceyqUl546Y5zeWIB9GNmiRAcpJy/Xyfbxe7T8cs8ptl0F91XmC+sNn\nECaJa5t3dW0tTbny27E+G9sYmn2IngQAWLJkCYB0w2zte9RTfr/2M+r6nsok62cXyo5zpXpa6Tkc\nN25c6dixxx4LINVXfV5988036x1TnaQO0zuk59gPws2lgXh0THOQr6cgY4wxxhhjjPkf8SLHGGOM\nMcYYUygqNlxNCQsOaJJsLLGP7jW6JJkIDgCrVq0CAKxcuRJAfZcdQwfoltcwBLp8GbYWS5DTMDq6\n8TQsKa/E3K6xwgN09VL+uh8AwzliCbcM62ipHXCbQqx+PkMjYqEVdNnqdTLUIwxzA1JdZCik6gp/\nm3quMufnYkngWeyIHoPt1RCAcP8ZbSvlqWEUvHbKR0M+GFY0YsQIAGk4qr6P90H3jmDIKJMptT+z\nfVmGHPC3yyXiavET9jdNmmWfZIiQhkIx9IVhGxoKwvAC9mWVN8MI+TnV8dheEnnrz5Sd7kfDECEN\nM2YYDPutJs1SZ9555x0A9fcd4TmOaxqWSpnxPmg/YP/QcA/Kke/POoySstBwUYa3aNgQ9YZzJWUC\npLrIeVeLs/D6YnuCheOf6hjHjHL7lbQEsbGObaI+qB6xL+l1MnyPfUmT5zl/sk9pn+Wzx5FHHgmg\n/thAqFsqJx7TfpqXPhuGmMb0QXWR8Pp0nyWO95Shfo7jG+ddLTJC3QrD6vV3tB9n+RyjcwXlw5Bt\n7Z+HH344gPqFB9jnGJr2/PPPl84tW7YMQCpPHTu57yTHUJUd5yQ+D2s4PWnuOdaeHGOMMcYYY0yh\nKIQnh1bHsFQjAAwZMgRA/cQ+riZpMaHXBgCWLl1a7xiTI4HUMkTLk1qaabniX02C5qqXFi9tc0uW\nudybxKzMvD7uMqyWJFrdaNHT8o2hlTLPsijnRdFztI5pgi5lFfOwUF+oU2oNoYWE59SCSesgrelq\nZYr9Thb6Vs6iFfNA0cKmljb2bXpkaT3S1/TgaAI0Lee0GmuCOMvEx2SXF0smELfO0YIbS/ZWix3v\nM5Nt1etCCzH7n3qfadHkuKn6SBnSIq2eirx4HGKEydpqBaclV6MA+Jq6oMVSQi+uWnIpA8pFLfe0\nIvNcrNiF9s2wwEtWY2M52TGhWT2IYcEBHe85p/KYWucpc84dOo/y2ilz9bzyu7Sv8H3NpYux+8T7\nqUntvOf0IscKpLDgApC2m1ZzPUcd5O+pvnJeoGdbn09CL5KOA2yr6mKW4185/Y95yGKRFGHSPZDO\no5yTVV8POeQQAOkYqkVY+MzC+6feoZh3h3LM2pPD51x6aPQZmBFO+kzK+fDFF18EACxatKh0TudN\noL5nn6+pd+rlob7FtmmIbQfRHNiTY4wxxhhjjCkUFevJ0ZU2LZBcmcc2h1IrJa0YjKem9wYAXnvt\nNQCpl0dX6GG5W40lDq2iavkMN2wEGpYlzLP3QglX3xpjydK1tBio7GjNYgxybMO7SpEBKWdlisVm\nU2fDcqNAarmkDNUbqRvpAfUtyrQy0WIS2zwvVuo0bGdzErPYhFZrlQV1Sr0UtLQdf/zxANK4cyD1\n1lKGmtMQlvFV+dDyyb+x+5clsRKbHDc4vqg1kh5U1RdagXnd6nWhfvA7NYeOlj6W4FfLdPhdGt+f\nB7kpMd2P5ZVQd2IbWsZKZfPa+VfnI473tNjrOXp8YiWhYxbgvMgzzIlQa20sF4z6yXFJc3I4V1L+\n6o0IdVg94ZxPYptr856q7MKNaZvTsh4+G8R0hfqgngD1yhPKjB4vfc7gtYSleYFUnjynusXv4HgQ\n2+Q8j95X3jNet47f1CP1dNETQ/3h3ACkXgveq5jnMZanzdfMu9PoHrZBn3VCfWvJPqxjDfsq9UE9\n/BzntN185mV5cX3O4HdQTpyPAeCII44AkMo6lo8Z5iICLZczbE+OMcYYY4wxplB4kWOMMcYYY4wp\nFBUbrqbJinS9MbRCw9WYFKWuWJYSZFm8t956q3SOrkm6mGMhLHShx8p/xly+YZgEkL/d6PcUtl/D\nAFnCkm5hLY9NmdO1nOcSs3tKLBwrLPULpCFZDFvQpD/q7siRIwEABx54YOkc9Zu6paEGTLilrNUd\nXK6QQxZhMHqfKZ/YvQ8LiQCpPFh4QHempzxjIQ2UAcNr9DsZUsPf01CulghxaSwachXuXq1y4LWp\nXjFMhTLScCyOoXw/S3ADaTEHfr+WSKZM2S7Vcb7WkMGWSjBtLLHw0jCMDEj7EsdtnXMYSsnv0GRy\nhr5Rr1Q+JAylCtuTN9hfOYZpuBpDWDS8lDJjX9TCA9Rhlq9laCSQhuvy+7X/sX/yuzT8m8TCKnVM\nbC7CcUJDcTjXsW06L/L+63zI8Z3XqeNSOO9qCNKwYcMApKFaGhbHUCQml2sb2Na89M9yxX10bOez\nxNq1a0vH+LzHcU51iyFW1E3VYcqD5ZPffvvt0jk+H/J3NHyQ90afBbMuEkJ4nRybdIxiG1UPGLpG\nuehzNPWN8zBLUAPAUUcdBSCdKxjuBqRhqpRZFgUaKvtJ2xhjjDHGGGMCCuHJoeWCVg1NKOPqVRPd\nuTLnilOTzLgyjyXDh2U0NXGVViUeU+trrExunq125QiT5lXWXPnTgqAypyWYloNKvX4lTGDWJFCW\nWNUCFLQu0drEJFsgtThRhpo8TpkzyVGtorSUUNYxC7p6DcPS31lZm8J2xBLEtd20dNISqfoTS7Ql\nvEe8N2rZo3Up5gVjn81DMQKVA3WN3gLdNJZ6pd5VJnXTM6OWX45H9OTohsn06vAcPbFA2vep41pO\nOFZSObRsZm3hZNt0fKJe6XYCbDf1S6+J8wTfE9scM3adYWK6WvDLWTazlhmJbaTKcU3HOqLJy4TW\nYCYqMwIASGUX29wzRGXHsVE3+4150JqbmJcwVlaaxDbP5fs4lmsECPWMfV03cxw6dCiA9LpVFnzG\n4dxRKZEUYUEH9eRw/FZPDr2JLNwT25Q95m1mEQsWo9LoHnrBONeqZy3PG5iT2Kbl1DH17jASgNEk\nek3s25TCre00AAASoklEQVShbrjNOYbzlHq6KDvqXWMjTfYm9uQYY4wxxhhjCkXFenK05CytGrRq\nqpWJqCWSXgWuMjXHoZyHgRaAWDwsV7M8p99DS7FaDmOlIyuBMJ5Vc0e42qflQDeQYtnFSi0XHcur\noneA163el1hZVcab0wqiMa88x+9UKxMtI7SCaBwtLTKUp3o4qa+xEra8R3nxqKnViNeppUFpYac1\nTTea5TXzOtWzQPnTsqebmNGSzNh1HQdoMcyD91XvH1+H5ciBVAfUo8hy7uyvaoHjd9BTobrKsY3X\nX04OqnPsH2Gp8jzBa9GyxitWrABQf1ymNZf6pN4aXifnIZU5j8U8OtRtzgWxTRlVvnnpn6EHX/sY\n5zw9Fm6QrB5Hjo3MQ9TcGnpkaFlXvaOMeR/092L5T1nqoN5z9QCG/9e+E36Wsla941zD/Jtjjjmm\ndI5Wdo5dGqFCefKcjrflvOl5madjWzLE8ujC+VBlR1nzczqPco7l39hcENv0Oy/yIdqe0IOjOVp8\nNtO5hf2Qc6U+67BfsZ+p/vCecOzkczWQesjDCKnwO5oTe3KMMcYYY4wxhcKLHGOMMcYYY0yhqNhw\nNXVLM3SFIRnq/qZLTJOh6