Newer
Older
"cell_type": "raw",
"metadata": {},
"source": [
"# Markov decision processes (MDPs)\n",
"\n",
"This IPy notebook acts as supporting material for topics covered in **Chapter 17 Making Complex Decisions** of the book* Artificial Intelligence: A Modern Approach*. We makes use of the implementations in mdp.py module. This notebook also includes a brief summary of the main topics as a review. Let us import everything from the mdp module to get started."
]
},
<<<<<<< HEAD
"cell_type": "raw",
=======
"cell_type": "code",
"execution_count": null,
"metadata": {},
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"from mdp import *\n",
"from notebook import psource, pseudocode"
"cell_type": "raw",
"## CONTENTS\n",
"\n",
"* Overview\n",
"* MDP\n",
"* Grid MDP\n",
"* Value Iteration\n",
" * Value Iteration Visualization\n",
"* Policy Iteration"
"cell_type": "raw",
"metadata": {},
"source": [
"## OVERVIEW\n",
SnShine
a validé
"\n",
"Before we start playing with the actual implementations let us review a couple of things about MDPs.\n",
"\n",
"- A stochastic process has the **Markov property** if the conditional probability distribution of future states of the process (conditional on both past and present states) depends only upon the present state, not on the sequence of events that preceded it.\n",
"\n",
" -- Source: [Wikipedia](https://en.wikipedia.org/wiki/Markov_property)\n",
"\n",
"Often it is possible to model many different phenomena as a Markov process by being flexible with our definition of state.\n",
" \n",
"\n",
"- MDPs help us deal with fully-observable and non-deterministic/stochastic environments. For dealing with partially-observable and stochastic cases we make use of generalization of MDPs named POMDPs (partially observable Markov decision process).\n",
"\n",
"Our overall goal to solve a MDP is to come up with a policy which guides us to select the best action in each state so as to maximize the expected sum of future rewards."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"## MDP\n",
"\n",
"To begin with let us look at the implementation of MDP class defined in mdp.py The docstring tells us what all is required to define a MDP namely - set of states, actions, initial state, transition model, and a reward function. Each of these are implemented as methods. Do not close the popup so that you can follow along the description of code below."
<<<<<<< HEAD
"cell_type": "raw",
"metadata": {},
=======
"execution_count": null,
Aman Deep Singh
a validé
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
Aman Deep Singh
a validé
"psource(MDP)"
"cell_type": "raw",
"metadata": {},
"source": [
"The **_ _init_ _** method takes in the following parameters:\n",
"\n",
"- init: the initial state.\n",
"- actlist: List of actions possible in each state.\n",
"- terminals: List of terminal states where only possible action is exit\n",
"- gamma: Discounting factor. This makes sure that delayed rewards have less value compared to immediate ones.\n",
"\n",
"**R** method returns the reward for each state by using the self.reward dict.\n",
"\n",
"**T** method is not implemented and is somewhat different from the text. Here we return (probability, s') pairs where s' belongs to list of possible state by taking action a in state s.\n",
"\n",
"**actions** method returns list of actions possible in each state. By default it returns all actions for states other than terminal states.\n"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"Now let us implement the simple MDP in the image below. States A, B have actions X, Y available in them. Their probabilities are shown just above the arrows. We start with using MDP as base class for our CustomMDP. Obviously we need to make a few changes to suit our case. We make use of a transition matrix as our transitions are not very simple.\n",
"<img src=\"files/images/mdp-a.png\">"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 3,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"metadata": {
"collapsed": true
},
"source": [
"# Transition Matrix as nested dict. State -> Actions in state -> List of (Probability, State) tuples\n",
" \"X\": [(0.3, \"A\"), (0.7, \"B\")],\n",
" \"Y\": [(1.0, \"A\")]\n",
" \"X\": {(0.8, \"End\"), (0.2, \"B\")},\n",
" \"Y\": {(1.0, \"A\")}\n",
" },\n",
" \"End\": {}\n",
"}\n",
"\n",
"init = \"A\"\n",
"\n",
"terminals = [\"End\"]\n",
"\n",
"rewards = {\n",
" \"A\": 5,\n",
" \"B\": -10,\n",
" \"End\": 100\n",
"}"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 4,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
},
"source": [
"class CustomMDP(MDP):\n",
" def __init__(self, init, terminals, transition_matrix, reward = None, gamma=.9):\n",
" # All possible actions.\n",
" actlist = []\n",
" for state in transition_matrix.keys():\n",
" actlist.extend(transition_matrix[state])\n",
" MDP.__init__(self, init, actlist, terminals, transition_matrix, reward, gamma=gamma)\n",
"\n",
" def T(self, state, action):\n",
" if action is None:\n",
" return [(0.0, state)]\n",
" else: \n",
" return self.t[state][action]"
"cell_type": "raw",
"metadata": {},
"source": [
"Finally we instantize the class with the parameters for our MDP in the picture."
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 5,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
"metadata": {},
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"our_mdp = CustomMDP(init, terminals, t, rewards, gamma=.9)"
"cell_type": "raw",
"With this we have successfully represented our MDP. Later we will look at ways to solve this MDP."
"cell_type": "raw",
"Now we look at a concrete implementation that makes use of the MDP as base class. The GridMDP class in the mdp module is used to represent a grid world MDP like the one shown in in **Fig 17.1** of the AIMA Book. We assume for now that the environment is _fully observable_, so that the agent always knows where it is. The code should be easy to understand if you have gone through the CustomMDP example."
<<<<<<< HEAD
"cell_type": "raw",
"metadata": {},
=======
"execution_count": null,
Aman Deep Singh
a validé
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
Aman Deep Singh
a validé
"psource(GridMDP)"
"cell_type": "raw",
"metadata": {},
"source": [
"The **_ _init_ _** method takes **grid** as an extra parameter compared to the MDP class. The grid is a nested list of rewards in states.\n",
"\n",
"**go** method returns the state by going in particular direction by using vector_add.\n",
"\n",
"**T** method is not implemented and is somewhat different from the text. Here we return (probability, s') pairs where s' belongs to list of possible state by taking action a in state s.\n",
"\n",
"**actions** method returns list of actions possible in each state. By default it returns all actions for states other than terminal states.\n",
"\n",
"**to_arrows** are used for representing the policy in a grid like format."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"We can create a GridMDP like the one in **Fig 17.1** as follows: \n",
"\n",
" GridMDP([[-0.04, -0.04, -0.04, +1],\n",
" [-0.04, None, -0.04, -1],\n",
" [-0.04, -0.04, -0.04, -0.04]],\n",
" terminals=[(3, 2), (3, 1)])\n",
" \n",
"In fact the **sequential_decision_environment** in mdp module has been instantized using the exact same code."
]
},
{
<<<<<<< HEAD
"execution_count": null,
<<<<<<< HEAD
"outputs": [
{
"data": {
"text/plain": [
"<mdp.GridMDP at 0x107b78438>"
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
=======
"cell_type": "raw",
"metadata": {},
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"sequential_decision_environment"
"cell_type": "raw",
"metadata": {
"collapsed": true
},
"source": [
"\n",
"Now that we have looked how to represent MDPs. Let's aim at solving them. Our ultimate goal is to obtain an optimal policy. We start with looking at Value Iteration and a visualisation that should help us understanding it better.\n",
"\n",
<<<<<<< HEAD
"We start by calculating Value/Utility for each of the states. The Value of each state is the expected sum of discounted future rewards given we start in that state and follow a particular policy $pi$. The value or the utility of a state is given by\n",
=======
"We start by calculating Value/Utility for each of the states. The Value of each state is the expected sum of discounted future rewards given we start in that state and follow a particular policy $\\pi$. The value or the utility of a state is given by\n",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
"\n",
"$$U(s)=R(s)+\\gamma\\max_{a\\epsilon A(s)}\\sum_{s'} P(s'\\ |\\ s,a)U(s')$$\n",
"\n",
"This is called the Bellman equation. The algorithm Value Iteration (**Fig. 17.4** in the book) relies on finding solutions of this Equation. The intuition Value Iteration works is because values propagate through the state space by means of local updates. This point will we more clear after we encounter the visualisation. For more information you can refer to **Section 17.2** of the book. \n"
<<<<<<< HEAD
"cell_type": "raw",
"metadata": {},
=======
"execution_count": null,
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"cell_type": "raw",
"metadata": {},
"source": [
"It takes as inputs two parameters, an MDP to solve and epsilon, the maximum error allowed in the utility of any state. It returns a dictionary containing utilities where the keys are the states and values represent utilities. <br> Value Iteration starts with arbitrary initial values for the utilities, calculates the right side of the Bellman equation and plugs it into the left hand side, thereby updating the utility of each state from the utilities of its neighbors. \n",
"This is repeated until equilibrium is reached. \n",
"It works on the principle of _Dynamic Programming_ - using precomputed information to simplify the subsequent computation. \n",
"If $U_i(s)$ is the utility value for state $s$ at the $i$ th iteration, the iteration step, called Bellman update, looks like this:\n",
"\n",
"$$ U_{i+1}(s) \\leftarrow R(s) + \\gamma \\max_{a \\epsilon A(s)} \\sum_{s'} P(s'\\ |\\ s,a)U_{i}(s') $$\n",
"\n",
"As you might have noticed, `value_iteration` has an infinite loop. How do we decide when to stop iterating? \n",
"The concept of _contraction_ successfully explains the convergence of value iteration. \n",
"Refer to **Section 17.2.3** of the book for a detailed explanation. \n",
<<<<<<< HEAD
<<<<<<< HEAD
"In the algorithm, we calculate a value $\\delta$ that measures the difference in the utilities of the current time step and the previous time step. \n",
=======
"In the algorithm, we calculate a value $delta$ that measures the difference in the utilities of the current time step and the previous time step. \n",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"In the algorithm, we calculate a value $\\delta$ that measures the difference in the utilities of the current time step and the previous time step. \n",
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"\n",
"$$\\delta = \\max{(\\delta, \\begin{vmatrix}U_{i + 1}(s) - U_i(s)\\end{vmatrix})}$$\n",
"\n",
"This value of delta decreases as the values of $U_i$ converge.\n",
<<<<<<< HEAD
<<<<<<< HEAD
=======
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"We terminate the algorithm if the $\\delta$ value is less than a threshold value determined by the hyperparameter _epsilon_.\n",
"\n",
"$$\\delta \\lt \\epsilon \\frac{(1 - \\gamma)}{\\gamma}$$\n",
"\n",
"To summarize, the Bellman update is a _contraction_ by a factor of $gamma$ on the space of utility vectors. \n",
"Hence, from the properties of contractions in general, it follows that `value_iteration` always converges to a unique solution of the Bellman equations whenever $gamma$ is less than 1.\n",
"We then terminate the algorithm when a reasonable approximation is achieved.\n",
"In practice, it often occurs that the policy $pi$ becomes optimal long before the utility function converges. For the given 4 x 3 environment with $gamma = 0.9$, the policy $pi$ is optimal when $i = 4$ (at the 4th iteration), even though the maximum error in the utility function is stil 0.46. This can be clarified from **figure 17.6** in the book. Hence, to increase computational efficiency, we often use another method to solve MDPs called Policy Iteration which we will see in the later part of this notebook. \n",
=======
"We terminate the algorithm if the $delta$ value is less than a threshold value determined by the hyperparameter _epsilon_.\n",
"\n",
"$$\\delta \\lt \\epsilon \\frac{(1 - \\gamma)}{\\gamma}$$\n",
"\n",
"To summarize, the Bellman update is a _contraction_ by a factor of $\\gamma$ on the space of utility vectors. \n",
"Hence, from the properties of contractions in general, it follows that `value_iteration` always converges to a unique solution of the Bellman equations whenever $\\gamma$ is less than 1.\n",
"We then terminate the algorithm when a reasonable approximation is achieved.\n",
"In practice, it often occurs that the policy $\\pi$ becomes optimal long before the utility function converges. For the given 4 x 3 environment with $\gamma = 0.9$, the policy $\\pi$ is optimal when $i = 4$ (at the 4th iteration), even though the maximum error in the utility function is stil 0.46. This can be clarified from **figure 17.6** in the book. Hence, to increase computational efficiency, we often use another method to solve MDPs called Policy Iteration which we will see in the later part of this notebook. \n",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
"<br>For now, let us solve the **sequential_decision_environment** GridMDP using `value_iteration`."
