Newer
Older
"""Representations and Inference for Logic (Chapters 7-9, 12)
Covers both Propositional and First-Order Logic. First we have four
important data types:
KB Abstract class holds a knowledge base of logical expressions
KB_Agent Abstract class subclasses agents.Agent
Expr A logical expression
substitution Implemented as a dictionary of var:value pairs, {x:1, y:x}
Be careful: some functions take an Expr as argument, and some take a KB.
Then we implement various functions for doing logical inference:
pl_true Evaluate a propositional logical sentence in a model
tt_entails Say if a statement is entailed by a KB
pl_resolution Do resolution on propositional sentences
dpll_satisfiable See if a propositional sentence is satisfiable
WalkSAT (not yet implemented)
And a few other functions:
to_cnf Convert to conjunctive normal form
unify Do unification of two FOL sentences
diff, simp Symbolic differentiation and simplification
import agents
from utils import *
#______________________________________________________________________________
class KB:
"""A knowledge base to which you can tell and ask sentences.
To create a KB, first subclass this class and implement
tell, ask_generator, and retract. Why ask_generator instead of ask?
The book is a bit vague on what ask means --
For a Propositional Logic KB, ask(P & Q) returns True or False, but for an
FOL KB, something like ask(Brother(x, y)) might return many substitutions
such as {x: Cain, y: Abel}, {x: Abel, y: Cain}, {x: George, y: Jeb}, etc.
So ask_generator generates these one at a time, and ask either returns the
first one or returns False."""
def __init__(self, sentence=None):
def ask(self, query):
"""Return a substitution that makes the query true, or,
failing that, return False."""
for result in self.ask_generator(query):
return result
return False
"Yield all the substitutions that make query true."
def retract(self, sentence):
"Remove sentence from the KB."
class PropKB(KB):
"A KB for propositional logic. Inefficient, with no indexing."
def __init__(self, sentence=None):
self.clauses = []
if sentence:
self.tell(sentence)
"Add the sentence's clauses to the KB."
"Yield the empty substitution if KB implies query; else nothing."
if tt_entails(Expr('&', *self.clauses), query):
yield {}
def retract(self, sentence):
"Remove the sentence's clauses from the KB."
for c in conjuncts(to_cnf(sentence)):
if c in self.clauses:
self.clauses.remove(c)
#______________________________________________________________________________
def KB_AgentProgram(KB):
"""A generic logical knowledge-based agent program. [Fig. 7.1]"""
steps = itertools.count()
def program(percept):
t = steps.next()
KB.tell(make_percept_sentence(percept, t))
action = KB.ask(make_action_query(t))
KB.tell(make_action_sentence(action, t))
return action
def make_percept_sentence(self, percept, t):
return Expr("Percept")(percept, t)
def make_action_query(self, t):
return expr("ShouldDo(action, %d)" % t)
def make_action_sentence(self, action, t):
return Expr("Did")(action[expr('action')], t)
return program
#______________________________________________________________________________
class Expr:
"""A symbolic mathematical expression. We use this class for logical
expressions, and for terms within logical expressions. In general, an
Expr has an op (operator) and a list of args. The op can be:
Null-ary (no args) op:
A number, representing the number itself. (e.g. Expr(42) => 42)
A symbol, representing a variable or constant (e.g. Expr('F') => F)
Unary (1 arg) op:
'~', '-', representing NOT, negation (e.g. Expr('~', Expr('P')) => ~P)
Binary (2 arg) op:
'>>', '<<', representing forward and backward implication
'+', '-', '*', '/', '**', representing arithmetic operators
'<', '>', '>=', '<=', representing comparison operators
'<=>', '^', representing logical equality and XOR
N-ary (0 or more args) op:
'&', '|', representing conjunction and disjunction
A symbol, representing a function term or FOL proposition
Exprs can be constructed with operator overloading: if x and y are Exprs,
then so are x + y and x & y, etc. Also, if F and x are Exprs, then so is
F(x); it works by overloading the __call__ method of the Expr F. Note
that in the Expr that is created by F(x), the op is the str 'F', not the
Expr F. See http://www.python.org/doc/current/ref/specialnames.html
to learn more about operator overloading in Python.
