Newer
Older
"""Learn to estimate functions from examples. (Chapters 18-20)"""
removeall, unique, product, mode, argmax, argmax_random_tie, isclose,
dotproduct, vector_add, scalar_vector_product, weighted_sample_with_replacement,
Surya Teja Cheedella
a validé
weighted_sampler, num_or_str, normalize, clip, sigmoid, print_table, DataFile
import copy
import heapq
import math
import random
from statistics import mean
from collections import defaultdict, Counter
# ______________________________________________________________________________
def rms_error(predictions, targets):
return math.sqrt(ms_error(predictions, targets))
def ms_error(predictions, targets):
return mean([(p - t)**2 for p, t in zip(predictions, targets)])
def mean_error(predictions, targets):
return mean([abs(p - t) for p, t in zip(predictions, targets)])
def manhattan_distance(predictions, targets):
return sum([abs(p - t) for p, t in zip(predictions, targets)])
def mean_boolean_error(predictions, targets):
return mean(int(p != t) for p, t in zip(predictions, targets))
# ______________________________________________________________________________
class DataSet:
"""A data set for a machine learning problem. It has the following fields:
d.examples A list of examples. Each one is a list of attribute values.
d.attrs A list of integers to index into an example, so example[attr]
gives a value. Normally the same as range(len(d.examples[0])).
d.attrnames Optional list of mnemonic names for corresponding attrs.
d.target The attribute that a learning algorithm will try to predict.
By default the final attribute.
d.inputs The list of attrs without the target.
d.values A list of lists: each sublist is the set of possible
values for the corresponding attribute. If initially None,
it is computed from the known examples by self.setproblem.
If not None, an erroneous value raises ValueError.
d.distance A function from a pair of examples to a nonnegative number.
Should be symmetric, etc. Defaults to mean_boolean_error
since that can handle any field types.
d.name Name of the data set (for output display only).
d.source URL or other source where the data came from.
Normally, you call the constructor and you're done; then you just
access fields like d.examples and d.target and d.inputs."""
def __init__(self, examples=None, attrs=None, attrnames=None, target=-1,
inputs=None, values=None, distance=mean_boolean_error,
name='', source='', exclude=()):
"""Accepts any of DataSet's fields. Examples can also be a
string or file from which to parse examples using parse_csv.
Optional parameter: exclude, as documented in .setproblem().
>>> DataSet(examples='1, 2, 3')
<DataSet(): 1 examples, 3 attributes>
"""
self.name = name
self.source = source
self.values = values
self.distance = distance
Surya Teja Cheedella
a validé
if values is None:
self.got_values_flag = False
else:
self.got_values_flag = True
# Initialize .examples from string or list or data directory
if isinstance(examples, str):
self.examples = parse_csv(examples)
elif examples is None:
self.examples = parse_csv(DataFile(name + '.csv').read())
else:
self.examples = examples
# Attrs are the indices of examples, unless otherwise stated.
if attrs is None and self.examples is not None:
Surya Teja Cheedella
a validé
attrs = list(range(len(self.examples[0])))
self.attrs = attrs
# Initialize .attrnames from string, list, or by default
self.attrnames = attrnames.split()
else:
self.attrnames = attrnames or attrs
self.setproblem(target, inputs=inputs, exclude=exclude)
def setproblem(self, target, inputs=None, exclude=()):
"""Set (or change) the target and/or inputs.
This way, one DataSet can be used multiple ways. inputs, if specified,
is a list of attributes, or specify exclude as a list of attributes
to not use in inputs. Attributes can be -n .. n, or an attrname.
Also computes the list of possible values, if that wasn't done yet."""
self.target = self.attrnum(target)
exclude = map(self.attrnum, exclude)
if inputs:
self.inputs = removeall(self.target, inputs)
else:
self.inputs = [a for a in self.attrs
if a != self.target and a not in exclude]
if not self.values:
self.values = list(map(unique, zip(*self.examples)))
self.check_me()
def check_me(self):
"""Check that my fields make sense."""
assert len(self.attrnames) == len(self.attrs)
assert self.target in self.attrs
assert self.target not in self.inputs
assert set(self.inputs).issubset(set(self.attrs))
Surya Teja Cheedella
a validé
if self.got_values_flag:
# only check if values are provided while initializing DataSet
Surya Teja Cheedella
a validé
list(map(self.check_example, self.examples))
def add_example(self, example):
"""Add an example to the list of examples, checking it first."""
self.check_example(example)
self.examples.append(example)
def check_example(self, example):
"""Raise ValueError if example has any invalid values."""
if self.values:
for a in self.attrs:
if example[a] not in self.values[a]:
raise ValueError('Bad value {} for attribute {} in {}'
.format(example[a], self.attrnames[a], example))
def attrnum(self, attr):
"""Returns the number used for attr, which can be a name, or -n .. n-1."""
return self.attrnames.index(attr)
else:
return attr
def sanitize(self, example):
"""Return a copy of example, with non-input attributes replaced by None."""
return [attr_i if i in self.inputs else None
for i, attr_i in enumerate(example)]
def __repr__(self):
return '<DataSet({}): {:d} examples, {:d} attributes>'.format(
self.name, len(self.examples), len(self.attrs))
# ______________________________________________________________________________
def parse_csv(input, delim=','):
r"""Input is a string consisting of lines, each line has comma-delimited
fields. Convert this into a list of lists. Blank lines are skipped.
Fields that look like numbers are converted to numbers.
The delim defaults to ',' but '\t' and None are also reasonable values.
>>> parse_csv('1, 2, 3 \n 0, 2, na')
[[1, 2, 3], [0, 2, 'na']]"""
lines = [line for line in input.splitlines() if line.strip()]
return [list(map(num_or_str, line.split(delim))) for line in lines]
# ______________________________________________________________________________
class CountingProbDist:
"""A probability distribution formed by observing and counting examples.
If p is an instance of this class and o is an observed value, then
there are 3 main operations:
p.add(o) increments the count for observation o by 1.
p.sample() returns a random element from the distribution.
p[o] returns the probability for o (as in a regular ProbDist)."""
def __init__(self, observations=[], default=0):
"""Create a distribution, and optionally add in some observations.
By default this is an unsmoothed distribution, but saying default=1,
for example, gives you add-one smoothing."""
self.dictionary = {}
self.n_obs = 0.0
self.default = default
self.sampler = None
for o in observations:
self.add(o)
def add(self, o):
"""Add an observation o to the distribution."""
self.smooth_for(o)
self.dictionary[o] += 1
self.n_obs += 1
self.sampler = None
def smooth_for(self, o):
"""Include o among the possible observations, whether or not
it's been observed yet."""
if o not in self.dictionary:
self.dictionary[o] = self.default
self.n_obs += self.default
self.sampler = None
def __getitem__(self, item):
"""Return an estimate of the probability of item."""
self.smooth_for(item)
return self.dictionary[item] / self.n_obs
# (top() and sample() are not used in this module, but elsewhere.)
def top(self, n):
"""Return (count, obs) tuples for the n most frequent observations."""
return heapq.nlargest(n, [(v, k) for (k, v) in self.dictionary.items()])
def sample(self):
"""Return a random sample from the distribution."""
if self.sampler is None:
self.sampler = weighted_sampler(list(self.dictionary.keys()),
list(self.dictionary.values()))
return self.sampler()
# ______________________________________________________________________________
def PluralityLearner(dataset):
"""A very dumb algorithm: always pick the result that was most popular
in the training data. Makes a baseline for comparison."""
most_popular = mode([e[dataset.target] for e in dataset.examples])
def predict(example):
"""Always return same result: the most popular from the training set."""
return most_popular
return predict
# ______________________________________________________________________________
def NaiveBayesLearner(dataset):
"""Just count how many times each value of each input attribute
occurs, conditional on the target value. Count the different
target values too."""