<<<<<<< HEAD
"cell_type": "code",
"execution_count": null,
<<<<<<< HEAD
"outputs": [
{
"data": {
"text/plain": [
"{(0, 0): 0.2962883154554812,\n",
" (0, 1): 0.3984432178350045,\n",
" (0, 2): 0.5093943765842497,\n",
" (1, 0): 0.25386699846479516,\n",
" (1, 2): 0.649585681261095,\n",
" (2, 0): 0.3447542300124158,\n",
" (2, 1): 0.48644001739269643,\n",
" (2, 2): 0.7953620878466678,\n",
" (3, 0): 0.12987274656746342,\n",
" (3, 1): -1.0,\n",
" (3, 2): 1.0}"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
=======
"cell_type": "raw",
"metadata": {},
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"value_iteration(sequential_decision_environment)"
]
},
"cell_type": "raw",
"metadata": {},
"source": [
"The pseudocode for the algorithm:"
]
},
{
<<<<<<< HEAD
"execution_count": null,
<<<<<<< HEAD
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
"outputs": [
{
"data": {
"text/markdown": [
"### AIMA3e\n",
"__function__ VALUE-ITERATION(_mdp_, _ε_) __returns__ a utility function \n",
" __inputs__: _mdp_, an MDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_), \n",
"      rewards _R_(_s_), discount _γ_ \n",
"   _ε_, the maximum error allowed in the utility of any state \n",
" __local variables__: _U_, _U′_, vectors of utilities for states in _S_, initially zero \n",
"        _δ_, the maximum change in the utility of any state in an iteration \n",
"\n",
" __repeat__ \n",
"   _U_ ← _U′_; _δ_ ← 0 \n",
"   __for each__ state _s_ in _S_ __do__ \n",
"     _U′_\\[_s_\\] ← _R_(_s_) + _γ_ max<sub>_a_ ∈ _A_(_s_)</sub> Σ _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] \n",
"     __if__ | _U′_\\[_s_\\] − _U_\\[_s_\\] | > _δ_ __then__ _δ_ ← | _U′_\\[_s_\\] − _U_\\[_s_\\] | \n",
" __until__ _δ_ < _ε_(1 − _γ_)/_γ_ \n",
" __return__ _U_ \n",
"\n",
"---\n",
"__Figure ??__ The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (__??__)."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 10,
"metadata": {},
"output_type": "execute_result"
}
],
=======
"cell_type": "raw",
"metadata": {},
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"pseudocode(\"Value-Iteration\")"
]
},
"cell_type": "raw",
"metadata": {},
"source": [
"### AIMA3e\n",
"__function__ VALUE-ITERATION(_mdp_, _ε_) __returns__ a utility function \n",
" __inputs__: _mdp_, an MDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_), \n",
"      rewards _R_(_s_), discount _γ_ \n",
"   _ε_, the maximum error allowed in the utility of any state \n",
" __local variables__: _U_, _U′_, vectors of utilities for states in _S_, initially zero \n",
"        _δ_, the maximum change in the utility of any state in an iteration \n",
"\n",
" __repeat__ \n",
"   _U_ ← _U′_; _δ_ ← 0 \n",
"   __for each__ state _s_ in _S_ __do__ \n",
"     _U′_\\[_s_\\] ← _R_(_s_) + _γ_ max<sub>_a_ ∈ _A_(_s_)</sub> Σ _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] \n",
"     __if__ | _U′_\\[_s_\\] − _U_\\[_s_\\] | > _δ_ __then__ _δ_ ← | _U′_\\[_s_\\] − _U_\\[_s_\\] | \n",
" __until__ _δ_ < _ε_(1 − _γ_)/_γ_ \n",
" __return__ _U_ \n",
"\n",
"---\n",
"__Figure ??__ The value iteration algorithm for calculating utilities of states. The termination condition is from Equation (__??__)."
"cell_type": "raw",
"metadata": {},
"source": [
"## VALUE ITERATION VISUALIZATION\n",
"\n",
"To illustrate that values propagate out of states let us create a simple visualisation. We will be using a modified version of the value_iteration function which will store U over time. We will also remove the parameter epsilon and instead add the number of iterations we want."
]
},
{
<<<<<<< HEAD
"cell_type": "raw",
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"metadata": {
"collapsed": true
},
"source": [
"def value_iteration_instru(mdp, iterations=20):\n",
" U_over_time = []\n",
" U1 = {s: 0 for s in mdp.states}\n",
" R, T, gamma = mdp.R, mdp.T, mdp.gamma\n",
" for _ in range(iterations):\n",
" U = U1.copy()\n",
" for s in mdp.states:\n",
" U1[s] = R(s) + gamma * max([sum([p * U[s1] for (p, s1) in T(s, a)])\n",
" for a in mdp.actions(s)])\n",
" U_over_time.append(U)\n",
" return U_over_time"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"Next, we define a function to create the visualisation from the utilities returned by **value_iteration_instru**. The reader need not concern himself with the code that immediately follows as it is the usage of Matplotib with IPython Widgets. If you are interested in reading more about these visit [ipywidgets.readthedocs.io](http://ipywidgets.readthedocs.io)"
]
},
{
<<<<<<< HEAD
"cell_type": "raw",
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
},
"source": [
"columns = 4\n",
"rows = 3\n",
"U_over_time = value_iteration_instru(sequential_decision_environment)"
<<<<<<< HEAD
"cell_type": "raw",
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"%matplotlib inline\n",
"from notebook import make_plot_grid_step_function\n",
"\n",
"plot_grid_step = make_plot_grid_step_function(columns, rows, U_over_time)"
<<<<<<< HEAD
"cell_type": "raw",
"metadata": {
"scrolled": true
},
=======
"execution_count": null,
"metadata": {
"scrolled": true
},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"import ipywidgets as widgets\n",
"from IPython.display import display\n",
"iteration_slider = widgets.IntSlider(min=1, max=15, step=1, value=0)\n",
"w=widgets.interactive(plot_grid_step,iteration=iteration_slider)\n",
"\n",
"visualize_callback = make_visualize(iteration_slider)\n",
"\n",
"visualize_button = widgets.ToggleButton(description = \"Visualize\", value = False)\n",
"time_select = widgets.ToggleButtons(description='Extra Delay:',options=['0', '0.1', '0.2', '0.5', '0.7', '1.0'])\n",
"a = widgets.interactive(visualize_callback, Visualize = visualize_button, time_step=time_select)\n",
"display(a)"
"cell_type": "raw",
"metadata": {},
"source": [
Aman Deep Singh
a validé
"Move the slider above to observe how the utility changes across iterations. It is also possible to move the slider using arrow keys or to jump to the value by directly editing the number with a double click. The **Visualize Button** will automatically animate the slider for you. The **Extra Delay Box** allows you to set time delay in seconds upto one second for each time step. There is also an interactive editor for grid-world problems `grid_mdp.py` in the gui folder for you to play around with."
"cell_type": "raw",
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
"metadata": {
"collapsed": true
},
"source": [
"# POLICY ITERATION\n",
"\n",
"We have already seen that value iteration converges to the optimal policy long before it accurately estimates the utility function. \n",
"If one action is clearly better than all the others, then the exact magnitude of the utilities in the states involved need not be precise. \n",
"The policy iteration algorithm works on this insight. \n",
"The algorithm executes two fundamental steps:\n",
"* **Policy evaluation**: Given a policy _πᵢ_, calculate _Uᵢ = U(πᵢ)_, the utility of each state if _πᵢ_ were to be executed.\n",
"* **Policy improvement**: Calculate a new policy _πᵢ₊₁_ using one-step look-ahead based on the utility values calculated.\n",
"\n",
"The algorithm terminates when the policy improvement step yields no change in the utilities. \n",
"Refer to **Figure 17.6** in the book to see how this is an improvement over value iteration.\n",
"We now have a simplified version of the Bellman equation\n",
"\n",
"$$U_i(s) = R(s) + \\gamma \\sum_{s'}P(s'\\ |\\ s, \\pi_i(s))U_i(s')$$\n",
"\n",
"An important observation in this equation is that this equation doesn't have the `max` operator, which makes it linear.\n",
"For _n_ states, we have _n_ linear equations with _n_ unknowns, which can be solved exactly in time _**O(n³)**_.\n",
"For more implementational details, have a look at **Section 17.3**.\n",
"Let us now look at how the expected utility is found and how `policy_iteration` is implemented."
]
},
{
<<<<<<< HEAD
"cell_type": "raw",
"metadata": {},
=======
"execution_count": null,
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"psource(expected_utility)"
]
},
{
<<<<<<< HEAD
"cell_type": "raw",
"metadata": {},
=======
"execution_count": null,
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"psource(policy_iteration)"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"<br>Fortunately, it is not necessary to do _exact_ policy evaluation. \n",
"The utilities can instead be reasonably approximated by performing some number of simplified value iteration steps.\n",
"The simplified Bellman update equation for the process is\n",
"\n",
"$$U_{i+1}(s) \\leftarrow R(s) + \\gamma\\sum_{s'}P(s'\\ |\\ s,\\pi_i(s))U_{i}(s')$$\n",
"\n",
"and this is repeated _k_ times to produce the next utility estimate. This is called _modified policy iteration_."
]
},
{
<<<<<<< HEAD
"cell_type": "raw",
"metadata": {},
=======
"execution_count": null,
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"psource(policy_evaluation)"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"Let us now solve **`sequential_decision_environment`** using `policy_iteration`."
]
},
{
<<<<<<< HEAD
"cell_type": "raw",
"metadata": {},
=======
"execution_count": null,
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"policy_iteration(sequential_decision_environment)"
]
},
{
<<<<<<< HEAD
"execution_count": null,
<<<<<<< HEAD
"outputs": [
{
"data": {
"text/markdown": [
"### AIMA3e\n",
"__function__ POLICY-ITERATION(_mdp_) __returns__ a policy \n",
" __inputs__: _mdp_, an MDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_) \n",
" __local variables__: _U_, a vector of utilities for states in _S_, initially zero \n",
"        _π_, a policy vector indexed by state, initially random \n",
"\n",
" __repeat__ \n",
"   _U_ ← POLICY\\-EVALUATION(_π_, _U_, _mdp_) \n",
"   _unchanged?_ ← true \n",
"   __for each__ state _s_ __in__ _S_ __do__ \n",
"     __if__ max<sub>_a_ ∈ _A_(_s_)</sub> Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] > Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _π_\\[_s_\\]) _U_\\[_s′_\\] __then do__ \n",
"       _π_\\[_s_\\] ← argmax<sub>_a_ ∈ _A_(_s_)</sub> Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] \n",
"       _unchanged?_ ← false \n",
" __until__ _unchanged?_ \n",
" __return__ _π_ \n",
"\n",
"---\n",
"__Figure ??__ The policy iteration algorithm for calculating an optimal policy."
