search.py 31,3 ko
Newer Older
"""Search (Chapters 3-4)

The way to use this code is to subclass Problem to create a class of problems,
then create problem instances and solve them with calls to the various search
functions."""

# The future is here, but if you're still in the past, uncomment next line
# from __future__ import generators

from utils import *
import agents
import math, random, sys, time, bisect, string

#______________________________________________________________________________

withal's avatar
withal a validé
class Problem(object):
    """The abstract class for a formal problem.  You should subclass this and
    implement the method successor, and possibly __init__, goal_test, and
    path_cost. Then you will create instances of your subclass and solve them
    with the various search functions."""

    def __init__(self, initial, goal=None):
        """The constructor specifies the initial state, and possibly a goal
        state, if there is a unique goal.  Your subclass's constructor can add
        other arguments."""
        self.initial = initial; self.goal = goal
        
    def successor(self, state):
        """Given a state, return a sequence of (action, state) pairs reachable
        from this state. If there are many successors, consider an iterator
        that yields the successors one at a time, rather than building them
        all at once. Iterators will work fine within the framework."""
        abstract
    
    def goal_test(self, state):
        """Return True if the state is a goal. The default method compares the
withal's avatar
withal a validé
        state to self.goal, as specified in the constructor. Override this
        method if checking against a single self.goal is not enough."""
        return state == self.goal
    
    def path_cost(self, c, state1, action, state2):
        """Return the cost of a solution path that arrives at state2 from
        state1 via action, assuming cost c to get up to state1. If the problem
        is such that the path doesn't matter, this function will only look at
        state2.  If the path does matter, it will consider c and maybe state1
        and action. The default method costs 1 for every step in the path."""
        return c + 1

        """For optimization problems, each state has a value.  Hill-climbing
        and related algorithms try to maximize this value."""
        abstract
#______________________________________________________________________________
    
class Node:
    """A node in a search tree. Contains a pointer to the parent (the node
    that this is a successor of) and to the actual state for this node. Note
    that if a state is arrived at by two paths, then there are two nodes with
    the same state.  Also includes the action that got us to this state, and
    the total path_cost (also known as g) to reach the node.  Other functions
    may add an f and h value; see best_first_graph_search and astar_search for
    an explanation of how the f and h values are handled. You will not need to
    subclass this class."""

    def __init__(self, state, parent=None, action=None, path_cost=0):
        "Create a search tree Node, derived from a parent by an action."
        update(self, state=state, parent=parent, action=action, 
               path_cost=path_cost, depth=0)
        if parent:
            self.depth = parent.depth + 1
            
    def __repr__(self):
        return "<Node %s>" % (self.state,)
    
    def path(self):
        """Create a list of nodes from the root to this node."""
        node, path_back = self, []
        while node:
            path_back.append(node)
            node = node.parent
        return list(reversed(path_back))

    def expand(self, problem):
        "Return a list of nodes reachable from this node. [Fig. 3.8]"
        return [Node(next, self, act,
                     problem.path_cost(self.path_cost, self.state, act, next))
                for (act, next) in problem.successor(self.state)]

#______________________________________________________________________________

class SimpleProblemSolvingAgentProgram:
    """Abstract framework for a problem-solving agent. [Fig. 3.1]"""
    def __init__(self, initial_state=None):
        update(self, state=initial_state, seq=[])

    def __call__(self, percept):
        self.state = self.update_state(self.state, percept)
        if not self.seq:
            goal = self.formulate_goal(self.state)
            problem = self.formulate_problem(self.state, goal)
            self.seq = self.search(problem)
            if not self.seq: return None
        return self.seq.pop(0)

    def update_state(self, percept):
        abstract

    def formulate_goal(self, state):
        abstract

    def formulate_problem(self, state, goal):
        abstract

    def search(self, problem):
        abstract

#______________________________________________________________________________
## Uninformed Search algorithms

def tree_search(problem, fringe):
    """Search through the successors of a problem to find a goal.
    The argument fringe should be an empty queue.
    Don't worry about repeated paths to a state. [Fig. 3.8]"""
    fringe.append(Node(problem.initial))
    while fringe:
        node = fringe.pop()
        if problem.goal_test(node.state):
            return node
        fringe.extend(node.expand(problem))
    return None

def breadth_first_tree_search(problem):
    "Search the shallowest nodes in the search tree first. [p 74]"
    return tree_search(problem, FIFOQueue())
    
