logic.ipynb 60,9 ko
Newer Older
    "\n",
    "* There are no new clauses that can be added, in which case $\\text{KB} \\nvDash \\alpha$.\n",
    "* Two clauses resolve to yield the <em>empty clause</em>, in which case $\\text{KB} \\vDash \\alpha$.\n",
    "\n",
    "The <em>empty clause</em> is equivalent to <em>False</em> because it arises only from resolving two complementary\n",
    "unit clauses such as $P$ and $\\neg P$ which is a contradiction as both $P$ and $\\neg P$ can't be <em>True</em> at the same time."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource pl_resolution"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(True, False)"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_resolution(wumpus_kb, ~P11), pl_resolution(wumpus_kb, P11)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(False, False)"
      ]
     },
     "execution_count": 26,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "pl_resolution(wumpus_kb, ~P22), pl_resolution(wumpus_kb, P22)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## First-Order Logic Knowledge Bases: `FolKB`\n",
    "\n",
    "The class `FolKB` can be used to represent a knowledge base of First-order logic sentences. You would initialize and use it the same way as you would for `PropKB` except that the clauses are first-order definite clauses. We will see how to write such clauses to create a database and query them in the following sections."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Criminal KB\n",
    "In this section we create a `FolKB` based on the following paragraph.<br/>\n",
    "<em>The law says that it is a crime for an American to sell weapons to hostile nations. The country Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel West, who is American.</em><br/>\n",
    "The first step is to extract the facts and convert them into first-order definite clauses. Extracting the facts from data alone is a challenging task. Fortunately, we have a small paragraph and can do extraction and conversion manually. We'll store the clauses in list aptly named `clauses`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses = []"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>“... it is a crime for an American to sell weapons to hostile nations”</em><br/>\n",
    "The keywords to look for here are 'crime', 'American', 'sell', 'weapon' and 'hostile'. We use predicate symbols to make meaning of them.\n",
    "\n",
    "* `Criminal(x)`: `x` is a criminal\n",
    "* `American(x)`: `x` is an American\n",
    "* `Sells(x ,y, z)`: `x` sells `y` to `z`\n",
    "* `Weapon(x)`: `x` is a weapon\n",
    "* `Hostile(x)`: `x` is a hostile nation\n",
    "\n",
    "Let us now combine them with appropriate variable naming to depict the meaning of the sentence. The criminal `x` is also the American `x` who sells weapon `y` to `z`, which is a hostile nation.\n",
    "\n",
    "$\\text{American}(x) \\land \\text{Weapon}(y) \\land \\text{Sells}(x, y, z) \\land \\text{Hostile}(z) \\implies \\text{Criminal} (x)$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"(American(x) & Weapon(y) & Sells(x, y, z) & Hostile(z)) ==> Criminal(x)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"The country Nono, an enemy of America\"</em><br/>\n",
    "We now know that Nono is an enemy of America. We represent these nations using the constant symbols `Nono` and `America`. the enemy relation is show using the predicate symbol `Enemy`.\n",
    "\n",
    "$\\text{Enemy}(\\text{Nono}, \\text{America})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Enemy(Nono, America)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"Nono ... has some missiles\"</em><br/>\n",
Robert Hönig's avatar
Robert Hönig a validé
    "This states the existence of some missile which is owned by Nono. $\\exists x \\text{Owns}(\\text{Nono}, x) \\land \\text{Missile}(x)$. We invoke existential instantiation to introduce a new constant `M1` which is the missile owned by Nono.\n",
    "\n",
    "$\\text{Owns}(\\text{Nono}, \\text{M1}), \\text{Missile}(\\text{M1})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Owns(Nono, M1)\"))\n",
    "clauses.append(expr(\"Missile(M1)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "<em>\"All of its missiles were sold to it by Colonel West\"</em><br/>\n",
    "If Nono owns something and it classifies as a missile, then it was sold to Nono by West.\n",
    "\n",
    "$\\text{Missile}(x) \\land \\text{Owns}(\\text{Nono}, x) \\implies \\text{Sells}(\\text{West}, x, \\text{Nono})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"(Missile(x) & Owns(Nono, x)) ==> Sells(West, x, Nono)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<em>\"West, who is American\"</em><br/>\n",
    "West is an American.\n",
    "\n",
    "$\\text{American}(\\text{West})$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"American(West)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also know, from our understanding of language, that missiles are weapons and that an enemy of America counts as “hostile”.\n",
    "\n",