WARNING: x == y and x != y are NOT Exprs. The reason is that we want
to write code that tests 'if x == y:' and if x == y were the same
as Expr('==', x, y), then the result would always be true; not what a
programmer would expect. But we still need to form Exprs representing
equalities and disequalities. We concentrate on logical equality (or
equivalence) and logical disequality (or XOR). You have 3 choices:
(1) Expr('<=>', x, y) and Expr('^', x, y)
Note that ^ is bitwose XOR in Python (and Java and C++)
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
See the doc string for the function expr.
(3) (x % y) and (x ^ y).
It is very ugly to have (x % y) mean (x <=> y), but we need
SOME operator to make (2) work, and this seems the best choice.
WARNING: if x is an Expr, then so is x + 1, because the int 1 gets
coerced to an Expr by the constructor. But 1 + x is an error, because
1 doesn't know how to add an Expr. (Adding an __radd__ method to Expr
wouldn't help, because int.__add__ is still called first.) Therefore,
you should use Expr(1) + x instead, or ONE + x, or expr('1 + x').
"""
def __init__(self, op, *args):
"Op is a string or number; args are Exprs (or are coerced to Exprs)."
assert isinstance(op, str) or (isnumber(op) and not args)
self.op = num_or_str(op)
self.args = map(expr, args) ## Coerce args to Exprs
def __call__(self, *args):
"""Self must be a symbol with no args, such as Expr('F'). Create a new
Expr with 'F' as op and the args as arguments."""
assert is_symbol(self.op) and not self.args
return Expr(self.op, *args)
def __repr__(self):
"Show something like 'P' or 'P(x, y)', or '~P' or '(P | Q | R)'"
if not self.args: # Constant or proposition with arity 0
return str(self.op)
elif is_symbol(self.op): # Functional or propositional operator
return '%s(%s)' % (self.op, ', '.join(map(repr, self.args)))
elif len(self.args) == 1: # Prefix operator
return self.op + repr(self.args[0])
return '(%s)' % (' '+self.op+' ').join(map(repr, self.args))
def __eq__(self, other):
"""x and y are equal iff their ops and args are equal."""
return (other is self) or (isinstance(other, Expr)
and self.op == other.op and self.args == other.args)
def __hash__(self):
"Need a hash method so Exprs can live in dicts."
return hash(self.op) ^ hash(tuple(self.args))
# See http://www.python.org/doc/current/lib/module-operator.html
# Not implemented: not, abs, pos, concat, contains, *item, *slice
def __lt__(self, other): return Expr('<', self, other)
def __le__(self, other): return Expr('<=', self, other)
def __ge__(self, other): return Expr('>=', self, other)
def __gt__(self, other): return Expr('>', self, other)
def __add__(self, other): return Expr('+', self, other)
def __sub__(self, other): return Expr('-', self, other)
def __and__(self, other): return Expr('&', self, other)
def __div__(self, other): return Expr('/', self, other)
def __truediv__(self, other):return Expr('/', self, other)
def __invert__(self): return Expr('~', self)
def __lshift__(self, other): return Expr('<<', self, other)
def __rshift__(self, other): return Expr('>>', self, other)
def __mul__(self, other): return Expr('*', self, other)
def __neg__(self): return Expr('-', self)
def __or__(self, other): return Expr('|', self, other)
def __pow__(self, other): return Expr('**', self, other)
def __xor__(self, other): return Expr('^', self, other)
def __mod__(self, other): return Expr('<=>', self, other)
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def expr(s):
"""Create an Expr representing a logic expression by parsing the input
string. Symbols and numbers are automatically converted to Exprs.
