Newer
Older
"""CSP (Constraint Satisfaction Problems) problems and solvers. (Chapter 6)."""
class CSP(search.Problem):
"""This class describes finite-domain Constraint Satisfaction Problems.
variables A list of variables; each is atomic (e.g. int or string).
domains A dict of {var:[possible_value, ...]} entries.
neighbors A dict of {var:[var,...]} that for each variable lists
the other variables that participate in constraints.
constraints A function f(A, a, B, b) that returns true if neighbors
A, B satisfy the constraint when they have values A=a, B=b
In the textbook and in most mathematical definitions, the
constraints are specified as explicit pairs of allowable values,
but the formulation here is easier to express and more compact for
most cases. (For example, the n-Queens problem can be represented
in O(n) space using this notation, instead of O(N^4) for the
explicit representation.) In terms of describing the CSP as a
problem, that's all there is.
However, the class also supports data structures and methods that help you
solve CSPs by calling a search function on the CSP. Methods and slots are
as follows, where the argument 'a' represents an assignment, which is a
dict of {var:val} entries:
assign(var, val, a) Assign a[var] = val; do other bookkeeping
unassign(var, a) Do del a[var], plus other bookkeeping
nconflicts(var, val, a) Return the number of other variables that
conflict with var=val
curr_domains[var] Slot: remaining consistent values for var
Used by constraint propagation routines.
The following methods are used only by graph_search and tree_search:
actions(state) Return a list of actions
result(state, action) Return a successor of state
goal_test(state) Return true if all constraints satisfied
The following are just for debugging purposes:
nassigns Slot: tracks the number of assignments made
display(a) Print a human-readable representation
>>> search.depth_first_graph_search(australia)
<Node (('WA', 'B'), ('Q', 'B'), ('T', 'B'), ('V', 'B'), ('SA', 'G'),
('NT', 'R'), ('NSW', 'R'))>
def __init__(self, variables, domains, neighbors, constraints):
"Construct a CSP problem. If variables is empty, it becomes domains.keys()."
variables = variables or list(domains.keys())
update(self, variables=variables, domains=domains,
neighbors=neighbors, constraints=constraints,
initial=(), curr_domains=None, nassigns=0)
def assign(self, var, val, assignment):
"Add {var: val} to assignment; Discard the old value if any."
assignment[var] = val
def unassign(self, var, assignment):
"""Remove {var: val} from assignment.
DO NOT call this if you are changing a variable to a new value;
just call assign for that."""
if var in assignment:
del assignment[var]
def nconflicts(self, var, val, assignment):
"Return the number of conflicts var=val has with other variables."
# Subclasses may implement this more efficiently
def conflict(var2):
return (var2 in assignment and
not self.constraints(var, val, var2, assignment[var2]))
return count(conflict(v) for v in self.neighbors[var])
def display(self, assignment):
"Show a human-readable representation of the CSP."
# Subclasses can print in a prettier way, or display with a GUI
print('CSP:', self, 'with assignment:', assignment)
# These methods are for the tree- and graph-search interface:
def actions(self, state):
"""Return a list of applicable actions: nonconflicting
assignments to an unassigned variable."""
if len(state) == len(self.variables):
return []
else:
var = first([v for v in self.variables if v not in assignment])
return [(var, val) for val in self.domains[var]
if self.nconflicts(var, val, assignment) == 0]
"Perform an action and return the new state."
"The goal is to assign all variables, with all constraints satisfied."
return (len(assignment) == len(self.variables) and
every(lambda variables: self.nconflicts(variables, assignment[variables], assignment) == 0, self.variables))
def support_pruning(self):
"""Make sure we can prune values from domains. (We want to pay
for this only if we use it.)"""
if self.curr_domains is None:
self.curr_domains = dict((v, list(self.domains[v])) for v in self.variables)
def suppose(self, var, value):
"Start accumulating inferences from assuming var=value."
self.support_pruning()
removals = [(var, a) for a in self.curr_domains[var] if a != value]
self.curr_domains[var] = [value]
return removals
def prune(self, var, value, removals):
"Rule out var=value."
self.curr_domains[var].remove(value)
if removals is not None:
removals.append((var, value))
def choices(self, var):
"Return all values for var that aren't currently ruled out."
return (self.curr_domains or self.domains)[var]
def infer_assignment(self):
"Return the partial assignment implied by the current inferences."
self.support_pruning()
for v in self.variables if 1 == len(self.curr_domains[v]))
def restore(self, removals):
"Undo a supposition and all inferences from it."
