Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"*Note: This is not yet ready, but shows the direction I'm leaning in for Fourth Edition Search.*\n",
"\n",
"# State-Space Search\n",
"\n",
"This notebook describes several state-space search algorithms, and how they can be used to solve a variety of problems. We start with a simple algorithm and a simple domain: finding a route from city to city. Later we will explore other algorithms and domains.\n",
"\n",
"## The Route-Finding Domain\n",
"\n",
"Like all state-space search problems, in a route-finding problem you will be given:\n",
"- A start state (for example, `'A'` for the city Arad).\n",
"- A goal state (for example, `'B'` for the city Bucharest).\n",
"- Actions that can change state (for example, driving from `'A'` to `'S'`).\n",
"\n",
"You will be asked to find:\n",
"- A path from the start state, through intermediate states, to the goal state.\n",
"\n",
"We'll use this map:\n",
"\n",
"<img src=\"http://robotics.cs.tamu.edu/dshell/cs625/images/map.jpg\" height=\"366\" width=\"603\">\n",
"\n",
"A state-space search problem can be represented by a *graph*, where the vertexes of the graph are the states of the problem (in this case, cities) and the edges of the graph are the actions (in this case, driving along a road).\n",
"\n",
"We'll represent a city by its single initial letter. \n",
"We'll represent the graph of connections as a `dict` that maps each city to a list of the neighboring cities (connected by a road). For now we don't explicitly represent the actions, nor the distances\n",
"between cities."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"button": false,
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"romania = {\n",
" 'A': ['Z', 'T', 'S'],\n",
" 'B': ['F', 'P', 'G', 'U'],\n",
" 'C': ['D', 'R', 'P'],\n",
" 'D': ['M', 'C'],\n",
" 'E': ['H'],\n",
" 'F': ['S', 'B'],\n",
" 'G': ['B'],\n",
" 'H': ['U', 'E'],\n",
" 'I': ['N', 'V'],\n",
" 'L': ['T', 'M'],\n",
" 'M': ['L', 'D'],\n",
" 'N': ['I'],\n",
" 'O': ['Z', 'S'],\n",
" 'P': ['R', 'C', 'B'],\n",
" 'R': ['S', 'C', 'P'],\n",
" 'S': ['A', 'O', 'F', 'R'],\n",
" 'T': ['A', 'L'],\n",
" 'U': ['B', 'V', 'H'],\n",
" 'V': ['U', 'I'],\n",
" 'Z': ['O', 'A']}"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Suppose we want to get from `A` to `B`. Where can we go from the start state, `A`?"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['Z', 'T', 'S']"
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"romania['A']"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"We see that from `A` we can get to any of the three cities `['Z', 'T', 'S']`. Which should we choose? *We don't know.* That's the whole point of *search*: we don't know which immediate action is best, so we'll have to explore, until we find a *path* that leads to the goal. \n",
"\n",
"How do we explore? We'll start with a simple algorithm that will get us from `A` to `B`. We'll keep a *frontier*—a collection of not-yet-explored states—and expand the frontier outward until it reaches the goal. To be more precise:\n",
"\n",
"- Initially, the only state in the frontier is the start state, `'A'`.\n",
"- Until we reach the goal, or run out of states in the frontier to explore, do the following:\n",
" - Remove the first state from the frontier. Call it `s`.\n",
" - If `s` is the goal, we're done. Return the path to `s`.\n",
" - Otherwise, consider all the neighboring states of `s`. For each one:\n",
" - If we have not previously explored the state, add it to the end of the frontier.\n",
" - Also keep track of the previous state that led to this new neighboring state; we'll need this to reconstruct the path to the goal, and to keep us from re-visiting previously explored states.\n",
" \n",
"# A Simple Search Algorithm: `breadth_first`\n",
" \n",
"The function `breadth_first` implements this strategy:"
]
},
{
"cell_type": "code",
"execution_count": 3,
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"from collections import deque # Doubly-ended queue: pop from left, append to right.\n",
"\n",
"def breadth_first(start, goal, neighbors):\n",
" \"Find a shortest sequence of states from start to the goal.\"\n",
" frontier = deque([start]) # A queue of states\n",
" previous = {start: None} # start has no previous state; other states will\n",
" while frontier:\n",
" s = frontier.popleft()\n",
" if s == goal:\n",
" return path(previous, s)\n",
" for s2 in neighbors[s]:\n",
" if s2 not in previous:\n",
" frontier.append(s2)\n",
" previous[s2] = s\n",
" \n",
"def path(previous, s): \n",
" \"Return a list of states that lead to state s, according to the previous dict.\"\n",
" return [] if (s is None) else path(previous, previous[s]) + [s]"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"A couple of things to note: \n",
"\n",
"1. We always add new states to the end of the frontier queue. That means that all the states that are adjacent to the start state will come first in the queue, then all the states that are two steps away, then three steps, etc.\n",
"That's what we mean by *breadth-first* search.\n",
"2. We recover the path to an `end` state by following the trail of `previous[end]` pointers, all the way back to `start`.\n",
"The dict `previous` is a map of `{state: previous_state}`. \n",
"3. When we finally get an `s` that is the goal state, we know we have found a shortest path, because any other state in the queue must correspond to a path that is as long or longer.\n",
"3. Note that `previous` contains all the states that are currently in `frontier` as well as all the states that were in `frontier` in the past.\n",
"4. If no path to the goal is found, then `breadth_first` returns `None`. If a path is found, it returns the sequence of states on the path.\n",
"\n",
"Some examples:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['A', 'S', 'F', 'B']"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"breadth_first('A', 'B', romania)"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['L', 'T', 'A', 'S', 'F', 'B', 'U', 'V', 'I', 'N']"
]
},
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"breadth_first('L', 'N', romania)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['N', 'I', 'V', 'U', 'B', 'F', 'S', 'A', 'T', 'L']"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"breadth_first('N', 'L', romania)"
]
},
{
"cell_type": "code",
"execution_count": 7,
"outputs": [
{
"data": {
"text/plain": [
"['E']"
]
},
"execution_count": 7,
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"breadth_first('E', 'E', romania)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Now let's try a different kind of problem that can be solved with the same search function.\n",
"\n",
"## Word Ladders Problem\n",
"\n",
"A *word ladder* problem is this: given a start word and a goal word, find the shortest way to transform the start word into the goal word by changing one letter at a time, such that each change results in a word. For example starting with `green` we can reach `grass` in 7 steps:\n",
"\n",
"`green` → `greed` → `treed` → `trees` → `tress` → `cress` → `crass` → `grass`\n",
"\n",
"We will need a dictionary of words. We'll use 5-letter words from the [Stanford GraphBase](http://www-cs-faculty.stanford.edu/~uno/sgb.html) project for this purpose. Let's get that file from aimadata."
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"from search import *\n",
"sgb_words = open_data(\"EN-text/sgb-words.txt\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"We can assign `WORDS` to be the set of all the words in this file:"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"5757"
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"WORDS = set(sgb_words.read().split())\n",
"len(WORDS)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"And define `neighboring_words` to return the set of all words that are a one-letter change away from a given `word`:"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def neighboring_words(word):\n",
" \"All words that are one letter away from this word.\"\n",
" neighbors = {word[:i] + c + word[i+1:]\n",
" for i in range(len(word))\n",
" for c in 'abcdefghijklmnopqrstuvwxyz'\n",
" if c != word[i]}\n",
" return neighbors & WORDS"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"For example:"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"{'cello', 'hallo', 'hells', 'hullo', 'jello'}"
]
},
"execution_count": 11,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neighboring_words('hello')"
]
},
{
"cell_type": "code",
"execution_count": 12,
"outputs": [
{
"data": {
"text/plain": [
"{'would'}"
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"neighboring_words('world')"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Now we can create `word_neighbors` as a dict of `{word: {neighboring_word, ...}}`: "
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"button": false,
"collapsed": true,
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"word_neighbors = {word: neighboring_words(word)\n",
" for word in WORDS}"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"Now the `breadth_first` function can be used to solve a word ladder problem:"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['green', 'greed', 'treed', 'trees', 'treys', 'trays', 'grays', 'grass']"
"execution_count": 14,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"breadth_first('green', 'grass', word_neighbors)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['smart',\n",
" 'start',\n",
" 'stars',\n",
" 'sears',\n",
" 'bears',\n",
" 'beans',\n",
" 'brans',\n",
" 'brand',\n",
" 'braid',\n",
" 'brain']"
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"breadth_first('smart', 'brain', word_neighbors)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['frown',\n",
" 'flown',\n",
" 'flows',\n",
" 'slows',\n",
" 'slots',\n",
" 'slits',\n",
" 'spits',\n",
" 'spite',\n",
" 'smite',\n",
"execution_count": 16,
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"breadth_first('frown', 'smile', word_neighbors)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# More General Search Algorithms\n",
"\n",
"Now we'll embelish the `breadth_first` algorithm to make a family of search algorithms with more capabilities:\n",
"\n",
"1. We distinguish between an *action* and the *result* of an action.\n",
"3. We allow different measures of the cost of a solution (not just the number of steps in the sequence).\n",
"4. We search through the state space in an order that is more likely to lead to an optimal solution quickly.\n",
"\n",
"Here's how we do these things:\n",
"\n",
"1. Instead of having a graph of neighboring states, we instead have an object of type *Problem*. A Problem\n",
"has one method, `Problem.actions(state)` to return a collection of the actions that are allowed in a state,\n",
"and another method, `Problem.result(state, action)` that says what happens when you take an action.\n",
"2. We keep a set, `explored` of states that have already been explored. We also have a class, `Frontier`, that makes it efficient to ask if a state is on the frontier.\n",
"3. Each action has a cost associated with it (in fact, the cost can vary with both the state and the action).\n",
"4. The `Frontier` class acts as a priority queue, allowing the \"best\" state to be explored next.\n",
"We represent a sequence of actions and resulting states as a linked list of `Node` objects.\n",
"\n",
"The algorithm `breadth_first_search` is basically the same as `breadth_first`, but using our new conventions:"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"button": false,
"collapsed": true,
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def breadth_first_search(problem):\n",
" \"Search for goal; paths with least number of steps first.\"\n",
" if problem.is_goal(problem.initial): \n",
" return Node(problem.initial)\n",
" frontier = FrontierQ(Node(problem.initial), LIFO=False)\n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" explored.add(node.state)\n",
" for action in problem.actions(node.state):\n",
" child = node.child(problem, action)\n",
" if child.state not in explored and child.state not in frontier:\n",
" if problem.is_goal(child.state):\n",
" return child\n",
" frontier.add(child)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next is `uniform_cost_search`, in which each step can have a different cost, and we still consider first one os the states with minimum cost so far."
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"button": false,
"collapsed": true,
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def uniform_cost_search(problem, costfn=lambda node: node.path_cost):\n",
" frontier = FrontierPQ(Node(problem.initial), costfn)\n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" if problem.is_goal(node.state):\n",
" return node\n",
" explored.add(node.state)\n",
" for action in problem.actions(node.state):\n",
" child = node.child(problem, action)\n",
" if child.state not in explored and child not in frontier:\n",
" frontier.add(child)\n",
" elif child in frontier and frontier.cost[child] < child.path_cost:\n",
" frontier.replace(child)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Finally, `astar_search` in which the cost includes an estimate of the distance to the goal as well as the distance travelled so far."
]
},
{
"cell_type": "code",
"execution_count": 19,
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def astar_search(problem, heuristic):\n",
" costfn = lambda node: node.path_cost + heuristic(node.state)\n",
" return uniform_cost_search(problem, costfn)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Search Tree Nodes\n",
"\n",
"The solution to a search problem is now a linked list of `Node`s, where each `Node`\n",
"includes a `state` and the `path_cost` of getting to the state. In addition, for every `Node` except for the first (root) `Node`, there is a previous `Node` (indicating the state that lead to this `Node`) and an `action` (indicating the action taken to get here)."
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"button": false,
"collapsed": true,
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"class Node(object):\n",
" \"\"\"A node in a search tree. A search tree is spanning tree over states.\n",
" A Node contains a state, the previous node in the tree, the action that\n",
" takes us from the previous state to this state, and the path cost to get to \n",
" this state. If a state is arrived at by two paths, then there are two nodes \n",
" with the same state.\"\"\"\n",
"\n",
" def __init__(self, state, previous=None, action=None, step_cost=1):\n",
" \"Create a search tree Node, derived from a previous Node by an action.\"\n",
" self.state = state\n",
" self.previous = previous\n",
" self.action = action\n",
" self.path_cost = 0 if previous is None else (previous.path_cost + step_cost)\n",
"\n",
" def __repr__(self): return \"<Node {}: {}>\".format(self.state, self.path_cost)\n",
" \n",
" def __lt__(self, other): return self.path_cost < other.path_cost\n",
" \n",
" def child(self, problem, action):\n",
" \"The Node you get by taking an action from this Node.\"\n",
" result = problem.result(self.state, action)\n",
" return Node(result, self, action, \n",
" problem.step_cost(self.state, action, result)) "
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Frontiers\n",
"\n",
"A frontier is a collection of Nodes that acts like both a Queue and a Set. A frontier, `f`, supports these operations:\n",
"\n",
"* `f.add(node)`: Add a node to the Frontier.\n",
"\n",
"* `f.pop()`: Remove and return the \"best\" node from the frontier.\n",
"\n",
"* `f.replace(node)`: add this node and remove a previous node with the same state.\n",
"\n",
"* `state in f`: Test if some node in the frontier has arrived at state.\n",
"\n",
"* `f[state]`: returns the node corresponding to this state in frontier.\n",
"\n",
"* `len(f)`: The number of Nodes in the frontier. When the frontier is empty, `f` is *false*.\n",
"\n",
"We provide two kinds of frontiers: One for \"regular\" queues, either first-in-first-out (for breadth-first search) or last-in-first-out (for depth-first search), and one for priority queues, where you can specify what cost function on nodes you are trying to minimize."
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"from collections import OrderedDict\n",
"import heapq\n",
"\n",
"class FrontierQ(OrderedDict):\n",
" \"A Frontier that supports FIFO or LIFO Queue ordering.\"\n",
" \n",
" def __init__(self, initial, LIFO=False):\n",
" \"\"\"Initialize Frontier with an initial Node.\n",
" If LIFO is True, pop from the end first; otherwise from front first.\"\"\"\n",
" self.LIFO = LIFO\n",
" self.add(initial)\n",
" \n",
" def add(self, node):\n",
" \"Add a node to the frontier.\"\n",
" self[node.state] = node\n",
" \n",
" def pop(self):\n",
" \"Remove and return the next Node in the frontier.\"\n",
" (state, node) = self.popitem(self.LIFO)\n",
" return node\n",
" \n",
" def replace(self, node):\n",
" \"Make this node replace the nold node with the same state.\"\n",
" del self[node.state]\n",
" self.add(node)"
]
},
{
"cell_type": "code",
"execution_count": 22,
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"class FrontierPQ:\n",
" \"A Frontier ordered by a cost function; a Priority Queue.\"\n",
" \n",
" def __init__(self, initial, costfn=lambda node: node.path_cost):\n",
" \"Initialize Frontier with an initial Node, and specify a cost function.\"\n",
" self.heap = []\n",
" self.states = {}\n",
" self.costfn = costfn\n",
" self.add(initial)\n",
" \n",
" def add(self, node):\n",
" \"Add node to the frontier.\"\n",
" cost = self.costfn(node)\n",
" heapq.heappush(self.heap, (cost, node))\n",
" self.states[node.state] = node\n",
" \n",
" def pop(self):\n",
" \"Remove and return the Node with minimum cost.\"\n",
" (cost, node) = heapq.heappop(self.heap)\n",
" self.states.pop(node.state, None) # remove state\n",
" return node\n",
" \n",
" def replace(self, node):\n",
" \"Make this node replace a previous node with the same state.\"\n",
" if node.state not in self:\n",
" raise ValueError('{} not there to replace'.format(node.state))\n",
" for (i, (cost, old_node)) in enumerate(self.heap):\n",
" if old_node.state == node.state:\n",
" self.heap[i] = (self.costfn(node), node)\n",
" heapq._siftdown(self.heap, 0, i)\n",
" return\n",
"\n",
" def __contains__(self, state): return state in self.states\n",
" \n",
" def __len__(self): return len(self.heap)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Search Problems\n",
"\n",
"`Problem` is the abstract class for all search problems. You can define your own class of problems as a subclass of `Problem`. You will need to override the `actions` and `result` method to describe how your problem works. You will also have to either override `is_goal` or pass a collection of goal states to the initialization method. If actions have different costs, you should override the `step_cost` method. "
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"class Problem(object):\n",
" \"\"\"The abstract class for a search problem.\"\"\"\n",
"\n",
" def __init__(self, initial=None, goals=(), **additional_keywords):\n",
" \"\"\"Provide an initial state and optional goal states.\n",
" A subclass can have additional keyword arguments.\"\"\"\n",
" self.initial = initial # The initial state of the problem.\n",
" self.goals = goals # A collection of possible goal states.\n",
" self.__dict__.update(**additional_keywords)\n",
"\n",
" def actions(self, state):\n",
" \"Return a list of actions executable in this state.\"\n",
" raise NotImplementedError # Override this!\n",
"\n",
" def result(self, state, action):\n",
" \"The state that results from executing this action in this state.\"\n",
" raise NotImplementedError # Override this!\n",
"\n",
" def is_goal(self, state):\n",
" \"True if the state is a goal.\" \n",
" return state in self.goals # Optionally override this!\n",
"\n",
" def step_cost(self, state, action, result=None):\n",
" \"The cost of taking this action from this state.\"\n",
" return 1 # Override this if actions have different costs "
]
},
{
"cell_type": "code",
"execution_count": 24,
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def action_sequence(node):\n",
" \"The sequence of actions to get to this node.\"\n",
" actions = []\n",
" while node.previous:\n",
" actions.append(node.action)\n",
" node = node.previous\n",
" return actions[::-1]\n",
"\n",
"def state_sequence(node):\n",
" \"The sequence of states to get to this node.\"\n",
" states = [node.state]\n",
" while node.previous:\n",
" node = node.previous\n",
" states.append(node.state)\n",
" return states[::-1]"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Two Location Vacuum World"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"button": false,
"collapsed": true,
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"dirt = '*'\n",
"clean = ' '\n",
"\n",
"class TwoLocationVacuumProblem(Problem):\n",
" \"\"\"A Vacuum in a world with two locations, and dirt.\n",
" Each state is a tuple of (location, dirt_in_W, dirt_in_E).\"\"\"\n",
"\n",
" def actions(self, state): return ('W', 'E', 'Suck')\n",
" \n",
" def is_goal(self, state): return dirt not in state\n",
" \n",
" def result(self, state, action):\n",
" \"The state that results from executing this action in this state.\" \n",
" (loc, dirtW, dirtE) = state\n",
" if action == 'W': return ('W', dirtW, dirtE)\n",
" elif action == 'E': return ('E', dirtW, dirtE)\n",
" elif action == 'Suck' and loc == 'W': return (loc, clean, dirtE)\n",
" elif action == 'Suck' and loc == 'E': return (loc, dirtW, clean) \n",
" else: raise ValueError('unknown action: ' + action)"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"<Node ('E', ' ', ' '): 3>"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"problem = TwoLocationVacuumProblem(initial=('W', dirt, dirt))\n",
"result = uniform_cost_search(problem)\n",
"result"
]
},
{
"cell_type": "code",
"execution_count": 27,
"outputs": [
{
"data": {
"text/plain": [
"['Suck', 'E', 'Suck']"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"action_sequence(result)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"outputs": [
{
"data": {
"text/plain": [
"[('W', '*', '*'), ('W', ' ', '*'), ('E', ' ', '*'), ('E', ' ', ' ')]"
]
},
"execution_count": 28,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"state_sequence(result)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"['Suck']"
]
},
"execution_count": 29,
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"problem = TwoLocationVacuumProblem(initial=('E', clean, dirt))\n",
"result = uniform_cost_search(problem)\n",
"action_sequence(result)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Water Pouring Problem\n",
"\n",
"Here is another problem domain, to show you how to define one. The idea is that we have a number of water jugs and a water tap and the goal is to measure out a specific amount of water (in, say, ounces or liters). You can completely fill or empty a jug, but because the jugs don't have markings on them, you can't partially fill them with a specific amount. You can, however, pour one jug into another, stopping when the seconfd is full or the first is empty."