In addition you can use alternative spellings of these operators:
'x ==> y' parses as (x >> y) # Implication
'x <== y' parses as (x << y) # Reverse implication
'x <=> y' parses as (x % y) # Logical equivalence
'x =/= y' parses as (x ^ y) # Logical disequality (xor)
But BE CAREFUL; precedence of implication is wrong. expr('P & Q ==> R & S')
is ((P & (Q >> R)) & S); so you must use expr('(P & Q) ==> (R & S)').
>>> expr('P <=> Q(1)')
(P <=> Q(1))
>>> expr('P & Q | ~R(x, F(x))')
((P & Q) | ~R(x, F(x)))
"""
if isinstance(s, Expr): return s
if isnumber(s): return Expr(s)
## Replace the alternative spellings of operators with canonical spellings
s = s.replace('==>', '>>').replace('<==', '<<')
s = s.replace('<=>', '%').replace('=/=', '^')
## Replace a symbol or number, such as 'P' with 'Expr("P")'
s = re.sub(r'([a-zA-Z0-9_.]+)', r'Expr("\1")', s)
## Now eval the string. (A security hole; do not use with an adversary.)
return eval(s, {'Expr':Expr})
def is_symbol(s):
"A string s is a symbol if it starts with an alphabetic char."
return isinstance(s, str) and s[:1].isalpha()
def is_var_symbol(s):
"A logic variable symbol is an initial-lowercase string."
return is_symbol(s) and s[0].islower()
def is_prop_symbol(s):
"""A proposition logic symbol is an initial-uppercase string other than
TRUE or FALSE."""
return is_symbol(s) and s[0].isupper() and s != 'TRUE' and s != 'FALSE'
"""Return a set of the variables in expression s.
>>> ppset(variables(F(x, A, y)))
set([x, y])
>>> ppset(variables(F(G(x), z)))
set([x, z])
>>> ppset(variables(expr('F(x, x) & G(x, y) & H(y, z) & R(A, z, z)')))
set([x, y, z])
"""
result = set([])
def walk(s):
if is_variable(s):
result.add(s)
else:
for arg in s.args:
walk(arg)
walk(s)
return result
def is_definite_clause(s):
"""returns True for exprs s of the form A & B & ... & C ==> D,
where all literals are positive. In clause form, this is
~A | ~B | ... | ~C | D, where exactly one clause is positive.
>>> is_definite_clause(expr('Farmer(Mac)'))
True
>>> is_definite_clause(expr('~Farmer(Mac)'))
False
>>> is_definite_clause(expr('(Farmer(f) & Rabbit(r)) ==> Hates(f, r)'))
True
>>> is_definite_clause(expr('(Farmer(f) & ~Rabbit(r)) ==> Hates(f, r)'))
False
>>> is_definite_clause(expr('(Farmer(f) | Rabbit(r)) ==> Hates(f, r)'))
False
if is_symbol(s.op):
return True
elif s.op == '>>':
antecedent, consequent = s.args
return (is_symbol(consequent.op)
withal
a validé
and every(lambda arg: is_symbol(arg.op), conjuncts(antecedent)))
withal
a validé
def parse_definite_clause(s):
"Return the antecedents and the consequent of a definite clause."
assert is_definite_clause(s)
if is_symbol(s.op):
return [], s
else:
antecedent, consequent = s.args
return conjuncts(antecedent), consequent
withal
a validé
## Useful constant Exprs used in examples and code:
TRUE, FALSE, ZERO, ONE, TWO = map(Expr, ['TRUE', 'FALSE', 0, 1, 2])
#______________________________________________________________________________
def tt_entails(kb, alpha):
"""Does kb entail the sentence alpha? Use truth tables. For propositional
kb's and sentences. [Fig. 7.10]
>>> tt_entails(expr('P & Q'), expr('Q'))
True
"""
assert not variables(alpha)
return tt_check_all(kb, alpha, prop_symbols(kb & alpha), {})
def tt_check_all(kb, alpha, symbols, model):
"Auxiliary routine to implement tt_entails."
if not symbols:
if pl_true(kb, model):
result = pl_true(alpha, model)
assert result in (True, False)
return result
else:
return True
else:
P, rest = symbols[0], symbols[1:]
return (tt_check_all(kb, alpha, rest, extend(model, P, True)) and
tt_check_all(kb, alpha, rest, extend(model, P, False)))
def prop_symbols(x):
"Return a list of all propositional symbols in x."
if not isinstance(x, Expr):
return []
elif is_prop_symbol(x.op):
return [x]
else:
return list(set(symbol for arg in x.args
for symbol in prop_symbols(arg)))
def tt_true(alpha):
"""Is the propositional sentence alpha a tautology? (alpha will be
coerced to an expr.)