targetvals = dataset.values[dataset.target]
target_dist = CountingProbDist(targetvals)
attr_dists = {(gv, attr): CountingProbDist(dataset.values[attr])
for gv in targetvals
for attr in dataset.inputs}
for example in dataset.examples:
targetval = example[dataset.target]
target_dist.add(targetval)
for attr in dataset.inputs:
attr_dists[targetval, attr].add(example[attr])
def predict(example):
"""Predict the target value for example. Consider each possible value,
and pick the most likely by looking at each attribute independently."""
def class_probability(targetval):
return (target_dist[targetval] *
product(attr_dists[targetval, attr][example[attr]]
for attr in dataset.inputs))
return predict
# ______________________________________________________________________________
def NearestNeighborLearner(dataset, k=1):
"""k-NearestNeighbor: the k nearest neighbors vote."""
"""Find the k closest items, and have them vote for the best."""
best = heapq.nsmallest(k, ((dataset.distance(e, example), e)
for e in dataset.examples))
return mode(e[dataset.target] for (d, e) in best)
return predict
# ______________________________________________________________________________
class DecisionFork:
"""A fork of a decision tree holds an attribute to test, and a dict
of branches, one for each of the attribute's values."""
def __init__(self, attr, attrname=None, branches=None):
"""Initialize by saying what attribute this node tests."""
self.attr = attr
self.attrname = attrname or attr
self.branches = branches or {}
def __call__(self, example):
"""Given an example, classify it using the attribute and the branches."""
return self.branches[attrvalue](example)
def add(self, val, subtree):
"""Add a branch. If self.attr = val, go to the given subtree."""
self.branches[val] = subtree
def display(self, indent=0):
name = self.attrname
for (val, subtree) in self.branches.items():
print(' ' * 4 * indent, name, '=', val, '==>', end=' ')
subtree.display(indent + 1)
def __repr__(self):
return ('DecisionFork({0!r}, {1!r}, {2!r})'
.format(self.attr, self.attrname, self.branches))
class DecisionLeaf:
"""A leaf of a decision tree holds just a result."""
def __init__(self, result):
self.result = result
def __call__(self, example):
return self.result
def display(self, indent=0):
def __repr__(self):
return repr(self.result)
# ______________________________________________________________________________
def DecisionTreeLearner(dataset):
"""[Figure 18.5]"""
target, values = dataset.target, dataset.values
def decision_tree_learning(examples, attrs, parent_examples=()):
if len(examples) == 0:
return plurality_value(parent_examples)
elif all_same_class(examples):
return DecisionLeaf(examples[0][target])
return plurality_value(examples)
A = choose_attribute(attrs, examples)
tree = DecisionFork(A, dataset.attrnames[A])
for (v_k, exs) in split_by(A, examples):
subtree = decision_tree_learning(
exs, removeall(A, attrs), examples)
tree.add(v_k, subtree)
return tree
def plurality_value(examples):
"""Return the most popular target value for this set of examples.
(If target is binary, this is the majority; otherwise plurality.)"""
popular = argmax_random_tie(values[target],
return DecisionLeaf(popular)
def count(attr, val, examples):
"""Count the number of examples that have attr = val."""
return len(e[attr] == val for e in examples) #count(e[attr] == val for e in examples)
def all_same_class(examples):
"""Are all these examples in the same target class?"""
class0 = examples[0][target]
return all(e[target] == class0 for e in examples)
def choose_attribute(attrs, examples):
"""Choose the attribute with the highest information gain."""
def information_gain(attr, examples):
"""Return the expected reduction in entropy from splitting by attr."""
def I(examples):
return information_content([count(target, v, examples)
for v in values[target]])
N = float(len(examples))
remainder = sum((len(examples_i) / N) * I(examples_i)
for (v, examples_i) in split_by(attr, examples))
return I(examples) - remainder
def split_by(attr, examples):
"""Return a list of (val, examples) pairs for each val of attr."""
return [(v, [e for e in examples if e[attr] == v])
for v in values[attr]]
return decision_tree_learning(dataset.examples, dataset.inputs)
def information_content(values):
"""Number of bits to represent the probability distribution in values."""
