Newer
Older
import pytest
from logic import *
def test_expr():
assert repr(expr('P <=> Q(1)')) == '(P <=> Q(1))'
assert repr(expr('P & Q | ~R(x, F(x))')) == '((P & Q) | ~R(x, F(x)))'
assert (expr_handle_infix_ops('P & Q ==> R & ~S')
== "P & Q |InfixOp('==>', None)| R & ~S")
def test_extend():
assert extend({x: 1}, y, 2) == {x: 1, y: 2}
assert count(kb.ask(expr) for expr in [A, C, D, E, Q]) is 0
kb.tell(A & E)
assert kb.ask(A) == kb.ask(E) == {}
kb.retract(E)
assert kb.ask(E) is False
# A simple KB that defines the relevant conditions of the Wumpus World as in Fig 7.4.
# See Sec. 7.4.3
kb_wumpus = PropKB()
# Creating the relevant expressions
# TODO: Let's just use P11, P12, ... = symbols('P11, P12, ...')
P = {}
B = {}
P[1,1] = Symbol("P[1,1]")
P[1,2] = Symbol("P[1,2]")
P[2,1] = Symbol("P[2,1]")
P[2,2] = Symbol("P[2,2]")
P[3,1] = Symbol("P[3,1]")
B[1,1] = Symbol("B[1,1]")
B[2,1] = Symbol("B[2,1]")
kb_wumpus.tell(~P[1,1])
kb_wumpus.tell(B[1,1] |equiv| ((P[1,2] | P[2,1])))
kb_wumpus.tell(B[2,1] |equiv| ((P[1,1] | P[2,2] | P[3,1])))
kb_wumpus.tell(~B[1,1])
kb_wumpus.tell(B[2,1])
# Statement: There is no pit in [1,1].
assert kb_wumpus.ask(~P[1,1]) == {}
# Statement: There is no pit in [1,2].
assert kb_wumpus.ask(~P[1,2]) == {}
# Statement: There is a pit in [2,2].
assert kb_wumpus.ask(P[2,2]) == False
# Statement: There is a pit in [3,1].
assert kb_wumpus.ask(P[3,1]) == False
# Statement: Neither [1,2] nor [2,1] contains a pit.
assert kb_wumpus.ask(~P[1,2] & ~P[2,1]) == {}
# Statement: There is a pit in either [2,2] or [3,1].
assert kb_wumpus.ask(P[2,2] | P[3,1]) == {}
def test_definite_clause():
assert is_definite_clause(expr('A & B & C & D ==> E'))
assert is_definite_clause(expr('Farmer(Mac)'))
assert not is_definite_clause(expr('~Farmer(Mac)'))
assert is_definite_clause(expr('(Farmer(f) & Rabbit(r)) ==> Hates(f, r)'))
assert not is_definite_clause(expr('(Farmer(f) & ~Rabbit(r)) ==> Hates(f, r)'))
assert not is_definite_clause(expr('(Farmer(f) | Rabbit(r)) ==> Hates(f, r)'))
def test_pl_true():
assert pl_true(P, {}) is None
assert pl_true(P, {P: False}) is False
assert pl_true(P | Q, {P: True}) is True
assert pl_true((A|B)&(C|D), {A: False, B: True, D: True}) is True
assert pl_true((A&B)&(C|D), {A: False, B: True, D: True}) is False
assert pl_true((A&B)|(A&C), {A: False, B: True, C: True}) is False
assert pl_true((A|B)&(C|D), {A: True, D: False}) is None
assert pl_true(P | P, {}) is None
def test_tt_true():
assert tt_true(P | ~P)
assert tt_true('~~P <=> P')
assert not tt_true(P & ~P)
assert not tt_true(P & Q)
assert tt_true('(A & B) ==> (A | B)')
assert tt_true('((A & B) & C) <=> (A & (B & C))')
assert tt_true('((A | B) | C) <=> (A | (B | C))')
assert tt_true('(A ==> B) <=> (~B ==> ~A)')
assert tt_true('(A ==> B) <=> (~A | B)')
assert tt_true('(A <=> B) <=> ((A ==> B) & (B ==> A))')
assert tt_true('~(A & B) <=> (~A | ~B)')
assert tt_true('~(A | B) <=> (~A & ~B)')
assert tt_true('(A & (B | C)) <=> ((A & B) | (A & C))')
assert tt_true('(A | (B & C)) <=> ((A | B) & (A | C))')
def test_dpll():
assert (dpll_satisfiable(A & ~B & C & (A | ~D) & (~E | ~D) & (C | ~D) & (~A | ~F) & (E | ~F)
& (~D | ~F) & (B | ~C | D) & (A | ~E | F) & (~A | E | D))
== {B: False, C: True, A: True, F: False, D: True, E: False})
assert dpll_satisfiable(A&~B) == {A: True, B: False}
assert dpll_satisfiable(P&~P) == False
def test_unify():
assert unify(x, x, {}) == {}
assert unify(x, 3, {}) == {x: 3}
def test_pl_fc_entails():
assert pl_fc_entails(Fig[7,15], expr('Q'))
assert not pl_fc_entails(Fig[7,15], expr('SomethingSilly'))
assert tt_entails(P & Q, Q)
