vacuum_world.ipynb 20,9 ko
Newer Older
Apurv Bajaj's avatar
Apurv Bajaj a validé
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# The Vacuum World   \n",
    "\n",
    "In this notebook, we will be discussing about **the structure of agents** through an example of the **vacuum agent**. The job of AI is to design an **agent program** that implements the agent function: the mapping from percepts to actions. We assume this program will run on some sort of computing device with physical sensors and actuators: we call this the **architecture**:  \n",
    "\n",
    "                                agent = architecture + program "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Before moving on, please review [<b>agents.ipynb</b>](https://github.com/aimacode/aima-python/blob/master/agents.ipynb)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Agent Programs\n",
    "\n",
    "An agent program takes the current percept as input from the sensors and return an action to the actuators. There is a difference between an agent program and an agent function: an agent program takes the current percept as input whereas an agent function takes the entire percept history.  \n",
    "The agent program takes just the current percept as input because nothing more is available from the environment; if the agent's actions need to depend on the entire percept sequence, the agent will have to remember the percept.  \n",
    "\n",
    "We'll discuss the following agent programs here with the help of the vacuum world example:\n",
    "\n",
    "* Random Agent Program\n",
    "* Table Driven Agent Program\n",
    "* Simple Reflex Agent Program\n",
    "* Model-Based Reflex Agent Program\n",
    "* Goal-Based Agent Program\n",
    "* Utility-Based Agent Program"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Random Agent Program\n",
    "\n",
    "A random agent program, as the name suggests, choses an action at random, without taking into account the percepts.   \n",
    "Here, we will demonstrate a random vacuum agent for a trivial vacuum environment, that is, the two-state environment."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's begin by importing all the functions from the agents module:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "ename": "FileNotFoundError",
     "evalue": "[Errno 2] No such file or directory: '/home/apurv/aima-python/aima-data/orings.csv'",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mFileNotFoundError\u001b[0m                         Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-2-3c92a8b6a5a1>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0magents\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mnotebook\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mpsource\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m~/aima-python/notebook.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m      4\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mgames\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mTicTacToe\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0malphabeta_player\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mrandom_player\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mFig52Extended\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0minfinity\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mlogic\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mparse_definite_clause\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstandardize_variables\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0munify\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msubst\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 6\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mlearning\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mDataSet\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m      7\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mIPython\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdisplay\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mHTML\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdisplay\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m      8\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mcollections\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mCounter\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdefaultdict\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/aima-python/learning.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m   1105\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1106\u001b[0m orings = DataSet(name='orings', target='Distressed',\n\u001b[0;32m-> 1107\u001b[0;31m                  attrnames=\"Rings Distressed Temp Pressure Flightnum\")\n\u001b[0m\u001b[1;32m   1108\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1109\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/aima-python/learning.py\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, examples, attrs, attrnames, target, inputs, values, distance, name, source, exclude)\u001b[0m\n\u001b[1;32m     96\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexamples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparse_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mexamples\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m     97\u001b[0m         \u001b[0;32melif\u001b[0m \u001b[0mexamples\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0;32mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 98\u001b[0;31m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexamples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mparse_csv\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mopen_data\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m'.csv'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m     99\u001b[0m         \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    100\u001b[0m             \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mexamples\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mexamples\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m~/aima-python/utils.py\u001b[0m in \u001b[0;36mopen_data\u001b[0;34m(name, mode)\u001b[0m\n\u001b[1;32m    414\u001b[0m     \u001b[0maima_file\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpath\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mjoin\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maima_root\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'aima-data'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mname\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    415\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 416\u001b[0;31m     \u001b[0;32mreturn\u001b[0m \u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0maima_file\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    417\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    418\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;31mFileNotFoundError\u001b[0m: [Errno 2] No such file or directory: '/home/apurv/aima-python/aima-data/orings.csv'"