    "$\\text{Missile}(x) \\implies \\text{Weapon}(x), \\text{Enemy}(x, \\text{America}) \\implies \\text{Hostile}(x)$"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "clauses.append(expr(\"Missile(x) ==> Weapon(x)\"))\n",
    "clauses.append(expr(\"Enemy(x, America) ==> Hostile(x)\"))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now that we have converted the information into first-order definite clauses we can create our first-order logic knowledge base."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "crime_kb = FolKB(clauses)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Inference in First-Order Logic\n",
    "In this section we look at a forward chaining and a backward chaining algorithm for `FolKB`. Both aforementioned algorithms rely on a process called <strong>unification</strong>, a key component of all first-order inference algorithms."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Unification\n",
    "We sometimes require finding substitutions that make different logical expressions look identical. This process, called unification, is done by the `unify` algorithm. It takes as input two sentences and returns a <em>unifier</em> for them if one exists. A unifier is a dictionary which stores the substitutions required to make the two sentences identical. It does so by recursively unifying the components of a sentence, where the unification of a variable symbol `var` with a constant symbol `Const` is the mapping `{var: Const}`. Let's look at a few examples."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: 3}"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('x'), 3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: B}"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('A(x)'), expr('A(B)'))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{x: Bella, y: Dobby}"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(y)'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In cases where there is no possible substitution that unifies the two sentences the function return `None`."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "None\n"
     ]
    }
   ],
   "source": [
    "print(unify(expr('Cat(x)'), expr('Dog(Dobby)')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "We also need to take care we do not unintentionally use the same variable name. Unify treats them as a single variable which prevents it from taking multiple value."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "None\n"
     ]
    }
   ],
   "source": [
    "print(unify(expr('Cat(x) & Dog(Dobby)'), expr('Cat(Bella) & Dog(x)')))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Forward Chaining Algorithm\n",
    "We consider the simple forward-chaining algorithm presented in <em>Figure 9.3</em>. We look at each rule in the knoweldge base and see if the premises can be satisfied. This is done by finding a substitution which unifies each of the premise with a clause in the `KB`. If we are able to unify the premises, the conclusion (with the corresponding substitution) is added to the `KB`. This inferencing process is repeated until either the query can be answered or till no new sentences can be added. We test if the newly added clause unifies with the query in which case the substitution yielded by `unify` is an answer to the query. If we run out of sentences to infer, this means the query was a failure.\n",
    "The function `fol_fc_ask` is a generator which yields all substitutions which validate the query."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_fc_ask"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Let's find out all the hostile nations. Note that we only told the `KB` that Nono was an enemy of America, not that it was hostile."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{x: Nono}]\n"
     ]
    }
   ],
   "source": [
    "answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
    "print(list(answer))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "The generator returned a single substitution which says that Nono is a hostile nation. See how after adding another enemy nation the generator returns two substitutions."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "[{x: Nono}, {x: JaJa}]\n"
     ]
    }
   ],
   "source": [
    "crime_kb.tell(expr('Enemy(JaJa, America)'))\n",
    "answer = fol_fc_ask(crime_kb, expr('Hostile(x)'))\n",
    "print(list(answer))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "<strong><em>Note</em>:</strong> `fol_fc_ask` makes changes to the `KB` by adding sentences to it."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Backward Chaining Algorithm\n",
    "This algorithm works backward from the goal, chaining through rules to find known facts that support the proof. Suppose `goal` is the query we want to find the substitution for. We find rules of the form $\\text{lhs} \\implies \\text{goal}$ in the `KB` and try to prove `lhs`. There may be multiple clauses in the `KB` which give multiple `lhs`. It is sufficient to prove only one of these. But to prove a `lhs` all the conjuncts in the `lhs` of the clause must be proved. This makes it similar to <em>And/Or</em> search."
