logic.ipynb 127 ko
Newer Older
2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338
       "body .go { color: #888888 } /* Generic.Output */\n",
       "body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
       "body .gs { font-weight: bold } /* Generic.Strong */\n",
       "body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
       "body .gt { color: #0044DD } /* Generic.Traceback */\n",
       "body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
       "body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
       "body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
       "body .kp { color: #008000 } /* Keyword.Pseudo */\n",
       "body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
       "body .kt { color: #B00040 } /* Keyword.Type */\n",
       "body .m { color: #666666 } /* Literal.Number */\n",
       "body .s { color: #BA2121 } /* Literal.String */\n",
       "body .na { color: #7D9029 } /* Name.Attribute */\n",
       "body .nb { color: #008000 } /* Name.Builtin */\n",
       "body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
       "body .no { color: #880000 } /* Name.Constant */\n",
       "body .nd { color: #AA22FF } /* Name.Decorator */\n",
       "body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
       "body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
       "body .nf { color: #0000FF } /* Name.Function */\n",
       "body .nl { color: #A0A000 } /* Name.Label */\n",
       "body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
       "body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
       "body .nv { color: #19177C } /* Name.Variable */\n",
       "body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
       "body .w { color: #bbbbbb } /* Text.Whitespace */\n",
       "body .mb { color: #666666 } /* Literal.Number.Bin */\n",
       "body .mf { color: #666666 } /* Literal.Number.Float */\n",
       "body .mh { color: #666666 } /* Literal.Number.Hex */\n",
       "body .mi { color: #666666 } /* Literal.Number.Integer */\n",
       "body .mo { color: #666666 } /* Literal.Number.Oct */\n",
       "body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
       "body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
       "body .sc { color: #BA2121 } /* Literal.String.Char */\n",
       "body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
       "body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
       "body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
       "body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
       "body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
       "body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
       "body .sx { color: #008000 } /* Literal.String.Other */\n",
       "body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
       "body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
       "body .ss { color: #19177C } /* Literal.String.Symbol */\n",
       "body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
       "body .fm { color: #0000FF } /* Name.Function.Magic */\n",
       "body .vc { color: #19177C } /* Name.Variable.Class */\n",
       "body .vg { color: #19177C } /* Name.Variable.Global */\n",
       "body .vi { color: #19177C } /* Name.Variable.Instance */\n",
       "body .vm { color: #19177C } /* Name.Variable.Magic */\n",
       "body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
       "\n",
       "  </style>\n",
       "</head>\n",
       "<body>\n",
       "<h2></h2>\n",
       "\n",
       "<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">WalkSAT</span><span class=\"p\">(</span><span class=\"n\">clauses</span><span class=\"p\">,</span> <span class=\"n\">p</span><span class=\"o\">=</span><span class=\"mf\">0.5</span><span class=\"p\">,</span> <span class=\"n\">max_flips</span><span class=\"o\">=</span><span class=\"mi\">10000</span><span class=\"p\">):</span>\n",
       "    <span class=\"sd\">&quot;&quot;&quot;Checks for satisfiability of all clauses by randomly flipping values of variables</span>\n",
       "<span class=\"sd\">    &quot;&quot;&quot;</span>\n",
       "    <span class=\"c1\"># Set of all symbols in all clauses</span>\n",
       "    <span class=\"n\">symbols</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">sym</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span> <span class=\"k\">for</span> <span class=\"n\">sym</span> <span class=\"ow\">in</span> <span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)}</span>\n",
       "    <span class=\"c1\"># model is a random assignment of true/false to the symbols in clauses</span>\n",
       "    <span class=\"n\">model</span> <span class=\"o\">=</span> <span class=\"p\">{</span><span class=\"n\">s</span><span class=\"p\">:</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">([</span><span class=\"bp\">True</span><span class=\"p\">,</span> <span class=\"bp\">False</span><span class=\"p\">])</span> <span class=\"k\">for</span> <span class=\"n\">s</span> <span class=\"ow\">in</span> <span class=\"n\">symbols</span><span class=\"p\">}</span>\n",
       "    <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">max_flips</span><span class=\"p\">):</span>\n",
       "        <span class=\"n\">satisfied</span><span class=\"p\">,</span> <span class=\"n\">unsatisfied</span> <span class=\"o\">=</span> <span class=\"p\">[],</span> <span class=\"p\">[]</span>\n",