def depth_first_tree_search(problem):
    "Search the deepest nodes in the search tree first. [p 74]"
    return tree_search(problem, Stack())

def graph_search(problem, fringe):
    """Search through the successors of a problem to find a goal.
    The argument fringe should be an empty queue.
    If two paths reach a state, only use the best one. [Fig. 3.18]"""
    closed = {}
    fringe.append(Node(problem.initial))
    while fringe:
        node = fringe.pop()
        if problem.goal_test(node.state): 
            return node
        if node.state not in closed:
            closed[node.state] = True
            fringe.extend(node.expand(problem))    
    return None

def breadth_first_graph_search(problem):
    "Search the shallowest nodes in the search tree first. [p 74]"
    return graph_search(problem, FIFOQueue())
    
def depth_first_graph_search(problem):
    "Search the deepest nodes in the search tree first. [p 74]"
    return graph_search(problem, Stack())

def depth_limited_search(problem, limit=50):
    "[Fig. 3.12]"
    def recursive_dls(node, problem, limit):
        if problem.goal_test(node.state):
            return node
        elif node.depth == limit:
            return 'cutoff'
        else:
            cutoff_occurred = False
            for successor in node.expand(problem):
                result = recursive_dls(successor, problem, limit)
                if result == 'cutoff':
                    cutoff_occurred = True
                elif result != None:
                    return result
            return if_(cutoff_occurred, 'cutoff', None)

    # Body of depth_limited_search:
    return recursive_dls(Node(problem.initial), problem, limit)

def iterative_deepening_search(problem):
    "[Fig. 3.13]"
    for depth in xrange(sys.maxint):
        result = depth_limited_search(problem, depth)
        if result is not 'cutoff':
            return result

#______________________________________________________________________________
# Informed (Heuristic) Search

def best_first_graph_search(problem, f):
    """Search the nodes with the lowest f scores first.
    You specify the function f(node) that you want to minimize; for example,
    if f is a heuristic estimate to the goal, then we have greedy best
withal's avatar
withal a validé
    first search; if f is node.depth then we have breadth-first search.
    There is a subtlety: the line "f = memoize(f, 'f')" means that the f
    values will be cached on the nodes as they are computed. So after doing
    a best first search you can examine the f values of the path returned."""
    f = memoize(f, 'f')
    return graph_search(problem, PriorityQueue(min, f))

greedy_best_first_graph_search = best_first_graph_search
    # Greedy best-first search is accomplished by specifying f(n) = h(n).

def astar_search(problem, h=None):
    """A* search is best-first graph search with f(n) = g(n)+h(n).
    You need to specify the h function when you call astar_search.
    Uses the pathmax trick: f(n) = max(f(n), g(n)+h(n))."""
    h = h or problem.h
    def f(n):
        return max(getattr(n, 'f', -infinity), n.path_cost + h(n))
    return best_first_graph_search(problem, f)

#______________________________________________________________________________
## Other search algorithms

def recursive_best_first_search(problem, h=None):
    def RBFS(problem, node, flimit):
        if problem.goal_test(node.state): 
            return node, 0   # (The second value is immaterial)
        successors = node.expand(problem)
        if len(successors) == 0:
            return None, infinity
        for s in successors:
            s.f = max(s.path_cost + h(s), node.f)
            successors.sort(lambda x,y: cmp(x.f, y.f)) # Order by lowest f value
            best = successors[0]
            if best.f > flimit:
                return None, best.f
            if len(successors) > 1:
                alternative = successors[1].f
                alternative = infinity
            result, best.f = RBFS(problem, best, min(flimit, alternative))
    node = Node(problem.initial)
    node.f = h(node)
    result, bestf = RBFS(problem, node, infinity)
    return result

def hill_climbing(problem):
    """From the initial node, keep choosing the neighbor with highest value,
    stopping when no neighbor is better. [Fig. 4.11]"""
    current = Node(problem.initial)
    while True:
        neighbors = current.expand(problem)
        if not neighbors:
            break
        neighbor = argmax_random_tie(neighbors,
                                     lambda node: problem.value(node.state))
        if problem.value(neighbor.state) <= problem.value(current.state):
            break

def exp_schedule(k=20, lam=0.005, limit=100):
    "One possible schedule function for simulated annealing"
    return lambda t: if_(t < limit, k * math.exp(-lam * t), 0)