],
"text/plain": [
"<IPython.core.display.Markdown object>"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
=======
"cell_type": "raw",
"metadata": {},
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"pseudocode('Policy-Iteration')"
]
},
{
<<<<<<< HEAD
"cell_type": "markdown",
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
"metadata": {},
"source": [
"### AIMA3e\n",
"__function__ POLICY-ITERATION(_mdp_) __returns__ a policy \n",
" __inputs__: _mdp_, an MDP with states _S_, actions _A_(_s_), transition model _P_(_s′_ | _s_, _a_) \n",
" __local variables__: _U_, a vector of utilities for states in _S_, initially zero \n",
"        _π_, a policy vector indexed by state, initially random \n",
"\n",
" __repeat__ \n",
"   _U_ ← POLICY\\-EVALUATION(_π_, _U_, _mdp_) \n",
"   _unchanged?_ ← true \n",
"   __for each__ state _s_ __in__ _S_ __do__ \n",
"     __if__ max<sub>_a_ ∈ _A_(_s_)</sub> Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] > Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _π_\\[_s_\\]) _U_\\[_s′_\\] __then do__ \n",
"       _π_\\[_s_\\] ← argmax<sub>_a_ ∈ _A_(_s_)</sub> Σ<sub>_s′_</sub> _P_(_s′_ | _s_, _a_) _U_\\[_s′_\\] \n",
"       _unchanged?_ ← false \n",
" __until__ _unchanged?_ \n",
" __return__ _π_ \n",
"\n",
"---\n",
"__Figure ??__ The policy iteration algorithm for calculating an optimal policy."
"cell_type": "raw",
"metadata": {
"collapsed": true
},
"source": [
"## Sequential Decision Problems\n",
"\n",
"Now that we have the tools required to solve MDPs, let us see how Sequential Decision Problems can be solved step by step and how a few built-in tools in the GridMDP class help us better analyse the problem at hand. \n",
"As always, we will work with the grid world from **Figure 17.1** from the book.\n",
"\n",
"<br>This is the environment for our agent.\n",
"We assume for now that the environment is _fully observable_, so that the agent always knows where it is.\n",
"We also assume that the transitions are **Markovian**, that is, the probability of reaching state $s'$ from state $s$ depends only on $s$ and not on the history of earlier states.\n",
"Almost all stochastic decision problems can be reframed as a Markov Decision Process just by tweaking the definition of a _state_ for that particular problem.\n",
"<br>\n",
"However, the actions of our agent in this environment are unreliable. In other words, the motion of our agent is stochastic. \n",
"<br><br>\n",
"More specifically, the agent may - \n",
"* move correctly in the intended direction with a probability of _0.8_, \n",
"* move $90^\\circ$ to the right of the intended direction with a probability 0.1\n",
"* move $90^\\circ$ to the left of the intended direction with a probability 0.1\n",
"<br><br>\n",
"The agent stays put if it bumps into a wall.\n",
""
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"These properties of the agent are called the transition properties and are hardcoded into the GridMDP class as you can see below."
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 12,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"psource(GridMDP.T)"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"To completely define our task environment, we need to specify the utility function for the agent. \n",
"This is the function that gives the agent a rough estimate of how good being in a particular state is, or how much _reward_ an agent receives by being in that state.\n",
"The agent then tries to maximize the reward it gets.\n",
"As the decision problem is sequential, the utility function will depend on a sequence of states rather than on a single state.\n",
"For now, we simply stipulate that in each state $s$, the agent receives a finite reward $R(s)$.\n",
"\n",
"For any given state, the actions the agent can take are encoded as given below:\n",
"- Move Up: (0, 1)\n",
"- Move Down: (0, -1)\n",
"- Move Left: (-1, 0)\n",
"- Move Right: (1, 0)\n",
"- Do nothing: `None`\n",
"\n",
"We now wonder what a valid solution to the problem might look like. \n",
"We cannot have fixed action sequences as the environment is stochastic and we can eventually end up in an undesirable state.\n",
"Therefore, a solution must specify what the agent shoulddo for _any_ state the agent might reach.\n",
"<br>\n",
"Such a solution is known as a **policy** and is usually denoted by $\\pi$.\n",
"The **optimal policy** is the policy that yields the highest expected utility an is usually denoted by $\\pi^*$.\n",
"<br>\n",
"The `GridMDP` class has a useful method `to_arrows` that outputs a grid showing the direction the agent should move, given a policy.\n",
"We will use this later to better understand the properties of the environment."
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 13,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"psource(GridMDP.to_arrows)"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"This method directly encodes the actions that the agent can take (described above) to characters representing arrows and shows it in a grid format for human visalization purposes. \n",
"It converts the received policy from a `dictionary` to a grid using the `to_grid` method."
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 14,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"psource(GridMDP.to_grid)"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"Now that we have all the tools required and a good understanding of the agent and the environment, we consider some cases and see how the agent should behave for each case."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"### Case 1\n",
"---\n",
"R(s) = -0.04 in all states except terminal states"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 15,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"metadata": {
"collapsed": true
},
"source": [
"# Note that this environment is also initialized in mdp.py by default\n",
"sequential_decision_environment = GridMDP([[-0.04, -0.04, -0.04, +1],\n",
" [-0.04, None, -0.04, -1],\n",
" [-0.04, -0.04, -0.04, -0.04]],\n",
" terminals=[(3, 2), (3, 1)])"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"We will use the `best_policy` function to find the best policy for this environment.\n",
"But, as you can see, `best_policy` requires a utility function as well.\n",
"We already know that the utility function can be found by `value_iteration`.\n",
"Hence, our best policy is:"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 16,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"metadata": {
"collapsed": true
},
"source": [
"pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .001))"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"We can now use the `to_arrows` method to see how our agent should pick its actions in the environment."
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 17,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"from utils import print_table\n",
"print_table(sequential_decision_environment.to_arrows(pi))"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"This is exactly the output we expected\n",
"<br>\n",
"\n",
"<br>\n",
"Notice that, because the cost of taking a step is fairly small compared with the penalty for ending up in `(4, 2)` by accident, the optimal policy is conservative. \n",
"In state `(3, 1)` it recommends taking the long way round, rather than taking the shorter way and risking getting a large negative reward of -1 in `(4, 2)`."
"cell_type": "raw",
"metadata": {},
"source": [
"### Case 2\n",
"---\n",
"R(s) = -0.4 in all states except in terminal states"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 18,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"metadata": {
"collapsed": true
},
"source": [
"sequential_decision_environment = GridMDP([[-0.4, -0.4, -0.4, +1],\n",
" [-0.4, None, -0.4, -1],\n",
" [-0.4, -0.4, -0.4, -0.4]],\n",
" terminals=[(3, 2), (3, 1)])"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 19,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .001))\n",
"from utils import print_table\n",
"print_table(sequential_decision_environment.to_arrows(pi))"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"This is exactly the output we expected\n",
""
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"As the reward for each state is now more negative, life is certainly more unpleasant.\n",
"The agent takes the shortest route to the +1 state and is willing to risk falling into the -1 state by accident."
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"### Case 3\n",
"---\n",
"R(s) = -4 in all states except terminal states"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 20,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"metadata": {
"collapsed": true
},
"source": [
"sequential_decision_environment = GridMDP([[-4, -4, -4, +1],\n",
" [-4, None, -4, -1],\n",
" [-4, -4, -4, -4]],\n",
" terminals=[(3, 2), (3, 1)])"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 21,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .001))\n",
"from utils import print_table\n",
"print_table(sequential_decision_environment.to_arrows(pi))"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"This is exactly the output we expected\n",
""
]
},
{
"cell_type": "raw",
"The living reward for each state is now lower than the least rewarding terminal. Life is so _painful_ that the agent heads for the nearest exit as even the worst exit is less painful than any living state."
"cell_type": "raw",
"metadata": {},
"source": [
"### Case 4\n",
"---\n",
"R(s) = 4 in all states except terminal states"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 22,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"metadata": {
"collapsed": true
},
"source": [
"sequential_decision_environment = GridMDP([[4, 4, 4, +1],\n",
" [4, None, 4, -1],\n",
" [4, 4, 4, 4]],\n",
" terminals=[(3, 2), (3, 1)])"
]
},
{
<<<<<<< HEAD
<<<<<<< HEAD
"execution_count": 23,
=======
"cell_type": "raw",
>>>>>>> 9d5ec3c0e1d0c03cd1333afcbd6bbc35daf30c21
=======
"execution_count": null,
"metadata": {},
"outputs": [],
>>>>>>> 3fed6614295b7270ca1226415beff7305e387eeb
"source": [
"pi = best_policy(sequential_decision_environment, value_iteration(sequential_decision_environment, .001))\n",
"from utils import print_table\n",
"print_table(sequential_decision_environment.to_arrows(pi))"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"In this case, the output we expect is\n",
"\n",
"<br>\n",
"As life is positively enjoyable and the agent avoids _both_ exits.\n",
"Even though the output we get is not exactly what we want, it is definitely not wrong.\n",
"The scenario here requires the agent to anything but reach a terminal state, as this is the only way the agent can maximize its reward (total reward tends to infinity), and the program does just that.\n",
"<br>\n",
"Currently, the GridMDP class doesn't support an explicit marker for a \"do whatever you like\" action or a \"don't care\" condition.\n",
"You can however, extend the class to do so.\n",
"<br>\n",
"For in-depth knowledge about sequential decision problems, refer **Section 17.1** in the AIMA book."
]
},
{
"cell_type": "raw",
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
"metadata": {},
"source": [
"---\n",
"## Appendix\n",
"\n",
"Surprisingly, it turns out that there are six other optimal policies for various ranges of R(s). \n",
"You can try to find them out for yourself.\n",
"See **Exercise 17.5**.\n",
"To help you with this, we have a GridMDP editor in `grid_mdp.py` in the GUI folder. \n",
"<br>\n",
"Here's a brief tutorial about how to use it\n",
"<br>\n",
"Let us use it to solve `Case 2` above\n",
"1. Run `python gui/grid_mdp.py` from the master directory.\n",
"2. Enter the dimensions of the grid (3 x 4 in this case), and click on `'Build a GridMDP'`\n",
"3. Click on `Initialize` in the `Edit` menu.\n",
"4. Set the reward as -0.4 and click `Apply`. Exit the dialog. \n",
"\n",
"<br>\n",
"5. Select cell (1, 1) and check the `Wall` radio button. `Apply` and exit the dialog.\n",
"\n",
"<br>\n",
"6. Select cells (4, 1) and (4, 2) and check the `Terminal` radio button for both. Set the rewards appropriately and click on `Apply`. Exit the dialog. Your window should look something like this.\n",
"\n",
"<br>\n",
"7. You are all set up now. Click on `Build and Run` in the `Build` menu and watch the heatmap calculate the utility function.\n",
"\n",
"<br>\n",
"Green shades indicate positive utilities and brown shades indicate negative utilities. \n",
"The values of the utility function and arrow diagram will pop up in separate dialogs after the algorithm converges."