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### OR\n",
    "The <em>OR</em> part of the algorithm comes from our choice to select any clause of the form $\\text{lhs} \\implies \\text{goal}$. Looking at all rules's `lhs` whose `rhs` unify with the `goal`, we yield a substitution which proves all the conjuncts in the `lhs`. We use `parse_definite_clause` to attain `lhs` and `rhs` from a clause of the form $\\text{lhs} \\implies \\text{rhs}$. For atomic facts the `lhs` is an empty list."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_bc_or"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### AND\n",
    "The <em>AND</em> corresponds to proving all the conjuncts in the `lhs`. We need to find a substitution which proves each <em>and</em> every clause in the list of conjuncts."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "%psource fol_bc_and"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Now the main function `fl_bc_ask` calls `fol_bc_or` with substitution initialized as empty. The `ask` method of `FolKB` uses `fol_bc_ask` and fetches the first substitution returned by the generator to answer query. Let's query the knowledge base we created from `clauses` to find hostile nations."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "# Rebuild KB because running fol_fc_ask would add new facts to the KB\n",
    "crime_kb = FolKB(clauses)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{v_5: x, x: Nono}"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "crime_kb.ask(expr('Hostile(x)'))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "You may notice some new variables in the substitution. They are introduced to standardize the variable names to prevent naming problems as discussed in the [Unification section](#Unification)"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Appendix: The Implementation of `|'==>'|`\n",
Peter Norvig's avatar
Peter Norvig a validé
    "\n",
    "Consider the `Expr` formed by this syntax:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 47,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P |'==>'| ~Q"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What is the funny `|'==>'|` syntax? The trick is that \"`|`\" is just the regular Python or-operator, and so is exactly equivalent to this: "
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 48,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "(P | '==>') | ~Q"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "In other words, there are two applications of or-operators. Here's the first one:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "PartialExpr('==>', P)"
     "execution_count": 49,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P | '==>'"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "What is going on here is that the `__or__` method of `Expr` serves a dual purpose. If the right-hand-side is another `Expr` (or a number), then the result is an `Expr`, as in `(P | Q)`. But if the right-hand-side is a string, then the string is taken to be an operator, and we create a node in the abstract syntax tree corresponding to a partially-filled  `Expr`, one where we know the left-hand-side is `P` and the operator is `==>`, but we don't yet know the right-hand-side.\n",
Peter Norvig's avatar
Peter Norvig a validé
    "\n",
    "The `PartialExpr` class has an `__or__` method that says to create an `Expr` node with the right-hand-side filled in. Here we can see the combination of the `PartialExpr` with `Q` to create a complete `Expr`:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(P ==> ~Q)"
     "execution_count": 50,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "partial = PartialExpr('==>', P) \n",
    "partial | ~Q"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "This  [trick](http://code.activestate.com/recipes/384122-infix-operators/) is due to [Ferdinand Jamitzky](http://code.activestate.com/recipes/users/98863/), with a modification by [C. G. Vedant](https://github.com/Chipe1),\n",
    "who suggested using a string inside the or-bars.\n",
    "\n",
    "## Appendix: The Implementation of `expr`\n",
    "\n",
    "How does `expr` parse a string into an `Expr`? It turns out there are two tricks (besides the Jamitzky/Vedant trick):\n",
    "\n",
    "1. We do a string substitution, replacing \"`==>`\" with \"`|'==>'|`\" (and likewise for other operators).\n",
    "2. We `eval` the resulting string in an environment in which every identifier\n",
    "is bound to a symbol with that identifier as the `op`.\n",
    "\n",
    "In other words,"
   "execution_count": 51,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(~(P & Q) ==> (~P | ~Q))"
     "execution_count": 51,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "expr('~(P & Q)  ==>  (~P | ~Q)')"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "is equivalent to doing:"
Peter Norvig's avatar
Peter Norvig a validé
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {},
Peter Norvig's avatar
Peter Norvig a validé
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(~(P & Q) ==> (~P | ~Q))"
     "execution_count": 52,
Peter Norvig's avatar
Peter Norvig a validé
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P, Q = symbols('P, Q')\n",
    "~(P & Q)  |'==>'|  (~P | ~Q)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "One thing to beware of: this puts `==>` at the same precedence level as `\"|\"`, which is not quite right. For example, we get this:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(((P & Q) ==> P) | Q)"
      ]
     },
     "execution_count": 53,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "P & Q  |'==>'|  P | Q"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "which is probably not what we meant; when in doubt, put in extra parens:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((P & Q) ==> (P | Q))"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "(P & Q)  |'==>'|  (P | Q)"
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Examples"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "from notebook import Canvas_fol_bc_ask\n",
    "canvas_bc_ask = Canvas_fol_bc_ask('canvas_bc_ask', crime_kb, expr('Criminal(x)'))"
   ]
  },
Peter Norvig's avatar
Peter Norvig a validé
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
Peter Norvig's avatar
Peter Norvig a validé
   "source": [
    "# Authors\n",
    "\n",
    "This notebook by [Chirag Vartak](https://github.com/chiragvartak) and [Peter Norvig](https://github.com/norvig).\n",
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.6.1"
 "nbformat_minor": 1