>>> tt_true(expr("(P >> Q) <=> (~P | Q)"))
True
"""
return tt_entails(TRUE, expr(alpha))
def pl_true(exp, model={}):
"""Return True if the propositional logic expression is true in the model,
and False if it is false. If the model does not specify the value for
every proposition, this may return None to indicate 'not obvious';
this may happen even when the expression is tautological."""
op, args = exp.op, exp.args
if exp == TRUE:
return True
elif exp == FALSE:
return False
elif is_prop_symbol(op):
return model.get(exp)
elif op == '~':
p = pl_true(args[0], model)
else: return not p
elif op == '|':
result = False
for arg in args:
p = pl_true(arg, model)
if p is True: return True
if p is None: result = None
return result
elif op == '&':
result = True
for arg in args:
p = pl_true(arg, model)
if p is False: return False
if p is None: result = None
return result
p, q = args
if op == '>>':
return pl_true(~p | q, model)
elif op == '<<':
return pl_true(p | ~q, model)
pt = pl_true(p, model)
qt = pl_true(q, model)
if op == '<=>':
return pt == qt
elif op == '^':
return pt != qt
else:
raise ValueError("illegal operator in logic expression" + str(exp))
#______________________________________________________________________________
## Convert to Conjunctive Normal Form (CNF)
def to_cnf(s):
"""Convert a propositional logical sentence s to conjunctive normal form.
That is, to the form ((A | ~B | ...) & (B | C | ...) & ...) [p. 253]
>>> to_cnf("~(B|C)")
(~B & ~C)
>>> to_cnf("B <=> (P1|P2)")
((~P1 | B) & (~P2 | B) & (P1 | P2 | ~B))
>>> to_cnf("a | (b & c) | d")
((b | a | d) & (c | a | d))
>>> to_cnf("A & (B | (D & E))")
(A & (D | B) & (E | B))
>>> to_cnf("A | (B | (C | (D & E)))")
((D | A | B | C) & (E | A | B | C))
"""
if isinstance(s, str): s = expr(s)
s = eliminate_implications(s) # Steps 1, 2 from p. 253
s = move_not_inwards(s) # Step 3
return distribute_and_over_or(s) # Step 4
def eliminate_implications(s):
"""Change >>, <<, and <=> into &, |, and ~. That is, return an Expr
that is equivalent to s, but has only &, |, and ~ as logical operators.
>>> eliminate_implications(A >> (~B << C))
((~B | ~C) | ~A)
"""
if not s.args or is_symbol(s.op): return s ## (Atoms are unchanged.)
args = map(eliminate_implications, s.args)
a, b = args[0], args[-1]
if s.op == '>>':
return (b | ~a)
elif s.op == '<<':
return (a | ~b)
elif s.op == '<=>':
return (a | ~b) & (b | ~a)
elif s.op == '^':
assert len(args) == 2 ## TODO: relax this restriction
return (a & ~b) | (~a & b)
return Expr(s.op, *args)
def move_not_inwards(s):
"""Rewrite sentence s by moving negation sign inward.