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.1"
},
"widgets": {
"state": {
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
"001e6c8ed3fc4eeeb6ab7901992314dd": {
"views": []
},
"00f29880456846a8854ab515146ec55b": {
"views": []
},
"010f52f7cde545cba25593839002049b": {
"views": []
},
"01473ad99aa94acbaca856a7d980f2b9": {
"views": []
},
"021a4a4f35da484db5c37c5c8d0dbcc2": {
"views": []
},
"02229be5d3bc401fad55a0378977324a": {
"views": []
},
"022a5fdfc8e44fb09b21c4bd5b67a0db": {
"views": [
{
"cell_index": 27
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
}
]
},
"025c3b0250b94d4c8d9b33adfdba4c15": {
"views": []
},
"028f96abfed644b8b042be1e4b16014d": {
"views": []
},
"0303bad44d404a1b9ad2cc167e42fcb7": {
"views": []
},
"031d2d17f32347ec83c43798e05418fe": {
"views": []
},
"03de64f0c2fd43f1b3b5d84aa265aeb7": {
"views": []
},
"03fdd484675b42ad84448f64c459b0e0": {
"views": []
},
"044cf74f03fd44fd840e450e5ee0c161": {
"views": []
},
"054ae5ba0a014a758de446f1980f1ba5": {
"views": []
},
"0675230fb92f4539bc257b768fb4cd10": {
"views": [
{
"cell_index": 27
}
]
},
"06c93b34e1f4424aba9a0b172c428260": {
"views": []
},
"077a5ea324be46c3ad0110671a0c6a12": {
"views": []
},
"0781138d150142a08775861a69beaec9": {
"views": []
},
"0783e74a8c2b40cc9b0f5706271192f4": {
"views": [
{
"cell_index": 27
}
]
},
"07c7678b73634e728085f19d7b5b84f7": {
"views": []
},
"07febf1d15a140d8adb708847dd478ec": {
"views": []
},
"08299b681cd9477f9b19a125e186ce44": {
"views": []
},
"083af89d82e445aab4abddfece61d700": {
"views": []
},
"08a1129a8bd8486bbfe2c9e49226f618": {
"views": []
},
"08a2f800c0d540fdb24015156c7ffc15": {
"views": []
},
"097d8d0feccc4c76b87bbcb3f1ecece7": {
"views": []
},
"098f12158d844cdf89b29a4cd568fda0": {
"views": [
{
"cell_index": 27
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
}
]
},
"09e96f9d5d32453290af60fbd29ca155": {
"views": []
},
"0a2ec7c49dcd4f768194483c4f2e8813": {
"views": []
},
"0b1d6ed8fe4144b8a24228e1befe2084": {
"views": []
},
"0b299f8157d24fa9830653a394ef806a": {
"views": []
},
"0b2a4ac81a244ff1a7b313290465f8f4": {
"views": []
},
"0b52cfc02d604bc2ae42f4ba8c7bca4f": {
"views": []
},
"0b65fb781274495ab498ad518bc274d4": {
"views": [
{
"cell_index": 27
}
]
},
"0b865813de0841c49b41f6ad5fb85c6a": {
"views": []
},
"0c2070d20fb04864aeb2008a6f2b8b30": {
"views": []
},
"0cf5319bcde84f65a1a91c5f9be3aa28": {
"views": []
},
"0d721b5be85f4f8aafe26b3597242d60": {
"views": []
},
"0d9f29e197ad45d6a04bbb6864d3be6d": {
"views": []
},
"0e03c7e2c0414936b206ed055e19acba": {
"views": []
},
"0e2265aa506a4778bfc480d5e48c388b": {
"views": []
},
"0e4e3d0b6afc413e86970ec4250df678": {
"views": []
},
"0e6a5fe6423542e6a13e30f8929a8b02": {
"views": []
},
"0e7b2f39c94343c3b0d3b6611351886e": {
"views": []
},
"0eb5005fa34440988bcf3be231d31511": {
"views": []
},
"104703ad808e41bc9106829bb0396ece": {
"views": []
},
"109c376b28774a78bf90d3da4587d834": {
"views": []
},
"10b24041718843da976ac616e77ea522": {
"views": []
},
"11516bb6db8b45ef866bd9be8bb59312": {
"views": []
},
"1203903354fa467a8f38dbbad79cbc81": {
"views": []
},
"124ecbe68ada40f68d6a1807ad6bcdf9": {
"views": []
},
"1264becdbb63455183aa75f236a3413e": {
"views": []
},
"13061cc21693480a8380346277c1b877": {
"views": []
},
"130dd4d2c9f04ad28d9a6ac40045a329": {
"views": []
},
"1350a087b5a9422386c3c5f04dd5d1c9": {
"views": []
},
"139bd19be4a4427a9e08f0be6080188e": {
"views": []
},
"13f9f589d36c477f9b597dda459efd16": {
"views": []
},
"140917b5c77348ec82ea45da139a3045": {
"views": []
},
"145419657bb1401ba934e6cea43d5fd1": {
"views": []
},
"15d748f1629d4da1982cd62cfbcb1725": {
"views": []
},
"17ad015dbc744ac6952d2a6da89f0289": {
"views": []
},
"17b6508f32e4425e9f43e5407eb55ed3": {
"views": []
},
"185598d8e5fc4dffae293f270a6e7328": {
"views": []
},
"196473b25f384f3895ee245e8b7874e9": {
"views": []
},
"19c0f87663a0431285a62d4ad6748046": {
"views": []
},
"1a00a7b7446d4ad8b08c9a2a9ea9c852": {
"views": []
},
"1a97f5b88cdc4ae0871578c06bbb9965": {
"views": []
},
"1a9a07777b0c4a45b33e25a70ebdc290": {
"views": []
},
"1af711fe8e4f43f084cef6c89eec40ae": {
"views": [
{
"cell_index": 27
}
]
},
"1aff6a6e15b34bb89d7579d445071230": {
"views": []
},
"1b1ea7e915d846aea9efeae4381b2c48": {
"views": []
},
"1ba02ae1967740b0a69e07dbe95635cb": {
"views": []
},
"1c5c913acbde4e87a163abb2e24e6e38": {
"views": [
{
"cell_index": 27
}
]
},
"1cfca0b7ef754c459e1ad97c1f0ceb3b": {
"views": []
},
"1d8f6a4910e649589863b781aab4c4d4": {
"views": []
},
"1e64b8f5a1554a22992693c194f7b971": {
"views": []
},
"1e8f0a2bf7614443a380e53ed27b48c0": {
"views": []
},
"1f4e6fa4bacc479e8cd997b26a5af733": {
"views": []
},
"1fdf09158eb44415a946f07c6aaba620": {
"views": []
},
"200e3ebead3d4858a47e2f6d345ca395": {
"views": [
{
"cell_index": 27
}
]
},
"2050d4b462474a059f9e6493ba06ac58": {
"views": []
},
"20b5c21a6e6a427ba3b9b55a0214f75e": {
"views": []
},
"20b99631feba4a9c98c9d5f74c620273": {
"views": []
},
"20bcff5082854ab89a7977ae56983e30": {
"views": []
},
"20d708bf9b7845fa946f5f37c7733fee": {
"views": []
},
"210b36ea9edf4ee49ae1ae3fe5005282": {
"views": []
},
"21415393cb2d4f72b5c3f5c058aeaf66": {
"views": []
},
"2186a18b6ed8405a8a720bae59de2ace": {
"views": []
},
"220dc13e9b6942a7b9ed9e37d5ede7ba": {
"views": []
},
"221a735fa6014a288543e6f8c7e4e2ef": {
"views": []
},
"2288929cec4d4c8faad411029f5e21fa": {
"views": []
},
"22b86e207ea6469d85d8333870851a86": {
"views": []
},
"23283ad662a140e3b5e8677499e91d64": {
"views": []
},
"23a7cc820b63454ca6be3dcfd2538ac1": {
"views": []
},
"240ed02d576546028af3edfab9ea8558": {
"views": []
},
"24678e52a0334cb9a9a56f92c29750be": {
"views": []
},
"247820f6d83f4dd9b68f5df77dbda4b7": {
"views": []
},
"24b6a837fbd942c9a68218fb8910dcd5": {
"views": []
},
"24ee3204f26348bca5e6a264973e5b56": {
"views": []
},
"262c7bb5bd7447f791509571fe74ae44": {
"views": []
},
"263595f22d0d45e2a850854bcefe4731": {
"views": []
},
"2640720aa6684c5da6d7870abcbc950b": {
"views": []
},
"265ca1ec7ad742f096bb8104d0cf1550": {
"views": []
},
"26bf66fba453464fac2f5cd362655083": {
"views": []
},
"29769879478f49e8b4afd5c0b4662e87": {
"views": []
},
"29a13bd6bc8d486ca648bf30c9e4c2a6": {
"views": []
},
"29c5df6267584654b76205fc5559c553": {
"views": []
},
"29ce25045e7248e5892e8aafc635c416": {
"views": []
},
"2a17207c43c9424394299a7b52461794": {
"views": []
},
"2a777941580945bc83ddb0c817ed4122": {
"views": []
},
"2ae1844e2afe416183658d7a602e5963": {
"views": []
},
"2afa2938b41944cf8c14e41a431e3969": {
"views": []
},
"2bdc5f9b161548e3aab8ea392b5af1a1": {
"views": []
},
"2c26b2bcfc96473584930a4b622d268e": {
"views": []
},
"2ca2a914a5f940b18df0b5cde2b79e4b": {
"views": []
},
"2ca2c532840548a9968d1c6b2f0acdd8": {
"views": []
},
"2d17c32bfea143babe2b114d8777b15d": {
"views": []
},
"2d3acd8872c342eab3484302cac2cb05": {
"views": [
{
"cell_index": 27
}
]
},
"2dc514cc2f5547aeb97059a5070dc9e3": {
"views": []
},
"2e1351ad05384d058c90e594bc6143c1": {
"views": [
{
"cell_index": 27
}
]
},
"2e9b80fa18984615933e41c1c1db2171": {
"views": []
},
"2ef17ee6b7c74a4bbbbbe9b1a93e4fb6": {
"views": []
},
"2f5438f1b34046a597a467effd43df11": {
"views": [
{
"cell_index": 27
}
]
},
"2f8d22417f3e421f96027fca40e1554f": {
"views": []
},
"2fb0409cfb49469d89a32597dc3edba9": {
"views": []
},
"303ccef837984c97b7e71f2988c737a4": {
"views": []
},
"3058b0808dca48a0bba9a93682260491": {
"views": []
},
"306b65493c28411eb10ad786bbf85dc5": {
"views": []
},
"30f5d30cf2d84530b3199015c5ff00eb": {
"views": []
},
"310b1ac518bd4079bdb7ecaf523a6809": {
"views": []
},
"313eca81d9d24664bcc837db54d59618": {
"views": []
},
"31413caf78c14548baa61e3e3c9edc55": {
"views": []
},
"317fbd3cb6324b2fbdfd6aa46a8d1192": {
"views": []
},
"319425ba805346f5ba366c42e220f9c6": {
"views": [
{
"cell_index": 27
}
]
},
"31fc8165275e473f8f75c6215b5184ff": {
"views": []
},
"329f12edaa0c44d2a619450f188e8777": {
"views": []
},
"32edf057582f4a6ca30ce3cb685bf971": {
"views": []
},
"330e74773ba148e18674cfa3e63cd6cc": {
"views": []
},
"332a89c03bfb49c2bb291051d172b735": {
"views": [
{
"cell_index": 27
}
]
},
"3347dfda0aca450f89dd9b39ca1bec7d": {
"views": []
},
"336e8bcfd7cc4a85956674b0c7bffff2": {
"views": []
},
"3376228b3b614d4ab2a10b2fd0f484fd": {
"views": []
},
"3380a22bc67c4be99c61050800f93395": {
"views": []
},
"34b5c16cbea448809c2ccbce56f8d5a5": {
"views": []
},
"34bb050223504afc8053ce931103f52c": {
"views": []
},
"34c28187175d49198b536a1ab13668c4": {
"views": []
},
"3521f32644514ecf9a96ddfa5d80fb9b": {
"views": []
},
"36511bd77ed74f668053df749cc735d4": {
"views": []
},
"36541c3490bd4268b64daf20d8c24124": {
"views": []
},