     ]
    }
   ],
   "source": [
    "from agents import *\n",
    "from notebook import psource"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us first see how we define the TrivialVacuumEnvironment. Run the next cell to see how abstract class TrivialVacuumEnvironment is defined in agents module:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "%psource TrivialVacuumEnvironment"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 119,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State of the Environment: {(1, 0): 'Clean', (0, 0): 'Dirty'}.\n"
     ]
    }
   ],
   "source": [
    "# These are the two locations for the two-state environment.\n",
    "loc_A, loc_B = (0, 0), (1, 0)\n",
    "\n",
    "# Initialise the two-state environment.\n",
    "trivial_vacuum_env = TrivialVacuumEnvironment()\n",
    "\n",
    "# Check the intial state of the environment.\n",
    "print(\"State of the Environment: {}.\".format(trivial_vacuum_env.status))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's create our agent now. This agent will chose any of the actions from 'Right', 'Left', 'Suck' and 'NoOp' (No Operation) randomly. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 120,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# Create the random agent.\n",
    "random_agent = Agent(program=RandomAgentProgram(['Right', 'Left', 'Suck', 'NoOp']))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will now add our agent to the environment."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 121,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "RandomVacuumAgent is located at (0, 0).\n"
     ]
    }
   ],
   "source": [
    "# Add agent to the environment.\n",
    "trivial_vacuum_env.add_thing(random_agent)\n",
    "\n",
    "print(\"RandomVacuumAgent is located at {}.\".format(random_agent.location))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's run our environment now."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 122,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State of the Environment: {(1, 0): 'Clean', (0, 0): 'Dirty'}.\n",
      "RandomVacuumAgent is located at (0, 0).\n"
     ]
    }
   ],
   "source": [
    "# Running the environment.\n",
    "trivial_vacuum_env.step()\n",
    "\n",
    "# Check the current state of the environment.\n",
    "print(\"State of the Environment: {}.\".format(trivial_vacuum_env.status))\n",
    "\n",
    "print(\"RandomVacuumAgent is located at {}.\".format(random_agent.location))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Table Driven Agent Program\n",
    "\n",
    "A table driven agent program keeps track of the percept sequence and then uses it to index into a table of actions to decide what to do. The table represents eplicitly the agent function that the agent program embodies.  \n",
    "In the two-state vacuum world, the table would consist of all the possible states of the agent."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 123,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "table = {((loc_A, 'Clean'),): 'Right',\n",
    "         ((loc_A, 'Dirty'),): 'Suck',\n",
    "         ((loc_B, 'Clean'),): 'Left',\n",
    "         ((loc_B, 'Dirty'),): 'Suck',\n",
    "         ((loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',\n",
    "         ((loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',\n",
    "         ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Clean')): 'Right',\n",
    "         ((loc_A, 'Clean'), (loc_A, 'Clean'), (loc_A, 'Dirty')): 'Suck',\n",
    "        }"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will now create a table driven agent program for our two-state environment."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 124,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# Create a table driven agent.\n",
    "table_driven_agent = Agent(program=TableDrivenAgentProgram(table=table))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Since we are using the same environment, let us remove the previously added random agent from the environment to avoid confusion."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 125,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "trivial_vacuum_env.delete_thing(random_agent)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 126,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "TableDrivenVacuumAgent is located at (0, 0).\n"
     ]
    }
   ],
   "source": [
    "# Add the table driven agent to the environment\n",
    "trivial_vacuum_env.add_thing(table_driven_agent)\n",
    "\n",
    "print(\"TableDrivenVacuumAgent is located at {}.\".format(table_driven_agent.location))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 127,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State of the Environment: {(1, 0): 'Clean', (0, 0): 'Clean'}.\n",
      "TableDrivenVacuumAgent is located at (0, 0).\n"
     ]
    }
   ],
   "source": [
    "# Run the environment.\n",
    "trivial_vacuum_env.step()\n",
    "\n",
    "# Check the current state of the environment.\n",
    "print(\"State of the Environment: {}.\".format(trivial_vacuum_env.status))\n",
    "\n",
    "print(\"TableDrivenVacuumAgent is located at {}.\".format(table_driven_agent.location))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Simple Reflex Agent Program\n",
    "\n",
    "A simple reflex agent program selects actions on the basis of the <i>current</i> percept, ignoring the rest of the percept history. These agents work on a **condition-action rule** (also called **situation-action rule**, **production** or **if-then rule**), which tell the agent the action to trigger when a particular situtation is encountered.  \n",