def simulated_annealing(problem, schedule=exp_schedule()):
    "[Fig. 4.5]"
    current = Node(problem.initial)
    for t in xrange(sys.maxint):
        T = schedule(t)
        if T == 0:
            return current
        neighbors = current.expand(problem)
        if not neighbors:
            return current
        next = random.choice(neighbors)
        delta_e = problem.value(next.state) - problem.value(current.state)
        if delta_e > 0 or probability(math.exp(delta_e/T)):
            current = next

def online_dfs_agent(a):
    "[Fig. 4.12]"
    pass #### more

def lrta_star_agent(a):
    "[Fig. 4.12]"
    pass #### more

#______________________________________________________________________________
# Genetic Algorithm

def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20):
    """Call genetic_algorithm on the appropriate parts of a problem.
    This requires that the problem has a successor function that
    generates states that can mate and mutate, and that it has a value
    method that scores states."""
    states = [s for (a, s) in problem.successor(problem.initial_state)]
    return genetic_algorithm(states[:n], problem.value, ngen, pmut)
def genetic_algorithm(population, fitness_fn, ngen=1000, pmut=0.1):
    """[Fig. 4.7]"""
    for i in range(ngen):
        new_population = []
        for i in len(population):
            p1, p2 = random_weighted_selections(population, 2, fitness_fn)
            child = p1.mate(p2)
            if random.uniform(0, 1) < pmut:
                child.mutate()
            new_population.append(child)
        population = new_population
    return argmax(population, fitness_fn)

class GAState:
    "Abstract class for individuals in a genetic algorithm."
    def __init__(self, genes):
        self.genes = genes

    def mate(self, other):
        "Return a new individual crossing self and other."
        c = random.randrange(len(self.genes))
        return self.__class__(self.genes[:c] + other.genes[c:])

    def mutate(self):
        "Change a few of my genes."
        abstract

def random_weighted_selection(seq, n, weight_fn):
    """Pick n elements of seq, weighted according to weight_fn.
    That is, apply weight_fn to each element of seq, add up the total.
    Then choose an element e with probability weight[e]/total.
    Repeat n times, with replacement. """
    totals = []; runningtotal = 0
    for item in seq:
        runningtotal += weight_fn(item)
        totals.append(runningtotal)
    selections = []
    for s in range(n):
        r = random.uniform(0, totals[-1])
        for i in range(len(seq)):
            if totals[i] > r:
                selections.append(seq[i])
                break
    return selections
    

#_____________________________________________________________________________
# The remainder of this file implements examples for the search algorithms.

#______________________________________________________________________________
# Graphs and Graph Problems

class Graph:
    """A graph connects nodes (verticies) by edges (links).  Each edge can also
    have a length associated with it.  The constructor call is something like:
        g = Graph({'A': {'B': 1, 'C': 2})   
    this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
    A to B,  and an edge of length 2 from A to C.  You can also do:
        g = Graph({'A': {'B': 1, 'C': 2}, directed=False)
    This makes an undirected graph, so inverse links are also added. The graph
    stays undirected; if you add more links with g.connect('B', 'C', 3), then
    inverse link is also added.  You can use g.nodes() to get a list of nodes,
    g.get('A') to get a dict of links out of A, and g.get('A', 'B') to get the
    length of the link from A to B.  'Lengths' can actually be any object at 
    all, and nodes can be any hashable object."""

    def __init__(self, dict=None, directed=True):
        self.dict = dict or {}
        self.directed = directed
        if not directed: self.make_undirected()

    def make_undirected(self):
        "Make a digraph into an undirected graph by adding symmetric edges."
        for a in self.dict.keys():
            for (b, distance) in self.dict[a].items():
                self.connect1(b, a, distance)

    def connect(self, A, B, distance=1):
        """Add a link from A and B of given distance, and also add the inverse
        link if the graph is undirected."""
        self.connect1(A, B, distance)
        if not self.directed: self.connect1(B, A, distance)

    def connect1(self, A, B, distance):
        "Add a link from A to B of given distance, in one direction only."
        self.dict.setdefault(A,{})[B] = distance

    def get(self, a, b=None):
        """Return a link distance or a dict of {node: distance} entries.
        .get(a,b) returns the distance or None;
        .get(a) returns a dict of {node: distance} entries, possibly {}."""
        links = self.dict.setdefault(a, {})
        if b is None: return links
        else: return links.get(b)

    def nodes(self):
        "Return a list of nodes in the graph."
        return self.dict.keys()