"37aa1dd4d76a4bac98857b519b7b523a": {
"views": []
},
"37aa3cfa3f8f48989091ec46ac17ae48": {
"views": []
},
"386991b0b1424a9c816dac6a29e1206b": {
"views": []
},
"386cf43742234dda994e35b41890b4d8": {
"views": []
},
"388571e8e0314dfab8e935b7578ba7f9": {
"views": [
{
"cell_index": 27
}
]
},
"3974e38e718547efaf0445da2be6a739": {
"views": []
},
"398490e0cc004d22ac9c4486abec61e1": {
"views": []
},
"399875994aba4c53afa8c49fae8d369e": {
"views": []
},
"39b64aa04b1d4a81953e43def0ef6e10": {
"views": []
},
"39ffc3dd42d94a27ba7240d10c11b565": {
"views": []
},
"3a21291c8e7249e3b04417d31b0447cf": {
"views": [
{
"cell_index": 27
}
]
},
"3a377d9f46704d749c6879383c89f5d3": {
"views": []
},
"3a44a6f1f62742849e96d957033a0039": {
"views": []
},
"3b22d68709b046e09fe70f381a3944cd": {
"views": [
{
"cell_index": 27
}
]
},
"3b329209c8f547acae1925dc3eb4af77": {
"views": []
},
"3c1b2ec10a9041be8a3fad9da78ff9f6": {
"views": [
{
"cell_index": 27
}
]
},
"3c2be3c85c6d41268bb4f9d63a43e196": {
"views": []
},
"3c6796eff7c54238a7b7776e88721b08": {
"views": []
},
"3cbca3e11edf439fb7f8ba41693b4824": {
"views": []
},
"3d4b6b7c0b0c48ff8c4b8d78f58e0f1c": {
"views": []
},
"3de1faf0d2514f49a99b3d60ea211495": {
"views": []
},
"3df60d9ac82b42d9b885d895629e372e": {
"views": []
},
"3e5b9fd779574270bf58101002c152ce": {
"views": [
{
"cell_index": 27
}
]
},
"3e80f34623c94659bfab5b3b56072d9a": {
"views": []
},
"3e8bb05434cb4a0291383144e4523840": {
"views": [
{
"cell_index": 27
}
]
},
"3ea1c8e4f9b34161928260e1274ee048": {
"views": []
},
"3f32f0915bc6469aaaf7170eff1111e3": {
"views": []
},
"3fe69a26ae7a46fda78ae0cb519a0f8b": {
"views": []
},
"4000ecdd75d9467e9dffd457b35aa65f": {
"views": []
},
"402d346f8b68408faed2fd79395cf3fb": {
"views": []
},
"402f4116244242148fdc009bb399c3bd": {
"views": []
},
"4049e0d7c0d24668b7eae2bb7169376e": {
"views": []
},
"4088c9ed71b0467b9b9417d5b04eda0e": {
"views": []
},
"40d70faa07654b6cb13496c32ba274b3": {
"views": []
},
"4146be21b7614abe827976787ec570f1": {
"views": []
},
"4198c08edda440dd93d1f6ce3e4efa62": {
"views": []
},
"42023d7d3c264f9d933d4cee4362852b": {
"views": []
},
"421ad8c67f754ce2b24c4fa3a8e951cf": {
"views": []
},
"4263fe0cef42416f8d344c1672f591f9": {
"views": []
},
"428e42f04a1e4347a1f548379c68f91b": {
"views": [
{
"cell_index": 27
}
]
},
"42a47243baf34773943a25df9cf23854": {
"views": []
},
"4343b72c91d04a7c9a6080f30fc63d7d": {
"views": []
},
"43488264fc924c01a30fa58604074b07": {
"views": []
},
"4379175239b34553bf45c8ef9443ac55": {
"views": [
{
"cell_index": 27
}
]
},
"43859798809a4a289c58b4bd5e49d357": {
"views": []
},
"43ad406a61a34249b5622aba9450b23d": {
"views": []
},
"4421c121414d464bb3bf1b5f0e86c37b": {
"views": [
{
"cell_index": 27
}
]
},
"445cc08b4da44c2386ac9379793e3506": {
"views": []
},
"447cff7e256c434e859bb7ce9e5d71c8": {
"views": []
},
"44af7da9d8304f07890ef7d11a9f95fe": {
"views": []
},
"45021b6f05db4c028a3b5572bc85217f": {
"views": []
},
"457768a474844556bf9b215439a2f2e9": {
"views": []
},
"45d5689de53646fe9042f3ce9e281acc": {
"views": []
},
"461aa21d57824526a6b61e3f9b5af523": {
"views": []
},
"472ca253aab34b098f53ed4854d35f23": {
"views": []
},
"4731208453424514b471f862804d9bb8": {
"views": [
{
"cell_index": 27
}
]
},
"47dfef9eaf0e433cb4b3359575f39480": {
"views": []
},
"48220a877d494a3ea0cc9dae19783a13": {
"views": []
},
"4882c417949b4b6788a1c3ec208fb1ac": {
"views": []
},
"49f5c38281984e3bad67fe3ea3eb6470": {
"views": []
},
"4a0d39b43eee4e818d47d382d87d86d1": {
"views": []
},
"4a470bf3037047f48f4547b594ac65fa": {
"views": []
},
"4abab5bca8334dfbb0434be39eb550db": {
"views": []
},
"4b48e08fd383489faa72fc76921eac4e": {
"views": []
},
"4b9439e6445c4884bd1cde0e9fd2405e": {
"views": []
},
"4b9fa014f9904fcf9aceff00cc1ebf44": {
"views": []
},
"4bdc63256c3f4e31a8fa1d121f430518": {
"views": []
},
"4bebb097ddc64bbda2c475c3a0e92ab5": {
"views": []
},
"4c201df21ca34108a6e7b051aa58b7f6": {
"views": []
},
"4ced8c156fd941eca391016fc256ce40": {
"views": []
},
"4d281cda33fa489d86228370e627a5b0": {
"views": [
{
"cell_index": 27
}
]
},
"4d85e68205d94965bdb437e5441b10a1": {
"views": []
},
"4e0e6dd34ba7487ba2072d352fe91bf5": {
"views": []
},
"4e82b1d731dd419480e865494f932f80": {
"views": []
},
"4e9f52dea051415a83c4597c4f7a6c00": {
"views": []
},
"4ec035cba73647358d416615cf4096ee": {
"views": [
{
"cell_index": 27
}
]
},
"4f09442f99aa4a9e9f460f82a50317c4": {
"views": []
},
"4f80b4e6b074475698efbec6062e3548": {
"views": []
},
"4f905a287b4f4f0db64b9572432b0139": {
"views": []
},
"50a339306cd549de86fbe5fa2a0a3503": {
"views": []
},
"51068697643243e18621c888a6504434": {
"views": []
},
"51333b89f44b41aba813aef099bdbb42": {
"views": []
},
"5141ae07149b46909426208a30e2861e": {
"views": [
{
"cell_index": 27
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
}
]
},
"515606cb3b3a4fccad5056d55b262db4": {
"views": []
},
"51aa6d9f5a90481db7e3dd00d77d4f09": {
"views": []
},
"524091ea717d427db2383b46c33ef204": {
"views": []
},
"524d1132c88f4d91b15344cc427a9565": {
"views": []
},
"52f70e249adc4edb8dca28b883a5d4f4": {
"views": []
},
"531c080221f64b8ca50d792bbaa6f31e": {
"views": []
},
"53349c544b54450f8e2af9b8ba176d78": {
"views": []
},
"53a8b8e7b7494d02852a0dc5ccca51a2": {
"views": []
},
"53c963469eee41b59479753201626f18": {
"views": []
},
"5436516c280a49828c1c2f4783d9cf0e": {
"views": []
},
"55a1b0b794f44ac796bc75616f65a2a1": {
"views": [
{
"cell_index": 27
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
}
]
},
"55ebf735de4c4b5ba2f09bc51d3593fd": {
"views": []
},
"56007830e925480e94a12356ff4fb6a4": {
"views": []
},
"56def8b3867843f990439b33dab3da58": {
"views": []
},
"5719bb596a5649f6af38c11c3daae6e9": {
"views": []
},
"572245b145014b6e91a3b5fe55e4cf78": {
"views": []
},
"5728da2e2d5a4c5595e1f49723151dca": {
"views": []
},
"579673c076da4626bc34a34370702bd4": {
"views": []
},
"57c2148f18314c3789c3eb9122a85c86": {
"views": []
},
"58066439757048b98709d3b3f99efdf8": {
"views": []
},
"58108da85e9443ea8ba884e8adda699e": {
"views": []
},
"583f252174d9450196cdc7c1ebab744f": {
"views": []
},
"58b92095873e4d22895ee7dde1f8e09a": {
"views": []
},
"58be1833a5b344fb80ec86e08e8326da": {
"views": []
},
"58ee0f251d7c4aca82fdace15ff52414": {
"views": []
},
"590f2f9f8dc342b594dc9e79990e641f": {
"views": []
},
"593c6f6b541e49be95095be63970f335": {
"views": []
},
"593d3f780c1a4180b83389afdb9fecfe": {
"views": []
},
"5945f05889be40019f93a90ecd681125": {
"views": []
},
"595c537ed2514006ac823b4090cf3b4b": {
"views": [
{
"cell_index": 27
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
}
]
},
"599cfb7471ec4fd29d835d2798145a54": {
"views": []
},
"5a8d17dc45d54463a6a49bad7a7d87ac": {
"views": []
},
"5bb323bde7e4454e85aa18fda291e038": {
"views": []
},
"5bc5e0429c1e4863adc6bd1ff2225b6d": {
"views": []
},
"5bd0fafc4ced48a5889bbcebc9275e40": {
"views": []
},
"5ccf965356804bc38c94b06698a2c254": {
"views": []
},
"5d1f96bedebf489cac8f820c783f7a14": {
"views": []
},
"5d3fc58b96804b57aad1d67feb26c70a": {
"views": []
},
"5d41872e720049198a319adc2f476276": {
"views": []
},
"5d7a630da5f14cd4969b520c77bc5bc5": {
"views": []
},
"5da153e0261e43af8fd1c3c5453cace0": {
"views": []
},
"5dde90afb01e44888d3c92c32641d4e2": {
"views": []
},
"5de2611543ff4475869ac16e9bf406fd": {
"views": []
},
"5e03db9b91124e79b082f7e3e031a7d3": {
"views": []
},
"5e576992ccfe4bb383c88f80d9746c1d": {
"views": []
},
"5e91029c26c642a9a8c90186f3acba8e": {
"views": []
},
"5ea2a6c21b9845d18f72757ca5af8340": {
"views": []
},
"5ef08dc24584438c8bc6c618763f0bc8": {
"views": []
},
"5f823979d2ce4c34ba18b4ca674724e4": {
"views": [
{
"cell_index": 27
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
}
]
},
"5fc7b070fc1a4e809da4cda3a40fc6d9": {
"views": []
},
"601ca9a27da94a6489d62ac26f2805a9": {
"views": []
},
"605cbb1049a4462e9292961e62e55cee": {
"views": []
},
"60addd9bec3f4397b20464fdbcf66340": {
"views": []
},
"60e17d6811c64dc8a69b342abe20810a": {
"views": []
},
"611840434d9046488a028618769e4b86": {
"views": []
},
"627ab7014bbf404ba8190be17c22e79d": {
"views": []
},
"633aa1edce474560956be527039800e7": {
"views": []
},
"63b6e287d1aa48efad7c8154ddd8f9c4": {
"views": []
},
"63dcfdb9749345bab675db257bda4b81": {
"views": []
},
"640ba8cc905a4b47ad709398cc41c4e3": {
"views": []
},
"644dcff39d7c47b7b8b729d01f59bee5": {
"views": [
{
"cell_index": 27
}
]
},
"6455faf9dbc6477f8692528e6eb90c9a": {
"views": [
{
"cell_index": 27
}
]
},
"64ca99573d5b48d2ba4d5815a50e6ffe": {
"views": []
},
"65d7924ba8c44d3f98a1d2f02dc883f1": {
"views": []
},
"665ed2b201144d78a5a1f57894c2267c": {
"views": [
{
"cell_index": 27