LqlazyWrB3blZ7hB0wYp8tYj/G3dTdmJgCquzB0q+YZdWlS7gxn0eR5\nujfp6mUSH5C6KyvhemNQH2KhAwy7YMiZvtakWoan0R2ssqNu0eWroTSEbmG9HwwVYcKl6jLd87GE\nQ4bNtEQ4TKyQQOwYYXu1D1F/qH+xsJQwKRdIQ9I4RmjJ5TDMVROnKX+VXVahQ9pnqB9M5NSQFI49\nGobB8SvWdsqLyaca/sNQB4YMaugpxzOGWmlyOeWVRVjC7uD4RJ2LJR5rUjHD1diPNAyar8OEXCAN\n+wv7JpDKjOc08Zf3Ko/laCkzykLnRb7WY4Q6pX0yLImv5cnDAjXlSr5rYn1YahjItjRyLGyIx1Tv\nwrDH2DF9nuFcw13mNfyUn2OIEMshA+mzB8f9rPWpsYShdDpfxIr7sO/xmI7f1C32ce3rfD6MPfdx\nnOSx2FYgeQlh07GWesfxWQs0cPxRGTDcntcbK+VNmWtoI/son6e1P7OPct7KoqiKPTnGGGOMMcaY\nQlEITw6tYbTwxErPakJpmPSvyX/hBnea4ExL/JgxYwAARx55ZOkcLQhc8TLRHkhX0Gp5qgRPTlgy\nG2hoEdeNB2lFo9VXE9B4LpbkmGcZEOqUJhjTgkGPjHptWJCBid9AqiO0ZOp3UT7UTbW8h5ZS1UkW\nvKCFRL+T1n5aWIBU7mEybHMQFmtQC1h4TM/xc9pPw1Kd5TZe1c/Rik6LXswrGUss57k8JC9r8jWT\nYGmtVTnQG6EFMKgzvG6VM2XDcU1/hzJZvXo1AGDp0qWlc/TQ0jqsnqOYhzDL0tF6v9k3aBnXcY16\npYUA9LV+HkjHPY4Beo5WUv6OzlWUK9+vFmO2J49jY2M8SnotvGb1YoXfReu5FgXiWMUxUsdPzjnU\nN7VC83OqixwHsvbklPNk8l7re9hHYzJkmXdubKkeMspg1apVAOpvaEnPdFieGmi5Ur7/C5SJerXo\ngdcCPoySYP9S3eLzF/VOZc75hTqsMg83ZdUyyBxf8lIgRO9huDm2PpNyrNfoIo5bsdLrHJvoSdR+\nSfnweU89RuFmqVl4vOzJMcYYY4wxxhSKivXkqLUrLIerK/RYKUFa4WJWJq7M+R5dsXKDvNGjRwOo\nHw/L76flU+NhuemorporoYQ0V+9qpaTliBZMjSlnLg4tympVCy3JajUOyaNFibLQzcWoP/TQ0MoB\npB4W9XSFZU7VIsRrpl7E5MM8AM39oWWY7dI8Fr03hB6NMD8BaL7cCcpO20MZ8FislGrMk8M+rvIJ\n46jVW0G5UPb6O7z22HXnqQRyzJMT62O0oKmcw42LVR9VX8PfoQyZl6Kb49FTS8uxxr3Tepj1Jqqx\nku/0gLL/6JzAa1DvAPsn9UPlE/bPWJw+0esP74daTWPx/XkhHJ9UTrENLTkm0sut8mGOAGXOsRJI\n51R+XktPU7c4x6rFONRJbU/e5Bnz8sQ899QRlQEjBCgznUOYC0Gvq+ZGcG7m+2M5c3nJK1FCL72O\nX8wL1vmQuTj0WKn3gnpD3dUcO3qIOG5otARfU7diuaV5lB3vK/tBrG/oMco4lidGHaQ3Vcc/esio\nb5pPHM7bKpuWmmPtyTHGGGOMMcYUCi9yjDHGGGOMMYWiYsPV1L1L9yPd4Oo2p0tSQzO09DNQf3db\nhnrQFaohaUz2i4U70C26fPlyAMAbb7xROvfee+81+J1y4VpZEtvlVl23dFvymLofGY7HUBq9D2G4\nmrp885K0V47QbQ6koVBMktVSlmF5YiANb6PeaMgA3esMP4qV5SXqZg9dyxp6xc8xMRBo6CJuTtd6\nWLhC+wuvgeEHWr6Yn9NQDIbEUE6xXcPZZ1k2Wl/Tza56x+8MkyOBbMvPhsQSZHlMZUTd0WukflC+\n2tcoe4YsaN/n+1jgQHUolJd+Z17KRceKprC/MtRHyxPzPmuxgTCsSvsOw1uoV5oATrmyT+pYz9+J\nhSnlSedC2E72P92SgWFjmgBOuXDe1TAjyjVWLIXjAscKDadhQv3rr78OAFi5cmXpHOdfHTfzMq+E\nIU276yPUG8qMoXtAqrN8j4ZjhQUHNGwoLDiQl8Igu4Oy43OZzrGcT1W32N+pnwxRA+qH7+l3A+nY\nEIYK6muOq7FtD/II72csVCzsz0AqOz7j8LkGSOXP5z59tuNzH+cKHUPLjWnhdi27et//SmXcLWOM\nMcYYY4xpJBXryVHrNhOfaNVQjwlX+1rel1Y4emlo0QXS1Swt8GrtC70XakV5+eWXAQBLliwBUD9R\nl+3TNufNahJLNqOFTa0nlAHlpAmo3DiQK3m1FtE6ECuTGkveq0Q04TssMQukVkpawFUfKDPqilow\naW2JlVumjHkf1DITeiqA1PLfkp7EmBeMesR+pmWPKUfVEVqOYomz1E9a6NWTM3z4cADp/aCOAml5\n0VBv9ffyYg0mYRJ8zMujcqMVkmOeWij5WeqhjpuUL71DsUTlvGxU2VgoM45x9PwBDTeoBBr2Kb1O\nWn7pwVFPDmXN74r1ZcpV556YZywvhLqipXnpQVDLL/sboyY0OZzjQWyDR/ZvWt1feeWV0rmFCxcC\nSOdYRkgAqYzVG5sXvQzbof2T167zLsdGjme60SzPxTxqfOZgJEU53cpjojyJyYdzh45fsaI17OOx\neYIy5nON6mvYZ8uhY265ojV5k+vuPIjhhr9arjuMQolFmtBzqNEF5eTZUnKyJ8cYY4wxxhhTKCrO\nkxOL12csIDepUwsdV6CaW0OrEnNsynlY1OJN69v7778PAFi8eHHpHK1LLB2tli6uevNooQutabGN\n67RsMs9TLrEYaFpA9XppHQiteJVCWI4RSC3ftKapJZyWRZUdrWmUj24OS32hd1Ctv9T1WMljfidz\nJjQOmxY9PUbrHi1cLWFt4m+oxTYsya2l2ll2VnPBaEGiNS62QS37unqF6PWiLNT6y7w55hTo/aOl\nNC85JiSM649tihrb8DS2MSWhTmifDL2NsZLdu/p/HqB8Ynlv4SafQOqJUZ2jjlHGam3na3pnVR/5\nm/QQal9mP2ff17ZkuWHe7mA7OBbpmLJixQoA9cdGXhfn5kGDBpXOUdb8Tv0ueiOYd8McV6DhVgzq\nqYh5NvNCmHsQ65+aZ0n58DlGdZLfwfFe80xYRptz8u7KROeVcmWGY9uD6HsoT50DCOcVjoU6NxPO\n5Sq70Cu0u41U8yLj2MbrJPTaAKmHi7qoW6xQByl/nSupb3w+1nEgD/3RnhxjjDHGGGNMofAixxhj\njDHGGFMoKi5cLdx5GUhDURh+oiEZfL+6GFmEgAnLWsIyLLv7wQcflM7Rlc4dhZlwCaQhbHSla7J3\nnkuDhi50dV/ytSa681r0+ghlx3ujMt/V71YKvG7dYZ6hJ5SdXi9DVDScgPKke1fDNBjaQr3T32GY\nTcw1zhCXsMQy0LC0OpC63lsyTI1yKVcUQWXHhNKBAweWjjH5ln1WS05TrnSN6/UyPO21114DkBYI\nAYBly5YBSENq1AUfCx3KO7GyyZSlFsUg1AXeFw2j4f1gX44VqihXSrW5y4I2Fg2ZZZ/i/eaYDaTh\nLVrynaV7mUSv8wRlTLmo7nDOYN/XeYLlfRki2dhyq1nDNsXGf/YVlQGv85lnngEQT/Lmd6kM+Jrj\noJ7j/JLnsL4Y4RyrYY+UhYYGMUyNY50+z7CvcozT4keUFeVUKWWiyxEWWtHUgrDEO5DKlikJQ4cO\nLZ1jn6VcNNyRYwK/U0vmh7qoxS3yFgYYK+gU+z+f6VS3OL5xvNPS3Hwf5wOVOcfVWIh3GFKYxXOf\nPTnGGGOMMcaYQlFxnhyiq0WuJFl4QK1M9KzwHJAWIWCJRl3N8rNc2TPZUb+DCX6aOE4rFle6sdVs\nHglX2NpWWnPV4kEPBVfyaiGmHGOlU/kdtMhUmpUpLKqgx0ILMZAmzJaz/qpcw3K16vXg71Cn1IIe\nlvNVi3u5RMmWSAjk/QwLLihsT6wstlrM6HVgn9Xylrw+WjVpRQZS7y6t6Wq9Z/+NbQaaxyIhSrm+\nop4cypXXoxa4UAf0O0OLnepVY2STl76s18g+xX4aK12s3ojBgwcDSK3CatkkMY8/5wkWodG5J9zm\nIG9Jursj9Ojoa9UtXh89VirrcsnkoWU85q3Ji241lnKbIjP5XXWLid/q8SGcM/hX59hwM/Ryc2yl\nyDDctFKvl/04tsUF5akeROog5aTbCXDO4HyhW4DweY/zfMyTUwnENonWZ1/OqbHtBkIPbqwwA+US\nK1KTZVlte3KMMcYYY4wxhcKLHGOMMcYYY0yhqNhwNYWuM7oyNfGYYQQLFiwoHWPScrkdc+l607Ch\ncon1eUtAayxsd2y3bbohNfkzTDbWMCO612PFIcJa85USzkdiBSzCsDMNX1y9ejWAeCJgzHVbLkwj\nbEO5fQTyGN4R22MoDHFRHWOxgEWLFpWOMYSDfVdDOcIEeg1pYNhMmBwJNNT5Sgo9iMH7rH2YMqcc\nNKSI4x73htD9OMLxTwthMGQhtqt4rDhGXggT3TWsgvJhvwUa7lOiOhfuG6M6x3GAhUViu4NXWvJ8\nY9D2Uw/yHvbZXOi4zDkzFiLE8UzDmvk+jkfaZ8NnnVhhhnIh4ZVW8CeUAccqIF7wgs97LA6l++Vw\nvOP4pUUbGJIW21uOY2Ce92IisTEklvRPHYsVmiI6rnMMowx07OR9KPdcHNO7lhrv7MkxxhhjjDHG\nFIpWSQ7NR81hbWjqd2Ypnqb8dqVZapqLSpBdXsrshrSE7ML3x5IiY8nK5SxCYREGoKElubkt53v6\nnXtT5/hd6l0Ny9fGPIuhpRlomGCucgw9X3tDjln0V/08vTTqrWHircqFUC60Wqp8QotvzGO7N6mE\nsS6vNJfsYp4cenDolQbS0tG9e/ducIxJ81pkhbpIzyo9D0DqmaAnUb08YVL43hgHs+6zRPsnX8fm\nkDAKRfss+3FLeWtaUnaxeYFjmxaOol6yaIN69vk+jo+xqIzY1hiMcgk92EDTIyj2VHb25BhjjDHG\nGGMKxTfGk1OJ2ELXdCy7pmPZNZ0sPTmVTJ51LvY7jcmFaynyLLu805Jea+Y8qLeQuTjqreEx/tWN\nj8OtAjTHkN4d5pxoLk9oNd8bngrrXdPJ2gtGr5Z6t0L9VM9PuOG2esH4vWF+t74vpndN1UF7cowx\nxhhjjDHfaLzIMcYYY4wxxhQKh6vlGLuDm45l13Qsu6bjcLWmYZ1rOpZd08laduW+K1ZsJSwWopQr\nwBK+Z2+QtewqGcuu6ThczRhjjDHGGPONJpeeHGOMMcYYY4xpKvbkGGOMMcYYYwqFFznGGGOMMcaY\nQuFFjjHGGGOMMaZQeJFjjDHGGGOMKRRe5BhjjDHGGGMKhRc5xhhjjDHGmELhRY4xxhhjjDGmUHiR\nY4wxxhhjjCkUXuQYY4wxxhhjCoUXOcYYY4wxxphC4UWOMcYYY4wxplB4kWOMMcYYY4wpFF7kGGOM\nMcYYYwqFFznGGGOMMcaYQuFFjjHGGGOMMaZQeJFjjDHGGGOMKRRe5BhjjDHGGGMKhRc5xhhjjDHG\nmELhRY4xxhhjjDGmUHiRY4wxxhhjjCkUXuQYY4wxxhhjCoUXOcYYY4wxxphC4UWOMcYYY4wxplB4\nkWOMMcYYY4wpFF7kGGOMMcYYYwqFFznGGGOMMcaYQuFFjjHGGGOMMaZQeJFjjDHGGGOMKRRe5Bhj\njDHGGGMKhRc5xhhjjDHGmELhRY4xxhhjjDGmUHiRY4wxxhhjjCkUXuQYY4wxxhhjCsX/A72wAtv5\nJA/kAAAAAElFTkSuQmCC\n",
C.G.Vedant's avatar
C.G.Vedant a validé
       "<matplotlib.figure.Figure at 0x7f72c44b81d0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "print(\"Average of all images in training dataset.\")\n",
    "show_ave_MNIST(train_lbl, train_img)\n",
    "\n",
    "print(\"Average of all images in testing dataset.\")\n",
    "show_ave_MNIST(test_lbl, test_img)"
   "metadata": {},
    "## Testing\n",
    "Now, let us convert this raw data into `DataSet.examples` to run our algorithms defined in `learning.py`. Every image is represented by 784 numbers (28x28 pixels) and we append them with its label or class to make them work with our implementations in learning module."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 51,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "(60000, 784) (60000,)\n",
      "(60000, 785)\n"
     ]
    }
   ],
   "source": [
    "print(train_img.shape, train_lbl.shape)\n",
    "temp_train_lbl = train_lbl.reshape((60000,1))\n",
    "training_examples = np.hstack((train_img, temp_train_lbl))\n",
    "print(training_examples.shape)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
    "Now, we will initialize a DataSet with our training examples, so we can use it in our algorithms."
C.G.Vedant's avatar
C.G.Vedant a validé
   "execution_count": 52,
    "# takes ~10 seconds to execute this\n",
    "MNIST_DataSet = DataSet(examples=training_examples, distance=manhattan_distance)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
    "Moving forward we can use `MNIST_DataSet` to test our algorithms."