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"button": false,
"collapsed": true,
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"class PourProblem(Problem):\n",
" \"\"\"Problem about pouring water between jugs to achieve some water level.\n",
" Each state is a tuples of levels. In the initialization, provide a tuple of \n",
" capacities, e.g. PourProblem(capacities=(8, 16, 32), initial=(2, 4, 3), goals={7}), \n",
" which means three jugs of capacity 8, 16, 32, currently filled with 2, 4, 3 units of \n",
" water, respectively, and the goal is to get a level of 7 in any one of the jugs.\"\"\"\n",
" \n",
" def actions(self, state):\n",
" \"\"\"The actions executable in this state.\"\"\"\n",
" jugs = range(len(state))\n",
" return ([('Fill', i) for i in jugs if state[i] != self.capacities[i]] +\n",
" [('Dump', i) for i in jugs if state[i] != 0] +\n",
" [('Pour', i, j) for i in jugs for j in jugs if i != j])\n",
"\n",
" def result(self, state, action):\n",
" \"\"\"The state that results from executing this action in this state.\"\"\"\n",
" result = list(state)\n",
" act, i, j = action[0], action[1], action[-1]\n",
" if act == 'Fill': # Fill i to capacity\n",
" result[i] = self.capacities[i]\n",
" elif act == 'Dump': # Empty i\n",
" result[i] = 0\n",
" elif act == 'Pour':\n",
" a, b = state[i], state[j]\n",
" result[i], result[j] = ((0, a + b) \n",
" if (a + b <= self.capacities[j]) else\n",
" (a + b - self.capacities[j], self.capacities[j]))\n",
" else:\n",
" raise ValueError('unknown action', action)\n",
" return tuple(result)\n",
"\n",
" def is_goal(self, state):\n",
" \"\"\"True if any of the jugs has a level equal to one of the goal levels.\"\"\"\n",
" return any(level in self.goals for level in state)"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"(2, 13)"
]
},
"execution_count": 31,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"p7 = PourProblem(initial=(2, 0), capacities=(5, 13), goals={7})\n",
"p7.result((2, 0), ('Fill', 1))"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
]
},
"execution_count": 32,
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"result = uniform_cost_search(p7)\n",
"action_sequence(result)"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Visualization Output"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"button": false,
"collapsed": true,
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def showpath(searcher, problem):\n",
" \"Show what happens when searcvher solves problem.\"\n",
" problem = Instrumented(problem)\n",
" print('\\n{}:'.format(searcher.__name__))\n",
" result = searcher(problem)\n",
" if result:\n",
" actions = action_sequence(result)\n",
" state = problem.initial\n",
" path_cost = 0\n",
" for steps, action in enumerate(actions, 1):\n",
" path_cost += problem.step_cost(state, action, 0)\n",
" result = problem.result(state, action)\n",
" print(' {} =={}==> {}; cost {} after {} steps'\n",
" .format(state, action, result, path_cost, steps,\n",
" '; GOAL!' if problem.is_goal(result) else ''))\n",
" state = result\n",
" msg = 'GOAL FOUND' if result else 'no solution'\n",
" print('{} after {} results and {} goal checks'\n",
" .format(msg, problem._counter['result'], problem._counter['is_goal']))\n",
" \n",
"from collections import Counter\n",
"\n",
"class Instrumented:\n",
" \"Instrument an object to count all the attribute accesses in _counter.\"\n",
" def __init__(self, obj):\n",
" self._object = obj\n",
" self._counter = Counter()\n",
" def __getattr__(self, attr):\n",
" self._counter[attr] += 1\n",
" return getattr(self._object, attr) "
]
},
{
"cell_type": "code",
"execution_count": 34,
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (2, 0) ==('Pour', 0, 1)==> (0, 2); cost 1 after 1 steps\n",
" (0, 2) ==('Fill', 0)==> (5, 2); cost 2 after 2 steps\n",
" (5, 2) ==('Pour', 0, 1)==> (0, 7); cost 3 after 3 steps\n",
"GOAL FOUND after 83 results and 22 goal checks\n"
]
}
],
"source": [
"showpath(uniform_cost_search, p7)"
]
},
{
"cell_type": "code",
"execution_count": 35,
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (0, 0) ==('Fill', 0)==> (7, 0); cost 1 after 1 steps\n",
" (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 2 after 2 steps\n",
" (0, 7) ==('Fill', 0)==> (7, 7); cost 3 after 3 steps\n",
" (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 4 after 4 steps\n",
" (1, 13) ==('Dump', 1)==> (1, 0); cost 5 after 5 steps\n",
" (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 6 after 6 steps\n",
" (0, 1) ==('Fill', 0)==> (7, 1); cost 7 after 7 steps\n",
" (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 8 after 8 steps\n",
" (0, 8) ==('Fill', 0)==> (7, 8); cost 9 after 9 steps\n",
" (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 10 after 10 steps\n",
"GOAL FOUND after 110 results and 32 goal checks\n"
]
}
],
"source": [
"p = PourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
"showpath(uniform_cost_search, p)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class GreenPourProblem(PourProblem): \n",
" def step_cost(self, state, action, result=None):\n",
" \"The cost is the amount of water used in a fill.\"\n",
" if action[0] == 'Fill':\n",
" i = action[1]\n",
" return self.capacities[i] - state[i]\n",
" return 0"
]
},
{
"cell_type": "code",
"execution_count": 37,
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
" (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
" (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
" (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
" (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
" (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
" (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
" (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
" (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
" (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
"GOAL FOUND after 184 results and 48 goal checks\n"
]
}
],
"source": [
"p = GreenPourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
"showpath(uniform_cost_search, p)"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def compare_searchers(problem, searchers=None):\n",
" \"Apply each of the search algorithms to the problem, and show results\"\n",
" if searchers is None: \n",
" searchers = (breadth_first_search, uniform_cost_search)\n",
" for searcher in searchers:\n",
" showpath(searcher, problem)"
]
},
{
"cell_type": "code",
"execution_count": 39,
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"breadth_first_search:\n",
" (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
" (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
" (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
" (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
" (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
" (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
" (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
" (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
" (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
" (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
"GOAL FOUND after 100 results and 31 goal checks\n",
"\n",
"uniform_cost_search:\n",
" (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
" (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
" (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
" (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
" (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
" (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
" (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
" (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
" (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
" (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
"GOAL FOUND after 184 results and 48 goal checks\n"
]
}
],
"source": [
"compare_searchers(p)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Random Grid\n",
"\n",
"An environment where you can move in any of 4 directions, unless there is an obstacle there.\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 40,
"outputs": [
{
"data": {
"text/plain": [
"{(0, 0): [(0, 1), (1, 0)],\n",
" (0, 1): [(0, 2), (0, 0), (1, 1)],\n",
" (0, 2): [(0, 3), (0, 1), (1, 2)],\n",
" (0, 3): [(0, 4), (0, 2), (1, 3)],\n",
" (0, 4): [(0, 3), (1, 4)],\n",
" (1, 0): [(1, 1), (2, 0), (0, 0)],\n",
" (1, 1): [(1, 2), (1, 0), (2, 1), (0, 1)],\n",
" (1, 2): [(1, 3), (1, 1), (2, 2), (0, 2)],\n",
" (1, 3): [(1, 4), (1, 2), (2, 3), (0, 3)],\n",
" (1, 4): [(1, 3), (2, 4), (0, 4)],\n",
" (2, 0): [(2, 1), (3, 0), (1, 0)],\n",
" (2, 1): [(2, 2), (2, 0), (3, 1), (1, 1)],\n",
" (2, 2): [(2, 3), (2, 1), (1, 2)],\n",
" (2, 3): [(2, 4), (2, 2), (3, 3), (1, 3)],\n",
" (2, 4): [(2, 3), (1, 4)],\n",
" (3, 0): [(3, 1), (4, 0), (2, 0)],\n",
" (3, 1): [(3, 0), (4, 1), (2, 1)],\n",
" (3, 2): [(3, 3), (3, 1), (4, 2), (2, 2)],\n",
" (3, 3): [(4, 3), (2, 3)],\n",
" (3, 4): [(3, 3), (4, 4), (2, 4)],\n",
" (4, 0): [(4, 1), (3, 0)],\n",
" (4, 1): [(4, 2), (4, 0), (3, 1)],\n",
" (4, 2): [(4, 3), (4, 1)],\n",
" (4, 3): [(4, 4), (4, 2), (3, 3)],\n",
" (4, 4): [(4, 3)]}"
"execution_count": 40,
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"import random\n",
"\n",
"N, S, E, W = DIRECTIONS = [(0, 1), (0, -1), (1, 0), (-1, 0)]\n",
"\n",
"def Grid(width, height, obstacles=0.1):\n",
" \"\"\"A 2-D grid, width x height, with obstacles that are either a collection of points,\n",
" or a fraction between 0 and 1 indicating the density of obstacles, chosen at random.\"\"\"\n",
" grid = {(x, y) for x in range(width) for y in range(height)}\n",
" if isinstance(obstacles, (float, int)):\n",
" obstacles = random.sample(grid, int(width * height * obstacles))\n",
" def neighbors(x, y):\n",
" for (dx, dy) in DIRECTIONS:\n",
" (nx, ny) = (x + dx, y + dy)\n",
" if (nx, ny) not in obstacles and 0 <= nx < width and 0 <= ny < height:\n",
" yield (nx, ny)\n",
" return {(x, y): list(neighbors(x, y))\n",
" for x in range(width) for y in range(height)}\n",
"\n",