>>> move_not_inwards(~(A | B))
(~A & ~B)
>>> move_not_inwards(~(A & B))
(~A | ~B)
>>> move_not_inwards(~(~(A | ~B) | ~~C))
((A | ~B) & ~C)
"""
if s.op == '~':
NOT = lambda b: move_not_inwards(~b)
a = s.args[0]
if a.op == '~': return move_not_inwards(a.args[0]) # ~~A ==> A
if a.op =='&': return associate('|', map(NOT, a.args))
if a.op =='|': return associate('&', map(NOT, a.args))
return s
elif is_symbol(s.op) or not s.args:
return s
else:
return Expr(s.op, *map(move_not_inwards, s.args))
def distribute_and_over_or(s):
"""Given a sentence s consisting of conjunctions and disjunctions
of literals, return an equivalent sentence in CNF.
>>> distribute_and_over_or((A & B) | C)
((A | C) & (B | C))
"""
if s.op == '|':
if s.op != '|':
return distribute_and_over_or(s)
return FALSE
return distribute_and_over_or(s.args[0])
conj = find_if((lambda d: d.op == '&'), s.args)
if not conj:
others = [a for a in s.args if a is not conj]
rest = associate('|', others)
return associate('&', [distribute_and_over_or(c|rest)
for c in conj.args])
elif s.op == '&':
return associate('&', map(distribute_and_over_or, s.args))
else:
return s
def associate(op, args):
"""Given an associative op, return an expression with the same
meaning as Expr(op, *args), but flattened -- that is, with nested
instances of the same op promoted to the top level.
>>> associate('&', [(A&B),(B|C),(B&C)])
(A & B & (B | C) & B & C)
>>> associate('|', [A|(B|(C|(A&B)))])
if len(args) == 0:
return _op_identity[op]
elif len(args) == 1:
return args[0]
else:
return Expr(op, *args)
_op_identity = {'&':TRUE, '|':FALSE, '+':ZERO, '*':ONE}
"""Given an associative op, return a flattened list result such
that Expr(op, *result) means the same as Expr(op, *args)."""
result = []
def collect(subargs):
for arg in subargs:
if arg.op == op: collect(arg.args)
def conjuncts(s):
"""Return a list of the conjuncts in the sentence s.
>>> conjuncts(A & B)
[A, B]
>>> conjuncts(A | B)
[(A | B)]
"""
def disjuncts(s):
"""Return a list of the disjuncts in the sentence s.
>>> disjuncts(A | B)
[A, B]
>>> disjuncts(A & B)
[(A & B)]
"""
#______________________________________________________________________________
def pl_resolution(KB, alpha):
"Propositional-logic resolution: say if alpha follows from KB. [Fig. 7.12]"
clauses = KB.clauses + conjuncts(to_cnf(~alpha))
new = set()
while True:
n = len(clauses)
pairs = [(clauses[i], clauses[j])
for i in range(n) for j in range(i+1, n)]
for (ci, cj) in pairs:
resolvents = pl_resolve(ci, cj)
if FALSE in resolvents: return True
new = new.union(set(resolvents))
if new.issubset(set(clauses)): return False
for c in new:
if c not in clauses: clauses.append(c)
def pl_resolve(ci, cj):
"""Return all clauses that can be obtained by resolving clauses ci and cj.
>>> for res in pl_resolve(to_cnf(A|B|C), to_cnf(~B|~C|F)):
... ppset(disjuncts(res))
set([A, C, F, ~C])
set([A, B, F, ~B])
"""
clauses = []
for di in disjuncts(ci):
for dj in disjuncts(cj):
if di == ~dj or ~di == dj:
removeall(dj, disjuncts(cj)))
clauses.append(associate('|', dnew))
return clauses
#______________________________________________________________________________
class PropDefiniteKB(PropKB):
"A KB of propositional definite clauses."
def tell(self, sentence):
assert is_definite_clause(sentence), "Must be definite clause"
self.clauses.append(sentence)
"Yield the empty substitution if KB implies query; else nothing."
if pl_fc_entails(self.clauses, query):
yield {}
def retract(self, sentence):
self.clauses.remove(sentence)
def clauses_with_premise(self, p):
"""Return a list of the clauses in KB that have p in their premise.
This could be cached away for O(1) speed, but we'll recompute it."""
if c.op == '>>' and p in conjuncts(c.args[0])]
def pl_fc_entails(KB, q):
"""Use forward chaining to see if a PropDefiniteKB entails symbol q.