def UndirectedGraph(dict=None):
    "Build a Graph where every edge (including future ones) goes both ways."
    return Graph(dict=dict, directed=False)

def RandomGraph(nodes=range(10), min_links=2, width=400, height=300,
                                curvature=lambda: random.uniform(1.1, 1.5)):
    """Construct a random graph, with the specified nodes, and random links.
    The nodes are laid out randomly on a (width x height) rectangle.
    Then each node is connected to the min_links nearest neighbors.
    Because inverse links are added, some nodes will have more connections.
    The distance between nodes is the hypotenuse times curvature(),
    where curvature() defaults to a random number between 1.1 and 1.5."""
    g = UndirectedGraph()
    g.locations = {}
    ## Build the cities
    for node in nodes:
        g.locations[node] = (random.randrange(width), random.randrange(height))
    ## Build roads from each city to at least min_links nearest neighbors.
    for i in range(min_links):
        for node in nodes:
            if len(g.get(node)) < min_links:
                here = g.locations[node]
                def distance_to_node(n):
                    if n is node or g.get(node,n): return infinity
                    return distance(g.locations[n], here)
                neighbor = argmin(nodes, distance_to_node)
                d = distance(g.locations[neighbor], here) * curvature()
                g.connect(node, neighbor, int(d)) 
    return g

romania = UndirectedGraph(Dict(
    A=Dict(Z=75, S=140, T=118),
    B=Dict(U=85, P=101, G=90, F=211),
    C=Dict(D=120, R=146, P=138),
    D=Dict(M=75),
    E=Dict(H=86),
    F=Dict(S=99),
    H=Dict(U=98),
    I=Dict(V=92, N=87),
    L=Dict(T=111, M=70),
    O=Dict(Z=71, S=151),
    P=Dict(R=97),
    R=Dict(S=80),
    U=Dict(V=142)))
romania.locations = Dict(
    A=( 91, 492),    B=(400, 327),    C=(253, 288),   D=(165, 299), 
    E=(562, 293),    F=(305, 449),    G=(375, 270),   H=(534, 350),
    I=(473, 506),    L=(165, 379),    M=(168, 339),   N=(406, 537), 
    O=(131, 571),    P=(320, 368),    R=(233, 410),   S=(207, 457), 
    T=( 94, 410),    U=(456, 350),    V=(509, 444),   Z=(108, 531))

australia = UndirectedGraph(Dict(
    T=Dict(),
    SA=Dict(WA=1, NT=1, Q=1, NSW=1, V=1),
    NT=Dict(WA=1, Q=1),
    NSW=Dict(Q=1, V=1)))
australia.locations = Dict(WA=(120, 24), NT=(135, 20), SA=(135, 30), 
                           Q=(145, 20), NSW=(145, 32), T=(145, 42), V=(145, 37))

class GraphProblem(Problem):
    "The problem of searching a graph from one node to another."
    def __init__(self, initial, goal, graph):
        Problem.__init__(self, initial, goal)
        self.graph = graph

    def successor(self, A):
        "Return a list of (action, result) pairs."
        return [(B, B) for B in self.graph.get(A).keys()]

    def path_cost(self, cost_so_far, A, action, B):
        return cost_so_far + (self.graph.get(A,B) or infinity)

    def h(self, node):
        "h function is straight-line distance from a node's state to goal."
        locs = getattr(self.graph, 'locations', None)
        if locs:
            return int(distance(locs[node.state], locs[self.goal]))
        else:
            return infinity

#______________________________________________________________________________

class NQueensProblem(Problem):
    """The problem of placing N queens on an NxN board with none attacking
withal's avatar
withal a validé
    each other.  A state is represented as an N-element array, where
    a value of r in the c-th entry means there is a queen at column c,
    row r, and a value of None means that the c-th column has not been
    filled in yet.  We fill in columns left to right."""
    def __init__(self, N):
        self.N = N
        self.initial = [None] * N

    def successor(self, state): 
        "In the leftmost empty column, try all non-conflicting rows."
        if state[-1] is not None:
            return [] # All columns filled; no successors
withal's avatar
withal a validé
                new = state[:]
                new[col] = row
                return new
            col = state.index(None)
            return [(row, place(col, row)) for row in range(self.N)
                    if not self.conflicted(state, row, col)]