       "        <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span><span class=\"p\">:</span>\n",
       "            <span class=\"p\">(</span><span class=\"n\">satisfied</span> <span class=\"k\">if</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)</span> <span class=\"k\">else</span> <span class=\"n\">unsatisfied</span><span class=\"p\">)</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"ow\">not</span> <span class=\"n\">unsatisfied</span><span class=\"p\">:</span>  <span class=\"c1\"># if model satisfies all the clauses</span>\n",
       "            <span class=\"k\">return</span> <span class=\"n\">model</span>\n",
       "        <span class=\"n\">clause</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"n\">unsatisfied</span><span class=\"p\">)</span>\n",
       "        <span class=\"k\">if</span> <span class=\"n\">probability</span><span class=\"p\">(</span><span class=\"n\">p</span><span class=\"p\">):</span>\n",
       "            <span class=\"n\">sym</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">choice</span><span class=\"p\">(</span><span class=\"nb\">list</span><span class=\"p\">(</span><span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">)))</span>\n",
       "        <span class=\"k\">else</span><span class=\"p\">:</span>\n",
       "            <span class=\"c1\"># Flip the symbol in clause that maximizes number of sat. clauses</span>\n",
       "            <span class=\"k\">def</span> <span class=\"nf\">sat_count</span><span class=\"p\">(</span><span class=\"n\">sym</span><span class=\"p\">):</span>\n",
       "                <span class=\"c1\"># Return the the number of clauses satisfied after flipping the symbol.</span>\n",
       "                <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "                <span class=\"n\">count</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">([</span><span class=\"n\">clause</span> <span class=\"k\">for</span> <span class=\"n\">clause</span> <span class=\"ow\">in</span> <span class=\"n\">clauses</span> <span class=\"k\">if</span> <span class=\"n\">pl_true</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">,</span> <span class=\"n\">model</span><span class=\"p\">)])</span>\n",
       "                <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "                <span class=\"k\">return</span> <span class=\"n\">count</span>\n",
       "            <span class=\"n\">sym</span> <span class=\"o\">=</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">prop_symbols</span><span class=\"p\">(</span><span class=\"n\">clause</span><span class=\"p\">),</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">sat_count</span><span class=\"p\">)</span>\n",
       "        <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span> <span class=\"o\">=</span> <span class=\"ow\">not</span> <span class=\"n\">model</span><span class=\"p\">[</span><span class=\"n\">sym</span><span class=\"p\">]</span>\n",
       "    <span class=\"c1\"># If no solution is found within the flip limit, we return failure</span>\n",
       "    <span class=\"k\">return</span> <span class=\"bp\">None</span>\n",
       "</pre></div>\n",
       "</body>\n",
       "</html>\n"
      ],
      "text/plain": [
       "<IPython.core.display.HTML object>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "psource(WalkSAT)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The function takes three arguments:\n",
    "<br>\n",
    "1. The `clauses` we want to satisfy.\n",
    "<br>\n",
    "2. The probability `p` of randomly changing a symbol.\n",
    "<br>\n",
    "3. The maximum number of flips (`max_flips`) the algorithm will run for. If the clauses are still unsatisfied, the algorithm returns `None` to denote failure.\n",
    "<br>\n",
    "The algorithm is identical in concept to Hill climbing and the code isn't difficult to understand.\n",
    "<br>\n",
    "<br>\n",
    "Let's see a few examples of usage."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "A, B, C, D = expr('A, B, C, D')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: False, A: True, D: True, B: True}"
      ]
     },
     "execution_count": 58,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A, B, ~C, D], 0.5, 100)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This is a simple case to show that the algorithm converges."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: True, A: True, B: True}"
      ]
     },
     "execution_count": 59,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A & B, A & C], 0.5, 100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{C: True, A: True, D: True, B: True}"
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT([A & B, C & D, C & B], 0.5, 100)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {},
   "outputs": [],
   "source": [
    "WalkSAT([A & B, C | D, ~(D | B)], 0.5, 1000)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This one doesn't give any output because WalkSAT did not find any model where these clauses hold. We can solve these clauses to see that they together form a contradiction and hence, it isn't supposed to have a solution."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One point of difference between this algorithm and the `dpll_satisfiable` algorithms is that both these algorithms take inputs differently. \n",
    "For WalkSAT to take complete sentences as input, \n",