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
}
]
},
"66742844c1cd47ddbbe9aacf2e805f36": {
"views": []
},
"6678811915f14d0f86660fe90f63bd60": {
"views": []
},
"66a04a5cf76e429cadbebfc527592195": {
"views": []
},
"66e5c563ffe94e29bab82fdecbd1befa": {
"views": []
},
"673066e0bb0b40e288e6750452c52bf6": {
"views": []
},
"67ae0fb9621d488f879d0e3c458e88e9": {
"views": []
},
"687702eca5f74e458c8d43447b3b9ed5": {
"views": []
},
"68a4135d6f0a4bae95130539a2a44b3c": {
"views": []
},
"68c3a74e9ea74718b901c812ed179f47": {
"views": []
},
"694bd01e350449c2a40cd4ffc5d5a873": {
"views": []
},
"6981c38c44ad4b42bfb453b36d79a0e6": {
"views": []
},
"69e08ffffce9464589911cc4d2217df2": {
"views": []
},
"6a28f605a5d14589907dba7440ede2fc": {
"views": [
{
"cell_index": 27
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
}
]
},
"6a74dc52c2a54837a64ad461e174d4e0": {
"views": []
},
"6ad1e0bf705141b3b6e6ab7bd6f842ea": {
"views": []
},
"6b37935db9f44e6087d1d262a61d54ac": {
"views": []
},
"6b402f0f3afb4d0dad0e2fa8b71aa890": {
"views": []
},
"6bc95be59a054979b142d2d4a8900cf2": {
"views": []
},
"6ce0ea52c2fc4a18b1cce33933df2be4": {
"views": []
},
"6d7effd6bc4c40a4b17bf9e136c5814c": {
"views": [
{
"cell_index": 27
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
}
]
},
"6d9a639e949c4d1d8a7826bdb9e67bb5": {
"views": []
},
"6e18fafd95744f689c06c388368f1d21": {
"views": []
},
"6e2bc4a1e3424e2085d0363b7f937884": {
"views": []
},
"6e30c494930c439a996ba7c77bf0f721": {
"views": []
},
"6e682d58cc384145adb151652f0e3d15": {
"views": []
},
"6f08def65d27471b88fb14e9b63f9616": {
"views": []
},
"6f20c1dc00ef4a549cd9659a532046bf": {
"views": []
},
"6f605585550d4879b2f27e2fda0192be": {
"views": []
},
"706dd4e39f194fbbba6e34acd320d1c3": {
"views": []
},
"70f21ab685dc4c189f00a17a1810bbad": {
"views": []
},
"7101b67c47a546c881fdaf9c934c0264": {
"views": []
},
"71b0137b5ed741be979d1896762e5c75": {
"views": []
},
"7223df458fdf4178af0b9596e231c09c": {
"views": []
},
"7262519db6f94e2a9006c68c20b79d29": {
"views": []
},
"72dfe79a3e52429da1cf4382e78b2144": {
"views": [
{
"cell_index": 27
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
}
]
},
"72e8d31709eb4e3ea28af5cb6d072ab2": {
"views": []
},
"73647a1287424ee28d2fb3c4471d720c": {
"views": []
},
"739c5dde541a41e1afae5ba38e4b8ee3": {
"views": []
},
"74187cc424a347a5aa73b8140772ec68": {
"views": []
},
"7418edf751a6486c9fae373cde30cb74": {
"views": []
},
"744302ec305b4405894ed1459b9d41d0": {
"views": []
},
"74dfbaa15be44021860f7ba407810255": {
"views": []
},
"750a30d80fd740aaabc562c0564f02a7": {
"views": []
},
"75e344508b0b45d1a9ae440549d95b1a": {
"views": [
{
"cell_index": 27
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
}
]
},
"766efd1cfee542d3ba068dfa1705c4eb": {
"views": []
},
"7738084e8820466f9f763d49b4bf7466": {
"views": []
},
"781855043f1147679745947ff30308fa": {
"views": []
},
"78e2cfb79878452fa4f6e8baea88f822": {
"views": []
},
"796027b3dd6b4b888553590fecd69b29": {
"views": []
},
"7a302f58080c4420b138db1a9ed8103e": {
"views": []
},
"7a3c362499f54884b68e951a1bcfc505": {
"views": []
},
"7a4ee63f5f674454adf660bfcec97162": {
"views": []
},
"7ac2c18126414013a1b2096233c88675": {
"views": []
},
"7b1e3c457efa4f92ab8ff225a1a2c45e": {
"views": []
},
"7b8897b4f8094eef98284f5bb1ed5d51": {
"views": []
},
"7bbfd7b13dd242f0ac15b36bb437eb22": {
"views": []
},
"7d3c88bc5a0f4b428174ff33d5979cfd": {
"views": []
},
"7d4f53bd14d44f3f80342925f5b0b111": {
"views": []
},
"7d95ca693f624336a91c3069e586ef1b": {
"views": []
},
"7dcdc07b114e4ca69f75429ec042fabf": {
"views": []
},
"7e79b941d7264d27a82194c322f53b80": {
"views": []
},
"7f2f98bbffc0412dbb31c387407a9fed": {
"views": [
{
"cell_index": 27
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
}
]
},
"7f4688756da74b369366c22fd99657f4": {
"views": []
},
"7f7ed281359f4a55bbe75ce841dd1453": {
"views": []
},
"7fdf429182a740a097331bddad58f075": {
"views": []
},
"81b312df679f4b0d8944bc680a0f517e": {
"views": []
},
"82036e8fa76544ae847f2c2fc3cf72c2": {
"views": []
},
"821f1041188a43a4be4bdaeb7fa2f201": {
"views": []
},
"827358a9b4ce49de802df37b7b673aea": {
"views": []
},
"82db288a0693422cbd846cc3cb5f0415": {
"views": []
},
"82e2820c147a4dff85a01bcddbad8645": {
"views": [
{
"cell_index": 27
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
}
]
},
"82f795491023435e8429ea04ff4dc60a": {
"views": []
},
"8317620833b84ccebc4020d90382e134": {
"views": []
},
"8346e26975524082af27967748792444": {
"views": []
},
"83f8ed39d0c34dce87f53f402d6ee276": {
"views": []
},
"844ac22a0ebe46db84a6de7472fe9175": {
"views": []
},
"849948fe6e3144e1b05c8df882534d5a": {
"views": []
},
"85058c7c057043b185870da998e4be61": {
"views": []
},
"85443822f3714824bec4a56d4cfed631": {
"views": []
},
"8566379c7ff943b0bb0f9834ed4f0223": {
"views": []
},
"85a3c6f9a0464390be7309edd36c323c": {
"views": []
},
"85d7a90fbac640c9be576f338fa25c81": {
"views": []
},
"85f31444b4e44e11973fd36968bf9997": {
"views": []
},
"867875243ad24ff6ae39b311efb875d3": {
"views": []
},
"8698bede085142a29e9284777f039c93": {
"views": []
},
"86bf40f5107b4cb6942800f3930fdd41": {
"views": []
},
"874c486c4ebb445583bd97369be91d9b": {
"views": []
},
"87c469625bda412185f8a6c803408064": {
"views": []
},
"87d4bd76591f4a9f991232ffcff3f73b": {
"views": []
},
"87df3737c0fc4e848fe4100b97d193df": {
"views": []
},
"886b599c537b467ab49684d2c2f8fb78": {
"views": []
},
"889e19694e8043e289d8efc269eba934": {
"views": []
},
"88c628983ad1475ea3a9403f6fea891c": {
"views": []
},
"88c807c411d34103ba2e31b2df28b947": {
"views": []
},
"895ddca8886b4c06ad1d71326ca2f0af": {
"views": []
},
"899cc011a1bd4046ac798bc5838c2150": {
"views": []
},
"89d0e7a3090c47df9689d8ca28914612": {
"views": []
},
"89ea859f8bbd48bb94b8fa899ab69463": {
"views": []
},
"8a600988321e4e489450d26dedaa061f": {
"views": []
},
"8adcca252aff41a18cca5d856c17e42f": {
"views": []
},
"8b2fe9e4ea1a481089f73365c5e93d8b": {
"views": []
},
"8b5acd50710c4ca185037a73b7c9b25c": {
"views": []
},
"8bbdba73a1454cac954103a7b1789f75": {
"views": []
},
"8cffde5bdb3d4f7597131b048a013929": {
"views": [
{
"cell_index": 27
}
]
},
"8db2abcad8bc44df812d6ccf2d2d713c": {
"views": [
{
"cell_index": 27
}
]
},
"8dd5216b361c44359ba1233ee93683a4": {
"views": [
{
"cell_index": 27
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
}
]
},
"8e13719438804be4a0b74f73e25998cd": {
"views": []
},
"8eb4ff3279fe4d43a9d8ee752c78a956": {
"views": []
},
"8f577d437d4743fd9399fefcd8efc8cb": {
"views": []
},
"8f8fbe8fd1914eae929069aeeac16b6d": {
"views": []
},
"8f9b8b5f7dd6425a9e8e923464ab9528": {
"views": []
},
"8f9e3422db114095a72948c37e98dd3e": {
"views": []
},
"8fd325068289448d990b045520bad521": {
"views": []
},
"9039bc40a5ad4a1c87272d82d74004e2": {
"views": []
},
"90bf5e50acbb4bccad380a6e33df7e40": {
"views": []
},
"91028fc3e4bc4f6c8ec752b89bcf3139": {
"views": []
},
"9274175be7fb47f4945e78f96d39a7a6": {
"views": []
},
"929245675b174fe5bfa102102b8db897": {
"views": []
},
"92be1f7fb2794c9fb25d7bbb5cbc313d": {
"views": []
},
"933904217b6045c1b654b7e5749203f5": {
"views": [
{
"cell_index": 27
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
}
]
},
"936bc7eb12e244c196129358a16e14bb": {
"views": []
},
"936c09f4dde8440b91e9730a0212497c": {
"views": []
},
"9406b6ae7f944405a0e8a22f745a39b2": {
"views": []
},
"942a96eea03740719b28fcc1544284d4": {
"views": []
},
"94840e902ffe4bbba5b374ff4d26f19f": {
"views": []
},
"948d01f0901545d38e05f070ce4396e4": {
"views": []
},
"94e2a0bc2d724f7793bb5b6d25fc7088": {
"views": []
},
"94f2b877a79142839622a61a3a081c03": {
"views": [
{
"cell_index": 27
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
}
]
},
"94f30801a94344129363c8266bf2e1f8": {
"views": []
},
"95b127e8aff34a76a813783a6a3c6369": {
"views": []
},
"95d44119bf714e42b163512d9a15bbc5": {
"views": []
},
"95f016e9ea9148a4a3e9f04cb8f5132d": {
"views": []
},
"968e9e9de47646409744df3723e87845": {
"views": []
},
"97207358fc65430aa196a7ed78b252f0": {
"views": [
{
"cell_index": 27
}
]
},
"9768d539ee4044dc94c0bd5cfb827a18": {
"views": []
},
"98587702cc55456aa881daf879d2dc8d": {
"views": []
},
"986c6c4e92964759903d6eb7f153df8a": {
"views": [
{
"cell_index": 27
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
}
]
},
"987d808edd63404f8d6f2ce42efff33a": {
"views": []
},
"9895c26dfb084d509adc8abc3178bad3": {
"views": []
},
"994bc7678f284a24a8700b2a69f09f8d": {
"views": []
},
"99eee4e3d9c34459b12fe14cee543c28": {
"views": []
},
"9a5c0b0805034141a1c96ddd57995a3c": {
"views": []
},
"9a7862bb66a84b4f897924278a809ef3": {
"views": []
},
"9b812f733f6a4b60ba4bf725959f7913": {
"views": []