for B, b in removals:
self.curr_domains[B].append(b)
def conflicted_vars(self, current):
"Return a list of variables in current assignment that are in conflict"
return [var for var in self.variables
if self.nconflicts(var, current[var], current) > 0]
# ______________________________________________________________________________
# Constraint Propagation with AC-3
def AC3(csp, queue=None, removals=None):
"""[Fig. 6.3]"""
if queue is None:
queue = [(Xi, Xk) for Xi in csp.variables for Xk in csp.neighbors[Xi]]
csp.support_pruning()
while queue:
(Xi, Xj) = queue.pop()
if revise(csp, Xi, Xj, removals):
if not csp.curr_domains[Xi]:
return False
for Xk in csp.neighbors[Xi]:
if Xk != Xi:
queue.append((Xk, Xi))
return True
def revise(csp, Xi, Xj, removals):
"Return true if we remove a value."
revised = False
for x in csp.curr_domains[Xi][:]:
# If Xi=x conflicts with Xj=y for every possible y, eliminate Xi=x
if every(lambda y: not csp.constraints(Xi, x, Xj, y),
csp.curr_domains[Xj]):
csp.prune(Xi, x, removals)
revised = True
return revised
# ______________________________________________________________________________
# CSP Backtracking Search
def first_unassigned_variable(assignment, csp):
"The default variable order."
return first([var for var in csp.variables if var not in assignment])
def mrv(assignment, csp):
"Minimum-remaining-values heuristic."
return argmin_random_tie(
[v for v in csp.variables if v not in assignment],
lambda var: num_legal_values(csp, var, assignment))
def num_legal_values(csp, var, assignment):
if csp.curr_domains:
return len(csp.curr_domains[var])
else:
return count(csp.nconflicts(var, val, assignment) == 0
for val in csp.domains[var])
def unordered_domain_values(var, assignment, csp):
"The default value order."
return csp.choices(var)
def lcv(var, assignment, csp):
"Least-constraining-values heuristic."
return sorted(csp.choices(var),
key=lambda val: csp.nconflicts(var, val, assignment))
def no_inference(csp, var, value, assignment, removals):
return True
def forward_checking(csp, var, value, assignment, removals):
"Prune neighbor values inconsistent with var=value."
for B in csp.neighbors[var]:
if B not in assignment:
for b in csp.curr_domains[B][:]:
if not csp.constraints(var, value, B, b):
csp.prune(B, b, removals)
if not csp.curr_domains[B]:
return False
return True
def mac(csp, var, value, assignment, removals):
"Maintain arc consistency."
return AC3(csp, [(X, var) for X in csp.neighbors[var]], removals)
def backtracking_search(csp,
select_unassigned_variable=first_unassigned_variable,
order_domain_values=unordered_domain_values,
inference=no_inference):
"""
def backtrack(assignment):
if len(assignment) == len(csp.variables):
return assignment
var = select_unassigned_variable(assignment, csp)
for value in order_domain_values(var, assignment, csp):
if 0 == csp.nconflicts(var, value, assignment):
csp.assign(var, value, assignment)
removals = csp.suppose(var, value)
if inference(csp, var, value, assignment, removals):
result = backtrack(assignment)
if result is not None:
return result
csp.unassign(var, assignment)
return None
result = backtrack({})
assert result is None or csp.goal_test(result)
return result
# ______________________________________________________________________________
# Min-conflicts hillclimbing search for CSPs
def min_conflicts(csp, max_steps=100000):
"""Solve a CSP by stochastic hillclimbing on the number of conflicts."""
# Generate a complete assignment for all variables (probably with conflicts)
for var in csp.variables:
val = min_conflicts_value(csp, var, current)
csp.assign(var, val, current)
# Now repeatedly choose a random conflicted variable and change it
for i in range(max_steps):
conflicted = csp.conflicted_vars(current)
if not conflicted:
return current
var = random.choice(conflicted)
val = min_conflicts_value(csp, var, current)
csp.assign(var, val, current)
return None
def min_conflicts_value(csp, var, current):
"""Return the value that will give var the least number of conflicts.
If there is a tie, choose at random."""
return argmin_random_tie(csp.domains[var],
# ______________________________________________________________________________
def tree_csp_solver(csp):
"[Fig. 6.11]"
assignment = {}
root = csp.variables[0]
X, parent = topological_sort(csp.variables, root)
for Xj in reversed(X):
if not make_arc_consistent(parent[Xj], Xj, csp):
return None
for Xi in X:
if not csp.curr_domains[Xi]:
return None
assignment[Xi] = csp.curr_domains[Xi][0]
return assignment
def topological_sort(xs, x):
unimplemented()
# ______________________________________________________________________________
# Map-Coloring Problems
class UniversalDict:
"""A universal dict maps any key to the same value. We use it here
as the domains dict for CSPs in which all variables have the same domain.