assert not tt_entails(P | Q, Q)
assert tt_entails(A & (B | C) & E & F & ~(P | Q), A & E & F & ~P & ~Q)
assert repr(eliminate_implications('A ==> (~B <== C)')) == '((~B | ~C) | ~A)'
assert repr(eliminate_implications(A ^ B)) == '((A & ~B) | (~A & B))'
assert repr(eliminate_implications(A & B | C & ~D)) == '((A & B) | (C & ~D))'
def test_dissociate():
assert dissociate('&', [A & B]) == [A, B]
assert dissociate('|', [A, B, C & D, P | Q]) == [A, B, C & D, P, Q]
assert dissociate('&', [A, B, C & D, P | Q]) == [A, B, C, D, P | Q]
assert (repr(associate('&', [(A & B), (B | C), (B & C)]))
== '(A & B & (B | C) & B & C)')
assert (repr(associate('|', [A | (B | (C | (A & B)))]))
== '(A | B | C | (A & B))')
def test_move_not_inwards():
assert repr(move_not_inwards(~(A | B))) == '(~A & ~B)'
assert repr(move_not_inwards(~(A & B))) == '(~A | ~B)'
assert repr(move_not_inwards(~(~(A | ~B) | ~~C))) == '((A | ~B) & ~C)'
def test_to_cnf():
assert (repr(to_cnf(Fig[7, 13] & ~expr('~P12'))) ==
"((~P12 | B11) & (~P21 | B11) & (P12 | P21 | ~B11) & ~B11 & P12)")
assert repr(to_cnf((P&Q) | (~P & ~Q))) == '((~P | P) & (~Q | P) & (~P | Q) & (~Q | Q))'
assert repr(to_cnf("B <=> (P1 | P2)")) == '((~P1 | B) & (~P2 | B) & (P1 | P2 | ~B))'
assert repr(to_cnf("a | (b & c) | d")) == '((b | a | d) & (c | a | d))'
assert repr(to_cnf("A & (B | (D & E))")) == '(A & (D | B) & (E | B))'
assert repr(to_cnf("A | (B | (C | (D & E)))")) == '((D | A | B | C) & (E | A | B | C))'
def test_standardize_variables():
e = expr('F(a, b, c) & G(c, A, 23)')
assert len(variables(standardize_variables(e))) == 3
#assert variables(e).intersection(variables(standardize_variables(e))) == {}
assert is_variable(standardize_variables(expr('x')))
SnShine
a validé
def test_fol_bc_ask():
def test_ask(query, kb=None):
q = expr(query)
SnShine
a validé
test_variables = variables(q)
answers = fol_bc_ask(kb or test_kb, q)
return sorted(
SnShine
a validé
[dict((x, v) for x, v in list(a.items()) if x in test_variables)
for a in answers], key=repr)
assert repr(test_ask('Farmer(x)')) == '[{x: Mac}]'
assert repr(test_ask('Human(x)')) == '[{x: Mac}, {x: MrsMac}]'
assert repr(test_ask('Rabbit(x)')) == '[{x: MrsRabbit}, {x: Pete}]'
assert repr(test_ask('Criminal(x)', crime_kb)) == '[{x: West}]'
def test_WalkSAT():
def check_SAT(clauses, single_solution = {}):
# Make sure the solution is correct if it is returned by WalkSat
# Sometimes WalkSat may run out of flips before finding a solution
soln = WalkSAT(clauses)
if soln:
assert every(lambda x: pl_true(x, soln), clauses)
if single_solution: #Cross check the solution if only one exists
assert every(lambda x: pl_true(x, single_solution), clauses)
assert soln == single_solution
check_SAT([A & B, A & C])
check_SAT([A | B, P & Q, P & B])
check_SAT([A & B, C | D, ~(D | P)], {A: True, B: True, C: True, D: False, P: False})
assert WalkSAT([A & ~A], 0.5, 100) is None
assert WalkSAT([A | B, ~A, ~(B | C), C | D, P | Q], 0.5, 100) is None
assert WalkSAT([A | B, B & C, C | D, D & A, P, ~P], 0.5, 100) is None
def test_SAT_plan():
transition = {'A':{'Left': 'A', 'Right': 'B'},
'B':{'Left': 'A', 'Right': 'C'},
'C':{'Left': 'B', 'Right': 'C'}}
assert SAT_plan('A', transition, 'C', 2) is None
assert SAT_plan('A', transition, 'B', 3) == ['Right']
assert SAT_plan('C', transition, 'A', 3) == ['Left', 'Left']
transition = {(0, 0):{'Right': (0, 1), 'Down': (1, 0)},
(0, 1):{'Left': (1, 0), 'Down': (1, 1)},
(1, 0):{'Right': (1, 0), 'Up': (1, 0), 'Left': (1, 0), 'Down': (1, 0)},
(1, 1):{'Left': (1, 0), 'Up': (0, 1)}}
assert SAT_plan((0, 0), transition, (1, 1), 2000) == ['Right', 'Down']