},
"9bb5ae9ff9c94fe7beece9ce43f519af": {
"views": []
},
"9bfde7b437fb4e76a16a49574ea5b7ec": {
"views": []
},
"9c1d14484b6d4ab3b059731f17878d14": {
"views": []
},
"9c7a66ead55e48c8b92ef250a5a464b7": {
"views": []
},
"9ce50a53aafe439ebb19fff363c1bfe2": {
"views": []
},
"9d5e9658af264ad795f6a5f3d8c3c30f": {
"views": [
{
"cell_index": 27
}
]
},
"9d7aa65511b6482d9587609ad7898f54": {
"views": [
{
"cell_index": 27
}
]
},
"9d87f94baf454bd4b529e55e0792a696": {
"views": []
},
"9de4bd9c6a7b4f3dbd401df15f0b9984": {
"views": []
},
"9dfd6b08a2574ed89f0eb084dae93f73": {
"views": []
},
"9e1dffcb1d9d48aaafa031da2fb5fed9": {
"views": []
},
"9efb46d2bb0648f6b109189986f4f102": {
"views": [
{
"cell_index": 27
}
]
},
"9f1439500d624f769dd5e5c353c46866": {
"views": []
},
"9f27ba31ccc947b598dc61aefca16a7f": {
"views": []
},
"9f31a58b6e8e4c79a92cf65c497ee000": {
"views": []
},
"9f43f85a0fb9464e9b7a25a85f6dba9c": {
"views": [
{
"cell_index": 27
}
]
},
"9f4970dc472946d48c14e93e7f4d4b70": {
"views": []
},
"9f5dd25217a84799b72724b2a37281ea": {
"views": []
},
"9faa50b44e1842e0acac301f93a129c4": {
"views": [
{
"cell_index": 27
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
}
]
},
"a0202917348d4c41a176d9871b65b168": {
"views": []
},
"a058f021f4ca4daf8ab830d8542bf90b": {
"views": []
},
"a0a2dded995543a6b68a67cd91baa252": {
"views": []
},
"a0e170b3ea484fd984985d2607f90ef3": {
"views": []
},
"a168e79f4cbb44c8ac7214db964de5f2": {
"views": []
},
"a182b774272b48238b55e3c4d40e6152": {
"views": []
},
"a1840ca22d834df2b145151baf6d8241": {
"views": [
{
"cell_index": 27
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
}
]
},
"a1bb2982e88e4bb1a2729cc08862a859": {
"views": []
},
"a1d897a6094f483d8fc9a3638fbc179d": {
"views": []
},
"a231ee00d2b7404bb0ff4e303c6b04ee": {
"views": []
},
"a29fdc2987f44e69a0343a90d80c692c": {
"views": []
},
"a2de3ac1f4fe423997c5612b2b21c12f": {
"views": []
},
"a30ba623acec4b03923a2576bcfcbdf5": {
"views": []
},
"a3357d5460c5446196229eae087bb19e": {
"views": []
},
"a358d9ecd754457db178272315151fa3": {
"views": []
},
"a35aec268ac3406daa7fe4563f83f948": {
"views": []
},
"a38c5ed35b9945008341c2d3c0ef1470": {
"views": []
},
"a39cfb47679c4d2895cda12c6d9d2975": {
"views": [
{
"cell_index": 27
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
}
]
},
"a55227f2fd5d42729fc4fd39a8c11914": {
"views": []
},
"a65af2c8506d47ec803c15815e2ab445": {
"views": []
},
"a6d2366540004eeaab760c8be196f10a": {
"views": []
},
"a709f15a981a468b9471a0f672f961a7": {
"views": []
},
"a7258472ad944d038cd227de28d9155f": {
"views": []
},
"a72eb43242c34ef19399c52a77da8830": {
"views": []
},
"a7568aed621548649e37cfa6423ca198": {
"views": []
},
"a83f7f5c09a845ecb3f5823c1d178a54": {
"views": []
},
"a87c651448f14ce4958d73c2f1e413e1": {
"views": [
{
"cell_index": 27
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
}
]
},
"a8e78f5bc64e412ab44eb9c293a7e63b": {
"views": []
},
"a996d507452241e0b99aabe24eecbdd9": {
"views": []
},
"a9a4b7a2159e40f8aa93a50f11048342": {
"views": []
},
"a9cc48370b964a888f8414e1742d6ff2": {
"views": []
},
"a9dcbe9e9a4445bf9cf8961d4c1214a6": {
"views": []
},
"aab29dfddb98416ea815475d6c6a3eed": {
"views": []
},
"ab89783a86bc4939a5f78957f4019553": {
"views": []
},
"abaee5bb577d4a68b6898d637a4c7898": {
"views": []
},
"abecb04251e04260860074b8bdad088a": {
"views": []
},
"acc07b8cf2cf4d50ae1bceef2254637f": {
"views": []
},
"ae3ee1ee05a2443c8bf2f79cd9e86e56": {
"views": []
},
"ae4e85e2bceb4ec783dbfaaf3a174ea7": {
"views": []
},
"aec1a51db98f470cb0854466f3461fc1": {
"views": []
},
"afc5dccd3db64a1592ee0b2fd516b71d": {
"views": []
},
"afe28f5bae8941b19717e3d7285ddc61": {
"views": []
},
"b00516b171544bca9113adc99ed528a1": {
"views": []
},
"b005d7f2afbe479eb02678447a079a1a": {
"views": []
},
"b020ad1a7750461bb79fe4e74b9384f6": {
"views": []
},
"b07d0aab375142978e1261a6a4c94b10": {
"views": []
},
"b2c18df5c51649cdbdaf64092fc945b3": {
"views": []
},
"b410c14ee52d4af49c08da115db85ac7": {
"views": []
},
"b41220079b2b49c2ba6f59dcfe9e7757": {
"views": []
},
"b445a187ca6943bbb465782a67288ce5": {
"views": []
},
"b4dfb435038645dc9673ea4257fc26f3": {
"views": []
},
"b5633708bd8b4abdaec77a96aca519bb": {
"views": []
},
"b59b2622026d4ec582354d919e16f658": {
"views": []
},
"b635f31747e14f989c7dee2ba5d5caa5": {
"views": []
},
"b63dfdde813a4f019998e118b5168943": {
"views": []
},
"b6c3d440986d44ed88a9471a69b70e05": {
"views": []
},
"b6ee195c9bfd48ee8526b8cf0f3322b9": {
"views": []
},
"b7064dd21c9949d79f40c73fee431dff": {
"views": []
},
"b7537298609f4d64b8e36692b84f376c": {
"views": []
},
"b755013f41fa4dce8e2bab356d85d26d": {
"views": []
},
"b7cd4bfabc2e40fe9f30de702ae63716": {
"views": []
},
"b7e4c497ff5c4173961ffdc3bd3821a9": {
"views": [
{
"cell_index": 27
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
}
]
},
"b821a13ce3e8453d85f07faccc95fee1": {
"views": []
},
"b86ea9c1f1ee45a380e35485ad4e2fac": {
"views": []
},
"b87f4d4805944698a0011c10d626726c": {
"views": []
},
"b8e173c7c8be41df9161cbbe2c4c6c86": {
"views": []
},
"b9322adcd8a241478e096aa1df086c78": {
"views": []
},
"b9ad471398784b6889ce7a1d2ef5c4c0": {
"views": []
},
"b9c138598fce460692cc12650375ee52": {
"views": [
{
"cell_index": 27
}
]
},
"ba146eb955754db88ba6c720e14ea030": {
"views": []
},
"ba48cba009e8411ea85c7e566a47a934": {
"views": []
},
"bb2793de83a64688b61a2007573a8110": {
"views": []
},
"bb53891d7f514a17b497f699484c9aed": {
"views": []
},
"bbe5dea9d57d466ba4e964fce9af13cf": {
"views": [
{
"cell_index": 27
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
}
]
},
"bbe88faf528d44a0a9083377d733d66a": {
"views": []
},
"bc0525d022404722a921132e61319e46": {
"views": []
},
"bc320fb35f5744cc82486b85f7a53b6f": {
"views": []
},
"bc900e9562c546f9ae3630d5110080ec": {
"views": []
},
"bcbf6b3ff19d4eb5aa1b8a57672d7f6f": {
"views": []
},
"bccf183ccb0041e380732005f2ca2d0a": {
"views": []
},
"bd0d18e3441340a7a56403c884c87a8e": {
"views": []
},
"bd21e4fe92614c22a76ae515077d2d11": {
"views": []
},
"bd5b05203cfd402596a6b7f076c4a8f8": {
"views": []
},
"beb0c9b29d8d4d69b3147af666fa298b": {
"views": [
{
"cell_index": 27
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
}
]
},
"bf0d147a6a1346799c33807404fa1d46": {
"views": []
},
"c03d4477fa2a423dba6311b003203f62": {
"views": []
},
"c05697bcb0a247f78483e067a93f3468": {
"views": []
},
"c09c3d0e94ca4e71b43352ca91b1a88a": {
"views": []
},
"c0d015a0930e4ddf8f10bbace07c0b24": {
"views": []
},
"c15edd79a0fd4e24b06d1aae708a38c4": {
"views": []
},
"c20b6537360f4a70b923e6c5c2ba7d9b": {
"views": []
},
"c21fff9912924563b28470d32f62cd44": {
"views": []
},
"c2482621d28542268a2b0cbf4596da37": {
"views": []
},
"c25bd0d8054b4508a6b427447b7f4576": {
"views": []
},
"c301650ac4234491af84937a8633ad76": {
"views": []
},
"c333a0964b1e43d0817e73cb47cf0317": {
"views": []
},
"c36213b1566843ceb05b8545f7d3325c": {
"views": []
},
"c37d0add29fa4f41a47caf6538ec6685": {
"views": []
},
"c409a01effb945c187e08747e383463c": {
"views": []
},
"c4e104a7b731463688e0a8f25cf50246": {
"views": []
},
"c54f609af4e94e93b57304bc55e02eba": {
"views": []
},
"c576bf6d24184f3a9f31d4f40231ce87": {
"views": []
},
"c58ab80a895344008b5aadd8b8c628a4": {
"views": []
},
"c5d28bea41da447e88f4cec9cfaaf197": {
"views": []
},
"c74bbd55a8644defa3fcef473002a626": {
"views": [
{
"cell_index": 27
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
}
]
},
"c856e77b213b400599b6e026baaa4c85": {
"views": []
},
"c894f9e350a1473abb28ff651443ae6f": {
"views": []
},
"c8e3827ae28b45bc9768a8c3e35cc8b1": {
"views": []
},
"c95bf1935b71400e98c63722b77caa08": {
"views": []
},
"c9e5129d30ea4b78b846e8e92651b0e9": {
"views": []
},
"ca2123c7b103485c851815cbcb4a6c17": {
"views": []
},
"ca34917db02148168daf0c30ceed7466": {
"views": []
},
"caa6adf7b0d243da8229c317c7482fe3": {
"views": []
},
"cb924475ebb64e76964f88e830979d38": {
"views": []
},
"cba1473ccaee4b2a89aba4d2b4b1e648": {
"views": []
},
"cbd735eb8eb446069ee912d795ccaf14": {
"views": []
},
"cc0ee37900ef40069515c79e99a9a875": {
"views": []
},
"cc564bca35c743b89697f5cfd4ecccc2": {
"views": []
},
"cc5a47588e2b4c8eb5deff560a0256c2": {
"views": []
},
"ccc64ac3a8a84ae9815ff9e8bdc3279d": {
"views": []
},
"cd02a06cec7342438f8585af6227db96": {
"views": []
},
"cd236465e91d4a90a2347e6baab6ab71": {
"views": []
},
"cd9a0aa1700a4407ab445053029dca18": {
"views": []
},
"cdd6c6a945a74c568d611b42e4ba8a1a": {
"views": []
},
"cdf0323ea1324c0b969f49176ecee1c2": {
"views": []
},
"ce3a0e82e80d48b9b2658e0c52196644": {
"views": [
{
"cell_index": 27
}
]
},
"ce6ad0459f654b6785b3a71ccdf05063": {
"views": []
},