    def conflicted(self, state, row, col):
        "Would placing a queen at (row, col) conflict with anything?"
withal's avatar
withal a validé
        for c in range(col):
            if self.conflict(row, col, state[c], c):
                return True
        return False

    def conflict(self, row1, col1, row2, col2):
        "Would putting two queens in (row1, col1) and (row2, col2) conflict?"
        return (row1 == row2 ## same row
                or col1 == col2 ## same column
                or row1-col1 == row2-col2  ## same \ diagonal
                or row1+col1 == row2+col2) ## same / diagonal

    def goal_test(self, state):
        "Check if all columns filled, no conflicts."
        if state[-1] is None: 
            return False
        for c in range(len(state)):
            if self.conflicted(state, state[c], c):
                return False
        return True

#______________________________________________________________________________
## Inverse Boggle: Search for a high-scoring Boggle board. A good domain for
withal's avatar
withal a validé
## iterative-repair and related search techniques, as suggested by Justin Boyan.

ALPHABET = 'ABCDEFGHIJKLMNOPQRSTUVWXYZ'

cubes16 = ['FORIXB', 'MOQABJ', 'GURILW', 'SETUPL',
           'CMPDAE', 'ACITAO', 'SLCRAE', 'ROMASH',
           'NODESW', 'HEFIYE', 'ONUDTK', 'TEVIGN',
           'ANEDVZ', 'PINESH', 'ABILYT', 'GKYLEU']

def random_boggle(n=4):
    """Return a random Boggle board of size n x n.
    We represent a board as a linear list of letters."""
    cubes = [cubes16[i % 16] for i in range(n*n)]
    random.shuffle(cubes)
    return map(random.choice, cubes)

## The best 5x5 board found by Boyan, with our word list this board scores
## 2274 words, for a score of 9837

boyan_best = list('RSTCSDEIAEGNLRPEATESMSSID')

def print_boggle(board):
    "Print the board in a 2-d array."
    n2 = len(board); n = exact_sqrt(n2)
    for i in range(n2):
peter.norvig's avatar
peter.norvig a validé
        if i % n == 0 and i > 0: print
        if board[i] == 'Q': print 'Qu',
        else: print str(board[i]) + ' ',
    print
    
def boggle_neighbors(n2, cache={}):
    """Return a list of lists, where the i-th element is the list of indexes
    for the neighbors of square i."""
    if cache.get(n2):
        return cache.get(n2)
    n = exact_sqrt(n2)
    neighbors = [None] * n2
    for i in range(n2):
        neighbors[i] = []
        on_top = i < n
        on_bottom = i >= n2 - n
        on_left = i % n == 0
        on_right = (i+1) % n == 0
        if not on_top:
            neighbors[i].append(i - n)
            if not on_left:  neighbors[i].append(i - n - 1)
            if not on_right: neighbors[i].append(i - n + 1)
        if not on_bottom:
            neighbors[i].append(i + n) 
            if not on_left:  neighbors[i].append(i + n - 1)
            if not on_right: neighbors[i].append(i + n + 1)
        if not on_left: neighbors[i].append(i - 1) 
        if not on_right: neighbors[i].append(i + 1)
    cache[n2] = neighbors
    return neighbors

def exact_sqrt(n2):
    "If n2 is a perfect square, return its square root, else raise error."
    n = int(math.sqrt(n2))
    assert n * n == n2
    return n

##_____________________________________________________________________________

class Wordlist:
    """This class holds a list of words. You can use (word in wordlist)
    to check if a word is in the list, or wordlist.lookup(prefix)
    to see if prefix starts any of the words in the list."""
    def __init__(self, filename, min_len=3):
        lines = open(filename).read().upper().split()
        self.words = [word for word in lines if len(word) >= min_len]
        self.words.sort()
        self.bounds = {}
        for c in ALPHABET:
            c2 = chr(ord(c) + 1)
            self.bounds[c] = (bisect.bisect(self.words, c),
                              bisect.bisect(self.words, c2))

    def lookup(self, prefix, lo=0, hi=None):
        """See if prefix is in dictionary, as a full word or as a prefix.
        Return two values: the first is the lowest i such that
        words[i].startswith(prefix), or is None; the second is
        True iff prefix itself is in the Wordlist."""
        words = self.words
        if hi is None: hi = len(words)
        i = bisect.bisect_left(words, prefix, lo, hi)
        if i < len(words) and words[i].startswith(prefix): 
            return i, (words[i] == prefix)
        else: 
            return None, False

    def __contains__(self, word): 
        return self.lookup(word)[1]

    def __len__(self): 
        return len(self.words)
    