>>> d = UniversalDict(42)
>>> d['life']
42
"""
def __init__(self, value): self.value = value
def __getitem__(self, key): return self.value
def __repr__(self): return '{Any: %r}' % self.value
def different_values_constraint(A, a, B, b):
"A constraint saying two neighboring variables must differ in value."
return a != b
def MapColoringCSP(colors, neighbors):
"""Make a CSP for the problem of coloring a map with different colors
for any two adjacent regions. Arguments are a list of colors, and a
dict of {region: [neighbor,...]} entries. This dict may also be
specified as a string of the form defined by parse_neighbors."""
if isinstance(neighbors, str):
return CSP(list(neighbors.keys()), UniversalDict(colors), neighbors,
different_values_constraint)
def parse_neighbors(neighbors, variables=[]):
"""Convert a string of the form 'X: Y Z; Y: Z' into a dict mapping
regions to neighbors. The syntax is a region name followed by a ':'
followed by zero or more region names, followed by ';', repeated for
each region name. If you say 'X: Y' you don't need 'Y: X'.
>>> parse_neighbors('X: Y Z; Y: Z')
{'Y': ['X', 'Z'], 'X': ['Y', 'Z'], 'Z': ['X', 'Y']}
"""
dict[var] = []
specs = [spec.split(':') for spec in neighbors.split(';')]
for (A, Aneighbors) in specs:
dict.setdefault(A, [])
for B in Aneighbors.split():
dict[A].append(B)
dict[B].append(A)
return dict
australia = MapColoringCSP(list('RGB'),
'SA: WA NT Q NSW V; NT: WA Q; NSW: Q V; T: ')
usa = MapColoringCSP(list('RGBY'),
"""WA: OR ID; OR: ID NV CA; CA: NV AZ; NV: ID UT AZ; ID: MT WY UT;
UT: WY CO AZ; MT: ND SD WY; WY: SD NE CO; CO: NE KA OK NM; NM: OK TX;
ND: MN SD; SD: MN IA NE; NE: IA MO KA; KA: MO OK; OK: MO AR TX;
TX: AR LA; MN: WI IA; IA: WI IL MO; MO: IL KY TN AR; AR: MS TN LA;
LA: MS; WI: MI IL; IL: IN KY; IN: OH KY; MS: TN AL; AL: TN GA FL;
MI: OH IN; OH: PA WV KY; KY: WV VA TN; TN: VA NC GA; GA: NC SC FL;
PA: NY NJ DE MD WV; WV: MD VA; VA: MD DC NC; NC: SC; NY: VT MA CT NJ;
NJ: DE; DE: MD; MD: DC; VT: NH MA; MA: NH RI CT; CT: RI; ME: NH;
HI: ; AK: """)
"""AL: LO FC; AQ: MP LI PC; AU: LI CE BO RA LR MP; BO: CE IF CA FC RA
AU; BR: NB PL; CA: IF PI LO FC BO; CE: PL NB NH IF BO AU LI PC; FC: BO
CA LO AL RA; IF: NH PI CA BO CE; LI: PC CE AU MP AQ; LO: CA AL FC; LR:
MP AU RA PA; MP: AQ LI AU LR; NB: NH CE PL BR; NH: PI IF CE NB; NO:
PI; PA: LR RA; PC: PL CE LI AQ; PI: NH NO CA IF; PL: BR NB CE PC; RA:
AU BO FC PA LR""")
# ______________________________________________________________________________
# n-Queens Problem
def queen_constraint(A, a, B, b):
"""Constraint is satisfied (true) if A, B are really the same variable,
or if they are not in the same row, down diagonal, or up diagonal."""
return A == B or (a != b and A + a != B + b and A - a != B - b)
class NQueensCSP(CSP):
"""Make a CSP for the nQueens problem for search with min_conflicts.
Suitable for large n, it uses only data structures of size O(n).
Think of placing queens one per column, from left to right.
That means position (x, y) represents (var, val) in the CSP.
The main structures are three arrays to count queens that could conflict:
rows[i] Number of queens in the ith row (i.e val == i)
downs[i] Number of queens in the \ diagonal
such that their (x, y) coordinates sum to i
ups[i] Number of queens in the / diagonal
such that their (x, y) coordinates have x-y+n-1 = i
We increment/decrement these counts each time a queen is placed/moved from
a row/diagonal. So moving is O(1), as is nconflicts. But choosing
a variable, and a best value for the variable, are each O(n).