    "\n",
    "The schematic diagram shown in **Figure 2.9** of the book will make this more clear:\n",
    "\n",
    "<img src=\"/files/images/simple_reflex_agent.jpg\">"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let us now create a simple reflex agent for the environment."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 131,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# Delete the previously added table driven agent.\n",
    "trivial_vacuum_env.delete_thing(table_driven_agent)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "To create our agent, we need two functions: INTERPRET-INPUT function, which generates an abstracted description of the current state from the percerpt and the RULE-MATCH function, which returns the first rule in the set of rules that matches the given state description."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 134,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# TODO: Implement these functions for two-dimensional environment.\n",
    "# Interpret-input function for the two-state environment.\n",
    "def interpret_input(percept):\n",
    "    pass\n",
    "\n",
    "rules = None\n",
    "\n",
    "# Rule-match function for the two-state environment.\n",
    "def rule_match(state, rule):\n",
    "    for rule in rules:\n",
    "        if rule.matches(state):\n",
    "            return rule        \n",
    "        \n",
    "# Create a simple reflex agent the two-state environment.\n",
    "simple_reflex_agent = ReflexVacuumAgent()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now add the agent to the environment:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 135,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "SimpleReflexVacuumAgent is located at (0, 0).\n"
     ]
    }
   ],
   "source": [
    "trivial_vacuum_env.add_thing(simple_reflex_agent)\n",
    "\n",
    "print(\"SimpleReflexVacuumAgent is located at {}.\".format(simple_reflex_agent.location))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 137,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State of the Environment: {(1, 0): 'Clean', (0, 0): 'Clean'}.\n",
      "SimpleReflexVacuumAgent is located at (0, 0).\n"
     ]
    }
   ],
   "source": [
    "# Run the environment.\n",
    "trivial_vacuum_env.step()\n",
    "\n",
    "# Check the current state of the environment.\n",
    "print(\"State of the Environment: {}.\".format(trivial_vacuum_env.status))\n",
    "\n",
    "print(\"SimpleReflexVacuumAgent is located at {}.\".format(simple_reflex_agent.location))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Model-Based Reflex Agent Program\n",
    "\n",
    "A model-based reflex agent maintains some sort of <b>internal state</b> that depends on the percept history and thereby reflects at least some of the unobserved aspects of the current state. In additon to this, it also requires a <b>model</b> of the world, that is, knowledge about \"how the world works\".  \n",
    "\n",
    "The schematic diagram shown in figure 2.11 of the book will make this more clear:\n",
    "<img src=\"files/images/model_based_reflex_agent.jpg\">"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We will now create a model-based reflex agent for the environment:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 139,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "list.remove(x): x not in list\n",
      "  in Environment delete_thing\n",
      "  Thing to be removed: <Agent> at (0, 0)\n",
      "  from list: []\n"
     ]
    }
   ],
   "source": [
    "# Delete the previously added simple reflex agent.\n",
    "trivial_vacuum_env.delete_thing(simple_reflex_agent)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We need a another function UPDATE-STATE which will be reponsible for creating a new state description."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 140,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "ModelBasedVacuumAgent is located at (0, 0).\n"
     ]
    }
   ],
   "source": [
    "# TODO: Implement this function for the two-dimensional environment.\n",
    "def update_state(state, action, percept, model):\n",
    "    pass\n",
    "\n",
    "# Create a model-based reflex agent.\n",
    "model_based_reflex_agent = ModelBasedVacuumAgent()\n",
    "\n",
    "# Add the agent to the environment.\n",
    "trivial_vacuum_env.add_thing(model_based_reflex_agent)\n",
    "\n",
    "print(\"ModelBasedVacuumAgent is located at {}.\".format(model_based_reflex_agent.location))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 143,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "State of the Environment: {(1, 0): 'Clean', (0, 0): 'Clean'}.\n",
      "ModelBasedVacuumAgent is located at (1, 0).\n"
     ]
    }
   ],
   "source": [
    "# Run the environment.\n",
    "trivial_vacuum_env.step()\n",
    "\n",
    "# Check the current state of the environment.\n",
    "print(\"State of the Environment: {}.\".format(trivial_vacuum_env.status))\n",
    "\n",
    "print(\"ModelBasedVacuumAgent is located at {}.\".format(model_based_reflex_agent.location))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Goal-Based Agent Program  \n",
    "\n",
    "A goal-based agent needs some sort of <b>goal</b> information that describes situations that are desirable, apart from the current state description.  \n",
    "<b>Figure 2.13</b> of the book shows a model-based, goal-based agent:  \n",
    "<img src=\"files/images/model_goal_based_agent.jpg\">\n",
    "\n",
    "<b>Search</b> (Chapters 3 to 5) and <b>Planning</b> (Chapters 10 to 11) are the subfields of AI devoted to finding action sequences that achieve the agent's goals.\n",
    "\n",
    "## Utility-Based Agent Program\n",
    "\n",
    "A utility-based agent maximizes its <b>utility</b> using the agent's <b>utility function</b>, which is essentially an internalization of the agent's performance measure.  \n",
    "<b>Figure 2.14</b> of the book shows a model-based, utility-based agent:\n",
    "<img src=\"files/images/model_utility_based_agent.jpg\">\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}