"ce8d3cd3535b459c823da2f49f3cc526": {
"views": [
{
"cell_index": 27
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
}
]
},
"cf8c8f791d0541ffa4f635bb07389292": {
"views": []
},
"cfed29ab68f244e996b0d571c31020ec": {
"views": []
},
"d034cbd7b06a448f98b3f11b68520c08": {
"views": []
},
"d13135f5facc4c5996549a85974145a1": {
"views": []
},
"d18c7c17fa93493ebc622fe3d2c0d44e": {
"views": []
},
"d23b743d7d0342aca257780f2df758d6": {
"views": []
},
"d2fe43f4a2064078a6c8da47f8afb903": {
"views": []
},
"d34f626ca035456bb9e0c9ad2a9dced1": {
"views": []
},
"d359911be08f4342b20e86a954cd060f": {
"views": []
},
"d4d76a1c09a342e79cd6733886626459": {
"views": []
},
"d58d12f54e2b426fba4ca611b0ffc68f": {
"views": []
},
"d5e2a77d429d4ca0969e1edec5dc2690": {
"views": []
},
"d5f4bbe3242245f0a2c3b18a284e55f8": {
"views": []
},
"d6c325f3069a4186b3022619f4280c37": {
"views": []
},
"d6d46520bbcf495bad20bcd266fe1357": {
"views": []
},
"d72b7c8058324d1bb56b6574090ccda6": {
"views": []
},
"d73bbb49a33d49e187200fa7c8f23aaa": {
"views": []
},
"d80e4f8eb9a54aef8b746e38d8c3ef1b": {
"views": []
},
"d819255bc7104ee8b9466b149dba5bff": {
"views": []
},
"d819fcff913441d39a41982518127af5": {
"views": []
},
"d8295021db704345a63c9ff9d692b761": {
"views": []
},
"d83329fe36014f85bb5d0247d3ae4472": {
"views": [
{
"cell_index": 27
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
}
]
},
"d88a0305cc224037a14e5040ed8e13af": {
"views": []
},
"d89b81d63c6048ff800d3380bf921ac0": {
"views": []
},
"d8d8667ab50944e4b066d648aa3c8e2a": {
"views": []
},
"d8fd2b5ef6e24628b2b5102d3cd375f3": {
"views": []
},
"d9579a126d5f44a3bc0a731e0ad55f24": {
"views": []
},
"da51bd4d4fd848699919e3973b2fabc2": {
"views": []
},
"dba5a5a8fec346b2bcdc88f4ce294550": {
"views": []
},
"dc201c38ac434cb8a424553f1fa5a791": {
"views": []
},
"dc631df85ae84ffc964acd7a76e399ce": {
"views": []
},
"dc7376a2272e44179f237e5a1c7f6a49": {
"views": [
{
"cell_index": 27
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
}
]
},
"dc8a45203a0a457c927f582f9d576e5d": {
"views": []
},
"dcc0e1ea9e994fc0827d9d7f648e4ad9": {
"views": []
},
"dce6f4cb98094ee1b06c0dd0ff8f488a": {
"views": []
},
"dcfc688de41b4ed7a8f89ae84089d5c0": {
"views": []
},
"dd486b2cbda84c83ace5ceaee8a30ff8": {
"views": []
},
"ddcfbf7b97714357920ba9705e8d4ab0": {
"views": []
},
"ddd4485714564c65b70bd865783076af": {
"views": []
},
"de7738417f1040b1a06ad25e485eb91d": {
"views": []
},
"df4cada92e484fd4ae75026eaf1845e2": {
"views": []
},
"dfb3707b4a01441c8a0a1751425b8e1c": {
"views": []
},
"e03b701a52d948aab86117c928cbe275": {
"views": []
},
"e0a614fe085c4d3c835c78d6ada60a40": {
"views": []
},
"e138e0c7d5a4471d99bbdac50de00fe1": {
"views": []
},
"e154289ce1774450a9a51ac45a1d5725": {
"views": []
},
"e25c1d2c78c94c9a805920df36268508": {
"views": []
},
"e281172ebc7f48b5ae6545b16da79477": {
"views": []
},
"e2862bd7efac4bc0b23532705f5e46c4": {
"views": []
},
"e2cd9bb21f254e08885f43fd6e968879": {
"views": []
},
"e2f4acecaf194351b8e67439440a9966": {
"views": []
},
"e3198c124ac841a79db062efa81f6812": {
"views": []
},
"e36f3009f61a4f5ba047562e70330add": {
"views": []
},
"e3765274f28b4a55a82d9115ded151de": {
"views": []
},
"e37e3fba3b40413180cd30e594bf62bd": {
"views": []
},
"e3f9760867fa410fbdc4611aef1cee18": {
"views": []
},
"e4331c134ab24f9cae99d476dfa04c89": {
"views": []
},
"e46db59e121045169a1ea5313b1748b7": {
"views": []
},
"e475d1e00f9d48edadac886fb53c2a20": {
"views": []
},
"e48449d21c2d4360b851169468066470": {
"views": []
},
"e4c26b8a42b54e959b276a174f2c2795": {
"views": []
},
"e4e55dabd92f4c17b78ed4b6881842e8": {
"views": []
},
"e4e5dd3dc28d4aa3ab8f8f7c4a475115": {
"views": [
{
"cell_index": 27
}
]
},
"e516fd8ebfc6478c95130d6edec77c88": {
"views": []
},
"e5afb8d0e8a94c4dac18f2bbf1d042ce": {
"views": []
},
"e5bcb13bf2e94afc857bcbb37f6d4d87": {
"views": []
},
"e64ab85e80184b70b69d01a9c6851943": {
"views": [
{
"cell_index": 27
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
}
]
},
"e66b26fb788944ba83b7511d79b85dc5": {
"views": []
},
"e73434cfcc854429ac27ddc9c9b07f5e": {
"views": []
},
"e7a8244ea5a84493b3b5bdeaf92a50b4": {
"views": []
},
"e81ed2c281df4f06bc1d4e6b67c574b4": {
"views": []
},
"e85ff7ccdc034c268df9cb0e95e9b850": {
"views": []
},
"e8a198bff55a437eab56887563cd9a6e": {
"views": []
},
"e92ede4cfc96436b84e63809bcb22385": {
"views": []
},
"e949474f6aa64c5dada603476ea6cabd": {
"views": []
},
"e98e59c3156c49c1bb27be7a478c3654": {
"views": []
},
"e9ea6f88d1334fbcab7f9c9a11cf4a50": {
"views": []
},
"ea09e5da878c42f2b533856dc3149e3e": {
"views": []
},
"ea74036074054593b1cc31fec030d2a2": {
"views": []
},
"ea8d97fb8c0d499095cceb133e4d7d9c": {
"views": []
},
"eafbea5bce1f4ab4bcbb0aa08598af0f": {
"views": []
},
"ec01e6cdc5a54f068f1bb033415b4a06": {
"views": []
},
"ec2d1f18f2e841b184f5d4cd15979d46": {
"views": []
},
"ec923af478b94ad99bdfd3257f48cb06": {
"views": []
},
"ed02e2272e844678979bd6a3c00f5cb3": {
"views": []
},
"ed80296f5f5e42e694dfc5cc7fd3acee": {
"views": []
},
"ee4df451ca9d4ed48044b25b19dc3f3f": {
"views": []
},
"ee77219007884e089fc3c1479855c469": {
"views": []
},
"ef372681937b4e90a04b0d530b217edb": {
"views": []
},
"ef452efe39d34db6b4785cb816865ca3": {
"views": []
},
"efcb07343f244ff084ea49dbc7e3d811": {
"views": []
},
"f083a8e4c8574fe08f5eb0aac66c1e71": {
"views": []
},
"f09d7c07bec64811805db588515af7f6": {
"views": []
},
"f0ef654c93974add9410a6e243e0fbf2": {
"views": []
},
"f20d7c2fcf144f5da875c6af5ffd35cb": {
"views": []
},
"f234eb38076146b9a640f44b7ef30892": {
"views": []
},
"f24d087598434ed1bb7f5ae3b0b4647a": {
"views": []
},
"f262055f3f1b48029f9e2089f752b0b8": {
"views": [
{
"cell_index": 27
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
}
]
},
"f2d40a380f884b1b95992ccc7c3df04e": {
"views": []
},
"f2e2e2e5177542aa9e5ca3d69508fb89": {
"views": []
},
"f31914f694384908bec466fc2945f1c7": {
"views": []
},
"f31cbea99df94f2281044c369ef1962d": {
"views": []
},
"f32c6c5551f540709f7c7cd9078f1aad": {
"views": []
},
"f337eb824d654f0fbd688e2db3c5bf7b": {
"views": []
},
"f36f776a7767495cbda2f649c2b3dd48": {
"views": []
},
"f3cef080253c46989413aad84b478199": {
"views": []
},
"f3df35ce53e0466e81a48234b36a1430": {
"views": [
{
"cell_index": 27
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
}
]
},
"f3fa0f8a41ab4ede9c4e20f16e35237d": {
"views": []
},
"f42e4f996f254a1bb7fe6f4dfc49aba3": {
"views": []
},
"f437babcddc64a8aa238fc7013619fbb": {
"views": []
},
"f44a5661ed1f4b5d97849cf4bb5e862e": {
"views": []
},
"f44d24e28afa475da40628b4fd936922": {
"views": []
},
"f44d5e6e993745b8b12891d1f3af3dc3": {
"views": []
},
"f457cb5e76be46a29d9f49ba0dc135f1": {
"views": []
},
"f4691cbe84534ef6b7d3fca530cf1704": {
"views": []
},
"f4ca26fbbdbf49dda5d1b8affdecfa3e": {
"views": []
},
"f54998361fe84a8a95b2607fbe367d52": {
"views": []
},
"f54bdb1d3bfb47af9e7aaabb4ed12eff": {
"views": []
},
"f54c28b82f7d498b83bf6908e19b6d1b": {
"views": []
},
"f5cc05fcee4d4c3e80163c6e9c072b6e": {
"views": []
},
"f621b91a209e4997a47cf458f8a5027f": {
"views": []
},
"f665bf176eb443f6867cef8fdd79b4e5": {
"views": []
},
"f6e27824f5e84bd8b4671e9eb030b20f": {
"views": []
},
"f6f162ac0811434ea95875f6335bd484": {
"views": []
},
"f6f629e6fb164c97acdc50c25d1354ee": {
"views": []
},
"f71adee125f74ddd8302aa2796646d67": {
"views": []
},
"f731d66445aa4543800a6bb3e9267936": {
"views": []
},
"f8f8e8c27fff45afa309a849d1655e29": {
"views": []
},
"f913752b9e86487cb197f894d667d432": {
"views": []
},
"f92cde8d24064ae5afd4cd577eaa895a": {
"views": []
},
"f944674b7ca345a582de627055614499": {
"views": []
},
"f9458080ed534d25856c67ce8f93d5a1": {
"views": [
{
"cell_index": 27
}
]
},
"f986f98d05dd4b9fa8a3c1111c1cea9b": {
"views": []
},
"f9f7bc097f654e41b68f2d849c99a1a1": {
"views": []
},
"fa00693458bc45669e2ed4ee536e98d6": {
"views": []
},
"fa2f219e60ff453da3842df62a371813": {
"views": []
},
"fa6cbfe76fff48848dc08a9344de84ff": {
"views": []
},
"fb3b6d5e405d4e1b87e82bcc8ae3df0f": {
"views": []
},
"fbe27ee7dc93467292b67f68935ae6f0": {
"views": []
},
"fc494b2bcade4c3a890f08386dd8aab0": {
"views": []
},
"fd98ac9b76cc44f09bc3b684caf1882d": {
"views": []
},
"feb9bf5d951c40d4a87d57a4de5e819a": {
"views": []
},
"fedfd679505d409fa74ccaa52b87fcce": {
"views": []
},
"fef0278d4386407f96c44b4affe437b8": {
"views": []
},
"ff29b06d50b048d6bbcbdb5a8665dcde": {
"views": []
},
"ff3c868e31c0430dbf5b85415da9a24b": {
"views": []
},
"ff8a91a101044f4fba19cdfffc39e0d3": {
"views": []
},
"ffbca26ec77b492bbbda1be40b044d8e": {
"views": []
},
"fff5f5bc334942bd851ac24f782f4f3c": {
"views": []
}
},
"version": "1.1.1"
}
},
"nbformat": 4,