    "we can write a helper function that converts the input sentence into conjunctive normal form and then calls WalkSAT with the list of conjuncts of the CNF form of the sentence."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def WalkSAT_CNF(sentence, p=0.5, max_flips=10000):\n",
    "    return WalkSAT(conjuncts(to_cnf(sentence)), 0, max_flips)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now we can call `WalkSAT_CNF` and `DPLL_Satisfiable` with the same arguments."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{A: False, D: False, C: True, B: False}"
      ]
     },
     "execution_count": 63,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WalkSAT_CNF((A & B) | (C & ~A) | (B & ~D), 0.5, 1000)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "It works!\n",
    "<br>\n",
    "Notice that the solution generated by WalkSAT doesn't omit variables that the sentence doesn't depend upon. \n",
    "If the sentence is independent of a particular variable, the solution contains a random value for that variable because of the stochastic nature of the algorithm.\n",
    "<br>\n",
    "<br>\n",
    "Let's compare the runtime of WalkSAT and DPLL for a few cases. We will use the `%%timeit` magic to do this."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "sentence_1 = A |'<=>'| B\n",
    "sentence_2 = (A & B) | (C & ~A) | (B & ~D)\n",
    "sentence_3 = (A | (B & C)) |'<=>'| ((A | B) & (A | C))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "100 loops, best of 3: 2.46 ms per loop\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "dpll_satisfiable(sentence_1)\n",
    "dpll_satisfiable(sentence_2)\n",
    "dpll_satisfiable(sentence_3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "100 loops, best of 3: 1.91 ms per loop\n"
     ]
    }
   ],
   "source": [
    "%%timeit\n",
    "WalkSAT_CNF(sentence_1)\n",
    "WalkSAT_CNF(sentence_2)\n",
    "WalkSAT_CNF(sentence_3)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "On an average, for solvable cases, `WalkSAT` is quite faster than `dpll` because, for a small number of variables, \n",
    "`WalkSAT` can reduce the search space significantly. \n",
    "Results can be different for sentences with more symbols though.\n",
    "Feel free to play around with this to understand the trade-offs of these algorithms better."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## First-Order Logic Knowledge Bases: `FolKB`\n",
    "\n",
    "The class `FolKB` can be used to represent a knowledge base of First-order logic sentences. You would initialize and use it the same way as you would for `PropKB` except that the clauses are first-order definite clauses. We will see how to write such clauses to create a database and query them in the following sections."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Criminal KB\n",
    "In this section we create a `FolKB` based on the following paragraph.<br/>\n",
    "<em>The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.</em><br/>\n",
    "The first step is to extract the facts and convert them into first-order definite clauses. Extracting the facts from data alone is a challenging task. Fortunately, we have a small paragraph and can do extraction and conversion manually. We'll store the clauses in list aptly named `clauses`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses = []"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>“... it is a crime for an American to sell weapons to hostile nations”</em><br/>\n",
    "The keywords to look for here are 'crime', 'American', 'sell', 'weapon' and 'hostile'. We use predicate symbols to make meaning of them.\n",
    "\n",
    "* `Criminal(x)`: `x` is a criminal\n",
    "* `American(x)`: `x` is an American\n",
    "* `Sells(x ,y, z)`: `x` sells `y` to `z`\n",
    "* `Weapon(x)`: `x` is a weapon\n",
    "* `Hostile(x)`: `x` is a hostile nation\n",
    "\n",
    "Let us now combine them with appropriate variable naming to depict the meaning of the sentence. The criminal `x` is also the American `x` who sells weapon `y` to `z`, which is a hostile nation.\n",
    "\n",
    "$\\text{American}(x) \\land \\text{Weapon}(y) \\land \\text{Sells}(x, y, z) \\land \\text{Hostile}(z) \\implies \\text{Criminal} (x)$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"The country Nono, an enemy of America\"</em><br/>\n",
    "We now know that Nono is an enemy of America. We represent these nations using the constant symbols `Nono` and `America`. the enemy relation is show using the predicate symbol `Enemy`.\n",
    "\n",
    "$\\text{Enemy}(\\text{Nono}, \\text{America})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Enemy(Nono, America)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"Nono ... has some missiles\"</em><br/>\n",
Robert Hönig's avatar
Robert Hönig a validé
    "This states the existence of some missile which is owned by Nono. $\\exists x \\text{Owns}(\\text{Nono}, x) \\land \\text{Missile}(x)$. We invoke existential instantiation to introduce a new constant `M1` which is the missile owned by Nono.\n",
    "\n",
    "$\\text{Owns}(\\text{Nono}, \\text{M1}), \\text{Missile}(\\text{M1})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Owns(Nono, M1)\"))\n",
    "clauses.append(expr(\"Missile(M1)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "<em>\"All of its missiles were sold to it by Colonel West\"</em><br/>\n",
    "If Nono owns something and it classifies as a missile, then it was sold to Nono by West.\n",
    "\n",
    "$\\text{Missile}(x) \\land \\text{Owns}(\\text{Nono}, x) \\implies \\text{Sells}(\\text{West}, x, \\text{Nono})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"West, who is American\"</em><br/>\n",
    "West is an American.\n",
    "\n",
    "$\\text{American}(\\text{West})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"American(West)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also know, from our understanding of language, that missiles are weapons and that an enemy of America counts as “hostile”.\n",
    "\n",
    "$\\text{Missile}(x) \\implies \\text{Weapon}(x), \\text{Enemy}(x, \\text{America}) \\implies \\text{Hostile}(x)$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Missile(x) ==> Weapon(x)\"))\n",
    "clauses.append(expr(\"Enemy(x, America) ==> Hostile(x)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have converted the information into first-order definite clauses we can create our first-order logic knowledge base."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "crime_kb = FolKB(clauses)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference in First-Order Logic\n",
    "In this section we look at a forward chaining and a backward chaining algorithm for `FolKB`. Both aforementioned algorithms rely on a process called <strong>unification</strong>, a key component of all first-order inference algorithms."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Unification\n",
    "We sometimes require finding substitutions that make different logical expressions look identical. This process, called unification, is done by the `unify` algorithm. It takes as input two sentences and returns a <em>unifier</em> for them if one exists. A unifier is a dictionary which stores the substitutions required to make the two sentences identical. It does so by recursively unifying the components of a sentence, where the unification of a variable symbol `var` with a constant symbol `Const` is the mapping `{var: Const}`. Let's look at a few examples."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: 3}"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('x'), 3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: B}"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('A(x)'), expr('A(B)'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: Bella, y: Dobby}"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(y)'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In cases where there is no possible substitution that unifies the two sentences the function return `None`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "None\n"
     ]
    }
   ],
   "source": [
    "print(unify(expr('Cat(x)'), expr('Dog(Dobby)')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also need to take care we do not unintentionally use the same variable name. Unify treats them as a single variable which prevents it from taking multiple value."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "None\n"
     ]
    }
   ],
   "source": [
    "print(unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(x)')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Forward Chaining Algorithm\n",
    "We consider the simple forward-chaining algorithm presented in <em>Figure 9.3</em>. We look at each rule in the knoweldge base and see if the premises can be satisfied. This is done by finding a substitution which unifies each of the premise with a clause in the `KB`. If we are able to unify the premises, the conclusion (with the corresponding substitution) is added to the `KB`. This inferencing process is repeated until either the query can be answered or till no new sentences can be added. We test if the newly added clause unifies with the query in which case the substitution yielded by `unify` is an answer to the query. If we run out of sentences to infer, this means the query was a failure.\n",
    "The function `fol_fc_ask` is a generator which yields all substitutions which validate the query."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_fc_ask"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's find out all the hostile nations. Note that we only told the `KB` that Nono was an enemy of America, not that it was hostile."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{x: Nono}]\n"
     ]
    }
   ],
   "source": [
    "answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
    "print(list(answer))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The generator returned a single substitution which says that Nono is a hostile nation. See how after adding another enemy nation the generator returns two substitutions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{x: Nono}, {x: JaJa}]\n"
     ]
    }
   ],
   "source": [
    "crime_kb.tell(expr('Enemy(JaJa, America)'))\n",
    "answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
    "print(list(answer))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<strong><em>Note</em>:</strong> `fol_fc_ask` makes changes to the `KB` by adding sentences to it."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Backward Chaining Algorithm\n",