return sum(-p * math.log2(p) for p in probabilities)
# ______________________________________________________________________________
# A decision list is implemented as a list of (test, value) pairs.
def DecisionListLearner(dataset):
"""[Figure 18.11]"""
def decision_list_learning(examples):
if not examples:
t, o, examples_t = find_examples(examples)
if not t:
raise Failure
return [(t, o)] + decision_list_learning(examples - examples_t)
def find_examples(examples):
"""Find a set of examples that all have the same outcome under
some test. Return a tuple of the test, outcome, and examples."""
raise NotImplementedError
def passes(example, test):
"""Does the example pass the test?"""
raise NotImplementedError
def predict(example):
"""Predict the outcome for the first passing test."""
for test, outcome in predict.decision_list:
if passes(example, test):
return outcome
predict.decision_list = decision_list_learning(set(dataset.examples))
return predict
# ______________________________________________________________________________
def NeuralNetLearner(dataset, hidden_layer_sizes=[3],
learning_rate=0.01, epoches=100):
"""
Layered feed-forward network.
hidden_layer_sizes: List of number of hidden units per hidden layer
learning_rate: Learning rate of gradient descent
epoches: Number of passes over the dataset
"""
i_units = len(dataset.inputs)
o_units = 1 # As of now, dataset.target gives only one index.
# construct a network
raw_net = network(i_units, hidden_layer_sizes, o_units)
learned_net = BackPropagationLearner(dataset, raw_net,
learning_rate, epoches)
# Input nodes
i_nodes = learned_net[0]
# Activate input layer
for v, n in zip(example, i_nodes):
n.value = v
# Forward pass
for layer in learned_net[1:]:
for node in layer:
inc = [n.value for n in node.inputs]
in_val = dotproduct(inc, node.weights)
node.value = node.activation(in_val)
# Hypothesis
o_nodes = learned_net[-1]
pred = [o_nodes[i].value for i in range(o_units)]
class NNUnit:
"""
Single Unit of Multiple Layer Neural Network
inputs: Incoming connections
weights: Weights to incoming connections
def __init__(self, weights=None, inputs=None):
self.weights = []
self.inputs = []
self.value = None
self.activation = sigmoid
def network(input_units, hidden_layer_sizes, output_units):
"""
Create Directed Acyclic Network of given number layers.
hidden_layers_sizes : List number of neuron units in each hidden layer
# Check for PerceptronLearner
if hidden_layer_sizes:
layers_sizes = [input_units] + hidden_layer_sizes + [output_units]
else:
layers_sizes = [input_units] + [output_units]
net = [[NNUnit() for n in range(size)]
for size in layers_sizes]
n_layers = len(net)
# Make Connection
for i in range(1, n_layers):
for n in net[i]:
for k in net[i-1]:
n.inputs.append(k)
n.weights.append(0)
return net
def BackPropagationLearner(dataset, net, learning_rate, epoches):
"""[Figure 18.23] The back-propagation algorithm for multilayer network"""
for node in layer:
node.weights = [random.uniform(-0.5, 0.5)
for i in range(len(node.weights))]
examples = dataset.examples
'''
As of now dataset.target gives an int instead of list,
Changing dataset class will have effect on all the learners.
Will be taken care of later
'''
idx_t = [dataset.target]
idx_i = dataset.inputs
n_layers = len(net)
o_nodes = net[-1]
i_nodes = net[0]
for epoch in range(epoches):
# Iterate over each example
for e in examples:
i_val = [e[i] for i in idx_i]
t_val = [e[i] for i in idx_t]
# Activate input layer
for v, n in zip(i_val, i_nodes):
n.value = v
# Forward pass
for node in layer:
inc = [n.value for n in node.inputs]
in_val = dotproduct(inc, node.weights)
node.value = node.activation(in_val)
# Initialize delta
delta = [[] for i in range(n_layers)]
# Compute outer layer delta
o_units = len(o_nodes)
err = [t_val[i] - o_nodes[i].value
for i in range(o_units)]
delta[-1] = [(o_nodes[i].value) * (1 - o_nodes[i].value) *
(err[i]) for i in range(o_units)]
# Backward pass
h_layers = n_layers - 2
for i in range(h_layers, 0, -1):
# weights from each ith layer node to each i + 1th layer node
w = [[node.weights[k] for node in nx_layer]
for k in range(h_units)]
delta[i] = [(layer[j].value) * (1 - layer[j].value) *
dotproduct(w[j], delta[i+1])
for j in range(h_units)]
# Update weights
for i in range(1, n_layers):
layer = net[i]
inc = [node.value for node in net[i-1]]
units = len(layer)
for j in range(units):
layer[j].weights = vector_add(layer[j].weights,
scalar_vector_product(
learning_rate * delta[i][j], inc))
def PerceptronLearner(dataset, learning_rate=0.01, epoches=100):
"""Logistic Regression, NO hidden layer"""
i_units = len(dataset.inputs)
o_units = 1 # As of now, dataset.target gives only one index.