"Grid(5, 5)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class GridProblem(Problem):\n",
" \"Create with a call like GridProblem(grid=Grid(10, 10), initial=(0, 0), goal=(9, 9))\"\n",
" def actions(self, state): return DIRECTIONS\n",
" def result(self, state, action):\n",
" #print('ask for result of', state, action)\n",
" (x, y) = state\n",
" (dx, dy) = action\n",
" r = (x + dx, y + dy)\n",
" return r if r in self.grid[state] else state"
]
},
{
"cell_type": "code",
"execution_count": 42,
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (0, 0) ==(0, 1)==> (0, 1); cost 1 after 1 steps\n",
" (0, 1) ==(0, 1)==> (0, 2); cost 2 after 2 steps\n",
" (0, 2) ==(0, 1)==> (0, 3); cost 3 after 3 steps\n",
" (0, 3) ==(1, 0)==> (1, 3); cost 4 after 4 steps\n",
" (1, 3) ==(1, 0)==> (2, 3); cost 5 after 5 steps\n",
" (2, 3) ==(0, 1)==> (2, 4); cost 6 after 6 steps\n",
" (2, 4) ==(1, 0)==> (3, 4); cost 7 after 7 steps\n",
" (3, 4) ==(1, 0)==> (4, 4); cost 8 after 8 steps\n",
"GOAL FOUND after 248 results and 69 goal checks\n"
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
]
}
],
"source": [
"gp = GridProblem(grid=Grid(5, 5, 0.3), initial=(0, 0), goals={(4, 4)})\n",
"showpath(uniform_cost_search, gp)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"source": [
"# Finding a hard PourProblem\n",
"\n",
"What solvable two-jug PourProblem requires the most steps? We can define the hardness as the number of steps, and then iterate over all PourProblems with capacities up to size M, keeping the hardest one."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"def hardness(problem):\n",
" L = breadth_first_search(problem)\n",
" #print('hardness', problem.initial, problem.capacities, problem.goals, L)\n",
" return len(action_sequence(L)) if (L is not None) else 0"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"3"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"hardness(p7)"
]
},
{
"cell_type": "code",
"execution_count": 45,
"outputs": [
{
"data": {
"text/plain": [
"[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
]
},
"execution_count": 45,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"action_sequence(breadth_first_search(p7))"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"((0, 0), (7, 9), {8})"
]
},
"execution_count": 46,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"C = 9 # Maximum capacity to consider\n",
"\n",
"phard = max((PourProblem(initial=(a, b), capacities=(A, B), goals={goal})\n",
" for A in range(C+1) for B in range(C+1)\n",
" for a in range(A) for b in range(B)\n",
" for goal in range(max(A, B))),\n",
" key=hardness)\n",
"\n",
"phard.initial, phard.capacities, phard.goals"
]
},
{
"cell_type": "code",
"execution_count": 47,
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"breadth_first_search:\n",
" (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
" (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
" (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
" (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
" (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
" (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
" (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
" (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
" (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
" (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
" (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
" (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
" (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
" (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
"GOAL FOUND after 150 results and 44 goal checks\n"
]
}
],
"source": [
"showpath(breadth_first_search, PourProblem(initial=(0, 0), capacities=(7, 9), goals={8}))"
]
},
{
"cell_type": "code",
"execution_count": 48,
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"uniform_cost_search:\n",
" (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
" (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
" (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
" (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
" (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
" (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
" (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
" (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
" (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
" (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
" (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
" (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
" (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
" (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
"GOAL FOUND after 159 results and 45 goal checks\n"
]
}
],
"source": [
"showpath(uniform_cost_search, phard)"
]
},
{
"cell_type": "code",
"execution_count": 49,
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
"metadata": {
"button": false,
"collapsed": true,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [],
"source": [
"class GridProblem(Problem):\n",
" \"\"\"A Grid.\"\"\"\n",
"\n",
" def actions(self, state): return ['N', 'S', 'E', 'W'] \n",
" \n",
" def result(self, state, action):\n",
" \"\"\"The state that results from executing this action in this state.\"\"\" \n",
" (W, H) = self.size\n",
" if action == 'N' and state > W: return state - W\n",
" if action == 'S' and state + W < W * W: return state + W\n",
" if action == 'E' and (state + 1) % W !=0: return state + 1\n",
" if action == 'W' and state % W != 0: return state - 1\n",
" return state"
]
},
{
"cell_type": "code",
"execution_count": 50,
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"\n",
"breadth_first_search:\n",
" 0 ==S==> 10; cost 1 after 1 steps\n",
" 10 ==S==> 20; cost 2 after 2 steps\n",
" 20 ==S==> 30; cost 3 after 3 steps\n",
" 30 ==S==> 40; cost 4 after 4 steps\n",
" 40 ==E==> 41; cost 5 after 5 steps\n",
" 41 ==E==> 42; cost 6 after 6 steps\n",
" 42 ==E==> 43; cost 7 after 7 steps\n",
" 43 ==E==> 44; cost 8 after 8 steps\n",
"GOAL FOUND after 135 results and 49 goal checks\n",
"\n",
"uniform_cost_search:\n",
" 0 ==S==> 10; cost 1 after 1 steps\n",
" 10 ==S==> 20; cost 2 after 2 steps\n",
" 20 ==E==> 21; cost 3 after 3 steps\n",
" 21 ==E==> 22; cost 4 after 4 steps\n",
" 22 ==E==> 23; cost 5 after 5 steps\n",
" 23 ==S==> 33; cost 6 after 6 steps\n",
" 33 ==S==> 43; cost 7 after 7 steps\n",
" 43 ==E==> 44; cost 8 after 8 steps\n",
"GOAL FOUND after 1036 results and 266 goal checks\n"
]
}
],
"source": [
"compare_searchers(GridProblem(initial=0, goals={44}, size=(10, 10)))"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"text/plain": [
"'test_frontier ok'"
]
},
"execution_count": 51,
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"def test_frontier():\n",
" \n",
" #### Breadth-first search with FIFO Q\n",
" f = FrontierQ(Node(1), LIFO=False)\n",
" assert 1 in f and len(f) == 1\n",
" f.add(Node(2))\n",
" f.add(Node(3))\n",
" assert 1 in f and 2 in f and 3 in f and len(f) == 3\n",
" assert f.pop().state == 1\n",
" assert 1 not in f and 2 in f and 3 in f and len(f) == 2\n",
" assert f\n",
" assert f.pop().state == 2\n",
" assert f.pop().state == 3\n",
" assert not f\n",
" \n",
" #### Depth-first search with LIFO Q\n",
" f = FrontierQ(Node('a'), LIFO=True)\n",
" for s in 'bcdef': f.add(Node(s))\n",
" assert len(f) == 6 and 'a' in f and 'c' in f and 'f' in f\n",
" for s in 'fedcba': assert f.pop().state == s\n",
" assert not f\n",
"\n",
" #### Best-first search with Priority Q\n",
" f = FrontierPQ(Node(''), lambda node: len(node.state))\n",
" assert '' in f and len(f) == 1 and f\n",
" for s in ['book', 'boo', 'bookie', 'bookies', 'cook', 'look', 'b']:\n",
" assert s not in f\n",
" f.add(Node(s))\n",
" assert s in f\n",
" assert f.pop().state == ''\n",
" assert f.pop().state == 'b'\n",
" assert f.pop().state == 'boo'\n",
" assert {f.pop().state for _ in '123'} == {'book', 'cook', 'look'}\n",
" assert f.pop().state == 'bookie'\n",
" \n",
" #### Romania: Two paths to Bucharest; cheapest one found first\n",
" S = Node('S')\n",
" SF = Node('F', S, 'S->F', 99)\n",
" SFB = Node('B', SF, 'F->B', 211)\n",
" SR = Node('R', S, 'S->R', 80)\n",
" SRP = Node('P', SR, 'R->P', 97)\n",
" SRPB = Node('B', SRP, 'P->B', 101)\n",
" f = FrontierPQ(S)\n",
" f.add(SF); f.add(SR), f.add(SRP), f.add(SRPB); f.add(SFB)\n",
" def cs(n): return (n.path_cost, n.state) # cs: cost and state\n",
" assert cs(f.pop()) == (0, 'S')\n",
" assert cs(f.pop()) == (80, 'R')\n",
" assert cs(f.pop()) == (99, 'F')\n",
" assert cs(f.pop()) == (177, 'P')\n",
" assert cs(f.pop()) == (278, 'B')\n",
" return 'test_frontier ok'\n",
"\n",
"test_frontier()"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"# %matplotlib inline\n",
"import matplotlib.pyplot as plt\n",
"\n",
"p = plt.plot([i**2 for i in range(10)])\n",
"plt.savefig('destination_path.eps', format='eps', dpi=1200)"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"button": false,
"new_sheet": false,
"run_control": {
"read_only": false
}