    "This algorithm works backward from the goal, chaining through rules to find known facts that support the proof. Suppose `goal` is the query we want to find the substitution for. We find rules of the form $\\text{lhs} \\implies \\text{goal}$ in the `KB` and try to prove `lhs`. There may be multiple clauses in the `KB` which give multiple `lhs`. It is sufficient to prove only one of these. But to prove a `lhs` all the conjuncts in the `lhs` of the clause must be proved. This makes it similar to <em>And/Or</em> search."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### OR\n",
    "The <em>OR</em> part of the algorithm comes from our choice to select any clause of the form $\\text{lhs} \\implies \\text{goal}$. Looking at all rules's `lhs` whose `rhs` unify with the `goal`, we yield a substitution which proves all the conjuncts in the `lhs`. We use `parse_definite_clause` to attain `lhs` and `rhs` from a clause of the form $\\text{lhs} \\implies \\text{rhs}$. For atomic facts the `lhs` is an empty list."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_bc_or"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### AND\n",
    "The <em>AND</em> corresponds to proving all the conjuncts in the `lhs`. We need to find a substitution which proves each <em>and</em> every clause in the list of conjuncts."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_bc_and"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now the main function `fl_bc_ask` calls `fol_bc_or` with substitution initialized as empty. The `ask` method of `FolKB` uses `fol_bc_ask` and fetches the first substitution returned by the generator to answer query. Let's query the knowledge base we created from `clauses` to find hostile nations."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# Rebuild KB because running fol_fc_ask would add new facts to the KB\n",
    "crime_kb = FolKB(clauses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{v_5: x, x: Nono}"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "crime_kb.ask(expr('Hostile(x)'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You may notice some new variables in the substitution. They are introduced to standardize the variable names to prevent naming problems as discussed in the [Unification section](#Unification)"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Appendix: The Implementation of `|'==>'|`\n",
Peter Norvig's avatar
Peter Norvig a validé
    "\n",
    "Consider the `Expr` formed by this syntax:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 47,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P |'==>'| ~Q"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What is the funny `|'==>'|` syntax? The trick is that \"`|`\" is just the regular Python or-operator, and so is exactly equivalent to this: "
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 48,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "(P | '==>') | ~Q"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In other words, there are two applications of or-operators. Here's the first one:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "PartialExpr('==>', P)"
     "execution_count": 49,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P | '==>'"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What is going on here is that the `__or__` method of `Expr` serves a dual purpose. If the right-hand-side is another `Expr` (or a number), then the result is an `Expr`, as in `(P | Q)`. But if the right-hand-side is a string, then the string is taken to be an operator, and we create a node in the abstract syntax tree corresponding to a partially-filled  `Expr`, one where we know the left-hand-side is `P` and the operator is `==>`, but we don't yet know the right-hand-side.\n",
Peter Norvig's avatar
Peter Norvig a validé
    "\n",
    "The `PartialExpr` class has an `__or__` method that says to create an `Expr` node with the right-hand-side filled in. Here we can see the combination of the `PartialExpr` with `Q` to create a complete `Expr`:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 50,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "partial = PartialExpr('==>', P) \n",
    "partial | ~Q"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This  [trick](http://code.activestate.com/recipes/384122-infix-operators/) is due to [Ferdinand Jamitzky](http://code.activestate.com/recipes/users/98863/), with a modification by [C. G. Vedant](https://github.com/Chipe1),\n",
    "who suggested using a string inside the or-bars.\n",
    "\n",
    "## Appendix: The Implementation of `expr`\n",
    "\n",
    "How does `expr` parse a string into an `Expr`? It turns out there are two tricks (besides the Jamitzky/Vedant trick):\n",
    "\n",
    "1. We do a string substitution, replacing \"`==>`\" with \"`|'==>'|`\" (and likewise for other operators).\n",
    "2. We `eval` the resulting string in an environment in which every identifier\n",
    "is bound to a symbol with that identifier as the `op`.\n",
    "\n",
    "In other words,"
   "execution_count": 51,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(~(P & Q) ==> (~P | ~Q))"
     "execution_count": 51,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "expr('~(P & Q)  ==>  (~P | ~Q)')"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "is equivalent to doing:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(~(P & Q) ==> (~P | ~Q))"
     "execution_count": 52,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P, Q = symbols('P, Q')\n",
    "~(P & Q)  |'==>'|  (~P | ~Q)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},