hidden_layer_sizes = []
raw_net = network(i_units, hidden_layer_sizes, o_units)
learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epoches)
# Input nodes
i_nodes = learned_net[0]
# Activate input layer
for v, n in zip(example, i_nodes):
n.value = v
# Forward pass
for layer in learned_net[1:]:
for node in layer:
inc = [n.value for n in node.inputs]
in_val = dotproduct(inc, node.weights)
node.value = node.activation(in_val)
# Hypothesis
o_nodes = learned_net[-1]
pred = [o_nodes[i].value for i in range(o_units)]
return 1 if pred[0] >= 0.5 else 0
return predict
# ______________________________________________________________________________
def LinearLearner(dataset, learning_rate=0.01, epochs=100):
"""Define with learner = LinearLearner(data); infer with learner(x)."""
idx_t = dataset.target # As of now, dataset.target gives only one index.
examples = dataset.examples
# X transpose
X_col = [dataset.values[i] for i in idx_i] # vertical columns of X
# Add dummy
ones = [1 for i in range(len(examples))]
X_col = ones + X_col
# Initialize random weigts
w = [random(-0.5, 0.5) for i in range(len(idx_i) + 1)]
for epoch in range(epochs):
err = []
# Pass over all examples
for example in examples:
y = dotproduct(w, x)
t = example[idx_t]
err.append(t - y)
# update weights
for i in range(len(w)):
w[i] = w[i] - learning_rate * dotproduct(err, X_col[i])
def predict(example):
x = [1] + example
return dotproduct(w, x)
return predict
# ______________________________________________________________________________
def EnsembleLearner(learners):
"""Given a list of learning algorithms, have them vote."""
def train(dataset):
predictors = [learner(dataset) for learner in learners]
def predict(example):
return mode(predictor(example) for predictor in predictors)
return predict
return train
# ______________________________________________________________________________
"""[Figure 18.34]"""
def train(dataset):
examples, target = dataset.examples, dataset.target
N = len(examples)
epsilon = 1. / (2 * N)
w = [1. / N] * N
h, z = [], []
for k in range(K):
h.append(h_k)
error = sum(weight for example, weight in zip(examples, w)
if example[target] != h_k(example))
# Avoid divide-by-0 from either 0% or 100% error rates:
error = clip(error, epsilon, 1 - epsilon)
for j, example in enumerate(examples):
w[j] *= error / (1. - error)
w = normalize(w)
z.append(math.log((1. - error) / error))
return WeightedMajority(h, z)
return train
"""Return a predictor that takes a weighted vote."""
def predict(example):
return weighted_mode((predictor(example) for predictor in predictors),
weights)
return predict
def weighted_mode(values, weights):
"""Return the value with the greatest total weight.