##_____________________________________________________________________________

class BoggleFinder:
    """A class that allows you to find all the words in a Boggle board. """

    wordlist = None ## A class variable, holding a wordlist

    def __init__(self, board=None):
        if BoggleFinder.wordlist is None:
withal's avatar
withal a validé
            BoggleFinder.wordlist = Wordlist("../data/EN-text/wordlist")
        self.found = {}
        if board:
            self.set_board(board)

    def set_board(self, board=None):
        "Set the board, and find all the words in it."
        if board is None:
            board = random_boggle()
        self.board = board
        self.neighbors = boggle_neighbors(len(board))
        self.found = {}
        for i in range(len(board)):
            lo, hi = self.wordlist.bounds[board[i]]
            self.find(lo, hi, i, [], '')
        return self
            
    def find(self, lo, hi, i, visited, prefix):
        """Looking in square i, find the words that continue the prefix,
        considering the entries in self.wordlist.words[lo:hi], and not
        revisiting the squares in visited."""
        if i in visited: 
            return
        wordpos, is_word = self.wordlist.lookup(prefix, lo, hi)
        if wordpos is not None:
            if is_word: 
                self.found[prefix] = True
            visited.append(i)
            c = self.board[i]
            if c == 'Q': c = 'QU'
            prefix += c
            for j in self.neighbors[i]: 
                self.find(wordpos, hi, j, visited, prefix)
            visited.pop()

    def words(self): 
        "The words found."
        return self.found.keys()

    scores = [0, 0, 0, 0, 1, 2, 3, 5] + [11] * 100

    def score(self):
        "The total score for the words found, according to the rules."
        return sum([self.scores[len(w)] for w in self.words()])

    def __len__(self):
        "The number of words found."
        return len(self.found)

##_____________________________________________________________________________
    
peter.norvig's avatar
peter.norvig a validé
def boggle_hill_climbing(board=None, ntimes=100, verbose=True):
    """Solve inverse Boggle by hill-climbing: find a high-scoring board by
    starting with a random one and changing it."""
    finder = BoggleFinder()
    if board is None:
        board = random_boggle()
    best = len(finder.set_board(board))
    for _ in range(ntimes):
        i, oldc = mutate_boggle(board)
        new = len(finder.set_board(board))
        if new > best:
            best = new
peter.norvig's avatar
peter.norvig a validé
            if verbose: print best, _, board
        else:
            board[i] = oldc ## Change back
peter.norvig's avatar
peter.norvig a validé
    if verbose:
        print_boggle(board)
    return board, best

def mutate_boggle(board):
    i = random.randrange(len(board))
    oldc = board[i]
    board[i] = random.choice(random.choice(cubes16)) ##random.choice(boyan_best)
    return i, oldc

#______________________________________________________________________________

## Code to compare searchers on various problems.

class InstrumentedProblem(Problem):
    """Delegates to a problem, and keeps statistics."""

    def __init__(self, problem): 
        self.problem = problem
        self.succs = self.goal_tests = self.states = 0
        self.found = None
        
    def successor(self, state):
        "Return a list of (action, state) pairs reachable from this state."
withal's avatar
withal a validé
        result = self.problem.successor(state)
        self.succs += 1; self.states += len(result)
        return result
    
    def goal_test(self, state):
        "Return true if the state is a goal."
        self.goal_tests += 1
        result = self.problem.goal_test(state)
        if result: 
            self.found = state
        return result
    
    def __getattr__(self, attr):
withal's avatar
withal a validé
        return getattr(self.problem, attr)

    def __repr__(self):
        return '<%4d/%4d/%4d/%s>' % (self.succs, self.goal_tests,
                                     self.states, str(self.found)[0:4])

def compare_searchers(problems, header, searchers=[breadth_first_tree_search,
                      breadth_first_graph_search, depth_first_graph_search,
                      iterative_deepening_search, depth_limited_search,
                      astar_search, recursive_best_first_search]):
    def do(searcher, problem):
        p = InstrumentedProblem(problem)
        searcher(p)
        return p
    table = [[name(s)] + [do(s, p) for p in problems] for s in searchers]
    print_table(table, header)