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xl8VOW9x/HPj5AAYUkghC0QArLL\nkkAExaUVsFevC7i1oiIqGtvrde2tou29tr22pdZra691QVHZBC2CUrVerTtakYQgYd/NQoAASQhk\nT577R8aKNshkmZyZyff9evmamZMzzNch+XLyzDnPY845REQk9LXxOoCIiDQPFbqISJhQoYuIhAkV\nuohImFChi4iECRW6iEiYUKGLiIQJFbqISJhQoYuIhIm2Lfli3bt3d0lJSS35kiIiIS8jI+Ogcy7+\nZPu1aKEnJSWRnp7eki8pIhLyzOwLf/bTkIuISJhQoYuIhAkVuohImFChi4iECRW6iEiYUKGLiIQJ\nFbqISJjwq9DN7C4z22hmG8xsiZm1N7MBZrbazLab2YtmFhXosCIioebQ0Qp++ZdNlFXWBPy1Tlro\nZpYA3A6kOudGAhHAVcBvgd875wYDhcCsQAYVEQk1ldW1/GjxWhav/oLdB48F/PX8HXJpC3Qws7ZA\nNJAPTAKW+b4+H5jW/PFERELXL1/byGe7D/PQFaMZ0adLwF/vpIXunMsDHgayqSvyYiADKHLOVft2\nywUSAhVSRCTULF79BYs+zeaW7wxkanLL1KM/Qy5dganAAKAP0BG4oJ5d3Qmen2Zm6WaWXlBQ0JSs\nIiIhYfWuQzzw6kbOHRrPPf8yrMVe158hlynAbudcgXOuClgOTARifUMwAH2BvfU92Tk31zmX6pxL\njY8/6WRhIiIhLbewlH9bvJbEuGgenZ5CRBtrsdf2p9CzgdPNLNrMDJgMbALeA67w7TMTeDUwEUVE\nQkNpZTVpCzKorKnl6etS6dI+skVf358x9NXUffi5FsjyPWcucC9wt5ntAOKAeQHMKSIS1Jxz/OTP\n69m87wh/nJ7CKfGdWjyDX/OhO+ceAB74xuZdwPhmTyQiEoIef38nr2flc98Fwzh3aA9PMuhKURGR\nJvrbpv08/NZWpiX3Ie2cgZ7lUKGLiDTB9v0l3PniOkYlxDDn8tHUfdToDRW6iEgjFZVWctOCdNpH\nRvDUjHG0j4zwNI8KXUSkEaprarltSSb5ReU8NWMsvWM6eB2pZReJFhEJF7/56xY+2n6Qhy4fzbj+\n3byOA+gIXUSkwZZl5DJv1W6un5jE90/r53Wcf1Chi4g0QGZ2Ifcvz2LiKXH89MLhXsf5GhW6iIif\n9h8p55aFGfSKac+frh5LZERwVWhwpRERCVLlVTWkLczgaEU1T1+XSteOwbemjz4UFRE5Cecc9y/P\n4vOcIp68dhxDe3X2OlK9dIQuInIS81btZnlmHndNGcL5I3t5HeeEVOgiIt/ig20F/PqNzVwwshe3\nTRrkdZxvpUIXETmB3QePcdsLaxnSszMPXzmGNi04t3ljqNBFROpRUl7FzQvSiWhjPH1dKh3bBf9H\njsGfUESkhdXUOu5cuo7dB4+xaNYE+nWL9jqSX/xZU3Soma077r8jZnanmXUzs7fNbLvvtmtLBBYR\nCbRH3t7KO1sO8MDFIzjjlDiv4/jNnxWLtjrnkp1zycA4oBRYAcwG3nHODQbe8T0WEQlpf/l8L396\nbyfTx/djxun9vY7TIA0dQ58M7HTOfQFMBeb7ts8HpjVnMBGRlrYhr5ifLPuc1P5d+cUlIz2d27wx\nGlroVwFLfPd7OufyAXy33qy5JCLSDA4erSBtQTrdoqN44tpxRLUNvXNG/E5sZlHAJcCfG/ICZpZm\nZulmll5QUNDQfCIiAVdZXcuPFmVwuLSSudelEt+5ndeRGqUh/wRdAKx1zu33Pd5vZr0BfLcH6nuS\nc26ucy7VOZcaHx/ftLQiIs3MOccDKzeyZk8hD10xhpEJMV5HarSGFPp0vhpuAVgJzPTdnwm82lyh\nRERayqLV2Sz5LJsfffcULhnTx+s4TeJXoZtZNHAesPy4zXOA88xsu+9rc5o/nohI4Hy66xC/WLmR\nScN68B/fG+p1nCbz68Ii51wpEPeNbYeoO+tFRCTk5Bwu5d8Wr6V/XDR/uCqZiCC/rN8fofcxrohI\nE5VWVnPzgnSqamp5+rpUurSP9DpSs1Chi0ir4pzjP/78Odv2l/DY1WMZGN/J60jNRoUuIq3K/767\ngzey9nHfBcP5zpDwOvNOhS4ircZbG/fxyNvbuDQlgZvOHuB1nGanQheRVmHrvhLuenEdY/rG8JvL\nRoXcZf3+UKGLSNgrPFbJzQvSiW7XlqdmpNI+MsLrSAGhQheRsFZdU8u/L1nLvuJynpoxjl4x7b2O\nFDBa4EJEwtqv3tjMxzsO8bsrRjM2MbyXbdARuoiErZfSc3ju4z3ceOYArkzt53WcgFOhi0hY+mTn\nQX62YgNnDerO/f86zOs4LUKFLiJhZ31uETfPT6d/XDSPXZ1C24jWUXWt4/9SRFqNHQeOcv1za+ja\nMYqFsyYQGx3ldaQWo0IXkbCxt6iM6+atpo3BwlkTwvqMlvqo0EUkLBw+VsmMeaspKa/m+RvGM6B7\nR68jtTidtigiIe9oRTXXP/cZuYVlLLhxfEivOtQUKnQRCWnlVTWkLUhn494jPHXtOCYMjDv5k8KU\nvysWxZrZMjPbYmabzewMM+tmZm+b2XbfbXifsS8iQae6ppY7lmbyyc66C4emjOjpdSRP+TuG/ijw\npnNuGDAG2AzMBt5xzg0G3vE9FhFpEc45frpiA/+3cT//ddEILhvb1+tInjtpoZtZF+AcYB6Ac67S\nOVcETAXm+3abD0wLVEgRkW+a8+YWXkzP4fZJg7jxrPCbCrcx/DlCHwgUAM+ZWaaZPWNmHYGezrl8\nAN9tj/qebGZpZpZuZukFBQXNFlxEWq8nP9jJUx/sYsbp/bnrvCFexwka/hR6W2As8IRzLgU4RgOG\nV5xzc51zqc651Pj48FodRERa3tLPspnz1y1cPKYPv7jk1LCc17yx/Cn0XCDXObfa93gZdQW/38x6\nA/huDwQmoohInTc35HP/iiy+MySe/7lyDG3aqMyPd9JCd87tA3LMbKhv02RgE7ASmOnbNhN4NSAJ\nRUSAj3cc5PYl60hJ7MoT144lqq2ui/wmf89Dvw1YbGZRwC7gBur+MXjJzGYB2cCVgYkoIq3d5zlF\npC1IZ0D3jjw78zSio3QJTX38elecc+uA1Hq+NLl544iIfN2OAyVc/9xndOsUxcJZ44mJjvQ6UtDS\n7ywiErTyisqYMe8zItq0YdGsCfTo0rom22ooFbqIBKVDRyuY8cxqjlZUs3DWePrHtb7JthpKhS4i\nQaekvIqZz33G3uIynr3+NIb37uJ1pJCgQheRoFJeVcPNC9LZkl/CE9eM47Skbl5HChn6qFhEgkZ1\nTS23Lcnk012HefSqZM4dVu8F6HICOkIXkaDgnGP28ize3rSfX1xyKlOTE7yOFHJU6CLiOeccv35j\nM8sycrlzymBmTkzyOlJIUqGLiOee+GAnT3+0m5ln9OeOyYO9jhOyVOgi4qkXVmfz0JtbmZrchwcu\n1mRbTaFCFxHPvJGVz09fyeLcofE8rMm2mkyFLiKe+Gh7AXcszWRcYlcev2YckRGqo6bSOygiLS4z\nu5BbFmZwSnwn5l1/Gh2iIryOFBZU6CLSorbtL+GG59cQ37kdC2aNJ6aDJttqLip0EWkxOYdLmTFv\nNVERbVh44wR6dNZkW81JhS4iLaKgpILrnv2MssoaFswaT2JctNeRwo5fl/6b2R6gBKgBqp1zqWbW\nDXgRSAL2AN93zhUGJqaIhLIj5VVc/9xn5BeXsfimCQzrpcm2AqEhR+jnOueSnXNfLnQxG3jHOTcY\neIcGLBwtIq1HeVUNN81PZ+u+Ep68dhzj+muyrUBpypDLVGC+7/58YFrT44hIOKmuqeXfX1jLmj2H\neeQHyXx3qCbbCiR/C90Bb5lZhpml+bb1dM7lA/hu9TclIv9QW+u45+X1/G3zAX45dSSXjOnjdaSw\n5+/0uWc65/aaWQ/gbTPb4u8L+P4BSANITExsREQRCTXOOR58fTPL1+Zx93lDmHF6f68jtQp+HaE7\n5/b6bg8AK4DxwH4z6w3guz1wgufOdc6lOudS4+Pjmye1iAS1P723g2c/3s0NZyZx26RBXsdpNU5a\n6GbW0cw6f3kf+B6wAVgJzPTtNhN4NVAhRSQ0OOd45O1tPPzWNi5LSeA/LxyhybZakD9DLj2BFb6/\nlLbAC865N81sDfCSmc0CsoErAxdTRIJdba3jl69t4vlP9vD91L785rLRmmyrhZ200J1zu4Ax9Ww/\nBEwORCgRCS3VNbXMXp7FsoxcZp01gJ9dOFxH5h7QmqIi0iQV1TXcsWQdb27cx93nDeG2SYNU5h5R\noYtIo5VWVnPLwgw+2n6Q/7poBDeeNcDrSK2aCl1EGqW4rIobn19DZnYhv7tiNFem9vM6UqunQheR\nBvtyoq0dB0p4/JqxnD+yt9eRBBW6iDRQXlEZ1z6zmn3F5cybeRrnDNH1JcFChS4ifttZcJQZz6ym\npKKaRTeN10RbQUaFLiJ+2bi3mOvmfYYZLE07nVP7xHgdSb5BhS4iJ5W+5zA3PL+Gzu3asuimCQyM\n7+R1JKmHCl1EvtWH2wq4ZWEGvWPas/CmCSTEdvA6kpyACl1ETuivWfncvjSTQT06s+DG8cR3bud1\nJPkWKnQRqddL6TnMfnk9KYldefb604jpEOl1JDkJFbqI/JNnV+3ml69t4uzB3Xlqxjiio1QVoUB/\nSyLyD845/vjODn7/t22cf2ovHp2eTLu2EV7HEj+p0EUE+GqVoXmrdnPFuL7MuWwUbSOasuywtDQV\nuohQU+u4b/l6XkrP5fqJSfzXRSM0l3kIUqGLtHIV1TXc9eI63sjaxx2TB3PnlMGa/jZE+f37lJlF\nmFmmmb3mezzAzFab2XYze9HMogIXU0QCobSympsXZPBG1j5+duFw7jpviMo8hDVkgOwOYPNxj38L\n/N45NxgoBGY1ZzARCazisiqum/cZq7YX8NDlo7np7IFeR5Im8qvQzawvcCHwjO+xAZOAZb5d5gPT\nAhFQRJrfwaMVTJ/7KZ/nFvHY1WP5/mmayzwc+DuG/gfgHqCz73EcUOScq/Y9zgUS6nuimaUBaQCJ\niYmNTyoizWKvb/rbvcVlPDPzNL6j6W/DxkmP0M3sIuCAcy7j+M317Orqe75zbq5zLtU5lxofr28c\nES/tKjjKlU/+nYKSChbOmqAyDzP+HKGfCVxiZv8KtAe6UHfEHmtmbX1H6X2BvYGLKSJNtWnvEa57\ndjXOwZK00xmZoOlvw81Jj9Cdc/c55/o655KAq4B3nXPXAO8BV/h2mwm8GrCUItIkGV8c5qq5fycy\nog0v3nKGyjxMNeUysHuBu81sB3Vj6vOaJ5KINKePthdw7TOf0a1jFH/+4RkM6qG5zMNVgy4scs69\nD7zvu78LGN/8kUSkuby5YR+3L8lkYHxHFswaT4/O7b2OJAGkK0VFwtTLGbnc8/J6RveN4fnrxxMT\nrelvw50KXSQMPf/xbn7+l02cOSiOuTNS6dhOP+qtgf6WRcKIc47H3t3B/7y9je+N6Mkfp6fQPlLT\n37YWKnSRMFFdU8uv3tjMcx/v4bKxCTx0+WhNf9vKqNBFwsDhY5XctmQtH+84xI1nDuBnFw7X9Let\nkApdJMRtyCvmloUZFByt4HdXjObKVM3L0lqp0EVC2MsZudy/Iou4jlEs++EZjO4b63Uk8ZAKXSQE\nVdXU8uBrm5j/9y84Y2Acj12dQlyndl7HEo+p0EVCzIGScm5dvJY1ewq5+ewB3Hv+MH34KYAKXSSk\nrM0u5EeLMiguq+LRq5KZmlzvrNXSSqnQRULEC6uzeWDlBnrHdGDFv41neO8uXkeSIKNCFwlyFdU1\nPPDqRpauyeGcIfH88apkYqO1hK/8MxW6SBDLLy7jh4vW8nlOEbeeewp3nzeUCJ1fLiegQhcJUqt3\nHeLWF9ZSVlnDk9eO4/yRvbyOJEFOhS4SZJxzPP/JHn71+mYS46JZmnY6g3p0PvkTpdU7aaGbWXvg\nQ6Cdb/9lzrkHzGwAsBToBqwFZjjnKgMZViTclVXWcP+KLFZk5jFleE8e+cEYurTXtLfiH39OXq0A\nJjnnxgDJwPlmdjrwW+D3zrnBQCEwK3AxRcJfzuFSLn/iE15Zl8fd5w1h7oxxKnNpEH/WFHXOuaO+\nh5G+/xwwCVjm2z4fmBaQhCKtwEfbC7j4sVXkFJYyb2Yqt08erMm1pMH8GkM3swggAxgE/AnYCRQ5\n56p9u+QCusJBpIGcczz14S4eenMLg3p04qkZqQzo3tHrWBKi/Cp051wNkGxmscAKYHh9u9X3XDNL\nA9IAEhMTGxlTJPwcq6jmnmXreT0rnwtH9eahK0ZrZSFpkoYuEl1kZu8DpwOxZtbWd5TeF9h7gufM\nBeYCpKam1lv6Iq3NnoPHSFuYzo4DR7nvgmGknTMQMw2xSNOcdAzdzOJ9R+aYWQdgCrAZeA+4wrfb\nTODVQIUUCSfvbtnPxY+t4kBJBQtunMAt3zlFZS7Nwp8j9N7AfN84ehvgJefca2a2CVhqZg8CmcC8\nAOYUCXm1tY7/fXcHf3hnGyN6d+HJa8fRr1u017EkjJy00J1z64GUerbvAsYHIpRIuDlSXsXdL37O\n3zbv57KUBH592Sgt3izNTp/AiATYjgMlpC3IIPtwKT+/eAQzJyZpiEUCQoUuEkBvbsjnxy99Toeo\nCBbfNIEJA+O8jiRhTIUuEgA1tY7/eWsrj7+/k+R+sTxx7Vh6x3TwOpaEORW6SDMrKq3k9qXr+HBb\nAdPH9+Pnl5xKu7YaL5fAU6GLNKNNe49wy6J09hdX8JvLRjF9vC6mk5ajQhdpJq+uy+Pel9cT0yGS\npbecztjErl5HklZGhS7SREcrqpnz180s+jSb8UndeOyaFHp0bu91LGmFVOgiTfDe1gP8dHkW+UfK\nuemsAdx7wTAiI/yZlVqk+anQRRqh8Fgl//3aJpZn5jGoRyeW/XAi4/priEW8pUIXaQDnHG9k7eOB\nlRsoKq3i9kmDuHXSIJ3FIkFBhS7ipwNHyvnZKxt4a9N+RiXEsODGCYzo08XrWCL/oEIXOQnnHH9O\nz+W/X99EZXUt910wjFlnDaCtxsolyKjQRb5F9qFS7luxno93HGL8gG789vLRWlFIgpYKXaQeNbWO\n5z/Zw8P/t5WINsaD00Zy9fhErfMpQU2FLvIN2/eXcM/L68nMLuLcofH86tJR9InVPCwS/E5a6GbW\nD1gA9AJqgbnOuUfNrBvwIpAE7AG+75wrDFxUkcCqrK7lyQ928ti7O+jYLoI//CCZqcl9NNWthAx/\njtCrgR8759aaWWcgw8zeBq4H3nHOzTGz2cBs4N7ARRUJnPW5RdyzbD1b9pVw8Zg+PHDxCLp3aud1\nLJEG8WfFonwg33e/xMw2AwnAVOC7vt3mA++jQpcQU1ZZwx/+to2nP9pFfOd2PH1dKueN6Ol1LJFG\nadAYupklUbcc3Wqgp6/scc7lm1mPZk8nEkCf7jrE7JfXs+dQKdPH92P2BcOJ6RDpdSyRRvO70M2s\nE/AycKdz7oi/44pmlgakASQmaipR8V5JeRVz/rqFxauzSewWzQs3TWDioO5exxJpMr8K3cwiqSvz\nxc655b7N+82st+/ovDdwoL7nOufmAnMBUlNTXTNkFmm0d7fs56crNrDfN5nWj783lA5RumxfwoM/\nZ7kYMA/Y7Jx75LgvrQRmAnN8t68GJKFIMzh8rJJf/mUjr6zby5CenXj8momkaL5yCTP+HKGfCcwA\nssxsnW/b/dQV+UtmNgvIBq4MTESRxnPO8Zf1+fx85UZKyqu4Y/Jgbj13EFFtddm+hB9/znJZBZxo\nwHxy88YRaT77iusm0/rb5v2M6RvDb6+YwLBemkxLwpeuFJWw45xj6Zocfv36Zqpqa/nZhcO54cwB\nROiyfQlzKnQJK18cOsbsl7P4+65DnDEwjjmXj6J/nCbTktZBhS5hoabW8dzHu3n4ra1EtmnDby4b\nxVWn9dNl+9KqqNAl5G3dVzeZ1uc5RUwZ3oMHp42iV4wWaZbWR4UuIetASTlPvL+TRZ9+Qef2kfxx\negoXj+6to3JptVToEnIKSip46oOdLPz0C6prHVeM7cu9FwyjW8cor6OJeEqFLiHj0NEKnvpwFwv+\nvofK6louTenLbZMGkaQVhEQAFbqEgMPHKpnrK/LyqhqmJSdw2+TBWgpO5BtU6BK0Co9V8vRHu5j/\nyR5Kq2q4ZEwfbp88mFPiO3kdTSQoqdAl6BSXVvHMql089/EejlVWc+Go3twxeTCDe3b2OppIUFOh\nS9AoLqvi2VW7eXbVbkoqqvnXUb24Y/IQhvZSkYv4Q4UunjtSXsVzq/Ywb9UujpRXc/6pvbhjymCG\n99a8KyINoUIXzxytqOb5j3fz9Ee7KS6r4rwRPblzymBO7RPjdTSRkKRClxZ3rKKa5z/Zw9Mf7aKo\ntIopw3tw55QhjExQkYs0hQpdWkxpZTUL/v4Fcz/cxeFjlZw7NJ47pwxhTL9Yr6OJhAUVugRcWWUN\niz79gic/2MmhY5WcMySeu6YM1opBIs3MnyXongUuAg4450b6tnUDXgSSgD3A951zhYGLKaGovOrL\nIt/FwaMVnD24O3dOGcK4/ipykUDw5wj9eeAxYMFx22YD7zjn5pjZbN/je5s/noSi8qoalnyWzePv\n76SgpIKJp8TxxLVjOS2pm9fRRMKaP0vQfWhmSd/YPBX4ru/+fOB9VOitXkV1DS+uyeFP7+1g/5EK\nJgzoxmPTU5gwMM7raCKtQmPH0Hs65/IBnHP5ZtajGTNJiKmoruGl9Fwef28H+cXljE/qxu9/kMzE\nU7p7HU2kVQn4h6JmlgakASQmJgb65aQFVVbXsiwjl8fe3c7e4nLG9e/K764Yw5mD4jQnuYgHGlvo\n+82st+/ovDdw4EQ7OufmAnMBUlNTXSNfT4JI9qFSXlmXx4trcsgrKiMlMZY5l4/m7MHdVeQiHmps\noa8EZgJzfLevNlsiCUqFxyp5PSufVzLzSP+i7oSmCQO68eClI/nukHgVuUgQ8Oe0xSXUfQDa3cxy\ngQeoK/KXzGwWkA1cGciQ4o3yqhre23KAFZl5vLf1AFU1jkE9OvGTfxnKtJQEEmI7eB1RRI7jz1ku\n00/wpcnNnEWCQG2tY82ew7yyLo/X1+dzpLya7p3acd0ZSVyaksCpfbroaFwkSOlKUQFgx4ESVmTm\n8UrmXvKKyugQGcH5I3txaUoCE0+Jo21EG68jishJqNBbsYKSClZ+vpdXMvPIyiumjcFZg+P5yb8M\n5bwRPenYTt8eIqFEP7GtTGllNW9t3M+KzDxW7ThITa1jZEIX/vOiEVw8pjc9Orf3OqKINJIKvRWo\nqXV8vOMgr2Tm8ebGfZRW1pAQ24Effmcg05ITtLSbSJhQoYcp5xyb8o+wYm0eKz/fy4GSCjq3b8vU\n5D5MS07gtKRutGmjDzdFwokKPczsLSrjlXV5vJKZx7b9R4mMML47tAeXpSRw7rAetI+M8DqiiASI\nCj0MHCmv4s2sfSzPzGX17sM4B+P6d+XBaSO5cFRvunaM8jqiiLQAFXqIqqyu5cNtBazIzOPtzfup\nrK5lQPeO3DVlCNOSE0iMi/Y6ooi0MBV6iHDOsedQKetyClmzp5C/ZuVTWFpFXMcorh6fyLSUBMb0\njdFFPyKtmAo9SBWXVrEut4jM7ELW5RTxeU4RhaVVAHSMimDS8J5cmtKHswfHE6mLfkQEFXpQqKqp\nZeu+EjJzvirwXQXHADCDIT06870RvUhJjCU5MZbBPToToTNUROQbVOgtzDlHfnE5644r76y8Ysqr\nagHo3qkdyf1iuXxsX1L6xTKqbwyd20d6nFpEQoEKPcCOVVSTlVdMZnYR63IKycwu4kBJBQBRbdsw\nsk8XrpnQn+R+sST3i6Vv1w4aBxeRRlGhN6PaWsfOgqNkZhf9Y/hk2/4San3LeiTFRTPxlDhSEruS\n3C+W4b27ENVW498i0jxU6E1w8GgF67KL6oZPcgpZn1NMSUU1AF3at2VMv1i+d2ovUvrFMqZfLN10\nPriIBFCTCt3MzgceBSKAZ5xzc5olVRApq6yhqKySwmNVFJVWssX34eW6nEJyDpcBENHGGNarM1NT\n+pDcryspibEMiOuoS+tFpEU1utDNLAL4E3AekAusMbOVzrlNzRWuOVVU11BcWkVhaV0xF5ZWUVxW\n6Xtct62otIrC0kqKy+pui0qrqKiu/ac/q3dMe1ISY5lxen9SErsysk8MHaJ0Sb2IeKspR+jjgR3O\nuV0AZrYUmAoEtNCramopLju+gL+6X+Qr6OLSrwq5qLSSorIqSitrTvhnRkYYsdFRdI2OJLZDFInd\nohndN4au0VHEREfSNTqK2A6RxERHMrB7J3rFaIpZEQk+TSn0BCDnuMe5wISmxanf/Suy+HBbAUWl\nVRz1jVHXJ6KNEdshktjoSGKjo+gT257hvbvUFbVvW6yvoGM6RNK1Y11RR0dF6MwSEQl5TSn0+hrQ\n/dNOZmlAGkBiYmKjXightgPjk7p9dbT8ZTn7yvvLI+nO7dqqmEWk1WpKoecC/Y573BfY+82dnHNz\ngbkAqamp/1T4/rj13EGNeZqISKvSlJOg1wCDzWyAmUUBVwErmyeWiIg0VKOP0J1z1Wb278D/UXfa\n4rPOuY3NlkxERBqkSeehO+feAN5opiwiItIEuu5cRCRMqNBFRMKECl1EJEyo0EVEwoQKXUQkTJhz\njbrWp3EvZlYAfNHIp3cHDjZjnFCn9+Mrei++Tu/H14XD+9HfORd/sp1atNCbwszSnXOpXucIFno/\nvqL34uv0fnxda3o/NOQiIhImVOgiImEilAp9rtcBgozej6/ovfg6vR9f12rej5AZQxcRkW8XSkfo\nIiLyLUKi0M3sfDPbamY7zGy213m8Ymb9zOw9M9tsZhvN7A6vMwUDM4sws0wze83rLF4zs1gzW2Zm\nW3zfJ2d4nckrZnaX7+dkg5mwtvk3AAACDklEQVQtMbOwXzsy6Av9uMWoLwBGANPNbIS3qTxTDfzY\nOTccOB24tRW/F8e7A9jsdYgg8SjwpnNuGDCGVvq+mFkCcDuQ6pwbSd0U31d5myrwgr7QOW4xaudc\nJfDlYtStjnMu3zm31ne/hLof1gRvU3nLzPoCFwLPeJ3Fa2bWBTgHmAfgnKt0zhV5m8pTbYEOZtYW\niKaeFdXCTSgUen2LUbfqEgMwsyQgBVjtbRLP/QG4B6j1OkgQGAgUAM/5hqCeMbOOXofygnMuD3gY\nyAbygWLn3Fvepgq8UCh0vxajbk3MrBPwMnCnc+6I13m8YmYXAQeccxleZwkSbYGxwBPOuRTgGNAq\nP3Mys67U/SY/AOgDdDSza71NFXihUOh+LUbdWphZJHVlvtg5t9zrPB47E7jEzPZQNxQ3ycwWeRvJ\nU7lArnPuy9/allFX8K3RFGC3c67AOVcFLAcmepwp4EKh0LUYtY+ZGXXjo5udc494ncdrzrn7nHN9\nnXNJ1H1fvOucC/ujsBNxzu0DcsxsqG/TZGCTh5G8lA2cbmbRvp+bybSCD4ibtKZoS9Bi1F9zJjAD\nyDKzdb5t9/vWdhUBuA1Y7Dv42QXc4HEeTzjnVpvZMmAtdWeHZdIKrhjVlaIiImEiFIZcRETEDyp0\nEZEwoUIXEQkTKnQRkTChQhcRCRMqdBGRMKFCFxEJEyp0EZEw8f/pavD4X6i2SQAAAABJRU5ErkJg\ngg==\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7f876647a860>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAHSCAYAAAA5eGh0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt219Mk/f///9HaxOnNULI1iIWxrSi\nk8URHfFPYjK7g2YaiOhUkkUPdrIlLNmOfX8mduLigYdkMYsHYKIBBDM2o43GGNEjdIZEl2iE6JQ/\nFlw0bI1b4aLfA3/29674nuCAvvrifjuif676fPC6ruvRq0VXMpkUAAAwgzvTAwAAgP8fxQwAgEEo\nZgAADEIxAwBgEIoZAACDUMwAABjEk+kBXseBAwcejo2N+TM9x1Rzu91jY2Nj1r1ZSiaTYy6Xy7pc\nkr1r5vF4xkZHR63LJdm7P86ZM2fMcRzrctl6jEmS2+2OffPNN/kv3p+VxTw2Nubfvn17pseYcm1t\nbW5bc8VisUyPMS38fr+1a1ZbW5vpMaZFJBKxcn/0+/1WrlkkErHyGJOktra2l15gWvkuBACAbEUx\nAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAY\nhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGGTWFvOVK1dUUVGhzZs3\n6+jRo+Mev3btmnbu3KmysjKdO3cudf+tW7f06aefauvWrdq2bZui0ehMjj0htma7f/++Tpw4oePH\nj+v69evjHu/v79fJkyd15MgR9fT0pO5/9OiRTp06paamJjU3N6u7u3smx34lW9dLkqLRqJYvX65g\nMKhDhw6Ne7yjo0OrV6+Wx+NRa2tr6v6uri6tX79epaWlWrVqlZqbm2dy7FeydV+U7F2zbDrOPNP+\nLxjIcRwdPHhQP/zwg/Lz81VdXa1NmzZp6dKlqecsWrRIBw4cUGNjY9q2b7zxhr777ju9/fbbGhwc\n1K5du7RhwwYtXLhwpmO8lK3ZxsbGdPnyZVVUVMjr9aqtrU3FxcXKy8tLPWfBggUKhULq6upK29bj\n8SgUCik3N1fxeFytra0qLCzU3LlzZzrGOLaul/QsW01Njc6fP69AIKDy8nJVVlZq5cqVqecUFRWp\noaFBhw8fTtt2/vz5OnbsmJYtW6b+/n6tWbNG4XBYubm5Mx1jHFv3RcneNcu242xWFvONGzdUVFSk\nwsJCSdLHH3+sixcvpi3S4sWLJUkulytt2+Li4tTPPp9PeXl5evz4sTEnQ1uzDQ4OKicnJzVLMBjU\nvXv30k6Gzx97Mdd/nxi8Xq/mzZunp0+fGnEytHW9JKmzs1PBYFBLliyRJFVXV6u9vT3tJP88g9ud\n/uFdSUlJ6ueCggL5fD4NDQ0ZcZK3dV+U7F2zbDvOZuVH2YODg8rPz0/d9vv9isVik36dGzduaGRk\nJLXYJrA1Wzwel9frTd32er2Kx+OTfp1YLCbHcZSTkzOV4702W9dLkvr6+tLmCQQC6uvrm/TrdHZ2\nKpFIpJ1EM8nWfVGyd82y7TiblVfMyWRy3H0vvkt6laGhIe3du1d1dXXj3jlmks3Z/q14PK4LFy4o\nFApN+ncyXWxer6nINjAwoN27d6uxsdGobP+WifuiZO+aZdtxZsZvbYb5/X49fPgwdTsWi8nn8014\n+z///FM1NTX68ssv9f7770/HiK/N1mwvXpW8eNXyKolEQmfOnNHatWvT3jlnmq3rJT272nrw4EHq\ndm9vrwoKCia8/fDwsLZs2aK6ujqtW7duOkZ8Lbbui5K9a5Ztx9msLOb33ntPv/32m3p7ezUyMqKz\nZ8/qww8/nNC2IyMj+vrrr1VRUaFwODy9g74GW7P5fD49efJEw8PDchxH3d3dad/9/BPHcRSNRlVS\nUmLMR2vP2bpeklReXq47d+7o7t27SiQSampqUmVl5YS2TSQSqqqq0p49e7Rjx45pnnRybN0XJXvX\nLNuOs1n5UbbH49HevXv1xRdfyHEcVVVVKRgMqr6+XqWlpdq0aZNu3rypr776Sn/88YcuXbqk77//\nXj/++KOi0ah++eUXPXnyRO3t7ZKkuro6rVixIsOpnrE1m9vt1saNG3X69Gklk0mtWLFCeXl56uzs\n1FtvvaV33nlHg4ODikaj+vvvv3Xv3j1dvXpV1dXV6unp0cDAgP766y/dvn1bkhQKhfTmm29mOJW9\n6yU9y1ZfX69wOCzHcfTZZ5+ptLRU+/bt0wcffKDKykpdvXpVVVVVevz4sX7++WfV1tbq119/VUtL\nizo6OvT777+roaFBktTQ0KCysrLMhpK9+6Jk75pl23Hmetln76aLRCLJ7du3Z3qMKdfW1iZbc73O\nH1pkA7/fb+2a1dbWZnqMaRGJRKzcH/1+v5VrFolErDzGpNRxNu7L7ln5UTYAAKaimAEAMAjFDACA\nQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZ\nAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYxJVMJjM9\nw6QdPHjQGR0dte5Nhcfj0ejoaKbHmHLJZFIulyvTY0yLOXPmyHGcTI8x5WzdFyV7s7ndbo2NjWV6\njCln63pJksfjGfvPf/4zZ9z9mRjm3xodHXXX1tZmeowpF4lEZGuuWCyW6TGmhd/vt3bNbMwl2Zst\nEolo+/btmR5jyrW1tVm5XpIUiUReeoFp3VUnAADZjGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAM\nQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwA\nABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBZm0xR6NRLV++XMFgUIcOHRr3eEdHh1avXi2Px6PW1tbU\n/V1dXVq/fr1KS0u1atUqNTc3z+TYE2Jrtvv37+vEiRM6fvy4rl+/Pu7x/v5+nTx5UkeOHFFPT0/q\n/kePHunUqVNqampSc3Ozuru7Z3LsV7J1vSR7s9maS5KuXLmiiooKbd68WUePHh33+LVr17Rz506V\nlZXp3Llzqftv3bqlTz/9VFu3btW2bdsUjUZncuxXyqY180z7v2Agx3FUU1Oj8+fPKxAIqLy8XJWV\nlVq5cmXqOUVFRWpoaNDhw4fTtp0/f76OHTumZcuWqb+/X2vWrFE4HFZubu5Mx3gpW7ONjY3p8uXL\nqqiokNfrVVtbm4qLi5WXl5d6zoIFCxQKhdTV1ZW2rcfjUSgUUm5uruLxuFpbW1VYWKi5c+fOdIxx\nbF0vyd5stuaSnmU7ePCgfvjhB+Xn56u6ulqbNm3S0qVLU89ZtGiRDhw4oMbGxrRt33jjDX333Xd6\n++23NTg4qF27dmnDhg1auHDhTMcYJ9vWbFYWc2dnp4LBoJYsWSJJqq6uVnt7e9oiFRcXS5Lc7vQP\nFUpKSlI/FxQUyOfzaWhoyJgDy9Zsg4ODysnJSR3kwWBQ9+7dSyvm54+5XK60bf97fq/Xq3nz5unp\n06dGFLOt6yXZm83WXJJ048YNFRUVqbCwUJL08ccf6+LFi2nFvHjxYknjj7PnmSXJ5/MpLy9Pjx8/\nNqKYs23NZuVH2X19fakdT5ICgYD6+vom/TqdnZ1KJBJpO22m2ZotHo/L6/Wmbnu9XsXj8Um/TiwW\nk+M4ysnJmcrxXput6yXZm83WXNKzN8D5+fmp236/X7FYbNKvc+PGDY2MjKT9njIp29ZsVl4xJ5PJ\ncfe9+O7vVQYGBrR79241NjaOe4eVSTZn+7fi8bguXLigUCg06d/JdLF5vWzNZmsuaWqyDQ0Nae/e\nvaqrqzMmW7atmRm/tRkWCAT04MGD1O3e3l4VFBRMePvh4WFt2bJFdXV1Wrdu3XSM+NpszfbiFfKL\nV9CvkkgkdObMGa1duzbtiiDTbF0vyd5stuaSnl0hP3z4MHU7FovJ5/NNePs///xTNTU1+vLLL/X+\n++9Px4ivJdvWbFYWc3l5ue7cuaO7d+8qkUioqalJlZWVE9o2kUioqqpKe/bs0Y4dO6Z50smzNZvP\n59OTJ080PDwsx3HU3d2d9p3WP3EcR9FoVCUlJUZ9bCjZu16SvdlszSVJ7733nn777Tf19vZqZGRE\nZ8+e1YcffjihbUdGRvT111+roqJC4XB4egedpGxbs1lZzB6PR/X19QqHw3r33Xe1c+dOlZaWat++\nffrpp58kSVevXlUgENDJkyf1+eefq7S0VJLU0tKijo4ONTQ0qKysTGVlZeP+CjiTbM3mdru1ceNG\nnT59Wk1NTVq6dKny8vLU2dmpu3fvSnr2/dixY8fU09OjS5cuqampSZLU09OjgYEB3b59Wy0tLWpp\nadGjR48yGSfF1vWS7M1may7pWba9e/fqiy++UGVlpcLhsILBoOrr63Xx4kVJ0s2bN/XRRx/p/Pnz\n+vbbb7V161ZJz/470i+//KL29nZ98skn+uSTT3Tr1q1MxknJtjVzveyzd9NFIpFkbW1tpseYcpFI\nRLbmep0/IMkGfr/f2jWzMZdkb7ZIJKLt27dneowp19bWZuV6Sal9cdyX3bPyihkAAFNRzAAAGIRi\nBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAw\nCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAM4kom\nk5meYdIOHjzojI6OWvemwuPxaHR0NNNjTDm3262xsbFMjzEtbM2WTCblcrkyPca0sDWbrblsPcYk\nye12j33zzTdzXrzfk4lh/q3R0VF3bW1tpseYcpFIRLbm2r59e6bHmBZtbW1WZmtra1MsFsv0GNPC\n7/dbmc3mXDYeY5LU1tb20gtM6646AQDIZhQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACD\nUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMA\nAAahmAEAMAjFDACAQWZtMUejUS1fvlzBYFCHDh0a93hHR4dWr14tj8ej1tbW1P1dXV1av369SktL\ntWrVKjU3N8/k2BNia7YrV66ooqJCmzdv1tGjR8c9fu3aNe3cuVNlZWU6d+5c6v5bt27p008/1dat\nW7Vt2zZFo9GZHPuVbM0lSffv39eJEyd0/PhxXb9+fdzj/f39OnnypI4cOaKenp7U/Y8ePdKpU6fU\n1NSk5uZmdXd3z+TYr2RrLsnebNl0nHmm/V8wkOM4qqmp0fnz5xUIBFReXq7KykqtXLky9ZyioiI1\nNDTo8OHDadvOnz9fx44d07Jly9Tf3681a9YoHA4rNzd3pmO8lK3ZHMfRwYMH9cMPPyg/P1/V1dXa\ntGmTli5dmnrOokWLdODAATU2NqZt+8Ybb+i7777T22+/rcHBQe3atUsbNmzQwoULZzrGOLbmkqSx\nsTFdvnxZFRUV8nq9amtrU3FxsfLy8lLPWbBggUKhkLq6utK29Xg8CoVCys3NVTweV2trqwoLCzV3\n7tyZjjGOrbkke7Nl23E2K4u5s7NTwWBQS5YskSRVV1ervb09rbyKi4slSW53+ocKJSUlqZ8LCgrk\n8/k0NDRkRHlJ9ma7ceOGioqKVFhYKEn6+OOPdfHixbQDa/HixZIkl8uVtu3zvJLk8/mUl5enx48f\nG1FgtuaSpMHBQeXk5KTmCQaDunfvXtpJ/vljL2b7733O6/Vq3rx5evr0qREneVtzSfZmy7bjbFZ+\nlN3X15daIEkKBALq6+ub9Ot0dnYqkUikLW6m2ZptcHBQ+fn5qdt+v1+xWGzSr3Pjxg2NjIyk/Y4y\nydZckhSPx+X1elO3vV6v4vH4pF8nFovJcRzl5ORM5XivzdZckr3Zsu04m5VXzMlkctx9L75LepWB\ngQHt3r1bjY2N4648M8nWbFORa2hoSHv37lVdXR25skQ8HteFCxcUCoUm/Xsxma25JDOzZdtxZtdR\nPEGBQEAPHjxI3e7t7VVBQcGEtx8eHtaWLVtUV1endevWTceIr83WbH6/Xw8fPkzdjsVi8vl8E97+\nzz//VE1Njb788ku9//770zHia7E1lzT+auvFq7FXSSQSOnPmjNauXZt2tZNptuaS7M2WbcfZrCzm\n8vJy3blzR3fv3lUikVBTU5MqKysntG0ikVBVVZX27NmjHTt2TPOkk2drtvfee0+//fabent7NTIy\norNnz+rDDz+c0LYjIyP6+uuvVVFRoXA4PL2DTpKtuaRn38c9efJEw8PDchxH3d3dad/X/RPHcRSN\nRlVSUmLM1ynP2ZpLsjdbth1ns/KjbI/Ho/r6eoXDYTmOo88++0ylpaXat2+fPvjgA1VWVurq1auq\nqqrS48eP9fPPP6u2tla//vqrWlpa1NHRod9//10NDQ2SpIaGBpWVlWU21P/H1mwej0d79+7VF198\nIcdxVFVVpWAwqPr6epWWlmrTpk26efOmvvrqK/3xxx+6dOmSvv/+e/3444+KRqP65Zdf9OTJE7W3\nt0uS6urqtGLFigynsjeX9OyPCzdu3KjTp08rmUxqxYoVysvLU2dnp9566y298847GhwcVDQa1d9/\n/6179+7p6tWrqq6uVk9PjwYGBvTXX3/p9u3bkqRQKKQ333wzw6nszSXZmy3bjjPXyz57N10kEknW\n1tZmeowpF4lEZGuu7du3Z3qMadHW1mZltra2ttf645hs8Lp/+GM6m3PZeIxJz46z2tracV92z8qP\nsgEAMBXFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAA\nDEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DM\nAAAYhGIGAMAgrmQymekZJm3//v2Oy+Wy7k3FnDlz5DhOpseYch6PR6Ojo5keY1rYmi2ZTMrlcmV6\njGlhazZbzx+2rpckJZPJsf3798958X5PJob5t1wulzsWi2V6jCnn9/tVW1ub6TGmXCQSsTKXZG+2\nSCQiG48x6dlxZmM2m88fNq6XJPn9/pdeYFp31QkAQDajmAEAMAjFDACAQShmAAAMQjEDAGAQihkA\nAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAU\nMwAABqGYAQAwCMUMAIBBKGYAAAwya4v5/v37OnHihI4fP67r16+Pe7y/v18nT57UkSNH1NPTk7r/\n0aNHOnXqlJqamtTc3Kzu7u6ZHHtCotGoli9frmAwqEOHDo17vKOjQ6tXr5bH41Fra2vq/q6uLq1f\nv16lpaVatWqVmpubZ3LsVyJXduWS7D3ObM0l2bs/ZtOaeab9XzDQ2NiYLl++rIqKCnm9XrW1tam4\nuFh5eXmp5yxYsEChUEhdXV1p23o8HoVCIeXm5ioej6u1tVWFhYWaO3fuTMd4KcdxVFNTo/PnzysQ\nCKi8vFyVlZVauXJl6jlFRUVqaGjQ4cOH07adP3++jh07pmXLlqm/v19r1qxROBxWbm7uTMcYh1zZ\nlUuy9zizNZdk7/6YbWs2K4t5cHBQOTk5WrhwoSQpGAzq3r17aYv0/DGXy5W27X/vZF6vV/PmzdPT\np0+NObA6OzsVDAa1ZMkSSVJ1dbXa29vTDqzi4mJJktud/oFJSUlJ6ueCggL5fD4NDQ0ZcWCRK7ty\nSfYeZ7bmkuzdH7NtzWblR9nxeFxerzd12+v1Kh6PT/p1YrGYHMdRTk7OVI73r/T19amwsDB1OxAI\nqK+vb9Kv09nZqUQioaVLl07leK+NXP/MtFySvceZrbkke/fHbFuzWXnFPBXi8bguXLigUCg07h1W\nJiWTyXH3TXa+gYEB7d69W42NjePeFWcKuf43E3NNFVOPs3/L1Fzsj//bTK6ZPb+1SXjx3dKL76Ze\nJZFI6MyZM1q7dq3y8/OnY8TXFggE9ODBg9Tt3t5eFRQUTHj74eFhbdmyRXV1dVq3bt10jPhayPVy\npuaS7D3ObM0l2bs/Ztuazcpi9vl8evLkiYaHh+U4jrq7u1Pfm7yK4ziKRqMqKSkx5mOa/1ZeXq47\nd+7o7t27SiQSampqUmVl5YS2TSQSqqqq0p49e7Rjx45pnnRyyDWeybkke48zW3NJ9u6P2bZms/Kj\nbLfbrY0bN+r06dNKJpNasWKF8vLy1NnZqbfeekvvvPOOBgcHFY1G9ffff+vevXu6evWqqqur1dPT\no4GBAf3111+6ffu2JCkUCunNN9/McKpnPB6P6uvrFQ6H5TiOPvvsM5WWlmrfvn364IMPVFlZqatX\nr6qqqkqPHz/Wzz//rNraWv36669qaWlRR0eHfv/9dzU0NEiSGhoaVFZWltlQIle25ZLsPc5szSXZ\nuz9m25q5XvadgukikUgyFotleowp5/f7VVtbm+kxplwkErEyl2RvtkgkIhuPMenZcWZjNpvPHzau\nl5Ras3FfWM/Kj7IBADAVxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAw\nCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjED\nAGAQihkAAINQzAAAGIRiBgDAIK5kMpnpGSatrq7OcRzHujcVHo9Ho6OjmR5jyrndbo2NjWV6jGlh\n65olk0m5XK5MjzEt5syZI8dxMj3GlLN1X7T5/OF2u8e++eabOS/e78nEMP+W4zju2traTI8x5SKR\niGzNtX379kyPMS3a2tqsXbNYLJbpMaaF3++3ds1szWXx+eOlF5jWXXUCAJDNKGYAAAxCMQMAYBCK\nGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDA\nIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABhk1hZzNBrV8uXLFQwGdejQoXGP\nd3R0aPXq1fJ4PGptbU3d39XVpfXr16u0tFSrVq1Sc3PzTI49IbZmu3LliioqKrR582YdPXp03OPX\nrl3Tzp07VVZWpnPnzqXuv3Xrlj799FNt3bpV27ZtUzQancmxX8nW9ZKk+/fv68SJEzp+/LiuX78+\n7vH+/n6dPHlSR44cUU9PT+r+R48e6dSpU2pqalJzc7O6u7tncuxXsnnNbM2WTecPz7T/CwZyHEc1\nNTU6f/68AoGAysvLVVlZqZUrV6aeU1RUpIaGBh0+fDht2/nz5+vYsWNatmyZ+vv7tWbNGoXDYeXm\n5s50jJeyNZvjODp48KB++OEH5efnq7q6Wps2bdLSpUtTz1m0aJEOHDigxsbGtG3feOMNfffdd3r7\n7bc1ODioXbt2acOGDVq4cOFMxxjH1vWSpLGxMV2+fFkVFRXyer1qa2tTcXGx8vLyUs9ZsGCBQqGQ\nurq60rb1eDwKhULKzc1VPB5Xa2urCgsLNXfu3JmOMY7Na2Zrtmw7f8zKYu7s7FQwGNSSJUskSdXV\n1Wpvb0/b+YqLiyVJbnf6hwolJSWpnwsKCuTz+TQ0NGTEzifZm+3GjRsqKipSYWGhJOnjjz/WxYsX\n0w6sxYsXS5JcLlfats/zSpLP51NeXp4eP35sRDHbul6SNDg4qJycnNTvORgM6t69e2nF/PyxF9fs\nvzN4vV7NmzdPT58+NaKYbV4zW7Nl2/ljVn6U3dfXl1ogSQoEAurr65v063R2diqRSKQtbqbZmm1w\ncFD5+fmp236/X7FYbNKvc+PGDY2MjKT9jjLJ1vWSpHg8Lq/Xm7rt9XoVj8cn/TqxWEyO4ygnJ2cq\nx3ttNq+Zrdmy7fwxK6+Yk8nkuPtefJf0KgMDA9q9e7caGxvHvXPMJFuzTUWuoaEh7d27V3V1dVbl\nMnG9pko8HteFCxcUCoUm/XuZLjavma3Zsu38YcZvbYYFAgE9ePAgdbu3t1cFBQUT3n54eFhbtmxR\nXV2d1q1bNx0jvjZbs/n9fj18+DB1OxaLyefzTXj7P//8UzU1Nfryyy/1/vvvT8eIr8XW9ZLGXyG/\neAX9KolEQmfOnNHatWvTrnYyzeY1szVbtp0/ZmUxl5eX686dO7p7964SiYSamppUWVk5oW0TiYSq\nqqq0Z88e7dixY5onnTxbs7333nv67bff1Nvbq5GREZ09e1YffvjhhLYdGRnR119/rYqKCoXD4ekd\ndJJsXS/p2fdxT5480fDwsBzHUXd3d9r3df/EcRxFo1GVlJQY83Hoczavma3Zsu38MSuL2ePxqL6+\nXuFwWO+++6527typ0tJS7du3Tz/99JMk6erVqwoEAjp58qQ+//xzlZaWSpJaWlrU0dGhhoYGlZWV\nqaysbNxflGaSrdk8Ho/27t2rL774QpWVlQqHwwoGg6qvr9fFixclSTdv3tRHH32k8+fP69tvv9XW\nrVslPfvvH7/88ova29v1ySef6JNPPtGtW7cyGSfF1vWSnv1x0MaNG3X69Gk1NTVp6dKlysvLU2dn\np+7evSvp2Xd/x44dU09Pjy5duqSmpiZJUk9PjwYGBnT79m21tLSopaVFjx49ymScFJvXzNZs2Xb+\ncL3ss3fTRSKRZG1tbabHmHKRSES25tq+fXumx5gWbW1t1q7Z6/xxTDbw+/3WrpmtuSw/f4z7sntW\nXjEDAGAqihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwA\nABiEYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAah\nmAEAMAjFDACAQVzJZDLTM0zagQMHnLGxMeveVHg8Ho2OjmZ6jClnay5JcrvdGhsby/QYU87WXJK9\n2Ww9zmxdL0lyu91j33zzzZy3SXG9AAARWUlEQVQX7/dkYph/a2xszL19+/ZMjzHl2traVFtbm+kx\nplwkErEyl/Qsm637oo25JHuz2Xz+sHG9JKmtre2lF5jWXXUCAJDNKGYAAAxCMQMAYBCKGQAAg1DM\nAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAG\noZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDzNpivnLliioqKrR582YdPXp03OPXrl3Tzp07VVZW\npnPnzqXuv3Xrlj799FNt3bpV27ZtUzQancmxJyQajWr58uUKBoM6dOjQuMc7Ojq0evVqeTwetba2\npu7v6urS+vXrVVpaqlWrVqm5uXkmx34lW3PZvC/ams3WXBLHmQlr5pn2f8FAjuPo4MGD+uGHH5Sf\nn6/q6mpt2rRJS5cuTT1n0aJFOnDggBobG9O2feONN/Tdd9/p7bff1uDgoHbt2qUNGzZo4cKFMx3j\npRzHUU1Njc6fP69AIKDy8nJVVlZq5cqVqecUFRWpoaFBhw8fTtt2/vz5OnbsmJYtW6b+/n6tWbNG\n4XBYubm5Mx1jHJtz2bwv2pjN1lwSx5kpazYri/nGjRsqKipSYWGhJOnjjz/WxYsX0xZp8eLFkiSX\ny5W2bXFxcepnn8+nvLw8PX782JgDq7OzU8FgUEuWLJEkVVdXq729Pe3Aep7B7U7/wKSkpCT1c0FB\ngXw+n4aGhow4sGzNZfO+aGs2W3NJHGeSGWs2Kz/KHhwcVH5+fuq23+9XLBab9OvcuHFDIyMjqcU2\nQV9fX9o8gUBAfX19k36dzs5OJRKJtB03k2zNZfO+aGs2W3NJHGevMlNrNiuvmJPJ5Lj7XnyX9CpD\nQ0Pau3ev6urqxr1zzKSpyDYwMKDdu3ersbHRmGzk+t9s3hdNzGZrLonj7J/M5JqZ8VubYX6/Xw8f\nPkzdjsVi8vl8E97+zz//VE1Njb788ku9//770zHiawsEAnrw4EHqdm9vrwoKCia8/fDwsLZs2aK6\nujqtW7duOkZ8LbbmsnlftDWbrbkkjrP/ZabXbFYW83vvvafffvtNvb29GhkZ0dmzZ/Xhhx9OaNuR\nkRF9/fXXqqioUDgcnt5BX0N5ebnu3Lmju3fvKpFIqKmpSZWVlRPaNpFIqKqqSnv27NGOHTumedLJ\nsTWXzfuirdlszSVxnL1MJtZsVhazx+PR3r179cUXX6iyslLhcFjBYFD19fW6ePGiJOnmzZv66KOP\ndP78eX377bfaunWrpGf/leCXX35Re3u7PvnkE33yySe6detWJuOk8Xg8qq+vVzgc1rvvvqudO3eq\ntLRU+/bt008//SRJunr1qgKBgE6ePKnPP/9cpaWlkqSWlhZ1dHSooaFBZWVlKisrU1dXVybjpNic\ny+Z90cZstuaSOM5MWTPXyz57N10kEklu374902NMuba2NtXW1mZ6jCkXiUSszCU9y2brvmhjLsne\nbDafP2xcLym1ZuO+7J6VV8wAAJiKYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAA\ng1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEFcymcz0DJO2f/9+x+VyWfemYs6cOXIcJ9NjTDmPx6PR\n0dFMjzEtbM1may7J3mzJZFIulyvTY0w5W3NJUjKZHNu/f/+cF+/3ZGKYf8vlcrljsVimx5hyfr9f\ntbW1mR5jykUiEStzSfZmszWXZG+2SCQiW8+LNuaSJL/f/9ILTOuuOgEAyGYUMwAABqGYAQAwCMUM\nAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQ\nihkAAINQzAAAGIRiBgDAIBQzAAAGoZgBADAIxQwAgEEoZgAADDJri/n+/fs6ceKEjh8/ruvXr497\nvL+/XydPntSRI0fU09OTuv/Ro0c6deqUmpqa1NzcrO7u7pkce0Ki0aiWL1+uYDCoQ4cOjXu8o6ND\nq1evlsfjUWtra+r+rq4urV+/XqWlpVq1apWam5tncuxXIld25ZLszWZrLsnec2M25fJM+79goLGx\nMV2+fFkVFRXyer1qa2tTcXGx8vLyUs9ZsGCBQqGQurq60rb1eDwKhULKzc1VPB5Xa2urCgsLNXfu\n3JmO8VKO46impkbnz59XIBBQeXm5KisrtXLlytRzioqK1NDQoMOHD6dtO3/+fB07dkzLli1Tf3+/\n1qxZo3A4rNzc3JmOMQ65siuXZG82W3NJ9p4bsy3XrCzmwcFB5eTkaOHChZKkYDCoe/fupS3S88dc\nLlfatv99AHm9Xs2bN09Pnz41YueTpM7OTgWDQS1ZskSSVF1drfb29rSTRnFxsSTJ7U7/wKSkpCT1\nc0FBgXw+n4aGhow4aZAru3JJ9mazNZdk77kx23LNyo+y4/G4vF5v6rbX61U8Hp/068RiMTmOo5yc\nnKkc71/p6+tTYWFh6nYgEFBfX9+kX6ezs1OJREJLly6dyvFeG7n+mWm5JHuz2ZpLsvfcmG25ZuUV\n81SIx+O6cOGCQqHQuHdYmZRMJsfdN9n5BgYGtHv3bjU2No57x58p5PrfTMwl2ZvN1lxTxdRz4781\nk7ns2iMm6MV3Sy++m3qVRCKhM2fOaO3atcrPz5+OEV9bIBDQgwcPUrd7e3tVUFAw4e2Hh4e1ZcsW\n1dXVad26ddMx4msh18uZmkuyN5utuSR7z43ZlmtWFrPP59OTJ080PDwsx3HU3d2d+k7oVRzHUTQa\nVUlJiVEfQT1XXl6uO3fu6O7du0okEmpqalJlZeWEtk0kEqqqqtKePXu0Y8eOaZ50csg1nsm5JHuz\n2ZpLsvfcmG25ZmUxu91ubdy4UadPn1ZTU5OWLl2qvLw8dXZ26u7du5Ke/bHAsWPH1NPTo0uXLqmp\nqUmS1NPTo4GBAd2+fVstLS1qaWnRo0ePMhknjcfjUX19vcLhsN59913t3LlTpaWl2rdvn3766SdJ\n0tWrVxUIBHTy5El9/vnnKi0tlSS1tLSoo6NDDQ0NKisrU1lZ2bi/UMwUcmVXLsnebLbmkuw9N2Zb\nLtfLvi8xXSQSScZisUyPMeX8fr9qa2szPcaUi0QiVuaS7M1may7J3myRSES2nhdtzCWlzvnjvrCe\nlVfMAACYimIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBB\nKGYAAAziSiaTmZ5h0vbv3++4XC7r3lQkk0m5XK5MjzHl5syZI8dxMj3GtLB1zdxut8bGxjI9xrTw\neDwaHR3N9BhTztZ90ebzx5w5c8b+7//+b86L93syMcy/5XK53LFYLNNjTDm/3y9bc9XW1mZ6jGkR\niUSsXbPt27dneoxp0dbWZuX+aPO+aON6SVIkEnnpBaZ1V50AAGQzihkAAINQzAAAGIRiBgDAIBQz\nAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABqGYAQAwCMUMAIBB\nKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAaZtcV8//59nThxQsePH9f169fHPd7f36+T\nJ0/qyJEj6unpSd3/6NEjnTp1Sk1NTWpublZ3d/dMjj0htmaLRqNavny5gsGgDh06NO7xjo4OrV69\nWh6PR62tran7u7q6tH79epWWlmrVqlVqbm6eybFfydb1kqQrV66ooqJCmzdv1tGjR8c9fu3aNe3c\nuVNlZWU6d+5c6v5bt27p008/1datW7Vt2zZFo9GZHPuVbN0XJXv3x2xaM8+0/wsGGhsb0+XLl1VR\nUSGv16u2tjYVFxcrLy8v9ZwFCxYoFAqpq6srbVuPx6NQKKTc3FzF43G1traqsLBQc+fOnekYL2Vr\nNsdxVFNTo/PnzysQCKi8vFyVlZVauXJl6jlFRUVqaGjQ4cOH07adP3++jh07pmXLlqm/v19r1qxR\nOBxWbm7uTMcYx9b1kp6t2cGDB/XDDz8oPz9f1dXV2rRpk5YuXZp6zqJFi3TgwAE1NjambfvGG2/o\nu+++09tvv63BwUHt2rVLGzZs0MKFC2c6xji27ouSvftjtq3ZrCzmwcFB5eTkpA7yYDCoe/fupe18\nzx9zuVxp2/73Yni9Xs2bN09Pnz41YueT7M3W2dmpYDCoJUuWSJKqq6vV3t6edmAVFxdLktzu9A+C\nSkpKUj8XFBTI5/NpaGjIiJOhreslSTdu3FBRUZEKCwslSR9//LEuXryYVsyLFy+WND7b87WUJJ/P\np7y8PD1+/NiIYrZ1X5Ts3R+zbc1m5UfZ8XhcXq83ddvr9Soej0/6dWKxmBzHUU5OzlSO96/Ymq2v\nry91gpekQCCgvr6+Sb9OZ2enEolEWjlkkq3rJT07yefn56du+/1+xWKxSb/OjRs3NDIykrb+mWTr\nvijZuz9m25rNyivmqRCPx3XhwgWFQqFx7xyznYnZksnkuPsmO9vAwIB2796txsbGce+Ks5mJ6yVN\nzZoNDQ1p7969qqurM2bN2Bf/mYn7Y7atmV17xAS9+C7wxXeJr5JIJHTmzBmtXbs27YrABLZmCwQC\nevDgQep2b2+vCgoKJrz98PCwtmzZorq6Oq1bt246Rnwttq6X9OwK+eHDh6nbsVhMPp9vwtv/+eef\nqqmp0Zdffqn3339/OkZ8Lbbui5K9+2O2rdmsLGafz6cnT55oeHhYjuOou7s77Tutf+I4jqLRqEpK\nSoz6COo5W7OVl5frzp07unv3rhKJhJqamlRZWTmhbROJhKqqqrRnzx7t2LFjmiedHFvXS5Lee+89\n/fbbb+rt7dXIyIjOnj2rDz/8cELbjoyM6Ouvv1ZFRYXC4fD0DjpJtu6Lkr37Y7at2az8KNvtdmvj\nxo06ffq0ksmkVqxYoby8PHV2duqtt97SO++8o8HBQUWjUf3999+6d++erl69qurqavX09GhgYEB/\n/fWXbt++LUkKhUJ68803M5zqGVuzeTwe1dfXKxwOy3EcffbZZyotLdW+ffv0wQcfqLKyUlevXlVV\nVZUeP36sn3/+WbW1tfr111/V0tKijo4O/f7772poaJAkNTQ0qKysLLOhZO96Sc/WbO/evfriiy/k\nOI6qqqoUDAZVX1+v0tJSbdq0STdv3tRXX32lP/74Q5cuXdL333+vH3/8UdFoVL/88ouePHmi9vZ2\nSVJdXZ1WrFiR4VT27ouSvftjtq2Z62WfvZsuEokkX+ePSEz3un8cYzq/36/a2tpMjzEtIpGItWu2\nffv2TI8xLdra2qzcH23eF21cL+nZmtXW1o77sntWfpQNAICpKGYAAAxCMQMAYBCKGQAAg1DMAAAY\nhGIGAMAgFDMAAAahmAEAMAjFDACAQShmAAAMQjEDAGAQihkAAINQzAAAGIRiBgDAIBQzAAAGoZgB\nADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiEYgYAwCAUMwAABnElk8lMzzBp+/fvf+hyufyZ\nnmOqJZPJMZfLZd2bpTlz5ow5jmNdLsneNXO73WNjY2PW5ZIkj8czNjo6al02W/dFm88fHo8n9p//\n/Cf/xfuzspgBALCVle9CAADIVhQzAAAGoZgBADAIxQwAgEEoZgAADEIxAwBgEIoZAACDUMwAABiE\nYgYAwCAUMwAABqGYAQAwCMUMAIBBKGYAAAxCMQMAYBCKGQAAg1DMAAAYhGIGAMAgFDMAAAahmAEA\nMAjFDACAQShmAAAMQjEDAGCQ/wdJuZEoaHGMKwAAAABJRU5ErkJggg==\n",
"<matplotlib.figure.Figure at 0x7f874e648390>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import itertools\n",
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
"import random\n",
"# http://stackoverflow.com/questions/10194482/custom-matplotlib-plot-chess-board-like-table-with-colored-cells\n",
"\n",
"from matplotlib.table import Table\n",
"\n",
"def main():\n",
" grid_table(8, 8)\n",
" plt.axis('scaled')\n",
" plt.show()\n",
"\n",
"def grid_table(nrows, ncols):\n",
" fig, ax = plt.subplots()\n",
" ax.set_axis_off()\n",
" colors = ['white', 'lightgrey', 'dimgrey']\n",
" tb = Table(ax, bbox=[0,0,2,2])\n",
" for i,j in itertools.product(range(ncols), range(nrows)):\n",
" tb.add_cell(i, j, 2./ncols, 2./nrows, text='{:0.2f}'.format(0.1234), \n",
" loc='center', facecolor=random.choice(colors), edgecolor='grey') # facecolors=\n",
" ax.add_table(tb)\n",
" #ax.plot([0, .3], [.2, .2])\n",
" #ax.add_line(plt.Line2D([0.3, 0.5], [0.7, 0.7], linewidth=2, color='blue'))\n",
" return fig\n",
"\n",
"main()"
]
},
{
"cell_type": "code",
"execution_count": 54,
"collapsed": true
},
"outputs": [],
"source": [
"import collections\n",
"class defaultkeydict(collections.defaultdict):\n",
" \"\"\"Like defaultdict, but the default_factory is a function of the key.\n",
" >>> d = defaultkeydict(abs); d[-42]\n",
" 42\n",
" \"\"\"\n",
" def __missing__(self, key):\n",
" self[key] = self.default_factory(key)\n",
" return self[key]"
]
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"# Simulated Annealing visualisation using TSP\n",
"\n",
"Applying simulated annealing in traveling salesman problem to find the shortest tour to travel all cities in Romania. Distance between two cities is taken as the euclidean distance."