>>> weighted_mode('abbaa', [1,2,3,1,2])
'b'
"""
totals = defaultdict(int)
for v, w in zip(values, weights):
totals[v] += w
# _____________________________________________________________________________
# Adapting an unweighted learner for AdaBoost
def WeightedLearner(unweighted_learner):
"""Given a learner that takes just an unweighted dataset, return
one that takes also a weight for each example. [p. 749 footnote 14]"""
def train(dataset, weights):
return unweighted_learner(replicated_dataset(dataset, weights))
return train
def replicated_dataset(dataset, weights, n=None):
"""Copy dataset, replicating each example in proportion to its weight."""
n = n or len(dataset.examples)
result = copy.copy(dataset)
result.examples = weighted_replicate(dataset.examples, weights, n)
return result
def weighted_replicate(seq, weights, n):
"""Return n selections from seq, with the count of each element of
seq proportional to the corresponding weight (filling in fractions
randomly).
>>> weighted_replicate('ABC', [1,2,1], 4)
['A', 'B', 'B', 'C']
"""
assert len(seq) == len(weights)
weights = normalize(weights)
wholes = [int(w * n) for w in weights]
fractions = [(w * n) % 1 for w in weights]
return (flatten([x] * nx for x, nx in zip(seq, wholes)) +
weighted_sample_with_replacement(n - sum(wholes),seq, fractions, ))
def flatten(seqs): return sum(seqs, [])
# _____________________________________________________________________________
# Functions for testing learners on examples
def test(predict, dataset, examples=None, verbose=0):
"""Return the proportion of the examples that are NOT correctly predicted."""
if examples is None:
examples = dataset.examples
if len(examples) == 0:
return 0.0
right = 0.0
for example in examples:
desired = example[dataset.target]
output = predict(dataset.sanitize(example))
if output == desired:
right += 1
if verbose >= 2:
print(' OK: got {} for {}'.format(desired, example))
elif verbose:
print('WRONG: got {}, expected {} for {}'.format(
return 1 - (right / len(examples))
def train_and_test(dataset, start, end):
"""Reserve dataset.examples[start:end] for test; train on the remainder."""
start = int(start)
examples = dataset.examples
train = examples[:start] + examples[end:]
val = examples[start:end]
return train, val
def cross_validation(learner, size, dataset, k=10, trials=1):
"""Do k-fold cross_validate and return their mean.
That is, keep out 1/k of the examples for testing on each of k runs.
Shuffle the examples first; if trials>1, average over several shuffles.
Returns Training error, Validataion error"""
if k is None:
k = len(dataset.examples)
if trials > 1:
trial_errT = 0
trial_errV = 0
for t in range(trials):
errT, errV = cross_validation(learner, size, dataset,
k=10, trials=1)
trial_errT += errT
trial_errV += errV
return trial_errT / trials, trial_errV / trials
fold_errT = 0
fold_errV = 0
n = len(dataset.examples)
examples = dataset.examples
for fold in range(k):
random.shuffle(dataset.examples)
train_data, val_data = train_and_test(dataset, fold * (n / k),
(fold + 1) * (n / k))
dataset.examples = train_data
h = learner(dataset, size)
fold_errT += test(h, dataset, train_data)
fold_errV += test(h, dataset, val_data)
# Reverting back to original once test is completed
dataset.examples = examples
return fold_errT / k, fold_errV / k
def cross_validation_wrapper(learner, dataset, k=10, trials=1):
"""
[Fig 18.8]
Return the optimal value of size having minimum error
err_train: A training error array, indexed by size
err_val: A validataion error array, indexed by size
"""
err_val = []
err_train = []
size = 1
while True:
errT, errV = cross_validation(learner, size, dataset, k)
# Check for convergence provided err_val is not empty
if (err_val and isclose(err_val[-1], errV, rel_tol=1e-6)):
best_size = size
return learner(dataset, best_size)
err_val.append(errV)
err_train.append(errT)
print(err_val)
size += 1
def leave_one_out(learner, dataset):
"""Leave one out cross-validation over the dataset."""