[Fig. 7.15]
>>> pl_fc_entails(Fig[7,15], expr('Q'))
True
"""
count = dict([(c, len(conjuncts(c.args[0]))) for c in KB.clauses
if c.op == '>>'])
inferred = DefaultDict(False)
agenda = [s for s in KB.clauses if is_prop_symbol(s.op)]
while agenda:
p = agenda.pop()
if not inferred[p]:
inferred[p] = True
for c in KB.clauses_with_premise(p):
count[c] -= 1
if count[c] == 0:
agenda.append(c.args[1])
return False
## Wumpus World example [Fig. 7.13]
Fig[7,13] = expr("(B11 <=> (P12 | P21)) & ~B11")
## Propositional Logic Forward Chaining example [Fig. 7.16]
Fig[7,15] = PropDefiniteKB()
for s in "P>>Q (L&M)>>P (B&L)>>M (A&P)>>L (A&B)>>L A B".split():
Fig[7,15].tell(expr(s))
#______________________________________________________________________________
def dpll_satisfiable(s):
"""Check satisfiability of a propositional sentence.
This differs from the book code in two ways: (1) it returns a model
rather than True when it succeeds; this is more useful. (2) The
function find_pure_symbol is passed a list of unknown clauses, rather
than a list of all clauses and the model; this is more efficient.
>>> ppsubst(dpll_satisfiable(A&~B))
{A: True, B: False}
>>> dpll_satisfiable(P&~P)
False
"""
clauses = conjuncts(to_cnf(s))
symbols = prop_symbols(s)
return dpll(clauses, symbols, {})
def dpll(clauses, symbols, model):
"See if the clauses are true in a partial model."
unknown_clauses = [] ## clauses with an unknown truth value
for c in clauses:
val = pl_true(c, model)
if val == False:
return False
unknown_clauses.append(c)
if not unknown_clauses:
return model
P, value = find_pure_symbol(symbols, unknown_clauses)
if P:
return dpll(clauses, removeall(P, symbols), extend(model, P, value))
P, value = find_unit_clause(clauses, model)
if P:
return dpll(clauses, removeall(P, symbols), extend(model, P, value))
if not symbols:
raise TypeError("Argument should be of the type Expr.")
P, symbols = symbols[0], symbols[1:]
return (dpll(clauses, symbols, extend(model, P, True)) or
dpll(clauses, symbols, extend(model, P, False)))
def find_pure_symbol(symbols, clauses):
"""Find a symbol and its value if it appears only as a positive literal
(or only as a negative) in clauses.
>>> find_pure_symbol([A, B, C], [A|~B,~B|~C,C|A])
(A, True)
"""
for s in symbols:
found_pos, found_neg = False, False
if not found_pos and s in disjuncts(c): found_pos = True
if not found_neg and ~s in disjuncts(c): found_neg = True
if found_pos != found_neg: return s, found_pos
return None, None
def find_unit_clause(clauses, model):
"""Find a forced assignment if possible from a clause with only 1
variable not bound in the model.
>>> find_unit_clause([A|B|C, B|~C, ~A|~B], {A:True})
(B, False)
"""
for clause in clauses:
P, value = unit_clause_assign(clause, model)
if P: return P, value
return None, None
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
def unit_clause_assign(clause, model):
"""Return a single variable/value pair that makes clause true in
the model, if possible.
>>> unit_clause_assign(A|B|C, {A:True})
(None, None)
>>> unit_clause_assign(B|~C, {A:True})
(None, None)
>>> unit_clause_assign(~A|~B, {A:True})
(B, False)
"""
P, value = None, None
for literal in disjuncts(clause):
sym, positive = inspect_literal(literal)
if sym in model:
if model[sym] == positive:
return None, None # clause already True
elif P:
return None, None # more than 1 unbound variable
else:
P, value = sym, positive
return P, value
def inspect_literal(literal):
"""The symbol in this literal, and the value it should take to
make the literal true.