]
},
{
"cell_type": "code",
"execution_count": 60,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"class TSP_problem(Problem):\n",
"\n",
" '''\n",
" subclass of Problem to define various functions \n",
" '''\n",
"\n",
" def two_opt(self, state):\n",
" '''\n",
" Neighbour generating function for Traveling Salesman Problem\n",
" '''\n",
" state2 = state[:]\n",
" l = random.randint(0, len(state2) - 1)\n",
" r = random.randint(0, len(state2) - 1)\n",
" if l > r:\n",
" l, r = r,l\n",
" state2[l : r + 1] = reversed(state2[l : r + 1])\n",
" return state2\n",
"\n",
" def actions(self, state):\n",
" '''\n",
" action that can be excuted in given state\n",
" '''\n",
" return [self.two_opt]\n",
" \n",
" def result(self, state, action):\n",
" '''\n",
" result after applying the given action on the given state\n",
" '''\n",
" return action(state)\n",
"\n",
" def path_cost(self, c, state1, action, state2):\n",
" '''\n",
" total distance for the Traveling Salesman to be covered if in state2\n",
" '''\n",
" cost = 0\n",
" for i in range(len(state2) - 1):\n",
" cost += distances[state2[i]][state2[i + 1]]\n",
" cost += distances[state2[0]][state2[-1]]\n",
" return cost\n",
" \n",
" def value(self, state):\n",
" '''\n",
" value of path cost given negative for the given state\n",
" '''\n",
" return -1 * self.path_cost(None, None, None, state)\n"
]
},
{
"cell_type": "code",
"execution_count": 61,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def init():\n",
" ''' \n",
" Initialisation function for matplotlib animation\n",
" '''\n",
" line.set_data([], [])\n",
" for name, coordinates in romania_map.locations.items():\n",
" ax.annotate(\n",
" name,\n",
" xy=coordinates, xytext=(-10, 5), textcoords='offset points', size = 10)\n",
" text.set_text(\"Cost = 0 i = 0\" )\n",
"\n",
" return line, \n",
"\n",
"def animate(i):\n",
" '''\n",
" Animation function to set next path and print its cost.\n",
" '''\n",
" x, y = [], []\n",
" for name in states[i]:\n",
" x.append(romania_map.locations[name][0])\n",
" y.append(romania_map.locations[name][1])\n",
" x.append(romania_map.locations[states[i][0]][0])\n",
" y.append(romania_map.locations[states[i][0]][1])\n",
" line.set_data(x,y) \n",
" text.set_text(\"Cost = \" + str('{:.2f}'.format(TSP_problem.path_cost(None, None, None, None, states[i]))))\n",
" return line,"
]
},
{
"cell_type": "code",
"execution_count": 62,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"799.9999880790713\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"%matplotlib notebook\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import animation\n",
"import numpy as np\n",
"\n",
"font = {'family': 'roboto',\n",
" 'color': 'darkred',\n",
" 'weight': 'normal',\n",
" 'size': 12,\n",
" }\n",
"\n",
"cities = []\n",
"distances ={}\n",
"states = []\n",
"\n",
"# creating plotting area\n",
"fig = plt.figure(figsize = (8,6))\n",
"ax = plt.axes(xlim=(60, 600), ylim=(245, 600))\n",
"line, = ax.plot([], [], c=\"b\",linewidth = 1.5, marker = 'o', markerfacecolor = 'r', markeredgecolor = 'r',markersize = 10)\n",
"text = ax.text(450, 565, \"\", fontdict = font)\n",
"\n",
"# creating initial path\n",
"for name in romania_map.locations.keys(): \n",
" distances[name] = {}\n",
" cities.append(name)\n",
"\n",
"\n",
"# distances['city1']['city2'] contains euclidean distance between their coordinates\n",
"for name_1,coordinates_1 in romania_map.locations.items():\n",
" for name_2,coordinates_2 in romania_map.locations.items():\n",
" distances[name_1][name_2] = np.linalg.norm([coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])\n",
" distances[name_2][name_1] = np.linalg.norm([coordinates_1[0] - coordinates_2[0], coordinates_1[1] - coordinates_2[1]])\n",
"\n",
"# creating the problem \n",
"tsp_problem = TSP_problem(cities)\n",
"\n",
"# all the states as a 2-D list of paths\n",
"states = simulated_annealing_full(tsp_problem)\n",
"\n",
"# calling the matplotlib animation function \n",
"anim = animation.FuncAnimation(fig, animate, init_func = init,\n",
" frames = len(states), interval = len(states), blit = True, repeat = False)\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Iterative Simulated Annealing\n",
"\n",
"Providing the output of the previous run as input to the next run to give better performance."
]
},
{
"cell_type": "code",
"execution_count": 63,
"metadata": {},
"outputs": [
{
"data": {
"application/javascript": [
"/* Put everything inside the global mpl namespace */\n",
"window.mpl = {};\n",
"\n",
"\n",
"mpl.get_websocket_type = function() {\n",
" if (typeof(WebSocket) !== 'undefined') {\n",
" return WebSocket;\n",
" } else if (typeof(MozWebSocket) !== 'undefined') {\n",
" return MozWebSocket;\n",
" } else {\n",
" alert('Your browser does not have WebSocket support.' +\n",
" 'Please try Chrome, Safari or Firefox ≥ 6. ' +\n",
" 'Firefox 4 and 5 are also supported but you ' +\n",
" 'have to enable WebSockets in about:config.');\n",
" };\n",
"}\n",
"\n",
"mpl.figure = function(figure_id, websocket, ondownload, parent_element) {\n",
" this.id = figure_id;\n",
"\n",
" this.ws = websocket;\n",
"\n",
" this.supports_binary = (this.ws.binaryType != undefined);\n",
"\n",
" if (!this.supports_binary) {\n",
" var warnings = document.getElementById(\"mpl-warnings\");\n",
" if (warnings) {\n",
" warnings.style.display = 'block';\n",
" warnings.textContent = (\n",
" \"This browser does not support binary websocket messages. \" +\n",
" \"Performance may be slow.\");\n",
" }\n",
" }\n",
"\n",
" this.imageObj = new Image();\n",
"\n",
" this.context = undefined;\n",
" this.message = undefined;\n",
" this.canvas = undefined;\n",
" this.rubberband_canvas = undefined;\n",
" this.rubberband_context = undefined;\n",
" this.format_dropdown = undefined;\n",
"\n",
" this.image_mode = 'full';\n",
"\n",
" this.root = $('<div/>');\n",
" this._root_extra_style(this.root)\n",
" this.root.attr('style', 'display: inline-block');\n",
"\n",
" $(parent_element).append(this.root);\n",
"\n",
" this._init_header(this);\n",
" this._init_canvas(this);\n",
" this._init_toolbar(this);\n",
"\n",
" var fig = this;\n",
"\n",
" this.waiting = false;\n",
"\n",
" this.ws.onopen = function () {\n",
" fig.send_message(\"supports_binary\", {value: fig.supports_binary});\n",
" fig.send_message(\"send_image_mode\", {});\n",
" if (mpl.ratio != 1) {\n",
" fig.send_message(\"set_dpi_ratio\", {'dpi_ratio': mpl.ratio});\n",
" }\n",
" fig.send_message(\"refresh\", {});\n",
" }\n",
"\n",
" this.imageObj.onload = function() {\n",
" if (fig.image_mode == 'full') {\n",
" // Full images could contain transparency (where diff images\n",
" // almost always do), so we need to clear the canvas so that\n",
" // there is no ghosting.\n",
" fig.context.clearRect(0, 0, fig.canvas.width, fig.canvas.height);\n",
" }\n",
" fig.context.drawImage(fig.imageObj, 0, 0);\n",
" };\n",
"\n",
" this.imageObj.onunload = function() {\n",
" fig.ws.close();\n",
" }\n",
"\n",
" this.ws.onmessage = this._make_on_message_function(this);\n",
"\n",
" this.ondownload = ondownload;\n",
"}\n",
"\n",
"mpl.figure.prototype._init_header = function() {\n",
" var titlebar = $(\n",
" '<div class=\"ui-dialog-titlebar ui-widget-header ui-corner-all ' +\n",
" 'ui-helper-clearfix\"/>');\n",
" var titletext = $(\n",
" '<div class=\"ui-dialog-title\" style=\"width: 100%; ' +\n",
" 'text-align: center; padding: 3px;\"/>');\n",
" titlebar.append(titletext)\n",
" this.root.append(titlebar);\n",
" this.header = titletext[0];\n",
"}\n",
"\n",
"\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(canvas_div) {\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._init_canvas = function() {\n",
" var fig = this;\n",
"\n",
" var canvas_div = $('<div/>');\n",
"\n",
" canvas_div.attr('style', 'position: relative; clear: both; outline: 0');\n",
"\n",
" function canvas_keyboard_event(event) {\n",
" return fig.key_event(event, event['data']);\n",
" }\n",
"\n",
" canvas_div.keydown('key_press', canvas_keyboard_event);\n",
" canvas_div.keyup('key_release', canvas_keyboard_event);\n",
" this.canvas_div = canvas_div\n",
" this._canvas_extra_style(canvas_div)\n",
" this.root.append(canvas_div);\n",
"\n",
" var canvas = $('<canvas/>');\n",
" canvas.addClass('mpl-canvas');\n",
" canvas.attr('style', \"left: 0; top: 0; z-index: 0; outline: 0\")\n",
"\n",
" this.canvas = canvas[0];\n",
" this.context = canvas[0].getContext(\"2d\");\n",
"\n",
" var backingStore = this.context.backingStorePixelRatio ||\n",
"\tthis.context.webkitBackingStorePixelRatio ||\n",
"\tthis.context.mozBackingStorePixelRatio ||\n",
"\tthis.context.msBackingStorePixelRatio ||\n",
"\tthis.context.oBackingStorePixelRatio ||\n",
"\tthis.context.backingStorePixelRatio || 1;\n",
"\n",
" mpl.ratio = (window.devicePixelRatio || 1) / backingStore;\n",
"\n",
" var rubberband = $('<canvas/>');\n",
" rubberband.attr('style', \"position: absolute; left: 0; top: 0; z-index: 1;\")\n",
"\n",
" var pass_mouse_events = true;\n",
"\n",
" canvas_div.resizable({\n",
" start: function(event, ui) {\n",
" pass_mouse_events = false;\n",
" },\n",
" resize: function(event, ui) {\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" stop: function(event, ui) {\n",
" pass_mouse_events = true;\n",
" fig.request_resize(ui.size.width, ui.size.height);\n",
" },\n",
" });\n",
"\n",
" function mouse_event_fn(event) {\n",
" if (pass_mouse_events)\n",
" return fig.mouse_event(event, event['data']);\n",
" }\n",
"\n",
" rubberband.mousedown('button_press', mouse_event_fn);\n",
" rubberband.mouseup('button_release', mouse_event_fn);\n",
" // Throttle sequential mouse events to 1 every 20ms.\n",
" rubberband.mousemove('motion_notify', mouse_event_fn);\n",
"\n",
" rubberband.mouseenter('figure_enter', mouse_event_fn);\n",
" rubberband.mouseleave('figure_leave', mouse_event_fn);\n",
"\n",
" canvas_div.on(\"wheel\", function (event) {\n",
" event = event.originalEvent;\n",
" event['data'] = 'scroll'\n",
" if (event.deltaY < 0) {\n",
" event.step = 1;\n",
" } else {\n",
" event.step = -1;\n",
" }\n",
" mouse_event_fn(event);\n",
" });\n",
"\n",
" canvas_div.append(canvas);\n",
" canvas_div.append(rubberband);\n",
"\n",
" this.rubberband = rubberband;\n",
" this.rubberband_canvas = rubberband[0];\n",
" this.rubberband_context = rubberband[0].getContext(\"2d\");\n",
" this.rubberband_context.strokeStyle = \"#000000\";\n",
"\n",
" this._resize_canvas = function(width, height) {\n",
" // Keep the size of the canvas, canvas container, and rubber band\n",
" // canvas in synch.\n",
" canvas_div.css('width', width)\n",
" canvas_div.css('height', height)\n",
"\n",
" canvas.attr('width', width * mpl.ratio);\n",
" canvas.attr('height', height * mpl.ratio);\n",
" canvas.attr('style', 'width: ' + width + 'px; height: ' + height + 'px;');\n",
"\n",
" rubberband.attr('width', width);\n",
" rubberband.attr('height', height);\n",
" }\n",
"\n",
" // Set the figure to an initial 600x600px, this will subsequently be updated\n",
" // upon first draw.\n",
" this._resize_canvas(600, 600);\n",
"\n",
" // Disable right mouse context menu.\n",
" $(this.rubberband_canvas).bind(\"contextmenu\",function(e){\n",
" return false;\n",
" });\n",
"\n",
" function set_focus () {\n",
" canvas.focus();\n",
" canvas_div.focus();\n",
" }\n",
"\n",
" window.setTimeout(set_focus, 100);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items) {\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) {\n",
" // put a spacer in here.\n",
" continue;\n",
" }\n",
" var button = $('<button/>');\n",
" button.addClass('ui-button ui-widget ui-state-default ui-corner-all ' +\n",
" 'ui-button-icon-only');\n",
" button.attr('role', 'button');\n",
" button.attr('aria-disabled', 'false');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
"\n",
" var icon_img = $('<span/>');\n",
" icon_img.addClass('ui-button-icon-primary ui-icon');\n",
" icon_img.addClass(image);\n",
" icon_img.addClass('ui-corner-all');\n",
"\n",
" var tooltip_span = $('<span/>');\n",
" tooltip_span.addClass('ui-button-text');\n",
" tooltip_span.html(tooltip);\n",
"\n",
" button.append(icon_img);\n",
" button.append(tooltip_span);\n",
"\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" var fmt_picker_span = $('<span/>');\n",
"\n",
" var fmt_picker = $('<select/>');\n",
" fmt_picker.addClass('mpl-toolbar-option ui-widget ui-widget-content');\n",
" fmt_picker_span.append(fmt_picker);\n",
" nav_element.append(fmt_picker_span);\n",
" this.format_dropdown = fmt_picker[0];\n",
"\n",
" for (var ind in mpl.extensions) {\n",
" var fmt = mpl.extensions[ind];\n",
" var option = $(\n",
" '<option/>', {selected: fmt === mpl.default_extension}).html(fmt);\n",
" fmt_picker.append(option)\n",
" }\n",
"\n",
" // Add hover states to the ui-buttons\n",
" $( \".ui-button\" ).hover(\n",
" function() { $(this).addClass(\"ui-state-hover\");},\n",
" function() { $(this).removeClass(\"ui-state-hover\");}\n",
" );\n",
"\n",
" var status_bar = $('<span class=\"mpl-message\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"}\n",
"\n",
"mpl.figure.prototype.request_resize = function(x_pixels, y_pixels) {\n",
" // Request matplotlib to resize the figure. Matplotlib will then trigger a resize in the client,\n",
" // which will in turn request a refresh of the image.\n",
" this.send_message('resize', {'width': x_pixels, 'height': y_pixels});\n",
"}\n",
"\n",
"mpl.figure.prototype.send_message = function(type, properties) {\n",
" properties['type'] = type;\n",
" properties['figure_id'] = this.id;\n",
" this.ws.send(JSON.stringify(properties));\n",
"}\n",
"\n",
"mpl.figure.prototype.send_draw_message = function() {\n",
" if (!this.waiting) {\n",
" this.waiting = true;\n",
" this.ws.send(JSON.stringify({type: \"draw\", figure_id: this.id}));\n",
" }\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" var format_dropdown = fig.format_dropdown;\n",
" var format = format_dropdown.options[format_dropdown.selectedIndex].value;\n",
" fig.ondownload(fig, format);\n",
"}\n",
"\n",
"\n",
"mpl.figure.prototype.handle_resize = function(fig, msg) {\n",
" var size = msg['size'];\n",
" if (size[0] != fig.canvas.width || size[1] != fig.canvas.height) {\n",
" fig._resize_canvas(size[0], size[1]);\n",
" fig.send_message(\"refresh\", {});\n",
" };\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_rubberband = function(fig, msg) {\n",
" var x0 = msg['x0'] / mpl.ratio;\n",
" var y0 = (fig.canvas.height - msg['y0']) / mpl.ratio;\n",
" var x1 = msg['x1'] / mpl.ratio;\n",
" var y1 = (fig.canvas.height - msg['y1']) / mpl.ratio;\n",
" x0 = Math.floor(x0) + 0.5;\n",
" y0 = Math.floor(y0) + 0.5;\n",
" x1 = Math.floor(x1) + 0.5;\n",
" y1 = Math.floor(y1) + 0.5;\n",
" var min_x = Math.min(x0, x1);\n",
" var min_y = Math.min(y0, y1);\n",
" var width = Math.abs(x1 - x0);\n",
" var height = Math.abs(y1 - y0);\n",
"\n",
" fig.rubberband_context.clearRect(\n",
" 0, 0, fig.canvas.width, fig.canvas.height);\n",
"\n",
" fig.rubberband_context.strokeRect(min_x, min_y, width, height);\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_figure_label = function(fig, msg) {\n",
" // Updates the figure title.\n",
" fig.header.textContent = msg['label'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_cursor = function(fig, msg) {\n",
" var cursor = msg['cursor'];\n",
" switch(cursor)\n",
" {\n",
" case 0:\n",
" cursor = 'pointer';\n",
" break;\n",
" case 1:\n",
" cursor = 'default';\n",
" break;\n",
" case 2:\n",