return cross_validation(learner, size, dataset, k=len(dataset.examples))
def learningcurve(learner, dataset, trials=10, sizes=None):
if sizes is None:
sizes = list(range(2, len(dataset.examples) - 10, 2))
def score(learner, size):
random.shuffle(dataset.examples)
return train_and_test(learner, dataset, 0, size)
return [(size, mean([score(learner, size) for t in range(trials)]))
for size in sizes]
# ______________________________________________________________________________
# The rest of this file gives datasets for machine learning problems.
orings = DataSet(name='orings', target='Distressed',
attrnames="Rings Distressed Temp Pressure Flightnum")
zoo = DataSet(name='zoo', target='type', exclude=['name'],
attrnames="name hair feathers eggs milk airborne aquatic " +
"predator toothed backbone breathes venomous fins legs tail " +
iris = DataSet(name="iris", target="class",
attrnames="sepal-len sepal-width petal-len petal-width class")
# ______________________________________________________________________________
# The Restaurant example from [Figure 18.2]
def RestaurantDataSet(examples=None):
"""Build a DataSet of Restaurant waiting examples. [Figure 18.3]"""
return DataSet(name='restaurant', target='Wait', examples=examples,
attrnames='Alternate Bar Fri/Sat Hungry Patrons Price ' +
'Raining Reservation Type WaitEstimate Wait')
restaurant = RestaurantDataSet()
def T(attrname, branches):
branches = {value: (child if isinstance(child, DecisionFork)
else DecisionLeaf(child))
for value, child in branches.items()}
return DecisionFork(restaurant.attrnum(attrname), attrname, branches)
Surya Teja Cheedella
a validé
""" [Figure 18.2]
A decision tree for deciding whether to wait for a table at a hotel.
"""
waiting_decision_tree = T('Patrons',
{'None': 'No', 'Some': 'Yes', 'Full':
T('WaitEstimate',
{'>60': 'No', '0-10': 'Yes',
'30-60':
T('Alternate', {'No':
T('Reservation', {'Yes': 'Yes', 'No':
T('Bar', {'No': 'No',
'Yes':
T('Fri/Sat', {'No': 'No', 'Yes': 'Yes'})}),
'10-30':
T('Hungry', {'No': 'Yes', 'Yes':
T('Alternate',
{'No': 'Yes', 'Yes':
T('Raining', {'No': 'No', 'Yes': 'Yes'})
})})})})
def SyntheticRestaurant(n=20):
"""Generate a DataSet with n examples."""
def gen():
example = list(map(random.choice, restaurant.values))
Surya Teja Cheedella
a validé
example[restaurant.target] = waiting_decision_tree(example)
return example
return RestaurantDataSet([gen() for i in range(n)])
# ______________________________________________________________________________
# Artificial, generated datasets.
def Majority(k, n):
"""Return a DataSet with n k-bit examples of the majority problem:
k random bits followed by a 1 if more than half the bits are 1, else 0."""
examples = []
for i in range(n):
bits = [random.choice([0, 1]) for i in range(k)]
examples.append(bits)
return DataSet(name="majority", examples=examples)
def Parity(k, n, name="parity"):
"""Return a DataSet with n k-bit examples of the parity problem:
k random bits followed by a 1 if an odd number of bits are 1, else 0."""
examples = []
for i in range(n):
bits = [random.choice([0, 1]) for i in range(k)]
bits.append(sum(bits) % 2)
examples.append(bits)
return DataSet(name=name, examples=examples)
def Xor(n):
"""Return a DataSet with n examples of 2-input xor."""
return Parity(2, n, name="xor")
def ContinuousXor(n):
"2 inputs are chosen uniformly from (0.0 .. 2.0]; output is xor of ints."
examples = []
for i in range(n):
x, y = [random.uniform(0.0, 2.0) for i in '12']
examples.append([x, y, int(x) != int(y)])
return DataSet(name="continuous xor", examples=examples)
# ______________________________________________________________________________
def compare(algorithms=[PluralityLearner, NaiveBayesLearner,
NearestNeighborLearner, DecisionTreeLearner],
datasets=[iris, orings, zoo, restaurant, SyntheticRestaurant(20),
Majority(7, 100), Parity(7, 100), Xor(100)],
k=10, trials=1):
"""Compare various learners on various datasets using cross-validation.
Print results as a table."""
[cross_validation(a, d, k, trials) for d in datasets]
for a in algorithms],
header=[''] + [d.name[0:7] for d in datasets], numfmt='%.2f')