>>> inspect_literal(P)
(P, True)
>>> inspect_literal(~P)
(P, False)
"""
if literal.op == '~':
#______________________________________________________________________________
def WalkSAT(clauses, p=0.5, max_flips=10000):
## model is a random assignment of true/false to the symbols in clauses
## See ~/aima1e/print1/manual/knowledge+logic-answers.tex ???
for s in prop_symbols(clauses)])
for i in range(max_flips):
satisfied, unsatisfied = [], []
for clause in clauses:
if_(pl_true(clause, model), satisfied, unsatisfied).append(clause)
if not unsatisfied: ## if model satisfies all the clauses
return model
clause = random.choice(unsatisfied)
if probability(p):
sym = random.choice(prop_symbols(clause))
else:
## Flip the symbol in clause that maximizes number of sat. clauses
raise NotImplementedError
model[sym] = not model[sym]
#______________________________________________________________________________
"An agent for the wumpus world that does logical inference. [Fig. 7.19]"""
def __init__(self):
unimplemented()
def plan_route(current, goals, allowed):
unimplemented()
#______________________________________________________________________________
def SAT_plan(init, transition, goal, t_max, SAT_solver=dpll_satisfiable):
"[Fig. 7.22]"
for t in range(t_max):
cnf = translate_to_SAT(init, transition, goal, t)
model = SAT_solver(cnf)
if model is not False:
return extract_solution(model)
return None
def translate_to_SAT(init, transition, goal, t):
unimplemented()
def extract_solution(model):
unimplemented()
#______________________________________________________________________________
def unify(x, y, s):
"""Unify expressions x,y with substitution s; return a substitution that
would make x,y equal, or None if x,y can not unify. x and y can be
variables (e.g. Expr('x')), constants, lists, or Exprs. [Fig. 9.1]
>>> ppsubst(unify(x + y, y + C, {}))
{x: y, y: C}
return None
elif x == y:
return s
elif is_variable(x):
return unify_var(x, y, s)
elif is_variable(y):
return unify_var(y, x, s)
elif isinstance(x, Expr) and isinstance(y, Expr):
return unify(x.args, y.args, unify(x.op, y.op, s))
elif isinstance(x, str) or isinstance(y, str):
elif issequence(x) and issequence(y) and len(x) == len(y):
if not x: return s
return unify(x[1:], y[1:], unify(x[0], y[0], s))
else:
return None
def is_variable(x):
"A variable is an Expr with no args and a lowercase symbol as the op."
return isinstance(x, Expr) and not x.args and is_var_symbol(x.op)
def unify_var(var, x, s):
if var in s:
return unify(s[var], x, s)
return None
else:
return extend(s, var, x)
def occur_check(var, x, s):
"""Return true if variable var occurs anywhere in x
(or in subst(s, x), if s has a binding for x)."""
if var == x:
return True
elif isinstance(x, Expr):
return (occur_check(var, x.op, s) or
occur_check(var, x.args, s))
withal
a validé
return some(lambda element: occur_check(var, element, s), x)
def extend(s, var, val):
"""Copy the substitution s and extend it by setting var to val;
return copy.
>>> ppsubst(extend({x: 1}, y, 2))
{x: 1, y: 2}
"""
s2 = s.copy()
s2[var] = val
return s2
def subst(s, x):
"""Substitute the substitution s into the expression x.
>>> subst({x: 42, y:0}, F(x) + y)
(F(42) + 0)
"""
return [subst(s, xi) for xi in x]
return tuple([subst(s, xi) for xi in x])
return x
return s.get(x, x)
return Expr(x.op, *[subst(s, arg) for arg in x.args])
def fol_fc_ask(KB, alpha):
"""Inefficient forward chaining for first-order logic. [Fig. 9.3]
KB is a FolKB and alpha must be an atomic sentence."""
while True:
new = {}
for r in KB.clauses:
ps, q = parse_definite_clause(standardize_variables(r))
raise NotImplementedError
"""Replace all the variables in sentence with new variables.