If you want, you can keep track of conflicted variables, then variable
selection will also be O(1).
>>> len(backtracking_search(NQueensCSP(8)))
8
"""
def __init__(self, n):
"""Initialize data structures for n Queens."""
CSP.__init__(self, list(range(n)), UniversalDict(list(range(n))),
UniversalDict(list(range(n))), queen_constraint)
update(self, rows=[0]*n, ups=[0]*(2*n - 1), downs=[0]*(2*n - 1))
"""The number of conflicts, as recorded with each assignment.
Count conflicts in row and in up, down diagonals. If there
is a queen there, it can't conflict with itself, so subtract 3."""
n = len(self.variables)
c = self.rows[val] + self.downs[var+val] + self.ups[var-val+n-1]
if assignment.get(var, None) == val:
c -= 3
return c
def assign(self, var, val, assignment):
"Assign var, and keep track of conflicts."
oldval = assignment.get(var, None)
if val != oldval:
if oldval is not None: # Remove old val if there was one
self.record_conflict(assignment, var, oldval, -1)
self.record_conflict(assignment, var, val, +1)
CSP.assign(self, var, val, assignment)
def unassign(self, var, assignment):
"Remove var from assignment (if it is there) and track conflicts."
if var in assignment:
self.record_conflict(assignment, var, assignment[var], -1)
CSP.unassign(self, var, assignment)
def record_conflict(self, assignment, var, val, delta):
"Record conflicts caused by addition or deletion of a Queen."
n = len(self.variables)
self.rows[val] += delta
self.downs[var + val] += delta
self.ups[var - val + n - 1] += delta
def display(self, assignment):
"Print the queens and the nconflicts values (for debugging)."
n = len(self.variables)
for val in range(n):
for var in range(n):
if assignment.get(var, '') == val:
ch = 'Q'
elif (var+val) % 2 == 0:
ch = '.'
else:
ch = '-'
print(ch, end=' ')
print(' ', end=' ')
for var in range(n):
if assignment.get(var, '') == val:
ch = '*'
else:
ch = ' '
print(str(self.nconflicts(var, val, assignment))+ch, end=' ')
print()
# ______________________________________________________________________________
# Sudoku
def flatten(seqs): return sum(seqs, [])
easy1 = '..3.2.6..9..3.5..1..18.64....81.29..7.......8..67.82....26.95..8..2.3..9..5.1.3..' # noqa
harder1 = '4173698.5.3..........7......2.....6.....8.4......1.......6.3.7.5..2.....1.4......' # noqa
_R3 = list(range(3))
_CELL = itertools.count().__next__
_BGRID = [[[[_CELL() for x in _R3] for y in _R3] for bx in _R3] for by in _R3]
_BOXES = flatten([list(map(flatten, brow)) for brow in _BGRID])
_ROWS = flatten([list(map(flatten, list(zip(*brow)))) for brow in _BGRID])
_COLS = list(zip(*_ROWS))
_NEIGHBORS = dict([(v, set()) for v in flatten(_ROWS)])
for unit in map(set, _BOXES + _ROWS + _COLS):
for v in unit:
_NEIGHBORS[v].update(unit - set([v]))
class Sudoku(CSP):
"""A Sudoku problem.
The box grid is a 3x3 array of boxes, each a 3x3 array of cells.
Each cell holds a digit in 1..9. In each box, all digits are
different; the same for each row and column as a 9x9 grid.
>>> e = Sudoku(easy1)
>>> e.display(e.infer_assignment())
. . 3 | . 2 . | 6 . .
9 . . | 3 . 5 | . . 1
. . 1 | 8 . 6 | 4 . .
------+-------+------
. . 8 | 1 . 2 | 9 . .
7 . . | . . . | . . 8
. . 6 | 7 . 8 | 2 . .
------+-------+------
. . 2 | 6 . 9 | 5 . .
8 . . | 2 . 3 | . . 9
. . 5 | . 1 . | 3 . .