def compare_graph_searchers():
peter.norvig's avatar
peter.norvig a validé
    """Prints a table of results like this:
withal's avatar
withal a validé
>>> compare_graph_searchers()
withal's avatar
withal a validé
Searcher                      Romania(A, B)        Romania(O, N)        Australia            
breadth_first_tree_search     <  21/  22/  59/B>   <1158/1159/3288/N>   <   7/   8/  22/WA>  
breadth_first_graph_search    <  10/  19/  26/B>   <  19/  45/  45/N>   <   5/   8/  16/WA>  
depth_first_graph_search      <   9/  15/  23/B>   <  16/  27/  39/N>   <   4/   7/  13/WA>  
iterative_deepening_search    <  11/  33/  31/B>   < 656/1815/1812/N>   <   3/  11/  11/WA>  
depth_limited_search          <  54/  65/ 185/B>   < 387/1012/1125/N>   <  50/  54/ 200/WA>  
astar_search                  <   3/   4/   9/B>   <   8/  10/  22/N>   <   2/   3/   6/WA>  
recursive_best_first_search   < 200/ 201/ 601/B>   <  71/  72/ 213/N>   <  11/  12/  43/WA>  """
    compare_searchers(problems=[GraphProblem('A', 'B', romania),
                                GraphProblem('O', 'N', romania),
                                GraphProblem('Q', 'WA', australia)],
withal's avatar
withal a validé
            header=['Searcher', 'Romania(A, B)', 'Romania(O, N)', 'Australia'])
peter.norvig's avatar
peter.norvig a validé
#______________________________________________________________________________

__doc__ += """
>>> ab = GraphProblem('A', 'B', romania)
>>> breadth_first_tree_search(ab).state 
'B'
>>> breadth_first_graph_search(ab).state 
'B'
>>> depth_first_graph_search(ab).state 
'B'
>>> iterative_deepening_search(ab).state 
'B'
>>> depth_limited_search(ab).state 
'B'
>>> astar_search(ab).state 
'B'
>>> recursive_best_first_search(ab).state 
'B'
peter.norvig's avatar
peter.norvig a validé
>>> [node.state for node in astar_search(ab).path()] 
['A', 'S', 'R', 'P', 'B']
peter.norvig's avatar
peter.norvig a validé

>>> board = list('SARTELNID')
>>> print_boggle(board)
S  A  R 
T  E  L 
N  I  D 
>>> f = BoggleFinder(board)
>>> len(f) 
206
"""

__doc__ += random_tests("""
>>> ' '.join(f.words())
'LID LARES DEAL LIE DIETS LIN LINT TIL TIN RATED ERAS LATEN DEAR TIE LINE INTER STEAL LATED LAST TAR SAL DITES RALES SAE RETS TAE RAT RAS SAT IDLE TILDES LEAST IDEAS LITE SATED TINED LEST LIT RASE RENTS TINEA EDIT EDITS NITES ALES LATE LETS RELIT TINES LEI LAT ELINT LATI SENT TARED DINE STAR SEAR NEST LITAS TIED SEAT SERAL RATE DINT DEL DEN SEAL TIER TIES NET SALINE DILATE EAST TIDES LINTER NEAR LITS ELINTS DENI RASED SERA TILE NEAT DERAT IDLEST NIDE LIEN STARED LIER LIES SETA NITS TINE DITAS ALINE SATIN TAS ASTER LEAS TSAR LAR NITE RALE LAS REAL NITER ATE RES RATEL IDEA RET IDEAL REI RATS STALE DENT RED IDES ALIEN SET TEL SER TEN TEA TED SALE TALE STILE ARES SEA TILDE SEN SEL ALINES SEI LASE DINES ILEA LINES ELD TIDE RENT DIEL STELA TAEL STALED EARL LEA TILES TILER LED ETA TALI ALE LASED TELA LET IDLER REIN ALIT ITS NIDES DIN DIE DENTS STIED LINER LASTED RATINE ERA IDLES DIT RENTAL DINER SENTI TINEAL DEIL TEAR LITER LINTS TEAL DIES EAR EAT ARLES SATE STARE DITS DELI DENTAL REST DITE DENTIL DINTS DITA DIET LENT NETS NIL NIT SETAL LATS TARE ARE SATI'

>>> boggle_hill_climbing(list('ABCDEFGHI'), verbose=False)
(['E', 'P', 'R', 'D', 'O', 'A', 'G', 'S', 'T'], 123)

>>> random_weighted_selection(range(10), 3, lambda x: x * x)
[8, 9, 6]
""")