" cursor = 'crosshair';\n",
" break;\n",
" case 3:\n",
" cursor = 'move';\n",
" break;\n",
" }\n",
" fig.rubberband_canvas.style.cursor = cursor;\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_message = function(fig, msg) {\n",
" fig.message.textContent = msg['message'];\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_draw = function(fig, msg) {\n",
" // Request the server to send over a new figure.\n",
" fig.send_draw_message();\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_image_mode = function(fig, msg) {\n",
" fig.image_mode = msg['mode'];\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Called whenever the canvas gets updated.\n",
" this.send_message(\"ack\", {});\n",
"}\n",
"\n",
"// A function to construct a web socket function for onmessage handling.\n",
"// Called in the figure constructor.\n",
"mpl.figure.prototype._make_on_message_function = function(fig) {\n",
" return function socket_on_message(evt) {\n",
" if (evt.data instanceof Blob) {\n",
" /* FIXME: We get \"Resource interpreted as Image but\n",
" * transferred with MIME type text/plain:\" errors on\n",
" * Chrome. But how to set the MIME type? It doesn't seem\n",
" * to be part of the websocket stream */\n",
" evt.data.type = \"image/png\";\n",
"\n",
" /* Free the memory for the previous frames */\n",
" if (fig.imageObj.src) {\n",
" (window.URL || window.webkitURL).revokeObjectURL(\n",
" fig.imageObj.src);\n",
" }\n",
"\n",
" fig.imageObj.src = (window.URL || window.webkitURL).createObjectURL(\n",
" evt.data);\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
" else if (typeof evt.data === 'string' && evt.data.slice(0, 21) == \"data:image/png;base64\") {\n",
" fig.imageObj.src = evt.data;\n",
" fig.updated_canvas_event();\n",
" fig.waiting = false;\n",
" return;\n",
" }\n",
"\n",
" var msg = JSON.parse(evt.data);\n",
" var msg_type = msg['type'];\n",
"\n",
" // Call the \"handle_{type}\" callback, which takes\n",
" // the figure and JSON message as its only arguments.\n",
" try {\n",
" var callback = fig[\"handle_\" + msg_type];\n",
" } catch (e) {\n",
" console.log(\"No handler for the '\" + msg_type + \"' message type: \", msg);\n",
" return;\n",
" }\n",
"\n",
" if (callback) {\n",
" try {\n",
" // console.log(\"Handling '\" + msg_type + \"' message: \", msg);\n",
" callback(fig, msg);\n",
" } catch (e) {\n",
" console.log(\"Exception inside the 'handler_\" + msg_type + \"' callback:\", e, e.stack, msg);\n",
" }\n",
" }\n",
" };\n",
"}\n",
"\n",
"// from http://stackoverflow.com/questions/1114465/getting-mouse-location-in-canvas\n",
"mpl.findpos = function(e) {\n",
" //this section is from http://www.quirksmode.org/js/events_properties.html\n",
" var targ;\n",
" if (!e)\n",
" e = window.event;\n",
" if (e.target)\n",
" targ = e.target;\n",
" else if (e.srcElement)\n",
" targ = e.srcElement;\n",
" if (targ.nodeType == 3) // defeat Safari bug\n",
" targ = targ.parentNode;\n",
"\n",
" // jQuery normalizes the pageX and pageY\n",
" // pageX,Y are the mouse positions relative to the document\n",
" // offset() returns the position of the element relative to the document\n",
" var x = e.pageX - $(targ).offset().left;\n",
" var y = e.pageY - $(targ).offset().top;\n",
"\n",
" return {\"x\": x, \"y\": y};\n",
"};\n",
"\n",
"/*\n",
" * return a copy of an object with only non-object keys\n",
" * we need this to avoid circular references\n",
" * http://stackoverflow.com/a/24161582/3208463\n",
" */\n",
"function simpleKeys (original) {\n",
" return Object.keys(original).reduce(function (obj, key) {\n",
" if (typeof original[key] !== 'object')\n",
" obj[key] = original[key]\n",
" return obj;\n",
" }, {});\n",
"}\n",
"\n",
"mpl.figure.prototype.mouse_event = function(event, name) {\n",
" var canvas_pos = mpl.findpos(event)\n",
"\n",
" if (name === 'button_press')\n",
" {\n",
" this.canvas.focus();\n",
" this.canvas_div.focus();\n",
" }\n",
"\n",
" var x = canvas_pos.x * mpl.ratio;\n",
" var y = canvas_pos.y * mpl.ratio;\n",
"\n",
" this.send_message(name, {x: x, y: y, button: event.button,\n",
" step: event.step,\n",
" guiEvent: simpleKeys(event)});\n",
"\n",
" /* This prevents the web browser from automatically changing to\n",
" * the text insertion cursor when the button is pressed. We want\n",
" * to control all of the cursor setting manually through the\n",
" * 'cursor' event from matplotlib */\n",
" event.preventDefault();\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" // Handle any extra behaviour associated with a key event\n",
"}\n",
"\n",
"mpl.figure.prototype.key_event = function(event, name) {\n",
"\n",
" // Prevent repeat events\n",
" if (name == 'key_press')\n",
" {\n",
" if (event.which === this._key)\n",
" return;\n",
" else\n",
" this._key = event.which;\n",
" }\n",
" if (name == 'key_release')\n",
" this._key = null;\n",
"\n",
" var value = '';\n",
" if (event.ctrlKey && event.which != 17)\n",
" value += \"ctrl+\";\n",
" if (event.altKey && event.which != 18)\n",
" value += \"alt+\";\n",
" if (event.shiftKey && event.which != 16)\n",
" value += \"shift+\";\n",
"\n",
" value += 'k';\n",
" value += event.which.toString();\n",
"\n",
" this._key_event_extra(event, name);\n",
"\n",
" this.send_message(name, {key: value,\n",
" guiEvent: simpleKeys(event)});\n",
" return false;\n",
"}\n",
"\n",
"mpl.figure.prototype.toolbar_button_onclick = function(name) {\n",
" if (name == 'download') {\n",
" this.handle_save(this, null);\n",
" } else {\n",
" this.send_message(\"toolbar_button\", {name: name});\n",
" }\n",
"};\n",
"\n",
"mpl.figure.prototype.toolbar_button_onmouseover = function(tooltip) {\n",
" this.message.textContent = tooltip;\n",
"};\n",
"mpl.toolbar_items = [[\"Home\", \"Reset original view\", \"fa fa-home icon-home\", \"home\"], [\"Back\", \"Back to previous view\", \"fa fa-arrow-left icon-arrow-left\", \"back\"], [\"Forward\", \"Forward to next view\", \"fa fa-arrow-right icon-arrow-right\", \"forward\"], [\"\", \"\", \"\", \"\"], [\"Pan\", \"Pan axes with left mouse, zoom with right\", \"fa fa-arrows icon-move\", \"pan\"], [\"Zoom\", \"Zoom to rectangle\", \"fa fa-square-o icon-check-empty\", \"zoom\"], [\"\", \"\", \"\", \"\"], [\"Download\", \"Download plot\", \"fa fa-floppy-o icon-save\", \"download\"]];\n",
"\n",
"mpl.extensions = [\"eps\", \"jpeg\", \"pdf\", \"png\", \"ps\", \"raw\", \"svg\", \"tif\"];\n",
"\n",
"mpl.default_extension = \"png\";var comm_websocket_adapter = function(comm) {\n",
" // Create a \"websocket\"-like object which calls the given IPython comm\n",
" // object with the appropriate methods. Currently this is a non binary\n",
" // socket, so there is still some room for performance tuning.\n",
" var ws = {};\n",
"\n",
" ws.close = function() {\n",
" comm.close()\n",
" };\n",
" ws.send = function(m) {\n",
" //console.log('sending', m);\n",
" comm.send(m);\n",
" };\n",
" // Register the callback with on_msg.\n",
" comm.on_msg(function(msg) {\n",
" //console.log('receiving', msg['content']['data'], msg);\n",
" // Pass the mpl event to the overridden (by mpl) onmessage function.\n",
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
" ws.onmessage(msg['content']['data'])\n",
" });\n",
" return ws;\n",
"}\n",
"\n",
"mpl.mpl_figure_comm = function(comm, msg) {\n",
" // This is the function which gets called when the mpl process\n",
" // starts-up an IPython Comm through the \"matplotlib\" channel.\n",
"\n",
" var id = msg.content.data.id;\n",
" // Get hold of the div created by the display call when the Comm\n",
" // socket was opened in Python.\n",
" var element = $(\"#\" + id);\n",
" var ws_proxy = comm_websocket_adapter(comm)\n",
"\n",
" function ondownload(figure, format) {\n",
" window.open(figure.imageObj.src);\n",
" }\n",
"\n",
" var fig = new mpl.figure(id, ws_proxy,\n",
" ondownload,\n",
" element.get(0));\n",
"\n",
" // Call onopen now - mpl needs it, as it is assuming we've passed it a real\n",
" // web socket which is closed, not our websocket->open comm proxy.\n",
" ws_proxy.onopen();\n",
"\n",
" fig.parent_element = element.get(0);\n",
" fig.cell_info = mpl.find_output_cell(\"<div id='\" + id + \"'></div>\");\n",
" if (!fig.cell_info) {\n",
" console.error(\"Failed to find cell for figure\", id, fig);\n",
" return;\n",
" }\n",
"\n",
" var output_index = fig.cell_info[2]\n",
" var cell = fig.cell_info[0];\n",
"\n",
"};\n",
"\n",
"mpl.figure.prototype.handle_close = function(fig, msg) {\n",
" var width = fig.canvas.width/mpl.ratio\n",
" fig.root.unbind('remove')\n",
"\n",
" // Update the output cell to use the data from the current canvas.\n",
" fig.push_to_output();\n",
" var dataURL = fig.canvas.toDataURL();\n",
" // Re-enable the keyboard manager in IPython - without this line, in FF,\n",
" // the notebook keyboard shortcuts fail.\n",
" IPython.keyboard_manager.enable()\n",
" $(fig.parent_element).html('<img src=\"' + dataURL + '\" width=\"' + width + '\">');\n",
" fig.close_ws(fig, msg);\n",
"}\n",
"\n",
"mpl.figure.prototype.close_ws = function(fig, msg){\n",
" fig.send_message('closing', msg);\n",
" // fig.ws.close()\n",
"}\n",
"\n",
"mpl.figure.prototype.push_to_output = function(remove_interactive) {\n",
" // Turn the data on the canvas into data in the output cell.\n",
" var width = this.canvas.width/mpl.ratio\n",
" var dataURL = this.canvas.toDataURL();\n",
" this.cell_info[1]['text/html'] = '<img src=\"' + dataURL + '\" width=\"' + width + '\">';\n",
"}\n",
"\n",
"mpl.figure.prototype.updated_canvas_event = function() {\n",
" // Tell IPython that the notebook contents must change.\n",
" IPython.notebook.set_dirty(true);\n",
" this.send_message(\"ack\", {});\n",
" var fig = this;\n",
" // Wait a second, then push the new image to the DOM so\n",
" // that it is saved nicely (might be nice to debounce this).\n",
" setTimeout(function () { fig.push_to_output() }, 1000);\n",
"}\n",
"\n",
"mpl.figure.prototype._init_toolbar = function() {\n",
" var fig = this;\n",
"\n",
" var nav_element = $('<div/>')\n",
" nav_element.attr('style', 'width: 100%');\n",
" this.root.append(nav_element);\n",
"\n",
" // Define a callback function for later on.\n",
" function toolbar_event(event) {\n",
" return fig.toolbar_button_onclick(event['data']);\n",
" }\n",
" function toolbar_mouse_event(event) {\n",
" return fig.toolbar_button_onmouseover(event['data']);\n",
" }\n",
"\n",
" for(var toolbar_ind in mpl.toolbar_items){\n",
" var name = mpl.toolbar_items[toolbar_ind][0];\n",
" var tooltip = mpl.toolbar_items[toolbar_ind][1];\n",
" var image = mpl.toolbar_items[toolbar_ind][2];\n",
" var method_name = mpl.toolbar_items[toolbar_ind][3];\n",
"\n",
" if (!name) { continue; };\n",
"\n",
" var button = $('<button class=\"btn btn-default\" href=\"#\" title=\"' + name + '\"><i class=\"fa ' + image + ' fa-lg\"></i></button>');\n",
" button.click(method_name, toolbar_event);\n",
" button.mouseover(tooltip, toolbar_mouse_event);\n",
" nav_element.append(button);\n",
" }\n",
"\n",
" // Add the status bar.\n",
" var status_bar = $('<span class=\"mpl-message\" style=\"text-align:right; float: right;\"/>');\n",
" nav_element.append(status_bar);\n",
" this.message = status_bar[0];\n",
"\n",
" // Add the close button to the window.\n",
" var buttongrp = $('<div class=\"btn-group inline pull-right\"></div>');\n",
" var button = $('<button class=\"btn btn-mini btn-primary\" href=\"#\" title=\"Stop Interaction\"><i class=\"fa fa-power-off icon-remove icon-large\"></i></button>');\n",
" button.click(function (evt) { fig.handle_close(fig, {}); } );\n",
" button.mouseover('Stop Interaction', toolbar_mouse_event);\n",
" buttongrp.append(button);\n",
" var titlebar = this.root.find($('.ui-dialog-titlebar'));\n",
" titlebar.prepend(buttongrp);\n",
"}\n",
"\n",
"mpl.figure.prototype._root_extra_style = function(el){\n",
" var fig = this\n",
" el.on(\"remove\", function(){\n",
"\tfig.close_ws(fig, {});\n",
" });\n",
"}\n",
"\n",
"mpl.figure.prototype._canvas_extra_style = function(el){\n",
" // this is important to make the div 'focusable\n",
" el.attr('tabindex', 0)\n",
" // reach out to IPython and tell the keyboard manager to turn it's self\n",
" // off when our div gets focus\n",
"\n",
" // location in version 3\n",
" if (IPython.notebook.keyboard_manager) {\n",
" IPython.notebook.keyboard_manager.register_events(el);\n",
" }\n",
" else {\n",
" // location in version 2\n",
" IPython.keyboard_manager.register_events(el);\n",
" }\n",
"\n",
"}\n",
"\n",
"mpl.figure.prototype._key_event_extra = function(event, name) {\n",
" var manager = IPython.notebook.keyboard_manager;\n",
" if (!manager)\n",
" manager = IPython.keyboard_manager;\n",
"\n",
" // Check for shift+enter\n",
" if (event.shiftKey && event.which == 13) {\n",
" this.canvas_div.blur();\n",
" event.shiftKey = false;\n",
" // Send a \"J\" for go to next cell\n",
" event.which = 74;\n",
" event.keyCode = 74;\n",
" manager.command_mode();\n",
" manager.handle_keydown(event);\n",
" }\n",
"}\n",
"\n",
"mpl.figure.prototype.handle_save = function(fig, msg) {\n",
" fig.ondownload(fig, null);\n",
"}\n",
"\n",
"\n",
"mpl.find_output_cell = function(html_output) {\n",
" // Return the cell and output element which can be found *uniquely* in the notebook.\n",
" // Note - this is a bit hacky, but it is done because the \"notebook_saving.Notebook\"\n",
" // IPython event is triggered only after the cells have been serialised, which for\n",
" // our purposes (turning an active figure into a static one), is too late.\n",
" var cells = IPython.notebook.get_cells();\n",
" var ncells = cells.length;\n",
" for (var i=0; i<ncells; i++) {\n",
" var cell = cells[i];\n",
" if (cell.cell_type === 'code'){\n",
" for (var j=0; j<cell.output_area.outputs.length; j++) {\n",
" var data = cell.output_area.outputs[j];\n",
" if (data.data) {\n",
" // IPython >= 3 moved mimebundle to data attribute of output\n",
" data = data.data;\n",
" }\n",
" if (data['text/html'] == html_output) {\n",
" return [cell, data, j];\n",
" }\n",
" }\n",
" }\n",
" }\n",
"}\n",
"\n",
"// Register the function which deals with the matplotlib target/channel.\n",
"// The kernel may be null if the page has been refreshed.\n",
"if (IPython.notebook.kernel != null) {\n",
" IPython.notebook.kernel.comm_manager.register_target('matplotlib', mpl.mpl_figure_comm);\n",
"}\n"
],
"text/plain": [
"<IPython.core.display.Javascript object>"
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"<img src=\"\" width=\"799.9999880790713\">"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"next_state = cities\n",
"states = []\n",
"\n",
"# creating plotting area\n",
"fig = plt.figure(figsize = (8,6))\n",
"ax = plt.axes(xlim=(60, 600), ylim=(245, 600))\n",
"line, = ax.plot([], [], c=\"b\",linewidth = 1.5, marker = 'o', markerfacecolor = 'r', markeredgecolor = 'r',markersize = 10)\n",
"text = ax.text(450, 565, \"\", fontdict = font)\n",
"\n",
"# to plot only the final states of every simulated annealing iteration\n",
"for iterations in range(100):\n",
" tsp_problem = TSP_problem(next_state) \n",
" states.append(simulated_annealing(tsp_problem))\n",
" next_state = states[-1]\n",
" \n",
"anim = animation.FuncAnimation(fig, animate, init_func=init,\n",
" frames=len(states),interval=len(states), blit=True, repeat = False)\n",
"plt.show()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.3"
},
"widgets": {
"state": {},
"version": "1.1.1"
}
},
"nbformat": 4,
"nbformat_minor": 1