>>> AC3(e); e.display(e.infer_assignment())
4 8 3 | 9 2 1 | 6 5 7
9 6 7 | 3 4 5 | 8 2 1
2 5 1 | 8 7 6 | 4 9 3
------+-------+------
5 4 8 | 1 3 2 | 9 7 6
7 2 9 | 5 6 4 | 1 3 8
1 3 6 | 7 9 8 | 2 4 5
------+-------+------
3 7 2 | 6 8 9 | 5 1 4
8 1 4 | 2 5 3 | 7 6 9
6 9 5 | 4 1 7 | 3 8 2
>>> h = Sudoku(harder1)
>>> None != backtracking_search(h, select_unassigned_variable=mrv,
>>> inference=forward_checking)
True
"""
R3 = _R3
Cell = _CELL
bgrid = _BGRID
boxes = _BOXES
rows = _ROWS
cols = _COLS
neighbors = _NEIGHBORS
def __init__(self, grid):
"""Build a Sudoku problem from a string representing the grid:
the digits 1-9 denote a filled cell, '.' or '0' an empty one;
other characters are ignored."""
squares = iter(re.findall(r'\d|\.', grid))
domains = dict((var, ([ch] if ch in '123456789' else '123456789'))
for var, ch in zip(flatten(self.rows), squares))
raise ValueError("Not a Sudoku grid", grid) # Too many squares
CSP.__init__(self, None, domains, self.neighbors, different_values_constraint)
def display(self, assignment):
def show_box(box): return [' '.join(map(show_cell, row)) for row in box]
def show_cell(cell): return str(assignment.get(cell, '.'))
def abut(lines1, lines2): return list(
map(' | '.join, list(zip(lines1, lines2))))
print('\n------+-------+------\n'.join(
'\n'.join(reduce(
abut, list(map(show_box, brow)))) for brow in self.bgrid))
# ______________________________________________________________________________
# The Zebra Puzzle
def Zebra():
"Return an instance of the Zebra Puzzle."
Colors = 'Red Yellow Blue Green Ivory'.split()
Pets = 'Dog Fox Snails Horse Zebra'.split()
Drinks = 'OJ Tea Coffee Milk Water'.split()
Countries = 'Englishman Spaniard Norwegian Ukranian Japanese'.split()
Smokes = 'Kools Chesterfields Winston LuckyStrike Parliaments'.split()
variables = Colors + Pets + Drinks + Countries + Smokes
domains = {}
domains['Norwegian'] = [1]
domains['Milk'] = [3]
neighbors = parse_neighbors("""Englishman: Red;
Spaniard: Dog; Kools: Yellow; Chesterfields: Fox;
Norwegian: Blue; Winston: Snails; LuckyStrike: OJ;
Ukranian: Tea; Japanese: Parliaments; Kools: Horse;
Coffee: Green; Green: Ivory""", variables)
for type in [Colors, Pets, Drinks, Countries, Smokes]:
for A in type:
for B in type:
if A != B:
if B not in neighbors[A]:
neighbors[A].append(B)
if A not in neighbors[B]:
neighbors[B].append(A)
def zebra_constraint(A, a, B, b, recurse=0):
same = (a == b)
next_to = abs(a - b) == 1
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
if A == 'Englishman' and B == 'Red':
return same
if A == 'Spaniard' and B == 'Dog':
return same
if A == 'Chesterfields' and B == 'Fox':
return next_to
if A == 'Norwegian' and B == 'Blue':
return next_to
if A == 'Kools' and B == 'Yellow':
return same
if A == 'Winston' and B == 'Snails':
return same
if A == 'LuckyStrike' and B == 'OJ':
return same
if A == 'Ukranian' and B == 'Tea':
return same
if A == 'Japanese' and B == 'Parliaments':
return same
if A == 'Kools' and B == 'Horse':
return next_to
if A == 'Coffee' and B == 'Green':
return same
if A == 'Green' and B == 'Ivory':
return (a - 1) == b
if recurse == 0:
return zebra_constraint(B, b, A, a, 1)
if ((A in Colors and B in Colors) or
(A in Pets and B in Pets) or
(A in Drinks and B in Drinks) or
(A in Countries and B in Countries) or
(A in Smokes and B in Smokes)):
return not same
raise Exception('error')
return CSP(variables, domains, neighbors, zebra_constraint)
def solve_zebra(algorithm=min_conflicts, **args):
z = Zebra()
ans = algorithm(z, **args)
for h in range(1, 6):
print('House', h, end=' ')
for (var, val) in list(ans.items()):
if val == h:
print(var, end=' ')
print()
>>> min_conflicts(australia)
{'WA': 'B', 'Q': 'B', 'T': 'G', 'V': 'B', 'SA': 'R', 'NT': 'G', 'NSW': 'G'}
>>> min_conflicts(NQueensCSP(8), max_steps=10000)
{0: 5, 1: 0, 2: 4, 3: 1, 4: 7, 5: 2, 6: 6, 7: 3}