>>> e = expr('F(a, b, c) & G(c, A, 23)')
>>> variables(e).intersection(variables(standardize_variables(e)))
>>> is_variable(standardize_variables(expr('x')))
if dic is None: dic = {}
if not isinstance(sentence, Expr):
return sentence
if sentence in dic:
return dic[sentence]
else:
v = Expr('v_%d' % standardize_variables.counter.next())
dic[sentence] = v
return v
return Expr(sentence.op,
*[standardize_variables(a, dic) for a in sentence.args])
standardize_variables.counter = itertools.count()
#______________________________________________________________________________
class FolKB(KB):
"""A knowledge base consisting of first-order definite clauses.
>>> kb0 = FolKB([expr('Farmer(Mac)'), expr('Rabbit(Pete)'),
... expr('(Rabbit(r) & Farmer(f)) ==> Hates(f, r)')])
>>> kb0.tell(expr('Rabbit(Flopsie)'))
>>> kb0.retract(expr('Rabbit(Pete)'))
>>> kb0.ask(expr('Hates(Mac, x)'))[x]
Flopsie
>>> kb0.ask(expr('Wife(Pete, x)'))
False
self.clauses = [] # inefficient: no indexing
for clause in initial_clauses:
self.tell(clause)
def tell(self, sentence):
if is_definite_clause(sentence):
self.clauses.append(sentence)
else:
raise Exception("Not a definite clause: %s" % sentence)
def ask_generator(self, query):
def retract(self, sentence):
self.clauses.remove(sentence)
def fetch_rules_for_goal(self, goal):
return self.clauses
def test_ask(query, kb=None):
q = expr(query)
vars = variables(q)
return sorted([pretty(dict((x, v) for x, v in a.items() if x in vars))
for a in answers],
key=repr)
test_kb = FolKB(
map(expr, ['Farmer(Mac)',
'Rabbit(Pete)',
'Mother(MrsMac, Mac)',
'Mother(MrsRabbit, Pete)',
'(Rabbit(r) & Farmer(f)) ==> Hates(f, r)',
'(Mother(m, c)) ==> Loves(m, c)',
'(Mother(m, r) & Rabbit(r)) ==> Rabbit(m)',
'(Farmer(f)) ==> Human(f)',
# would result in infinite recursion:
#'(Human(h) & Mother(m, h)) ==> Human(m)'
'(Mother(m, h) & Human(h)) ==> Human(m)'
])
)
withal
a validé
crime_kb = FolKB(
map(expr,
['(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)',
'Owns(Nono, M1)',
'Missile(M1)',
'(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)',
'Missile(x) ==> Weapon(x)',
'Enemy(x, America) ==> Hostile(x)',
'American(West)',
'Enemy(Nono, America)'
])
)
"""A simple backward-chaining algorithm for first-order logic. [Fig. 9.6]
KB should be an instance of FolKB, and goals a list of literals.
>>> test_ask('Farmer(x)')
['{x: Mac}']
>>> test_ask('Human(x)')
['{x: Mac}', '{x: MrsMac}']
>>> test_ask('Hates(x, y)')
['{x: Mac, y: MrsRabbit}', '{x: Mac, y: Pete}']
>>> test_ask('Loves(x, y)')
['{x: MrsMac, y: Mac}', '{x: MrsRabbit, y: Pete}']
>>> test_ask('Rabbit(x)')
['{x: MrsRabbit}', '{x: Pete}']
withal
a validé
>>> test_ask('Criminal(x)', crime_kb)
['{x: West}']
return fol_bc_or(KB, query, {})
def fol_bc_or(KB, goal, theta):
for rule in KB.fetch_rules_for_goal(goal):
lhs, rhs = parse_definite_clause(standardize_variables(rule))
for theta1 in fol_bc_and(KB, lhs, unify(rhs, goal, theta)):
yield theta1
def fol_bc_and(KB, goals, theta):
if theta is None:
pass
elif not goals: