Newer
Older
"# Solving problems by Searching\n",
"\n",
"This notebook serves as supporting material for topics covered in **Chapter 3 - Solving Problems by Searching** and **Chapter 4 - Beyond Classical Search** from the book *Artificial Intelligence: A Modern Approach.* This notebook uses implementations from [search.py](https://github.com/aimacode/aima-python/blob/master/search.py) module. Let's start by importing everything from search module."
Aman Deep Singh
a validé
"collapsed": true,
Aman Deep Singh
a validé
"from notebook import psource\n",
"\n",
"# Needed to hide warnings in the matplotlib sections\n",
"import warnings\n",
"warnings.filterwarnings(\"ignore\")"
"## CONTENTS\n",
"\n",
"* Overview\n",
"* Problem\n",
"* Search Algorithms Visualization\n",
"* Breadth-First Tree Search\n",
"* Breadth-First Search\n",
"* Uniform Cost Search\n",
"* A\\* Search\n",
"* Genetic Algorithm"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## OVERVIEW\n",
"Here, we learn about problem solving. Building goal-based agents that can plan ahead to solve problems, in particular, navigation problem/route finding problem. First, we will start the problem solving by precisely defining **problems** and their **solutions**. We will look at several general-purpose search algorithms. Broadly, search algorithms are classified into two types:\n",
"* **Uninformed search algorithms**: Search algorithms which explore the search space without having any information about the problem other than its definition.\n",
"* Examples:\n",
" 1. Breadth First Search\n",
" 2. Depth First Search\n",
" 3. Depth Limited Search\n",
" 4. Iterative Deepening Search\n",
"\n",
"\n",
"* **Informed search algorithms**: These type of algorithms leverage any information (heuristics, path cost) on the problem to search through the search space to find the solution efficiently.\n",
"* Examples:\n",
" 1. Best First Search\n",
" 2. Uniform Cost Search\n",
" 3. A\\* Search\n",
" 4. Recursive Best First Search\n",
"\n",
"*Don't miss the visualisations of these algorithms solving the route-finding problem defined on Romania map at the end of this notebook.*"
"Let's see how we define a Problem. Run the next cell to see how abstract class `Problem` is defined in the search module."
"metadata": {
"collapsed": true
},
"source": [
"The `Problem` class has six methods.\n",
"\n",
"* `__init__(self, initial, goal)` : This is what is called a `constructor` and is the first method called when you create an instance of the class. `initial` specifies the initial state of our search problem. It represents the start state from where our agent begins its task of exploration to find the goal state(s) which is given in the `goal` parameter.\n",
"\n",
"\n",
"* `actions(self, state)` : This method returns all the possible actions agent can execute in the given state `state`.\n",
"\n",
"\n",
"* `result(self, state, action)` : This returns the resulting state if action `action` is taken in the state `state`. This `Problem` class only deals with deterministic outcomes. So we know for sure what every action in a state would result to.\n",
"\n",
"\n",
"* `goal_test(self, state)` : Given a graph state, it checks if it is a terminal state. If the state is indeed a goal state, value of `True` is returned. Else, of course, `False` is returned.\n",
"\n",
"\n",
"* `path_cost(self, c, state1, action, state2)` : Return the cost of the path that arrives at `state2` as a result of taking `action` from `state1`, assuming total cost of `c` to get up to `state1`.\n",
"\n",
"\n",
"* `value(self, state)` : This acts as a bit of extra information in problems where we try to optimise a value when we cannot do a goal test."
"We will use the abstract class `Problem` to define our real **problem** named `GraphProblem`. You can see how we define `GraphProblem` by running the next cell."
{
"cell_type": "code",
"metadata": {
"collapsed": true
},
"%psource GraphProblem"
"Now it's time to define our problem. We will define it by passing `initial`, `goal`, `graph` to `GraphProblem`. So, our problem is to find the goal state starting from the given initial state on the provided graph. Have a look at our romania_map, which is an Undirected Graph containing a dict of nodes as keys and neighbours as values."
"metadata": {
"collapsed": true
},
"romania_map = UndirectedGraph(dict(\n",
" Arad=dict(Zerind=75, Sibiu=140, Timisoara=118),\n",
" Bucharest=dict(Urziceni=85, Pitesti=101, Giurgiu=90, Fagaras=211),\n",
" Craiova=dict(Drobeta=120, Rimnicu=146, Pitesti=138),\n",
" Drobeta=dict(Mehadia=75),\n",
" Eforie=dict(Hirsova=86),\n",
" Fagaras=dict(Sibiu=99),\n",
" Hirsova=dict(Urziceni=98),\n",
" Iasi=dict(Vaslui=92, Neamt=87),\n",
" Lugoj=dict(Timisoara=111, Mehadia=70),\n",
" Oradea=dict(Zerind=71, Sibiu=151),\n",
" Pitesti=dict(Rimnicu=97),\n",
" Rimnicu=dict(Sibiu=80),\n",
" Urziceni=dict(Vaslui=142)))\n",
"\n",
"romania_map.locations = dict(\n",
" Arad=(91, 492), Bucharest=(400, 327), Craiova=(253, 288),\n",
" Drobeta=(165, 299), Eforie=(562, 293), Fagaras=(305, 449),\n",
" Giurgiu=(375, 270), Hirsova=(534, 350), Iasi=(473, 506),\n",
" Lugoj=(165, 379), Mehadia=(168, 339), Neamt=(406, 537),\n",
" Oradea=(131, 571), Pitesti=(320, 368), Rimnicu=(233, 410),\n",
" Sibiu=(207, 457), Timisoara=(94, 410), Urziceni=(456, 350),\n",
" Vaslui=(509, 444), Zerind=(108, 531))"
]
},
{
"cell_type": "markdown",
"metadata": {
"It is pretty straightforward to understand this `romania_map`. The first node **Arad** has three neighbours named **Zerind**, **Sibiu**, **Timisoara**. Each of these nodes are 75, 140, 118 units apart from **Arad** respectively. And the same goes with other nodes.\n",
"\n",
"And `romania_map.locations` contains the positions of each of the nodes. We will use the straight line distance (which is different from the one provided in `romania_map`) between two cities in algorithms like A\\*-search and Recursive Best First Search.\n",
"\n",
"**Define a problem:**\n",
"Hmm... say we want to start exploring from **Arad** and try to find **Bucharest** in our romania_map. So, this is how we do it."
"metadata": {
"collapsed": true
},
"outputs": [],
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)"
"### Romania Map Visualisation\n",
"Let's have a visualisation of Romania map [Figure 3.2] from the book and see how different searching algorithms perform / how frontier expands in each search algorithm for a simple problem named `romania_problem`."
"Have a look at `romania_locations`. It is a dictionary defined in search module. We will use these location values to draw the romania graph using **networkx**."
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"{'Oradea': (131, 571), 'Eforie': (562, 293), 'Timisoara': (94, 410), 'Hirsova': (534, 350), 'Bucharest': (400, 327), 'Rimnicu': (233, 410), 'Fagaras': (305, 449), 'Lugoj': (165, 379), 'Giurgiu': (375, 270), 'Mehadia': (168, 339), 'Pitesti': (320, 368), 'Drobeta': (165, 299), 'Craiova': (253, 288), 'Sibiu': (207, 457), 'Iasi': (473, 506), 'Urziceni': (456, 350), 'Vaslui': (509, 444), 'Neamt': (406, 537), 'Zerind': (108, 531), 'Arad': (91, 492)}\n"
"source": [
"romania_locations = romania_map.locations\n",
"print(romania_locations)"
]
},
{
"cell_type": "markdown",
"Let's start the visualisations by importing necessary modules. We use networkx and matplotlib to show the map in the notebook and we use ipywidgets to interact with the map to see how the searching algorithm works."
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"%matplotlib inline\n",
"import networkx as nx\n",
"import matplotlib.pyplot as plt\n",
"from matplotlib import lines\n",
"\n",
"from ipywidgets import interact\n",
"import ipywidgets as widgets\n",
"from IPython.display import display\n",
"import time"
{
"cell_type": "markdown",
"source": [
"Let's get started by initializing an empty graph. We will add nodes, place the nodes in their location as shown in the book, add edges to the graph."
]
},
"metadata": {
"collapsed": true
},
"outputs": [],
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
"source": [
"# initialise a graph\n",
"G = nx.Graph()\n",
"\n",
"# use this while labeling nodes in the map\n",
"node_labels = dict()\n",
"# use this to modify colors of nodes while exploring the graph.\n",
"# This is the only dict we send to `show_map(node_colors)` while drawing the map\n",
"node_colors = dict()\n",
"\n",
"for n, p in romania_locations.items():\n",
" # add nodes from romania_locations\n",
" G.add_node(n)\n",
" # add nodes to node_labels\n",
" node_labels[n] = n\n",
" # node_colors to color nodes while exploring romania map\n",
" node_colors[n] = \"white\"\n",
"\n",
"# we'll save the initial node colors to a dict to use later\n",
"initial_node_colors = dict(node_colors)\n",
" \n",
"# positions for node labels\n",
"node_label_pos = { k:[v[0],v[1]-10] for k,v in romania_locations.items() }\n",
"\n",
"# use this while labeling edges\n",
"edge_labels = dict()\n",
"\n",
"# add edges between cities in romania map - UndirectedGraph defined in search.py\n",
"for node in romania_map.nodes():\n",
" connections = romania_map.get(node)\n",
" for connection in connections.keys():\n",
" distance = connections[connection]\n",
"\n",
" # add edges to the graph\n",
" G.add_edge(node, connection)\n",
" # add distances to edge_labels\n",
" edge_labels[(node, connection)] = distance"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"collapsed": true
},
"outputs": [],
"# initialise a graph\n",
"# use this while labeling nodes in the map\n",
"node_labels = dict()\n",
"# use this to modify colors of nodes while exploring the graph.\n",
"# This is the only dict we send to `show_map(node_colors)` while drawing the map\n",
"node_colors = dict()\n",
"for n, p in romania_locations.items():\n",
" # add nodes from romania_locations\n",
" G.add_node(n)\n",
" # add nodes to node_labels\n",
" node_labels[n] = n\n",
" # node_colors to color nodes while exploring romania map\n",
" node_colors[n] = \"white\"\n",
"# we'll save the initial node colors to a dict to use later\n",
"initial_node_colors = dict(node_colors)\n",
" \n",
"node_label_pos = { k:[v[0],v[1]-10] for k,v in romania_locations.items() }\n",
"# use this while labeling edges\n",
"edge_labels = dict()\n",
"\n",
"# add edges between cities in romania map - UndirectedGraph defined in search.py\n",
"for node in romania_map.nodes():\n",
" connections = romania_map.get(node)\n",
" for connection in connections.keys():\n",
" distance = connections[connection]\n",
" G.add_edge(node, connection)\n",
" # add distances to edge_labels\n",
" edge_labels[(node, connection)] = distance"
]
},
{
"cell_type": "markdown",
"We have completed building our graph based on romania_map and its locations. It's time to display it here in the notebook. This function `show_map(node_colors)` helps us do that. We will be calling this function later on to display the map at each and every interval step while searching, using variety of algorithms from the book."
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
},
"outputs": [],
"source": [
"def show_map(node_colors):\n",
" # set the size of the plot\n",
" plt.figure(figsize=(18,13))\n",
" # draw the graph (both nodes and edges) with locations from romania_locations\n",
" nx.draw(G, pos = romania_locations, node_color = [node_colors[node] for node in G.nodes()])\n",
"\n",
" # draw labels for nodes\n",
" node_label_handles = nx.draw_networkx_labels(G, pos = node_label_pos, labels = node_labels, font_size = 14)\n",
" # add a white bounding box behind the node labels\n",
" [label.set_bbox(dict(facecolor='white', edgecolor='none')) for label in node_label_handles.values()]\n",
"\n",
" # add edge lables to the graph\n",
" nx.draw_networkx_edge_labels(G, pos = romania_locations, edge_labels=edge_labels, font_size = 14)\n",
" \n",
" # add a legend\n",
" white_circle = lines.Line2D([], [], color=\"white\", marker='o', markersize=15, markerfacecolor=\"white\")\n",
" orange_circle = lines.Line2D([], [], color=\"orange\", marker='o', markersize=15, markerfacecolor=\"orange\")\n",
" red_circle = lines.Line2D([], [], color=\"red\", marker='o', markersize=15, markerfacecolor=\"red\")\n",
" gray_circle = lines.Line2D([], [], color=\"gray\", marker='o', markersize=15, markerfacecolor=\"gray\")\n",
" green_circle = lines.Line2D([], [], color=\"green\", marker='o', markersize=15, markerfacecolor=\"green\")\n",
" plt.legend((white_circle, orange_circle, red_circle, gray_circle, green_circle),\n",
" ('Un-explored', 'Frontier', 'Currently Exploring', 'Explored', 'Final Solution'),\n",
" numpoints=1,prop={'size':16}, loc=(.8,.75))\n",
" \n",
" # show the plot. No need to use in notebooks. nx.draw will show the graph itself.\n",
" plt.show()"
]
},
{
"cell_type": "markdown",
"source": [
"We can simply call the function with node_colors dictionary object to display it."
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAABTsAAAPKCAYAAABbVI7QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzs3XlYVGXjxvF7kEVZlARR1Nw3XNAMUUsTcyH3LOVV0KRw\neU1xwTU3IPdywaXXNC1cMktzSS1TTMMMy6XMkspsU1/T1FREk+38/uDHvI3ggoKDw/dzXXPVnHnO\nOfeMjebN85xjMgzDEAAAAAAAAAA84OysHQAAAAAAAAAA8gJlJwAAAAAAAACbQNkJAAAAAAAAwCZQ\ndgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAA\nAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAA\nAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAm\nUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0A\nAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAA\nAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADA\nJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSd\nAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAA\nAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAA\nwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmU\nnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAA\nAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAA\nAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJ\nlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACwCZSdAAAAAAAAAGwCZScA\nAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUnAAAAAAAAAJtA2QkAAAAA\nAADAJlB2AgAAAAAAALAJlJ0AAAAAAAAAbAJlJwAAAAAAAACbQNkJAAAAAAAAwCZQdgIAAAAAAACw\nCZSdAAAAAAAAAGwCZScAAAAAAAAAm0DZCQAAAAAAAMAmUHYCAAAAAAAAsAmUnQAAAAAAAABsAmUn\nAAAAAAAAAJtA2QkAAAAAAADAJlB2AgAAAAAAALAJlJ3AA84wDGtHAAAAAAAAKBAoO4EC7Pr160pL\nS7vl66dOnbqPiQAAAAAAAAouyk6ggNq1a5fatm0rO7ubf01TU1PVuHFjffnll/cxGQAAAAAAQMFE\n2QkUQIZhaNKkSerbt+8ty05XV1dNnz5dgwcPVkZGxn1MCAAAAAAAUPBQdgIFUFxcnP78808FBwff\ndmyvXr1kb2+v2NjY/A8GAAAAAABQgJkM7m4CFCiGYeixxx7T0KFD1aNHjzva59ChQ+rQoYMSExPl\n7u6ezwkBAAAAAAAKJmZ2AgXMtm3blJSUpO7du9/xPg0bNlTnzp0VGRmZj8kAAAAAAAAKNmZ2AgWI\nYRjy9/fXmDFj1K1bt1zte+7cOdWuXVuffPKJ6tatm08JAQAAAAAACi5mdgIFyObNm5Wamqpnnnkm\n1/t6enoqMjJS4eHh4mcYAAAAAACgMGJmJwAAAAAAAACbwMxOAAAAAAAAADaBshMAAAAAAACATaDs\nBAAAAAAAAGATKDsBAAAAAAAA2ATKTsAGrFu3TiaTydoxAAAAAAAArIqyE8gHp06dUv/+/VW+fHk5\nOjqqXLly6tevn06ePGntaAAAAAAAADaLshPIY7/88ov8/Pz07bffavny5frpp5+0atUqfffdd2rU\nqJF+/fXXHPdLSUm5v0EBAAAAAABsDGUnkMcGDRokOzs7xcXFqVWrVqpQoYJatmypuLg42dnZadCg\nQZKkgIAADRw4UCNHjlSpUqX0+OOPS5LmzJkjX19fubi4qFy5curbt68uXrxocY4VK1aoYsWKcnZ2\nVseOHXXmzJlsOTZv3qxHH31URYsWVeXKlTV+/HiLQnXVqlVq1KiR3Nzc5OXlpe7du+vUqVP5+MkA\nAAAAAADkL8pOIA9duHBB27Zt06BBg+Ts7GzxmrOzs1588UV99NFH+uuvvyRlFo6GYWjPnj1asWKF\nJMnOzk4xMTH67rvvtHr1an355ZcKDw83H+eLL75QaGio+vfvr6+//lqdOnXSpEmTLM718ccfKyQk\nRIMHD9Z3332nN998U+vWrdO4cePMY1JSUhQdHa3Dhw9ry5YtOnfunHr27JlfHw0AAAAAAEC+MxmG\nYVg7BGArvvjiCzVp0kTr169X165ds72+YcMGPfPMM/riiy80evRoXbhwQd98880tj7lt2zZ16dJF\n165dk52dnYKDg/Xnn39qx44d5jF9+/bVsmXLlPV1fuKJJ9SmTRtNnDjRPGbjxo3q1auXkpKScryZ\n0ffffy8fHx+dOHFC5cuXv9uPAAAAAAAAwGqY2QlY0aOPPppt2yeffKI2bdqofPnycnNz0zPPPKOU\nlBT98ccfkqTExEQ1bdrUYp8bnx88eFBTp06Vq6ur+REcHKzk5GTzcQ4dOqQuXbqoYsWKcnNzk5+f\nnyTp999/z4+3CgAAAAAAkO8oO4E8VK1aNZlMJh09ejTH148ePSqTyaRq1apJklxcXCxe/+2339Sh\nQwf5+Pho7dq1OnjwoN58801JubuBUUZGhiIjI/X111+bH998842OHTumUqVKKTk5WYGBgXJ2dtbK\nlSu1f/9+bdu2LdfnAQAAAAAAKEjsrR0AsCUeHh4KDAzUf/7zHw0fPtziup1Xr17Va6+9pnbt2qlk\nyZI57n/gwAGlpKRo7ty5KlKkiCRpy5YtFmN8fHy0b98+i203Pm/YsKG+//57c6l6o8OHD+vcuXOa\nNm2aKleuLElav3597t4sAAAAAABAAcPMTiCPLVy4UGlpaWrdurU++eQTnThxQrt371abNm1kGIYW\nLlx4032rV6+ujIwMxcTE6JdfftE777yjmJgYizFDhgxRXFycpk+frmPHjumNN97Qhg0bLMZMmjRJ\nq1ev1qRJk/Ttt9/q+++/17p16zR69GhJUoUKFeTk5KSFCxfq559/1tatWy2u7wkAAAAAAPAgouwE\n8ljVqlV14MAB1alTR71791aVKlUUHBwsHx8f7d+/3zyTMie+vr6aN2+e5syZo9q1a2vp0qWaNWuW\nxZgmTZpo2bJlWrRokXx9fbV+/XpFRUVZjAkMDNTWrVu1a9cu+fv7y9/fXzNmzFCFChUkSaVKldLy\n5cu1ceNG1a5dW9HR0ZozZ06efxYAAAAAAAD3E3djBwAAAAAAAGATmNkJAAAAAAAAwCZwgyIAAAAA\nAFCgXb58WWfPnlVqaqq1owAPNAcHB3l5eal48eLWjpJvKDsBAAAAAECBdfnyZZ05c0blypVTsWLF\nZDKZrB0JeCAZhqFr167p1KlTkmSzhSfL2AEAAAAAQIF19uxZlStXTs7OzhSdwD0wmUxydnZWuXLl\ndPbsWWvHyTeUnQAAAAAAoMBKTU1VsWLFrB0DsBnFihWz6UtCUHYC+ejChQvy9PTU8ePHrR3lplJT\nU1WnTh1t3LjR2lEAAAAAIEfM6ATyjq1/nyg7gXwUExOjrl27qmrVqtaOclMODg6aP3++IiIidO3a\nNWvHAQAAAAAAuGsmwzAMa4cAbJFhGEpLS1NycrLc3d2tHee2unXrJl9fX02aNMnaUQAAAADALDEx\nUT4+PtaOAdgUW/5eMbMTyCcmk0kODg4PRNEpSbNnz9b8+fP122+/WTsKAAAAANi00NBQlS9fPsfX\ndu/eLZPJpLi4uPucKu9kvYfdu3dbO4pZaGioKlWqZO0YuA8oOwFIkipWrKghQ4ZoxIgR1o4CAAAA\nAABwVyg7AZiNGjVKhw4d0s6dO60dBQAAAAAApaenKy0tzdox8ACh7ARgVqxYMc2ZM0fh4eFKTU21\ndhwAAAAAKPQqVaqkXr16ac2aNfLx8ZGLi4v8/Pz02Wef3fExlixZovr166to0aLy9PRUWFiYLly4\nYH592bJlMplM2rhxo3lbenq6WrRooapVq+ry5cuSpKioKJlMJh05ckQtW7aUs7OzvL29NWnSJGVk\nZNwyg2EYmjt3rmrWrClHR0d5e3tr8ODB5mNnMZlMGj9+vGbMmKHKlSvL0dFRR44ckST9+eef+ve/\n/61y5crJyclJtWrV0pIlS7Kda+fOnWrYsKGKFi2qqlWravHixXf8WeHBR9kJwEKXLl308MMPa+HC\nhdaOAgAAAACQtGfPHs2ePVuTJ0/Wu+++q/T0dHXs2FEXL1687b5jx47VoEGD1Lp1a33wwQd69dVX\ntW3bNrVr107p6emSpLCwMHXv3l19+/bVqVOnJEmTJ0/W559/rtWrV6t48eIWx3z66afVunVrbdy4\nUcHBwZo8ebJefvnlW+YYP368IiIi1KZNG23evFmjR49WbGysOnTokK0ojY2N1datWzVr1ixt3bpV\nZcuW1eXLl9WsWTN9+OGHioqK0tatW9WpUycNHDhQCxYsMO+bmJio9u3bq1ixYlqzZo2mTZummJgY\nVjAWIvbWDgCgYDGZTJo3b56aN2+u4OBglS5d2tqRAAAAAKBQu3z5sr7++ms99NBDkqQyZcqoUaNG\n+vDDDxUcHHzT/X799Ve9+uqrioyM1KRJk8zba9SooWbNmmnz5s16+umnJf1v9mfv3r0VGRmpKVOm\naPLkyWrcuHG24/br109jx46VJLVt21aXL1/W7NmzNWzYsBxv0nvhwgXNnj1bffr0MU+sCQwMVKlS\npdS7d29t2bJFnTt3No83DEPbt29XsWLFzNsmT56s3377TUeOHFH16tUlSa1bt9bFixcVHR2tgQMH\nyt7eXlOmTJGbm5u2b98uFxcXSdJjjz2mqlWrqmzZsnf2geOBxsxO4C79c8q/ralVq5ZCQ0PNf3gB\nAAAAAKynadOm5qJTkurVqydJ+v333yVlloNpaWnmR9aMzR07digjI0MhISEWrzdu3Fhubm6Kj483\nH9Pd3V2rV69WfHy8AgMD9cQTT2jMmDE55gkKCrJ43qNHD125ckXffvttjuP37dunlJQU9erVK9t+\n9vb2+vTTTy22P/XUUxZFpyRt27ZNjRs3VuXKlS3eS2BgoM6fP6+jR49KkhISEtS+fXtz0SlJDz/8\nsB5//PEcs8H2UHYCd2Hp0qWKiIjQ7t27sy0bMAzjls8fFBMnTtT27du1b98+a0cBAAAAAJtib29v\nLiRvlLXd3v5/i3FLlixpMcbJyUmS9Pfff0uSli9fLgcHB/OjatWqkqSzZ89KkqpVq2bxuoODg5KS\nknT+/HmL4zZp0kQ1a9bU9evXNWTIENnZ5Vwb3bgCMOt51hL4G2VNFvL29rbYbm9vLw8Pj2yTiW4c\nl/Ve4uPjs72P7t27S5L5vZw+fTrHFYqsWiw8WMYO5FJ6erpGjBihlJQUffzxx+ratat69Oih+vXr\nq0SJEjKZTJKk5ORkOTg4yNHR0cqJ707x4sU1Y8YMhYeH64svvrjpH3IAAAAAgNzx8vLSuXPnlJKS\nku3vjP/9738l5a6c69Spk/bv329+nlWGenh4SJK2b99uMTM0S9brWaKjo3Xs2DH5+vpq+PDhatmy\npUqUKJFtvzNnzqhKlSoWzyWpXLlyOebLKmv/+OMP1alTx7w9LS1N58+fz1bmZv29+sasXl5emjdv\nXo7nqFmzpqTMojQrz42ZUTjQXgC5tG7dOtWpU0dfffWVoqOj9eGHH6p79+6aOHGi9uzZo6SkJElS\nTEyMpk+fbuW096ZXr15ydHTUm2++ae0oAAAAAGAzWrZsqbS0NH3wwQfZXnv//ffl7e1tLu/uhIeH\nh/z8/MyPrGXubdq0kZ2dnX7//XeL17MelStXNh9jz549mjp1qqZOnarNmzfr4sWLGjhwYI7ne++9\n9yyer1mzRq6urubz3qhJkyZydHTUmjVrLLa/++67SktLU0BAwG3f41NPPaXvv/9eFSpUyPG9uLm5\nScpc8v/hhx8qOTnZvO+JEye0d+/e254DtoGZnUAuubq6qkmTJnJ3d1f//v3Vv39/LVy4UDNnztTa\ntWvVs2dP+fv7a+LEidqxY4e1494Tk8mkBQsWqH379nr22Wdz/EkgAAAAACB3WrdurTZt2ig0NFTf\nf/+9GjdurKSkJK1Zs0abNm3SW2+9lSer66pWraoxY8Zo8ODB+uGHH9SiRQsVLVpUJ06c0I4dO9S3\nb1+1bNlSf/31l0JCQtSqVSuNHDlSJpNJS5YsUVBQkAIDA9WnTx+L477xxhvKyMhQo0aN9PHHH2vp\n0qWKiorKcRaolDmzc8SIEZo+fbpcXFzUvn17JSYmasKECWrWrJk6dOhw2/cyfPhwvfvuu2revLmG\nDx+umjVrKjk5Wd9//7327NmjTZs2SZImTJigtWvXqm3btho1apRSUlIUFRXFMvbCxABwx5KSkgzD\nMIzjx48bhmEYqampFq/HxMQYFStWNEwmk/HEE0/c93z5ZcCAAUZ4eLi1YwAAAAAohI4ePWrtCPni\n6tWrxvjx443q1asbjo6Ohqurq9GsWTNj48aNFuMqVqxohISEZNtfkhEZGXlH51qxYoXRuHFjw9nZ\n2XBxcTFq1aplDBo0yDhx4oRhGIbRrVs3w9PT0/jvf/9rsV9YWJjh6upqHDt2zDAMw4iMjDQkGUeO\nHDECAgKMokWLGqVLlzYmTJhgpKenm/fbtWuXIcnYtWuXeVtGRoYxZ84co0aNGoaDg4NRpkwZ48UX\nXzQuXbqU7X2NHz8+x/dx4cIFY9iwYUalSpUMBwcHo1SpUkazZs2MuXPnWozbsWOH0aBBA8PR0dGo\nXLmy8frrrxt9+vQxKlaseEefV2Fgq98rwzAMk2E8oHdPAe6zv//+Wx07dtSMGTPk5+cnwzDM1xFJ\nS0szXzz6+++/V+3atbVv3z75+/tbM3KeOX/+vHx8fLRz586bLksAAAAAgPyQmJgoHx8fa8eApKio\nKEVHRys1NdXiBkp48Njy94prdgJ3aMKECfrkk080btw4JSUlWVwwOes3+fT0dE2bNk3Vq1e3maJT\nyrz+S1RUlMLDwx/Yu8sDAAAAAADbR9kJ3IFLly5p3rx5Wrp0qf773/+qZ8+eOn36tCQpIyPDPM4w\nDDVv3lxr1661VtR8M2DAAF28eDHbhagBAAAAAAAKCpaxA3egb9+++vnnn/XJJ59o1apVGjZsmIKD\ngzV//vxsY9PT01WkSBErpMx/e/bsUUhIiBITE+Xi4mLtOAAAAAAKAVtebgtYiy1/r7jAAnAb58+f\n1/Lly/X5559Lknr16iV7e3uFh4fL3t5eU6dOVbFixZSRkSE7OzubLTolqXnz5mrevLmmTZumqVOn\nWjsOAAAAAACABZaxA7cxYcIENW/eXI0aNVJ6eroMw9Czzz6rwYMH66233tLq1aslSXZ2hePr9Mor\nr2jx4sX66aefrB0FAAAAAADAAjM7gduYN2+ekpKSJMk8a9PBwUGRkZFKSUnR8OHDlZ6erv79+1sz\n5n1Trlw5jRo1SsOHD9fmzZutHQcAAAAAAMCscExFA+6Bo6OjPDw8LLZl3ZRoxIgR6tSpk1566SV9\n/fXX1ohnFcOGDdMPP/ygDz/80NpRAAAAAAAAzCg7gbuQtWS9ZMmSWrp0qRo0aCBnZ2crp7p/nJyc\nNG/ePA0dOlTXr1+3dhwAAAAAAABJLGMH7klGRoaKFSumDRs2qHjx4taOc1+1a9dOPj4+mjt3rsaO\nHWvtOAAAAABwe4YhnUuQzn8ppSZJDm6Sh7/k2VQymaydDkAeoOwEcsEwDJn+8Qdg1gzPwlZ0Zpk7\nd64aN26s3r17q1y5ctaOAwAAAAA5y0iVji+Tjr4iXT+b+TwjVbJzyHw4eUm1R0tVwzKfA3hgsYwd\nuENHjx7VxYsXZRiGtaMUGFWrVtXAgQM1atQoa0cBAAAAgJylXpF2PikdGiEl/yKlJUsZKZKMzH+m\nJWduPzRC2tkqc3w+i42NlclkyvERFxeX7+f/p/Xr1ysmJibb9ri4OJlMJn322Wf3NQ9wryg7gTs0\naNAgbdy40WJmJ6SXXnpJe/fuVXx8vLWjAAAAAICljFRpdzvp/H4p/eqtx6ZfzVzevrt95n73wdq1\na5WQkGDx8Pf3vy/nznKzstPf318JCQmqX7/+fc0D3CuWsQN3YNeuXTp58qR69+5t7SgFjrOzs2bN\nmqXw8HAdPHhQ9vb8tgIAAACggDi+TLpwSMq4wxurZlyXLhyUjr8pVR+Qv9kkNWjQQNWqVbujsdev\nX5eTk1M+J/qf4sWLq0mTJnlyLMMwlJqaKkdHxzw5HnArzOwEbsMwDE2aNEmRkZEUeTfRrVs3eXh4\naPHixdaOAgAAAACZDCPzGp23m9F5o/SrmftZ8RJmWUvIN27cqBdeeEGenp4W90n48MMP1bhxYxUr\nVkzu7u7q2rWrjh07ZnGMZs2aKSAgQNu3b9cjjzwiZ2dn1a1bVx988IF5TK9evfT222/rt99+My+j\nzypfb7aMfd26dWrcuLGcnZ3l7u6uoKAgnTx50mJM+fLlFRoaqjfeeEM1a9aUo6OjPv7447z+mIAc\nUXYCtxEXF6c///xTPXv2tHaUAstkMmnBggWKjo7WuXPnrB0HAAAAADLvun797N3te/1M5v75LD09\nXWlpaeZHenq6xeuDBg2Svb293n77bS1btkyStGXLFnXs2FEPPfSQ3nvvPb322ms6fPiwmjVrpj/+\n+MNi/x9//FEREREaOXKk1q9fr9KlS+vZZ5/VL7/8IkmKjo5WYGCgypQpY15Gv27dupvmXbhwoYKC\nglSvXj29//77ev3113X48GEFBAToyhXLa53u2LFD8+fPV3R0tLZt26Y6derkxUcG3BbT1IBbMAxD\nEydOVFRUlIoUKWLtOAVanTp1FBwcrPHjxzPDEwAAAED+OjhM+uvrW4+5elJKy+WszixpV6WE5yTn\n8jcf81AD6dHs17rMjVq1alk8f/zxxy1mUj722GNasmSJxZgJEyaoRo0a2rp1q/nvqY0bN1atWrU0\nZ84cvfLKK+ax586d02effaYqVapIkurXr6+yZctq7dq1Gj16tKpWrSpPT085OTnddsn65cuX9dJL\nL6lv374WmRo1aqRatWopNjZWgwcPNm+/dOmSvvrqK3l5eeXyUwHuDWUncAsfffSRrly5oqCgIGtH\neSBERUXJx8dH/fr1k5+fn7XjAAAAACjMjHRJd7sU3fj//fPXhg0bVL78/wpVNzc3i9e7du1q8fzS\npUs6fPiwIiMjLSbkVKtWTU2aNNGnn35qMb5WrVrmolOSvL295enpqd9//z3XWffu3asrV64oJCRE\naWlp5u0VK1ZU9erVFR8fb1F2PvbYYxSdsArKTuAmsq7VGR0dLTs7rvhwJ9zd3TV16lSFh4dr7969\nfG4AAAAA8sedzKj8Pkb6eoyUkZL749s5STWHSbWG5n7fXKhbt+4tb1Dk7e1t8fyvv/7KcbsklSlT\nRocPH7bYVrJkyWzjnJyc9Pfff+c669mzmZcECAgIuKOsOWUE7gfKTuAmNm/erLS0tGw/ScOthYaG\navHixVq5cqX69Olj7TgAAAAACisPf8nO4S7LTnvJo1HeZ8olk8lk8TyrvLzx2pxZ23IqN/OKh4eH\nJGnlypXZlt9L2Wel3pgduF+YdgXkICMjg1mdd8nOzk4LFizQSy+9pEuXLlk7DgAAAIDCyrOp5HSX\ny6iLls7cv4ApXry4GjRooLVr1yojI8O8/eeff9a+fftuOuvyVpycnHTt2rXbjmvWrJlcXFx0/Phx\n+fn5ZXvUrFkz1+cG8gMtDpCDDRs2yN7eXp07d7Z2lAeSv7+/2rVrp5dfftnaUQAAAAAUViaTVHu0\nVMQ5d/sVcZZ8RmfuXwBNnjxZR48eVadOnbRlyxatXr1abdu2lYeHh4YPH57r49WuXVtnz57VkiVL\ntH//fn377bc5jnN3d9fMmTM1ZcoUDRw4UB988IF2796tt99+W3379tW77757r28NyBOUncANMjIy\nFBkZqZdffplp9/dg+vTpWrFihRITE60dBQAAAEBhVTVMKtkw8xqcd8LOSSr5qFT1hfzNdQ86duyo\nzZs369y5c+rWrZsGDhyoevXq6bPPPlOZMmVyfbz+/fsrKChIY8aMkb+/v55++umbjh00aJA2bNig\nxMREhYSEqH379oqKipJhGKpfv/69vC0gz5gMw7jbW5MBNundd9/V3LlzlZCQQNl5j+bNm6ctW7Zo\n+/btfJYAAAAA7kpiYqJ8fHzu/gCpV6Td7aULB6X0qzcfV8Q5s+gM+FBycL378wEPgHv+XhVgzOwE\n/iE9PV1RUVHM6swjL774ok6fPq0NGzZYOwoAAACAwsrBVWq1U2o4R3KpItm7/P9MT1PmP+1dJNcq\nma+32knRCTzguBs78A/vvPOOPD091aZNG2tHsQkODg5asGCBnn/+eT311FNyds7ltXIAAAAAIC/Y\nOUjVB0jV+kvnEqTz+6W0JMneLfOu7Z5NCuw1OgHkDsvYgf+XlpYmHx8fLVmyRC1btrR2HJsSFBSk\n2rVrKyowAiAkAAAgAElEQVQqytpRAAAAADxgbHm5LWAttvy9Yhk78P9Wrlyp8uXLU3Tmg1mzZmnh\nwoX69ddfrR0FAAAAAADYMMpOQFJqaqomT56sl19+2dpRbFKFChU0bNgwRUREWDsKAAAAAACwYZSd\ngKTY2FhVq1ZNzZs3t3YUmzVy5EgdPnxYO3bssHYUAAAAAABgoyg7Uehdv35dU6ZMUXR0tLWj2LSi\nRYtq7ty5GjJkiFJSUqwdBwAAAAAA2CDKThR6y5YtU506ddS0aVNrR7F5nTp1UqVKlbRgwQJrRwEA\nAAAAADbI3toBAGv6+++/NW3aNG3cuNHaUQoFk8mkefPm6bHHHlNwcLC8vb2tHQkAAABAYWIYUkKC\n9OWXUlKS5OYm+ftLTZtKJpO10wHIA5SdKNSWLFmiRx99VH5+ftaOUmjUqFFDYWFhGjt2rJYvX27t\nOAAAAAAKg9RUadky6ZVXpLNnM5+npkoODpkPLy9p9GgpLCzzOYAHFsvYUWhdvXpVM2bMUFRUlLWj\nFDoTJkzQzp079fnnn1s7CgAAAABbd+WK9OST0ogR0i+/SMnJUkpK5izPlJTM57/8kvl6q1aZ4++D\nhIQEBQUFqWzZsnJ0dJSHh4fatGmj5cuXKz09/b5kyGsbN27UnDlzsm3fvXu3TCaTdu/enSfnMZlM\nN33k18rNvH4P+XVMMLMThdiiRYvUtGlTPfLII9aOUui4ublp5syZCg8P15dffqkiRYpYOxIAAAAA\nW5SaKrVrJ+3fL12/fuuxV69mLm9v317auTNfZ3jGxMQoIiJCTz75pGbOnKmKFSvqr7/+0vbt2zVw\n4EC5u7urS5cu+Xb+/LJx40bFxcUpIiIi388VGhqqAQMGZNtes2bNfD93XmnYsKESEhJUu3Zta0ex\nKZSdKJSuXLmiV199VXFxcdaOUmgFBwfr9ddf17Jly9S/f39rxwEAAABgi5Ytkw4dun3RmeX6deng\nQenNN6UcirS8EB8fr4iICA0ePFjz58+3eK1Lly6KiIhQcnLyPZ8nNTVV9vb2MuVwLdLr16/Lycnp\nns9hTeXKlVOTJk2sHeOupKenyzAMFS9e/IF9DwUZy9hRKL322msKCAhQ3bp1rR2l0DKZTFqwYIEm\nTpyoCxcuWDsOAAAAAFtjGJnX6Lx6NXf7Xb2auZ9h5EusmTNnqmTJknrllVdyfL1q1ary9fWVJEVF\nReVYVoaGhqpSpUrm57/++qtMJpP+85//aPTo0SpbtqycnJx08eJFxcbGymQyKT4+Xt27d5e7u7sa\nN25s3vfTTz9Vq1at5ObmJhcXFwUGBurbb7+1OF9AQICaNWumuLg4NWzYUM7Ozqpbt642bNhgkWn5\n8uU6deqUeUn5PzP+U3h4uEqXLq3U1FSL7UlJSXJzc9PYsWNv+RneiWXLlmVb1p6enq4WLVqoatWq\nunz5sqT/fcZHjhxRy5Yt5ezsLG9vb02aNEkZGRm3PIdhGJo7d65q1qwpR0dHeXt7a/DgweZjZzGZ\nTBo/frxmzJihypUry9HRUUeOHMlxGfudfNZZ3nnnHdWqVUtFixZVvXr19MEHHyggIEABAQF3/8HZ\nAMpOFDqXL1/W7NmzFRkZae0ohV6DBg307LPPatKkSdaOAgAAYDUP6rX5gAIvISHzZkR348yZzP3z\nWHp6unbt2qW2bduqaNGieX78qVOn6scff9SSJUu0YcMGi3OEhISocuXKWrdunWbMmCFJ2rp1q1q1\naiVXV1etWrVKq1evVlJSkpo3b64TJ05YHPv48eMaOnSoIiIitH79enl7e6t79+766aefJEkTJ05U\n+/btVapUKSUkJCghISHHgk6SBg4cqLNnz2Z7ffXq1UpOTs5xefqNDMNQWlpatkeWsLAwde/eXX37\n9tWpU6ckSZMnT9bnn3+u1atXq3jx4hbHe/rpp9W6dWtt3LhRwcHBmjx5sl5++eVbZhg/frwiIiLU\npk0bbd68WaNHj1ZsbKw6dOiQrSiNjY3V1q1bNWvWLG3dulVly5a96XFv91lL0o4dOxQSEqJatWpp\n/fr1GjlypIYNG6Yff/zxtp+drWMZOwqd+fPnq23btvLx8bF2FCjzD5vatWurX79+ql+/vrXjAAAA\n3HdpaWnq06ePIiIi1LBhQ2vHAR4Mw4ZJX3996zEnT+Z+VmeWq1el556Type/+ZgGDaSYmFwd9ty5\nc7p27ZoqVqx4d7luo3Tp0tqwYUOOs0G7deuWbTbp0KFD1aJFC23atMm8rWXLlqpSpYpmz56tmH+8\nv3Pnzik+Pl7Vq1eXlHm9SW9vb7333nsaN26cqlatqlKlSsnR0fG2S7Nr166tFi1aaPHixQoKCjJv\nX7x4sdq2bavKlSvf9r1OmzZN06ZNy7b9zz//lKenpyRpyZIlql+/vnr37q3IyEhNmTJFkydPtpjZ\nmqVfv37mGaVt27Y1T5QaNmyY3N3ds42/cOGCZs+erT59+mjhwoWSpMDAQJUqVUq9e/fWli1b1Llz\nZ/N4wzC0fft2FStWzLwtMTExx/d2u89akiIjI1W7dm2LX++6devKz89PNWrUuO3nZ8uY2YlC5eLF\ni5o3bx6zOgsQDw8PRUdHKzw8XEY+LRMBAAAoyOzt7dW0aVN17NhR3bt3v+lffgHkUnr63S9FN4zM\n/R8wTz/9dI5FpyR17drV4vmxY8d0/PhxhYSEWMyMdHZ2VtOmTRUfH28xvnr16ubyTZK8vLzk5eWl\n33///a6yvvjii9q1a5eOHTsmSdq/f7+++uqrO5rVKUkvvPCC9u/fn+3xz2LS3d1dq1evVnx8vAID\nA/XEE09ozJgxOR7vn6WrJPXo0UNXrlzJtqQ/y759+5SSkqJevXpl28/e3l6ffvqpxfannnrKoui8\nldt91unp6Tpw4ICeffZZi1/vRx999I6KYlvHzE4UKjExMerYsaPFbxqwvn79+mnJkiVas2aNevbs\nae04AAAA91WRIkU0aNAgPf/881q4cKFatGihDh06KDIy8qbXuwMKvTuZURkTI40ZI6Wk5P74Tk6Z\ns0eHDs39vrfg4eGhYsWK6bfffsvT42bx9va+49fO/v8S/7CwMIWFhWUbX6FCBYvnJUuWzDbGyclJ\nf//9991EVdeuXVWmTBktXrxYs2bN0uuvv66yZcuqU6dOd7S/t7e3/Pz8bjuuSZMmqlmzpo4ePaoh\nQ4bIzi7neX+lS5fO8XnWEvgbZd174sbP1d7eXh4eHtnuTXGrX5sb3e6zPnfunFJTU+Xl5ZVt3I3v\nozBiZicKjZSUFB06dEgTJ060dhTcoEiRIlqwYIFGjRqlK1euWDsOAACAVTg7O2v06NE6duyYHn74\nYT366KMaPHiwTp8+be1owIPJ319ycLi7fe3tpUaN8jaPMouwgIAA7dixQ9fv4A7xWdfcTLmhsD1/\n/nyO4282qzOn1zw8PCRJ06dPz3GG5ObNm2+b7144ODiob9++io2N1dmzZ7VmzRqFhYXJ3j5v5+VF\nR0fr2LFj8vX11fDhw3Xp0qUcx505cybH5+XKlctxfFYh+ccff1hsT0tL0/nz57MVlrf6tcktT09P\nOTg4mAvrf7rxfRRGlJ0oNOzt7fXee++pSpUq1o6CHDz++ONq2bKlpk6dau0oAAAAVlWiRAm9/PLL\nSkxMlKOjo+rWrauxY8dmmyUE4DaaNpVymPl2R0qXztw/H4wdO1bnz5/X6NGjc3z9l19+0TfffCNJ\n5mt7/nMp9cWLF/X555/fc46aNWuqUqVK+u677+Tn55ftkXVH+NxwcnLStWvX7nj8gAEDdPHiRXXv\n3l3Xr19Xv379cn3OW9mzZ4+mTp2qqVOnavPmzbp48aIGDhyY49j33nvP4vmaNWvk6uqqevXq5Ti+\nSZMmcnR01Jo1ayy2v/vuu0pLS8vXO6IXKVJEfn5+ev/99y0uB3fw4EH98ssv+XbeBwXL2FFo2NnZ\n5cvd7pB3XnnlFdWrV08vvPAClxoAAACFnpeXl+bMmaOIiAhNnjxZNWrU0LBhwzR06FC5ublZOx5Q\n8JlM0ujR0ogRubtRkbNz5n55OBPvn5544gnzd/vo0aMKDQ1VhQoV9Ndff2nnzp1aunSpVq9eLV9f\nX7Vr104lSpRQv379FB0drevXr+uVV16Rq6vrPecwmUx67bXX1KVLF6WkpCgoKEienp46c+aMPv/8\nc1WoUEERERG5Ombt2rV14cIFLVq0SH5+fipatOhNy0Ipc9Zk586dtWHDBnXq1EkPP/zwHZ/r1KlT\n2rdvX7btFStWlLe3t/766y+FhISoVatWGjlypEwmk5YsWaKgoCAFBgaqT58+Fvu98cYbysjIUKNG\njfTxxx9r6dKlioqKUokSJXI8f8mSJTVixAhNnz5dLi4uat++vRITEzVhwgQ1a9ZMHTp0uOP3cjei\no6PVtm1bde3aVf3799e5c+cUFRWlMmXK3HSpfmFRuN89gALF29tbY8aM0bBhw6wdBQAAoMAoX768\nFi9erISEBCUmJqp69eqKiYm56+vkAYVKWJjUsGHmNTjvhJOT9Oij0gsv5GusYcOG6bPPPpO7u7tG\njhypJ598UqGhoUpMTNTixYvN1610d3fXli1bZGdnp6CgIL300ksKDw9Xy5Yt8yRH+/btFR8fr+Tk\nZPXt21eBgYEaPXq0/vjjDzW9i5mtffv2VY8ePTRu3Dj5+/vf0fU3u3fvLkl3fGOiLLGxsWratGm2\nx9tvvy1J6t+/v65du6bly5ebl5B3795dYWFhGjx4sH766SeL423atEk7duxQ586dtWrVKk2YMOG2\nl8GbOnWq5syZo48++kgdO3bUjBkz9Nxzz2nr1q35Xji2adNGb7/9thITE9W1a1fNnDlTs2fPVpky\nZW5a0BYWJoPbHwMoQFJSUuTr66tZs2apY8eO1o4DAABQ4HzzzTeaOHGiDh06pEmTJik0NFQOd3td\nQuABkJiYKB8fn7s/wJUrUvv20sGDt57h6eycWXR++KGUBzMncWdCQkK0d+9e/fzzz1aZkRgVFaXo\n6Gilpqbm+fVC77eTJ0+qWrVqGj9+/G2L2nv+XhVgzOwEUKA4Ojpq3rx5GjZsGLMVAAAAcuDr66tN\nmzZp7dq1WrNmjWrXrq133nlHGRkZ1o4GFEyurtLOndKcOVKVKpKLS+YMTpMp858uLpnb58zJHEfR\neV/s27dPr7/+ut59911FREQU+qXXuXXt2jUNHDhQ77//vj799FO99dZbatOmjZydndW3b19rx7Mq\nZnYCKJCefvpp+fv7a9y4cdaOAgAAUKDt3LlT48eP17Vr1zRlyhR17NgxT+/6C1hbns5AMwwpIUHa\nv19KSpLc3DLv2t6kSb5doxM5M5lMcnV1VVBQkBYvXmy1WZUP6szOlJQU/etf/9K+fft0/vx5ubi4\nqHnz5po2bZrq1q172/1teWYnZSeAAunnn3+Wv7+/vvrqq1xdpBoAAKAwMgxDmzdv1vjx4+Xq6qpp\n06bl2TX9AGuz5VIGsBZb/l4xRxhAgVSlShW9+OKLGjVqlLWjAAAAFHgmk0mdO3fWkSNHFB4ern79\n+ql169b64osvrB0NAID7irITQIE1duxYJSQkaPfu3daOAgAA8MAIDg5WYmKigoKC1K1bNz399NM6\ncuSItWMBAHBfUHYCKLCcnZ01e/ZsDRkyRGlpadaOAwAA8MBwcHBQ//79dezYMbVo0UKtW7dWr169\n9NNPP1k7GgAA+YqyE0CB9uyzz6pUqVJatGiRtaMAAAA8cIoWLarhw4frp59+Us2aNdWkSRMNGDBA\nJ0+etHY0AADyBWUngALNZDJp/vz5evnll/Xnn39aOw4AAMADyc3NTRMnTtQPP/wgd3d3+fr6asSI\nEfz/FQDA5lB2Aijw6tSpo169emncuHHWjgIAAPBA8/Dw0MyZM/Xtt9/q77//Vq1atRQZGalLly5Z\nOxpwXxiGoRMnTmjfvn369NNPtW/fPp04cUKGYVg7GoA8QtkJ4IEQFRWlLVu26MCBA9aOAgAAbFho\naKhMJpMmT55ssX337t0ymUw6d+6clZJlio2Nlaur6z0fp2zZsnrttdd04MAB/fbbb6pevbpeffVV\nXb16NQ9SAgVPenq6Dhw4oPnz52vlypWKi4vT7t27FRcXp5UrV2r+/Pk6cOCA0tPTrR0VwD2i7ATw\nQChRooSmTZumwYMHKyMjw9pxAACADStatKheffXVQrHEu3LlyoqNjdXu3bv1xRdfqHr16vrPf/6j\nlJQUa0cD8kxKSopWrFih7du36+LFi0pNTTWXmunp6UpNTdXFixe1fft2rVix4r789x8bGyuTyZTj\nw93dPV/OGRoaqkqVKuXLse+WyWRSVFSUtWPAxlB2wqZkZGTw02gb1qdPH0nSihUrrJwEAADYspYt\nW6pSpUrZZnf+09GjR9WhQwe5ubnJy8tLPXv21B9//GF+ff/+/Wrbtq08PT1VvHhxNWvWTAkJCRbH\nMJlMWrRokbp06SJnZ2fVqFFDu3bt0smTJxUYGCgXFxc1aNBAhw4dkpQ5u/T5559XcnKyuRTJq5Kg\ndu3aWrdunTZt2qQPPvhAtWrV0ooVK5jlhgdeenq63n77bZ06dUqpqam3HJuamqpTp07p7bffvm//\n7a9du1YJCQkWj7i4uPtybsBWUXbCpowfP17x8fHWjoF8YmdnpwULFmjcuHFcVwoAAOQbOzs7zZgx\nQ6+//rqOHz+e7fXTp0/riSeeUN26dfXll18qLi5OV65cUZcuXcwrUJKSktS7d2/t2bNHX375pRo0\naKD27dvr/PnzFseaMmWKevToocOHD8vPz089evRQWFiYXnzxRX311VcqW7asQkNDJUmPPfaYYmJi\n5OzsrNOnT+v06dMaOXJknr53Pz8/bdu2TbGxsVqyZInq1aun9evXcz1DPLC++uornT59+o7Ly/T0\ndJ0+fVpfffVVPifL1KBBAzVp0sTi4efnd1/OfS+uX79u7QjATVF2wmZcv35dS5cuVY0aNawdBfmo\nUaNGat++vaKjo60dBQAA2LD27dvr8ccf1/jx47O9tmjRItWvX18zZ86Uj4+PfH19tWLFCn355Zfm\n64s/+eST6t27t3x8fFSrVi0tWLBARYsW1UcffWRxrOeee049e/ZU9erVNW7cOJ09e1aBgYHq0qWL\natSoodGjR+vIkSM6d+6cHB0dVaJECZlMJpUpU0ZlypTJk+t35uSJJ57Qnj17NHv2bE2ZMkWNGjXS\nxx9/TOmJB4phGNq7d+9tZ3TeKDU1VXv37rXqf+8ZGRkKCAhQpUqVLCZ6HDlyRMWKFdOoUaPM2ypV\nqqRevXrpjTfeULVq1VS0aFE1bNhQu3btuu15Tp8+reeee06enp5ycnKSr6+vVq1aZTEma8l9fHy8\nunfvLnd3dzVu3Nj8+qeffqpWrVrJzc1NLi4uCgwM1LfffmtxjPT0dE2YMEHe3t5ydnZWQECAvvvu\nu7v9eIBbouyEzdi0aZN8fX1VpUoVa0dBPps2bZpWrlypo0ePWjsKAACwYTNnztTatWt18OBBi+0H\nDx5UfHy8XF1dzY+HH35YkswzQc+ePasBAwaoRo0aKlGihNzc3HT27Fn9/vvvFsfy9fU1/3vp0qUl\nSfXq1cu27ezZs3n/Bm/DZDKpXbt2OnDggMaMGaOhQ4cqICBAe/fuve9ZgLtx8uRJJScn39W+ycnJ\nOnnyZB4nyi49PV1paWkWj4yMDNnZ2WnVqlVKSkrSgAEDJEnXrl1Tjx49VKdOHU2dOtXiOLt379ac\nOXM0depUrVmzRk5OTmrXrp1++OGHm547OTlZLVq00EcffaRp06Zp48aNqlevnnr37q0lS5ZkGx8S\nEqLKlStr3bp1mjFjhiRp69atatWqlVxdXbVq1SqtXr1aSUlJat68uU6cOGHeNyoqStOmTVNISIg2\nbtyotm3bqnPnznnxEQLZ2Fs7AJBXli1bprCwMGvHwH3g5eWliRMnasiQIdqxY4dMJpO1IwEAABvk\n7++vZ599VqNHj9bEiRPN2zMyMtShQwfNmjUr2z5Z5WSfPn105swZzZ07V5UqVZKTk5NatWqV7cYn\nDg4O5n/P+n+anLZZ8waNdnZ26t69u7p27aqVK1cqODhYdevW1ZQpU/TII49YLRcKt23btllcJzcn\nly9fzvWsziypqanasGGDihcvftMxZcqU0VNPPXVXx89Sq1atbNs6dOigLVu2qHz58lq6dKmeeeYZ\nBQYGKiEhQb///rsOHTokR0dHi33Onj2rhIQE8w9eWrVqpYoVK2rKlClauXJljud+6623dOzYMe3a\ntUsBAQGSpHbt2unMmTOaMGGCwsLCVKRIEfP4bt266ZVXXrE4xtChQ9WiRQtt2rTJvK1ly5aqUqWK\nZs+erZiYGP3111+aO3eu+vfvb/59s23btipSpIjGjh2b+w8NuA1mdsIm/Pbbbzpw4IC6du1q7Si4\nT1588UWdOXNG69evt3YUAABgw6ZNm6Y9e/Zo27Zt5m0NGzbUd999p4oVK6patWoWDzc3N0nSZ599\npvDwcHXo0EF16tSRm5ubTp8+fc95HB0drXbTIHt7ez3//PP68ccf1a5dO7Vv317/+te/bjlzDLCm\ne/0hwf34IcOGDRu0f/9+i0dMTIz59a5du2rAgAEaOHCg3njjDc2fP1/Vq1fPdpwmTZqYi05JcnNz\nU4cOHbLdGO2f4uPjVa5cOXPRmaVXr176888/s62ku/Hv28eOHdPx48cVEhJiMTPV2dlZTZs2Nd9P\n48iRI0pOTlZQUJDF/j169Lj1hwPcJWZ2wiYsX75cPXr0ULFixawdBfeJvb29FixYoNDQULVr107O\nzs7WjgQAAGxQtWrV1L9/f82bN8+8bdCgQXrjjTf0r3/9S2PGjFGpUqX0888/67333tPs2bPl5uam\nGjVqaNWqVWrcuLGSk5M1evTobDOx7kalSpX0999/a8eOHXrkkUfk7Ox83/8/yMnJSYMHD9bzzz+v\nBQsWqFmzZurcubMmTZqkihUr3tcsKLzuZEblvn37FBcXd1c/IChSpIj5hkH5qW7duqpWrdotx/Tp\n00eLFy+Wl5eXgoODcxyTNav8xm2nTp266XEvXLggb2/vbNvLlCljfv2fbhybdXmNsLCwHFdZVqhQ\nQZLMP+i5MWNOmYG8wMxO2IRJkybptddes3YM3GcBAQFq3LixZs6cae0oAADAhk2aNEn29v+bJ1K2\nbFnt3btXdnZ2euqpp1SnTh0NGjRITk5OcnJykiS9+eabunLlih599FH16NFDL7zwgipVqnTPWR57\n7DH9+9//Vs+ePVWqVKlsS0rvJxcXF40dO1bHjh2Tt7e3GjZsqCFDhtx2aTFwv5QrV052dndXe9jZ\n2alcuXJ5nCj3rl69qhdeeEF169bVpUuXbrrs+8yZMzluu9V7KFmyZI7f16xtJUuWtNh+4+XDPDw8\nJEnTp0/PNjt1//792rx5s6T/laQ3ZswpM5AXmNkJ4IE2a9YsPfLIIwoNDVXlypWtHQcAADzgYmNj\ns23z8vJSUlKSxbbq1atr3bp1Nz1O/fr19cUXX1hs6927t8XzG+/07OnpmW1brVq1sm1btGiRFi1a\ndNNz32/u7u6aMmWKhgwZounTp6tOnToaMGCARo0apYceesja8VCIlS9fXi4uLrp48WKu93V1dVX5\n8uXzIVXuDB06VKdOndLXX3+tLVu2aNiwYXrqqacUGBhoMW7fvn06ceKEeSl7UlKStm7dqg4dOtz0\n2C1atNDatWu1d+9ePf744+btq1evlpeXl2rXrn3LbDVr1lSlSpX03Xff3fLam76+vnJx+T/27juu\nyvr///iDPQQnOREUEUEQRc2tKeZIQ81EcKSoqWWSI5w5cJWllaXWxz7uMkHLbSqGkzRz4EqN7Kup\nOHOU4GCd3x995BeZ5QAu4Dzvt9v541znGs/rCDeOr/N6v9+FWLZsGYGBgZnbo6Ki/vH8Io9LxU4R\nydfKly/PkCFDGDp0KCtXrjQ6joiIiIjZKlmyJB988AFDhgxh0qRJeHl5MWTIEF5//XWcnJz+9fh7\nK1CLZBcLCwsaNmxITEzMIy1UZGNjQ4MGDXJlIdSDBw/y66+/3re9du3arF69mrlz5/LZZ5/h4eHB\n66+/TkxMDD179uTw4cOULFkyc/9SpUrRsmVLIiMjsbOz45133iE5OTnL4mp/FRYWxocffkjHjh2Z\nMmUKrq6uLFmyhM2bNzNnzpwsixP9HQsLC2bPnk379u1JSUmhc+fOuLi4cOnSJXbt2oWbmxtDhw6l\naNGiDBkyhClTpuDs7EzLli3Zu3cv8+bNe/w3TuQfqNgpIvneG2+8gZ+fHzExMbRs2dLoOCIiIiJm\nzc3Njf/+978MGzaM8ePHU7lyZU6dOoWdnd3fFo8uXrzI0qVLiY+Pp0KFCowdOzbLivQiTyIgIIAj\nR46QmJj4UHN3WllZUaZMGQICAnIhHQQHB//t9jNnztC3b1+6detG9+7dM7cvWLAAf39/wsLCWL9+\nfebv1DPPPEPTpk0ZPXo0586do2rVqmzYsAEvL68HXrtQoUJs376d4cOHM3LkSG7evEmVKlX47LPP\nslzzn7Rp04YdO3YwZcoUXn75ZW7fvk3p0qWpV68eISEhmftFRkZiMpmYO3cus2bNom7duqxduxZf\nX9+Huo7Io7Aw/XVMhIhIPrR27VqGDRvG4cOHs2XyfxERERHJHmfPnsXV1fVvC50ZGRl06tSJ/fv3\nExISwq5du0hISGD27NkEBwdjMplypbtO8rbjx4/j4+Pz2MenpKSwZMkSLly48I8dnjY2NpQpU4Zu\n3brlq/9TVKhQgUaNGvH5558bHUXykSf9vcrLNEZAzEJYWBjPP//8E5/Hz8+PyMjIJw8k2e7555/H\nw8ODjz76yOgoIiIiIvIn5cuXf2DB8vz58xw7dowxY8bw7rvvEhcXxxtvvMGsWbO4deuWCp2SLWxt\nbVxlqfkAACAASURBVOnRowctW7akaNGi2NjYZA7RtrKywsbGhmLFitGyZUt69OiRrwqdInI/DWOX\nPGHbtm00a9bsga83bdqUrVu3Pvb5P/zww/smdpeCxcLCghkzZtCgQQO6deuWueKfiIiIiORdZcqU\noXbt2hQtWjRzm5ubGz///DOHDh2ifv36pKWlsWjRIvr06WNgUsnvrKysqF27NrVq1eLcuXMkJiaS\nkpKCra0t5cqVe2D3sYjkP+rslDyhQYMGXLhw4b7HnDlzsLCwYMCAAY913rS0NEwmE0WKFMnyAUoK\nJi8vL15++WVGjBhhdBQRERER+Rd79uyhe/fuHD9+nJCQEF5//XXi4uKYPXs2Hh4eFC9eHIAjR47w\nyiuv4O7urmG68sQsLCwoX7489erVo0mTJtSrV+8fu4/zg9OnT+t3Q+RPVOyUPMHW1pbSpUtneVy/\nfp2IiAhGjx6dOWlzYmIioaGhFCtWjGLFitG2bVt++umnzPNERkbi5+fHwoULqVSpEnZ2diQnJ983\njL1p06YMGDCA0aNH4+LiQsmSJYmIiCAjIyNzn8uXL9O+fXscHBxwd3dn/vz5ufeGyGMbM2YMW7Zs\n4dtvvzU6ioiIiIg8wO3btwkMDKRs2bLMmDGD1atXs2nTJiIiImjevDlvv/02VapUAf5YYCY1NZWI\niAiGDBmCp6cnGzduNPgOREQkr1KxU/KkGzdu0L59e5o2bcqkSZMAuHXrFs2aNcPe3p7t27eze/du\nypQpw7PPPsutW7cyjz116hRffPEFy5cv59ChQ9jb2//tNZYsWYK1tTW7du1i1qxZzJgxg+jo6MzX\nw8LCOHnyJN988w2rVq1i8eLFnD59OkfvW56ck5MT7777LgMHDnyo1RZFREREJPctXboUPz8/Ro8e\nTePGjQkKCmL27NmcP3+eV155hYYNGwJgMpkyH+Hh4SQmJvL888/Tpk0bhgwZkuX/ASIiIqBip+RB\nGRkZdO3aFWtra5YsWZI5nCAqKgqTycSCBQvw9/fH29ubOXPmkJSUxLp16zKPT0lJ4bPPPqNmzZr4\n+flhbf33U9NWrVqViRMn4uXlRefOnWnWrBmxsbEAJCQksGHDBj799FMaNmxIQEAAixYt4vbt2zn/\nBsgT69KlC87Ozvz3v/81OoqIiIiI/I3U1FQuXLjA77//nrmtXLlyFC1alP3792dus7CwwMLCInP+\n/djYWE6ePEmVKlVo1qwZjo6OuZ5dRETyNhU7Jc8ZPXo0u3fvZvXq1Tg7O2du379/P6dOncLZ2Rkn\nJyecnJwoUqQI169f5+eff87cz9XVlVKlSv3rdfz9/bM8L1u2LJcvXwbg+PHjWFpaUqdOnczX3d3d\nKVu27JPenuQCCwsLZs6cybhx47h69arRcURERETkL5555hlKly7NtGnTSExM5OjRoyxdupRz585R\nuXJl4I+uznvTTKWnpxMXF0ePHj347bff+Oqrr2jXrp2RtyAiInmUVmOXPCUqKorp06ezfv36zA85\n92RkZFCjRg2ioqLuO+7e5OUAhQoVeqhr2djYZHluYWGRZc7Oe9skf6pevTrBwcGMHTuWjz/+2Og4\nIiIiIvIn3t7eLFiwgFdffZXatWtTokQJ7ty5w/Dhw6lSpQoZGRlYWlpmfh7/4IMPmDVrFk2aNOGD\nDz7Azc0Nk8mkz+siInIfFTslzzh48CB9+vRh6tSptGrV6r7Xa9asydKlS3FxccnxldW9vb3JyMjg\n+++/p0GDBgCcOXOG8+fP5+h1JXtNmjQJX19fJk2aRIkSJYyOIyIiIiJ/4uvry44dO4iPj+fs2bPU\nqlWLkiVLApCWloatrS3Xrl1jwYIFTJw4kbCwMKZNm4aDgwOgxgR5PCaTid3ndvN94vfcvHsTZztn\n6pSrQ33X+vqZEikgVOyUPOHXX3+lQ4cONG3alO7du3Px4sX79unWrRvTp0+nffv2TJw4ETc3N86e\nPcvq1at55ZVX7usEfRJVqlShdevW9O/fn08//RQHBweGDh2a+cFK8ofixYtz9uxZrKysjI4iIiIi\nIg8QEBBAQEAAQOZIK1tbWwAGDRrEhg0bGDt2LOHh4Tg4OGR2fYo8itT0VObFz+Pdb9/lcvJlUjNS\nSU1PxcbKBhtLG0oWKsnwhsPpE9AHGyubfz+hiORZ+gshecL69ev55Zdf+PrrrylTpszfPhwdHdmx\nYwceHh4EBwfj7e1Nz549uX79OsWKFcv2TAsXLqRixYoEBgYSFBRE165dqVChQrZfR3KWlZWVvqEV\nERERySfuFTF/+eUXmjRpwqpVq5gwYQIjRozIXIzo7wqd9xYwEvk7SSlJBC4O5I2YNzh14xTJqcmk\npKdgwkRKegrJqcmcunGKN2LeoPni5iSlJOVonoULF2YuvvXXxzfffAPAN998g4WFBXFxcTmWo3v3\n7nh6ev7rfhcvXiQ8PBwvLy8cHBxwcXGhVq1aDBo0iNTU1Ee65smTJ7GwsODzzz9/5LxbtmwhMjIy\nW88pBZOFSX8VRES4e/cudnZ2RscQERERkf9ZunQpbm5uNGzYEOCBHZ0mk4n33nuP0qVL06VLF43q\nKYCOHz+Oj4/PYx2bmp5K4OJA9ibu5W763X/d387Kjjrl6hDbIzbHOjwXLlxIr169WL58Oa6urlle\nq1q1KoULF+b333/n2LFj+Pr6Zlm4Nzt1796d7777jpMnTz5wnxs3buDv74+trS0RERFUqVKFa9eu\nER8fz5IlSzhy5AhOTk4Pfc2TJ09SuXJlPvvsM7p37/5IeceMGcOUKVPu+3Lj7t27xMfH4+npiYuL\nyyOd05w9ye9VXqdh7CJi1jIyMti6dSsHDhygR48elCpVyuhIIiIiIgJ06dIly/MHDV23sLCgdu3a\nvPnmm0ydOpXJkyfTvn17je4RAObFz+PAhQMPVegEuJt+l/0X9jM/fj79a/fP0Ww1atR4YGdl4cKF\nqVevXo5e/2EsW7aMs2fPcvToUXx9fTO3v/jii0yaNClP/J7Z2dnlifdK8g4NYxcRs2ZpacmtW7fY\ntm0bgwYNMjqOiIiIiDyGpk2bEhcXxzvvvENkZCR169Zl8+bNGt5u5kwmE+9++y63Um890nG3Um/x\n7rfvGvrz83fD2Bs1akTTpk2JiYkhICAAR0dH/Pz8WLNmTZZjExIS6N69OxUqVMDBwYFKlSrx2muv\ncePGjUfOce3aNQBKly5932t/LXSmpKQwevRo3N3dsbW1pUKFCowbN+5fh7o3atSIZ5999r7trq6u\nvPzyy8D/7+q8d10LCwusrf/o33vQMPZFixbh7++PnZ0dTz31FD179uTSpUv3XSMsLIwlS5bg7e1N\noUKFePrpp9m1a9c/Zpa8TcVOETFbKSkpAAQFBfHiiy+ybNkyNm/ebHAqEREREXkcFhYWtG3blgMH\nDhAREcHAgQMJDAxU0cKM7T63m8vJlx/r2EvJl9h9bnc2J8oqPT2dtLS0zEd6evq/HpOQkMDQoUOJ\niIhgxYoVlCpVihdffJFTp05l7pOYmIi7uzsffvghmzZt4s0332TTpk08//zzj5yxTp06AHTu3JmY\nmBiSk5MfuG/37t2ZNm0avXr1Yt26dfTo0YO33nqLPn36PPJ1/+qVV14hLCwMgN27d7N7926+/fbb\nB+7/8ccfExYWRrVq1Vi1ahVTpkxh/fr1NG3alFu3sha/t27dykcffcSUKVOIiooiJSWF559/nt9/\n//2Jc4sxNIxdRMxOWloa1tbW2NrakpaWxogRI5g3bx4NGzZ85Am2RURERCRvsbS0pHPnznTs2JHF\nixfTpUsX/P39mTx5MtWrVzc6nmSTwRsHc/DiwX/c59zv5x65q/OeW6m36LGyB66FXR+4T43SNZjR\nesZjnR/A29s7y/OGDRv+64JEv/76K3FxcXh4eABQvXp1ypYty/Llyxk+fDgAzZo1o1mzZpnHNGjQ\nAA8PD5o1a8aRI0eoVq3aQ2cMDAxk3LhxvPXWW2zZsgUrKysCAgIICgpi8ODBFC5cGICDBw+yfPly\nJk2axJgxYwBo2bIllpaWTJgwgZEjR1K1atWHvu5fubq6Uq5cOYB/HbKelpbG+PHjad68OUuWLMnc\n7uXlRbNmzVi4cCEDBgzI3J6UlERMTAxFihQB4KmnnqJ+/fps3LiRzp07P3ZmMY46O0XELPz888/8\n9NNPAJnDHRYtWoS7uzurVq1i7NixzJ8/n9atWxsZU0RERESyibW1Nb179yYhIYEWLVrQqlUrunTp\nQkJCgtHRJJekZ6Rj4vGGopswkZ7x752WT2LlypXs3bs38zFv3rx/Pcbb2zuz0AlQpkwZXFxcOHPm\nTOa2u3fvMnnyZLy9vXFwcMDGxiaz+Pnjjz8+cs4JEybwyy+/8N///pfu3btz5coVxo8fj5+fH1eu\nXAFgx44dAPctOnTv+fbt2x/5uo/r2LFj/Prrr/dladq0KeXKlbsvS8OGDTMLnUBmMfjP76nkL+rs\nFBGzsGTJEpYuXcrx48eJj48nPDyco0eP0rVrV3r27En16tWxt7c3OqaIiIiIZDM7Oztef/11evfu\nzUcffUTDhg3p0KED48aNo3z58kbHk8f0MB2VM76bwYhvRpCSnvLI57ezsmNwvcEMqpdz8/r7+fk9\ncIGiBylevPh92+zs7Lhz507m8+HDh/PJJ58QGRlJvXr1cHZ25pdffiE4ODjLfo+ibNmyvPzyy5lz\naH744YcMHjyY9957j6lTp2bO7VmmTJksx92b6/Pe67nhQVnu5flrlr++p3Z2dgCP/V6J8dTZKXme\nyWTit99+MzqG5HOjRo3i/Pnz1KpVi2eeeQYnJycWL17M5MmTqVu3bpZC540bN3L1m0cRERERyXlO\nTk6MHj2ahIQESpYsSY0aNRg8eDCXLz/enI6S99UpVwcbS5vHOtba0pqnyz2dzYlyR1RUFL1792b0\n6NEEBgby9NNPZ+lczA6DBg3C2dmZY8eOAf+/YHjx4sUs+917/ndF2nvs7e0z11O4x2Qycf369cfK\n9qAs97b9UxYpGFTslDzPwsIicx4QkcdlY2PDxx9/THx8PCNGjGDOnDm0a9fuvj90GzduZMiQIXTs\n2JHY2FiD0oqIiIhITilWrBhTpkzh2LFjmEwmfHx8GDNmzGOtVC15W33X+pQsVPKxji3lVIr6rvWz\nOVHuuH37NjY2WYu8CxYseKxzXbp06W9XpT937hxJSUmZ3ZPPPPMM8Eeh9c/uzZl57/W/4+7uzo8/\n/khaWlrmtq1bt963kNC9jsvbt2//Y+aqVavi4uJyX5bt27eTmJhI06ZN//F4yf9U7JR8wcLCwugI\nUgB069aNqlWrkpCQgLu7O0DmH+6LFy8yceJE3nzzTa5evYqfnx89evQwMq6IiIiI5KBSpUrx4Ycf\ncuDAAS5cuEDlypWZOnXqP642LfmLhYUFwxsOx9HG8ZGOc7RxZHiD4fn2/6GtWrVi/vz5fPLJJ8TE\nxNC3b1++//77xzrXggUL8PHxYeLEiWzYsIFt27bx6aefEhgYiL29feZCP9WrVyc4OJixY8cyadIk\nNm/eTGRkJJMnT+all176x8WJQkNDuXz5Mr179+abb75hzpw5DBw4EGdn5yz73TvH9OnT2bNnD/v3\n7//b81lbWzNhwgQ2btxIz5492bhxI3PnziU4OBhvb2969uz5WO+F5B8qdoqIWZk/fz6HDx8mMTER\n+P+F9IyMDNLT00lISGDKlCls374dJycnIiMjDUwrIiIiIjnN3d2defPmERcXR3x8PJ6ensycOZO7\nd+8aHU2yQZ+APtQsUxM7K7uH2t/Oyo5aZWrRO6B3DifLOR9//DFt27Zl1KhRhISEcOfOnSyrkj+K\noKAgWrduzYoVK+jWrRstWrQgMjKSGjVqsGvXLqpXr5657+eff05ERARz586lTZs2LFy4kFGjRv3r\nwkstWrRg9uzZ7Nq1i6CgID777DOWLFly3wjP9u3b079/fz766CPq169P3bp1H3jOAQMGsHDhQuLj\n42nfvj0jR47kueeeY9u2bTg6PlrxW/IfC9Pf9SOLiBRgP//8MyVLliQ+Pp4mTZpkbr9y5QohISE0\naNCAyZMns3btWjp27Mjly5cpVqyYgYlFREREJLfEx8czduxYjh49yvjx43nppZewttbavkY6fvw4\nPj4+j318UkoSbZa0Yf+F/dxKvfXA/RxtHKlVphZfd/saJ1unx76eSH7wpL9XeZk6O0XE7Hh4eDB4\n8GDmz59PWlpa5lD2p556in79+rFp0yauXLlCUFAQ4eHhDxweISIiIiIFT0BAAOvWrWPJkiUsXLgQ\nPz8/li9fTkZGhtHR5DE52ToR2yOW91u+j0dRDwrZFMLOyg4LLLCzsqOQTSE8innwfsv3ie0Rq0Kn\nSD6nzk7JE+79GObXOVEk//nkk0+YOXMmBw4cwN7envT0dKysrPjoo49YvHgxO3fuxMHBAZPJpJ9L\nERERETNlMpnYvHkzo0ePJiMjgylTptC6dWt9Psxl2dmBZjKZ2H1uN3sT93Iz5SbOts7UKVeHeq71\n9O8qZqUgd3aq2Cl50r0CkwpNkpM8PT3p0aMHAwcOpHjx4iQmJhIUFETx4sXZuHGjhiuJiIiICPDH\n/09WrlzJ2LFjKV68OFOmTMkyHZLkrIJclBExSkH+vdIwdjHc22+/zYgRI7Jsu1fgVKFTctLChQv5\n8ssvadu2LZ07d6ZBgwbY2dkxe/bsLIXO9PR0du7cSUJCgoFpRURERMQoFhYWdOzYkcOHD9OvXz/C\nwsJo3bq1pjsSEcmDVOwUw82aNQtPT8/M5+vXr+eTTz7hgw8+YOvWraSlpRmYTgqyRo0aMXfuXOrX\nr8+VK1fo1asX77//Pl5eXvy56f3UqVMsWbKEkSNHkpKSYmBiERERETGSlZUVL730EidOnKB9+/a0\na9eOTp06cezYMaOjiYjI/2gYuxhq9+7dNG/enGvXrmFtbU1ERASLFy/GwcEBFxcXrK2tGT9+PO3a\ntTM6qpiBjIwMLC3//jugbdu2MXToUGrXrs2nn36ay8lEREREJC+6desWs2fPZtq0abRp04bx48dT\nsWJFo2MVOMePH8fb21sj/0Syiclk4sSJExrGLpITpk2bRmhoKPb29kRHR7N161Zmz55NYmIiS5Ys\noXLlynTr1o2LFy8aHVUKsHsra94rdP71O6D09HQuXrzIqVOnWLt2Lb///nuuZxQRERGRvMfR0ZFh\nw4bx008/4e7uTu3atXnttde4cOGC0dEKFBsbG27fvm10DJEC4/bt29jY2BgdI8eo2CmG2rVrF4cO\nHWLNmjXMnDmTHj160KVLFwD8/PyYOnUqFStW5MCBAwYnlYLsXpHz0qVLQNa5Yvfv309QUBDdunUj\nJCSEffv2UbhwYUNyioiIiEjeVKRIESZMmMCJEydwcHDAz8+PESNGcPXqVaOjFQglS5YkMTGRW7du\n3deYICIPz2QycevWLRITEylZsqTRcXKMlhoWwyQlJTF06FAOHjzI8OHDuXr1KjVq1Mh8PT09ndKl\nS2Npaal5OyXHnT59mjfeeIOpU6dSuXJlEhMTef/995k9eza1atUiLi6O+vXrGx1TRERERPKwp556\niunTpzN48GAmT55MlSpVGDRoEIMHD8bZ2dnoePnWvWaD8+fPk5qaanAakfzNxsaGUqVKFegmHs3Z\nKYY5duwYVatW5dy5c+zdu5fTp0/TokUL/Pz8MvfZsWMHbdq0ISkpycCkYi7q1KmDi4sLnTp1IjIy\nktTUVCZPnkyfPn2MjiYiIiIi+dDJkyeJjIxk8+bNjBgxgldffRUHBwejY4mIFGgqdoohzp49y9NP\nP83MmTMJDg4GyPyG7t68EQcPHiQyMpKiRYuycOFCo6KKGTl58iReXl4ADB06lDFjxlC0aFGDU4mI\niIhIfnf06FHGjh3Lvn37GDt2LL169SrQ8+WJiBhJc3aKIaZNm8bly5cJCwtj8uTJ3Lx5Exsbmywr\nYZ84cQILCwtGjRplYFIxJ56enowePRo3NzfeeustFTpFREREJFv4+fmxcuVKvvzyS5YvX46Pjw9f\nfPFF5kKZIiKSfdTZKYZwdnZmzZo17Nu3j5kzZzJy5EgGDBhw334ZGRlZCqAiucHa2pr//Oc/vPzy\ny0ZHEREREZECaMuWLbz55pskJyczefJkgoKCsiySKSIij09VJMl1K1asoFChQjRr1ow+ffrQuXNn\nwsPD6d+/P5cvXwYgLS2N9PR0FTrFENu2baNixYpa6VFEREREckRgYCC7du3irbfeYuzYsdSvX58t\nW7YYHUtEpEBQZ6fkukaNGtGoUSOmTp2auW3OnDm8/fbbBAcHM23aNAPTiYiIiIiI5J6MjAyWLVvG\n2LFjcXNzY8qUKdSrV8/oWCIi+ZaKnZKrfv/9d4oVK8ZPP/2Eh4cH6enpWFlZkZaWxqeffkpERATN\nmzdn5syZVKhQwei4IiIiIiIiuSI1NZVFixYxYcIEatasyaRJk/D39zc6lohIvqMxwpKrChcuzJUr\nV/Dw8ADAysoK+GOOxAEDBrB48WJ++OEHBg0axK1bt4yMKpKFyWQiPT3d6BgiIiIiUkDZ2Njw8ssv\n89NPP9GsWTNatmxJt27dOHnypNHRRETyFRU7JdcVL178ga916tSJ9957jytXruDo6JiLqUT+WXJy\nMuXLl+f8+fNGRxERERGRAsze3p7Bgwdz8uRJqlatSr169di2bZvmkxcReUgaxi550vXr1ylWrJjR\nMUSyGD16NGfOnOHzzz83OoqIiIiImIlr167h5OSEra2t0VFERPIFFTvFMCaTCQsLC6NjiDy0pKQk\nfHx8WLp0KY0aNTI6joiIiIiIiIj8hYaxi2FOnz5NWlqa0TFEHpqTkxPTpk0jPDxc83eKiIiIiIiI\n5EEqdophunTpwsaNG42OIfJIQkJCKFKkCJ9++qnRUURERERERETkLzSMXQzxww8/0LJlS3755Res\nra2NjiPySA4fPsyzzz7L8ePHKVGihNFxREREREREROR/1Nkphpg/fz49e/ZUoVPyJX9/f0JCQhgz\nZozRUURERERERETkT9TZKbkuJSUFV1dXdu3ahaenp9FxRB7L9evX8fHxYcOGDQQEBBgdR0RERERE\nRERQZ6cYYO3atfj4+KjQKflasWLFmDRpEuHh4eg7IxEREREREZG8QcVOyXXz58+nT58+RscQeWK9\ne/fmzp07LFmyxOgoIiIiIiIiIoKGsUsuS0xMpFq1apw7dw5HR0ej44g8se+++44XX3yREydO4Ozs\nbHQcEREREREREbOmzk7JVQsXLiQ4OFiFTikw6tWrR4sWLZg0aZLRUURERERERETMnjo7JddkZGRQ\nuXJlli5dSp06dYyOI5JtLl68iJ+fH99++y1VqlQxOo6IiIiImLH09HTS0tKws7MzOoqIiCHU2Sm5\nZseOHTg6OvL0008bHUUkW5UuXZrRo0czaNAgLVYkIiIiIoZr06YNO3bsMDqGiIghVOyUXDNv3jz6\n9OmDhYWF0VFEsl14eDhnzpxhzZo1RkcRERERETNmZWVFjx49GDNmjL6IFxGzpGHskitu3LhBhQoV\nOHnyJC4uLkbHEckR33zzDf369eOHH37AwcHB6DgiIiIiYqbS0tLw9fVl1qxZtGjRwug4IiK5Sp2d\nkiuWLl1KixYtVOiUAu3ZZ58lICCA6dOnGx1FRERERMyYtbU1EyZMYOzYseruFBGzo2Kn5Ir58+fT\np08fo2OI5Lj33nuPGTNm8MsvvxgdRURERETMWOfOnUlOTmb9+vVGRxERyVUqdkqOO3z4MBcvXtTw\nCTELFSpU4PXXXyciIsLoKCIiIiJixiwtLZk4cSLjxo0jIyPD6DgiIrlGxU7JcfPmzSMsLAwrKyuj\no4jkiuHDh7Nv3z5iY2ONjiIiIiIiZqxDhw5YWFiwcuVKo6OIiOQaLVAkOeru3bu4urqyZ88ePDw8\njI4jkmtWrlzJmDFjOHjwIDY2NkbHERERERERETEL6uyUHLV69Wr8/f1V6BSz06FDB8qVK8esWbOM\njiIiIiIiIiJiNtTZKTmqVatW9OzZk65duxodRSTXnThxgkaNGvHDDz9QqlQpo+OIiIiIiIiIFHgq\ndkqO+eWXX6hZsybnzp3DwcHB6DgihoiIiODq1assWLDA6CgiIiIiIiIiBZ6GsUuOWbhwIaGhoSp0\nilkbN24cmzZt4rvvvjM6ioiIiIiIiEiBp2Kn5IiMjAwWLFhAnz59jI4iYqjChQszdepUwsPDycjI\nMDqOiIiIiJipyMhI/Pz8jI4hIpLjVOyUHLFlyxaKFStGzZo1jY4iYrju3btjY2PD/PnzjY4iIiIi\nIvlIWFgYzz//fLacKyIigu3bt2fLuURE8jIVOyVHzJs3j969exsdQyRPsLS0ZNasWYwZM4br168b\nHUdEREREzJCTkxMlSpQwOoaISI5TsVOy3bVr19iwYQPdunUzOopInlGzZk3at2/P+PHjjY4iIiIi\nIvnQ3r17admyJS4uLhQuXJhGjRqxe/fuLPvMmTMHLy8v7O3tcXFxoVWrVqSlpQEaxi4i5kPFTsl2\nX3zxBc899xzFixc3OopInjJlyhSioqI4cuSI0VFEREREJJ+5efMmL730Ejt37uT777+nRo0atGnT\nhqtXrwKwb98+XnvtNcaPH8+PP/5IbGwsrVu3Nji1iEjuszY6gBQ88+bNY9q0aUbHEMlzXFxcGD9+\nPOHh4WzduhULCwujI4mIiIhIPhEYGJjl+cyZM/nqq6/YsGED3bt358yZMxQqVIh27drh7OyMu7s7\n1atXNyitiIhx1Nkp2erAgQNcv379vj/EIvKH/v37c/36dZYtW2Z0FBERERHJRy5fvkz//v3x8vKi\nSJEiODs7c/nyZc6cOQNAixYtcHd3p2LFinTr1o1FixZx8+ZNg1OLiOQ+FTslW926dYthw4ZhewDK\nkwAAIABJREFUaakfLZG/Y21tzcyZM4mIiCA5OdnoOCIiIiKST/Ts2ZO9e/fywQcfsGvXLg4ePIir\nqyspKSkAODs7c+DAAZYtW4abmxtvv/023t7enD9/3uDkIiK5SxUpyVZ169bl1VdfNTqGSJ7WpEkT\nGjduzFtvvWV0FBERERHJJ+Li4ggPD6dt27b4+vri7OzMhQsXsuxjbW1NYGAgb7/9NocPHyY5OZl1\n69YZlFhExBias1OylY2NjdERRPKFadOm4e/vT69evfD09DQ6joiIiIjkcV5eXnz++efUrVuX5ORk\nhg8fjq2tbebr69at4+eff6ZJkyYUL16crVu3cvPmTXx8fP713FeuXOGpp57KyfgiIrlGnZ0iIgYo\nV64cw4YNY8iQIUZHEREREZF8YP78+SQlJVGrVi1CQ0Pp3bs3FSpUyHy9aNGirFq1imeffRZvb2+m\nT5/O3Llzady48b+e+913383B5CIiucvCZDKZjA4hImKO7t69S7Vq1ZgxYwZt2rQxOo6IiIiImKni\nxYvzww8/UKZMGaOjiIg8MXV2iogYxM7OjhkzZjBo0CDu3r1rdBwRERERMVNhYWG8/fbbRscQEckW\n6uwUETFYUFAQDRs2ZOTIkUZHEREREREzdPnyZby9vTl48CBubm5GxxEReSIqdoqIGOzkyZPUrVuX\nw4cPU65cOaPjiIiIiIgZGjVqFNeuXWPOnDlGRxEReSIqdoqI5AFvvvkmp06d4osvvjA6ioiIiIiY\noWvXruHl5cX333+Ph4eH0XFERB6bip0iInlAcnIyPj4+fP755zRp0sToOCIiIiJihiIjIzl9+jQL\nFy40OoqIyGNTsVNEJI9YtmwZU6ZMYf/+/VhbWxsdR0RERETMzG+//Yanpyc7d+7E29vb6DgiIo9F\nq7FLjrt9+zaxsbGcOnXK6CgieVpwcDAlSpTQPEkiIiIiYogiRYowdOhQJkyYYHQUEZHHps5OyXHp\n6ekMGzaMzz77jIoVKxIaGkpwcDDly5c3OppInnP06FECAwM5duwYLi4uRscRERERETOTlJSEp6cn\nMTEx+Pv7Gx1HROSRqdgpuSYtLY0tW7YQFRXFqlWrqFq1KiEhIQQHB1O6dGmj44nkGYMGDeLOnTvq\n8BQRERERQ7z//vvs3LmTlStXGh1FROSRqdgphkhJSSEmJobo6GjWrl1LzZo1CQkJ4cUXX1Q3m5i9\nGzdu4O3tzfr166lVq5bRcURERETEzNy+fRtPT0/WrFmjz6Miku+o2CmGu337Nhs2bCA6OpqNGzdS\nv359QkJCeOGFFyhatKjR8UQMMW/ePObNm0dcXByWlppeWURERERy1+zZs1m/fj1ff/210VFERB6J\nip2SpyQlJbFu3Tqio6PZsmULzzzzDCEhIbRr1w5nZ2ej44nkmoyMDOrVq8fAgQPp0aOH0XFERERE\nxMzcvXsXLy8vli5dSoMGDYyOIyLy0FTslCd2+/ZtrKyssLW1zdbz/vbbb6xevZro6Gji4uJo0aIF\nISEhtG3bFkdHx2y9lkhetGfPHl544QVOnDhB4cKFjY4jIiIiImZm7ty5LF26lNjYWKOjiIg8NBU7\n5Yl99NFH2Nvb069fvxy7xrVr11i5ciVRUVHs3buX5557jtDQUFq3bo2dnV2OXVfEaL1796Z48eJM\nnz7d6CgiIiIiYmZSU1Px8fHhv//9L82aNTM6jojIQ9FEcPLErl27xvnz53P0GsWLF6dPnz5s3ryZ\nH3/8kcaNG/P+++9TunRpevbsyYYNG0hNTc3RDCJGePvtt1m0aBHHjx83OoqIiIiImBkbGxvGjx/P\n2LFjUZ+UiOQXKnbKE7O3t+f27du5dr1SpUoxYMAAtm/fztGjR6lZsyYTJ06kTJky9O3bl9jYWNLS\n0nItj0hOKlWqFG+++SaDBg3SB0wRERERyXVdu3bl6tWrxMTEGB1FROShqNgpT8ze3p47d+4Ycu1y\n5coxaNAgdu/ezf79+/Hy8mLEiBGUK1eO1157jR07dpCRkWFINpHs8tprr5GYmMiqVauMjiIiIiIi\nZsbKyooJEyYwZswYffkuIvmCip3yxBwcHAwrdv6Zu7s7w4YNY9++fXz77beULVuWgQMH4ubmxpAh\nQ/juu+/0x1nyJRsbG2bOnMnQoUNztYtaRERERASgU6dOpKSksHbtWqOjiIj8KxU75Ynl9jD2h+Hp\n6cmbb77J4cOHiYmJoXDhwoSFheHh4cGIESM4cOCACp+SrwQGBlK7dm3effddo6OIiIiIiJmxtLRk\n4sSJjB07ViPnRCTP02rsYjZMJhOHDh0iOjqa6OhorKysCA0NJSQkBD8/P6PjifyrM2fOEBAQwP79\n+6lQoYLRcURERETEjJhMJurUqcPw4cMJDg42Oo6IyAOp2ClmyWQysW/fPqKioli2bBmFCxfOLHx6\neXkZHU/kgSZNmsTBgwf56quvjI4iIiIiImZm06ZNDBkyhCNHjmBlZWV0HBGRv6Vip5i9jIwMdu/e\nTXR0NMuXL6d06dKEhobSuXNnKlasaHQ8kSzu3LlD1apV+fTTT3n22WeNjiMiIiIiZsRkMtG4cWNe\neeUVunfvbnQcEZG/pWKnyJ+kp6ezY8cOoqOj+eqrr/Dw8CAkJITOnTvj6upqdDwRAFavXs2oUaM4\ndOgQNjY2RscRERERETOybds2Xn75ZY4fP67PoiKSJ6nYKfIAqampbNmyhejoaFatWoWvry8hISF0\n6tSJ0qVLGx1PzJjJZOK5556jZcuWDB061Og4IiIiImJmmjdvTteuXenTp4/RUURE7qNipxji+eef\nx8XFhYULFxod5aHcvXuXmJgYoqOjWbduHbVq1SIkJISOHTvi4uJidDwxQz/++CMNGzbk6NGjKr6L\niIiISK7atWsXXbp0ISEhATs7O6PjiIhkYWl0AMlbDhw4gJWVFQ0bNjQ6Sp5iZ2dHUFAQn3/+ORcu\nXGDAgAF88803VKpUieeee46FCxdy48YNo2OKGalSpQq9e/dm5MiRRkcRERERETPToEEDfH19mTdv\nntFRRETuo85OyWLAgAFYWVmxePFivvvuO3x8fB64b2pq6mPP0ZLfOjsfJCkpiXXr1hEVFcWWLVto\n1qwZISEhBAUF4ezsbHQ8KeBu3ryJt7c3X375JfXr1zc6joiIiIiYkf3799OuXTtOnjyJg4OD0XFE\nRDKps1My3b59my+++IJ+/frRqVOnLN/SnT59GgsLC5YuXUpgYCAODg7MmTOHq1ev0qVLF1xdXXFw\ncMDX15cFCxZkOe+tW7cICwvDycmJUqVK8dZbb+X2reUYJycnQkNDWbVqFWfPnuXFF1/k888/x9XV\nleDgYL788ktu3bpldEwpoJydnXnnnXcIDw8nPT3d6DgiIiIiYkZq1apFnTp1+M9//mN0FBGRLFTs\nlExffvkl7u7uVKtWjZdeeonFixeTmpqaZZ9Ro0YxYMAAjh07RocOHbhz5w41a9Zk3bp1/PDDDwwa\nNIj+/fsTGxubeUxERASbN2/mq6++IjY2lvj4eHbs2JHbt5fjihQpQo8ePfj666/5v//7P1q1asV/\n/vMfypYtS9euXVmzZg137941OqYUMN26dcPe3p758+cbHUVEREREzMzEiRN55513SEpKMjqKiEgm\nDWOXTE2bNuX5558nIiICk8lExYoVmT59Op06deL06dOZz994441/PE9oaChOTk7MnTuXpKQkSpQo\nwfz58+nWrRvwx9BvV1dXOnTokO+HsT+MS5cu8dVXXxEdHc2RI0do164doaGhNG/e/LGnARD5s/j4\neJ577jmOHz9OsWLFjI4jIiIiImYkNDSU6tWrM2rUKKOjiIgA6uyU/zl58iRxcXF07doVAAsLC7p1\n63bfhNO1a9fO8jw9PZ0pU6bg7+9PiRIlcHJyYsWKFZw5cwaAn3/+mZSUlCzzCTo5OVGtWrUcvqO8\no1SpUgwYMIDt27dz5MgRatSowYQJEyhbtiz9+vUjNjZWQ5DliQQEBPDCCy8wbtw4o6OIiIiIiJmJ\njIzk/fff57fffjM6iogIoGKn/M/cuXNJT0/Hzc0Na2trrK2tmTp1KjExMZw9ezZzv0KFCmU5bvr0\n6bz33nsMGzaM2NhYDh48SIcOHUhJScntW8gXypUrx+DBg9m9ezd79+7F09OT4cOHU65cOQYOHMjO\nnTvJyMgwOqbkQ5MnTyY6OprDhw8bHUVEREREzIi3tzdt2rThgw8+MDqKiAigYqcAaWlpLFq0iLff\nfpuDBw9mPg4dOoS/v/99Cw79WVxcHEFBQbz00kvUqFGDSpUqkZCQkPl6pUqVsLGx4bvvvsvclpyc\nzNGjR3P0nvKDChUqMHz4cPbv38/OnTspXbo0AwYMwM3NjaFDh7Jnzx40y4Q8rBIlSjBhwgTCw8P1\ncyMiIiIiuWrcuHHMmjWLq1evGh1FRETFToH169fz66+/0rdvX/z8/LI8QkNDWbBgwQOLJ15eXsTG\nxhIXF8eJEycYOHAgp06dynzdycmJPn36MGLECDZv3swPP/xA7969NWz7LypXrsyYMWM4cuQImzZt\nwsnJiR49euDh4cHIkSOJj49XAUv+Vb9+/fj999+Jjo42OoqIiIiImJFKlSrRsWNHpk+fbnQUEREt\nUCTQrl077ty5Q0xMzH2v/d///R+VKlVizpw59O/fn71792aZt/P69ev06dOHzZs34+DgQFhYGElJ\nSRw7doxt27YBf3Ryvvrqq6xYsQJHR0fCw8PZs2cPLi4uZrFA0eMymUwcOnSIqKgooqOjsbGxITQ0\nlJCQEHx9fY2OJ3lUXFwcXbp04fjx4zg5ORkdR0RERETMxJkzZwgICOD48eOULFnS6DgiYsZU7BTJ\nB0wmE3v37iU6Opro6GiKFi2aWfisXLmy0fEkj+nevTtubm689dZbRkcRERERETPy1ltvERYWRtmy\nZY2OIiJmTMVOkXwmIyODXbt2ER0dzfLlyylbtiyhoaF07tyZChUqGB1P8oDz58/j7+/Pd999h6en\np9FxRERERMRM3CsvWFhYGJxERMyZip0i+Vh6ejrbt28nOjqaFStWUKlSJUJCQujcuTPlypUzOp4Y\n6N1332XHjh2sW7fO6CgiIiIiIiIiuUbFTpECIjU1ldjYWKKjo1m9ejV+fn6EhITQqVMnSpUqZXQ8\nyWUpKSlUq1aN999/n7Zt2xodR0RERERERCRXqNgpUgDdvXuXTZs2ER0dzfr166lduzYhISF07NiR\nEiVKPPZ5MzIySE1Nxc7OLhvTSk7ZuHEj4eHhHD16VP9mIiIiIiIiYhZU7BQp4G7fvs3XX39NVFQU\nMTExNGzYkJCQEDp06ECRIkUe6VwJCQl8+OGHXLx4kcDAQHr16oWjo2MOJZfs0L59e+rVq8eoUaOM\njiIiIiIiwv79+7G3t8fX19foKCJSQFkaHUAKhrCwMBYuXGh0DPkbDg4OvPjiiyxfvpzExEReeukl\nVq5cSfny5enQoQNLly4lKSnpoc51/fp1ihcvTrly5QgPD2fGjBmkpqbm8B3Ik/jggw+YPn06Z8+e\nNTqKiIiIiJixXbt24ePjQ5MmTWjXrh19+/bl6tWrRscSkQJIxU7JFvb29ty5c8foGPIvnJyc6NKl\nC6tWreLMmTO88MILfPbZZ5QrV47g4GC+++47/qnZu27dukyaNIlWrVrx1FNPUa9ePWxsbHLxDuRR\neXh4MGDAAIYNG2Z0FBERERExU7/99huvvPIKXl5e7Nmzh0mTJnHp0iVef/11o6OJSAFkbXQAKRjs\n7e25ffu20THkERQtWpSePXvSs2dPrl69yooVKyhatOg/HpOSkoKtrS1Lly6latWqVKlS5W/3u3Hj\nBgsWLMDd3Z0XXngBCwuLnLgFeUijRo3Cx8eHbdu20bRpU6PjiIiIiIgZuHXrFra2tlhbW7N//35+\n//13Ro4ciZ+fH35+flSvXp369etz9uxZypcvb3RcESlA1Nkp2UKdnflbiRIl6Nu3L97e3v9YmLS1\ntQX+WPimVatWlCxZEvhj4aKMjAwAvvnmG8aPH88bb7zBq6++yrfffpvzNyD/yNHRkenTp/P666+T\nlpZmdBwRERERKeAuXrzIZ599RkJCAgDu7u6cO3eOgICAzH0KFSqEv78/N27cMCqmiBRQKnZKtnBw\ncFCxs4BLT08HYP369WRkZNCgQYPMIeyWlpZYWlry4Ycf0rdvX5577jmefvppXnjhBTw8PLKc5/Ll\ny+zfvz/X85u7Tp064eLiwieffGJ0FBEREREp4GxsbJg+fTrnz58HoFKlStStW5eBAwdy9+5dkpKS\nmDJlCmfOnMHV1dXgtCJS0KjYKdlCw9jNx4IFC6hduzaenp6Z2w4cOEDfvn1ZsmQJ69evp06dOpw9\ne5Zq1apRtmzZzP0+/vhj2rZtS3BwMIUKFWLYsGEkJycbcRtmx8LCgpkzZzJx4kSuXLlidBwRERER\nKcBKlChBrVq1+OSTTzKbYlavXs3PP/9M48aNqVWrFvv27WPevHkUK1bM4LQiUtCo2CnZQsPYCzaT\nyYSVlRUAW7ZsoXXr1ri4uACwc+dOunfvTkBAAN9++y1Vq1Zl/vz5FC1aFH9//8xzxMTEMGzYMGrV\nqsXWrVtZvnw5a9asYcuWLYbckzny9fWlW7dujB492ugoIiIiIlLAffDBBxw+fJjg4GBWrlzJ6tWr\n8fb25ueffwagf//+NGnShPXr1/POO+9w6dIlgxOLSEGhBYokW2gYe8GVmprKO++8g5OTE9bW1tjZ\n2dGwYUNsbW1JS0vj0KFD/PTTTyxatAhra2v69etHTEwMjRs3xtfXF4ALFy4wYcIE2rZty3/+8x/g\nj3l7lixZwrRp0wgKCjLyFs1KZGQkPj4+7Nu3j9q1axsdR0REREQKqDJlyjB//ny++OILXnnlFUqU\nKMFTTz1Fr169GDZsGKVKlQLgzJkzbNq0iWPHjrFo0SKDU4tIQaBip2QLdXYWXJaWljg7OzN58mSu\nXr0KwIYNG3Bzc6N06dL069eP+vXrExUVxXvvvcdrr72GlZUVZcqUoUiRIsAfw9z37NnD999/D/xR\nQLWxsaFQoULY2tqSnp6e2TkqOato0aJMmTKFgQMHsmvXLiwt1eAvIiIiIjmjcePGNG7cmPfee48b\nN25ga2ubOUIsLS0Na2trXnnlFRo2bEjjxo3Zs2cPdevWNTi1iOR3+l+uZAvN2VlwWVlZMWjQIK5c\nucIvv/zC2LFjmTNnDr169eLq1avY2tpSq1Ytpk2bxo8//kj//v0pUqQIa9asITw8HIAdO3ZQtmxZ\natasiclkylzY6PTp03h4eOhnJ5eFhYVhMplYvHix0VFERERExAw4Ojpib29/X6EzPT0dCwsL/P39\neemll5g1a5bBSUWkIFCxU7KFOjvNQ/ny5ZkwYQIXLlxg8eLFmR9W/uzw4cN06NCBI0eO8M477wAQ\nFxdHq1atAEhJSQHg0KFDXLt2DTc3N5ycnHLvJgRLS0tmzpzJqFGj+O2334yOIyIiIiIFWHp6Os2b\nN6dGjRoMGzaM2NjYzGaHP4/uunnzJo6OjqSnpxsVVUQKCBU7JVtozk7zU7Jkyfu2nTp1in379uHr\n64urqyvOzs4AXLp0iSpVqgBgbf3H7BmrV6/G2tqaevXqAX8sgiS5p06dOrRp04YJEyYYHUVERERE\nCjArKytq167NuXPnuHr1Kl26dOHpp5+mX79+fPnll+zdu5e1a9eyYsUKKlWqpOmtROSJWZhUYZBs\nsHPnTkaPHs3OnTuNjiIGMZlMWFhY8NNPP2Fvb0/58uUxmUykpqYyYMAAjh07xs6dO7GysiI5OZnK\nlSvTtWtXxo8fn1kUldx1+fJlfH192b59O1WrVjU6joiIiIgUUHfu3KFw4cLs3r2batWq8cUXX7B9\n+3Z27tzJnTt3uHz5Mn379mX27NlGRxWRAkDFTskWe/fu5dVXX2Xfvn1GR5E8aM+ePYSFhVG/fn08\nPT354osvSEtLY8uWLZQtW/a+/a9du8aKFSvo2LEjxYsXNyCx+fjwww9Zu3YtmzdvxsLCwug4IiIi\nIlJADRkyhLi4OPbu3Ztl+759+6hcuXLm4qb3mihERB6XhrFLttAwdnkQk8lE3bp1WbBgAb///jtr\n166lZ8+erF69mrJly5KRkXHf/pcvX2bTpk1UrFiRNm3asHjxYs0tmUMGDBjAxYsXWbFihdFRRERE\nRKQAmz59OvHx8axduxb4Y5EigNq1a2cWOgEVOkXkiamzU7LFyZMnad26NSdPnjQ6ihQgN2/eZO3a\ntURHR7N161YCAwMJDQ0lKCiIQoUKGR2vwNi6dSu9evXi2LFjODo6Gh1HRERERAqocePG8euvv/Lx\nxx8bHUVECjAVOyVbnDt3jrp165KYmGh0FCmgbty4wapVq4iOjmbXrl20atWK0NBQnnvuORwcHIyO\nl+917twZHx8fLVgkIiIiIjnqxIkTVKlSRR2cIpJjVOyUbPHrr79SpUoVrl69anQUMQO//vorK1as\nIDo6mgMHDtC2bVtCQkJo2bIldnZ2RsfLl86cOUNAQAD79u2jYsWKRscREREREREReSwqdkq2SE5O\npmTJkiQnJxsdRczMxYsX+fLLL4mOjubYsWO0b9+ekJAQAgMDsbGxMTpevjJ58mT279/PypUrjY4i\nIiIiImbAZDKRmpqKlZUVVlZWRscRkQJCxU7JFmlpadjZ2ZGWlqbhCGKYc+fOsXz5cqKiojh16hQd\nO3YkJCSEJk2a6MPTQ7hz5w6+vr588skntGzZ0ug4IiIiImIGWrZsSadOnejXr5/RUUSkgFCxU7KN\njY0NycnJ2NraGh1FhFOnTrFs2TKioqK4ePEiwcHBhISEUL9+fSwtLY2Ol2etWbOG4cOHc/jwYf0u\ni4iIiEiO27NnD8HBwSQkJGBvb290HBEpAFTslGzj7OxMYmIihQsXNjqKSBYJCQlER0cTFRXFzZs3\n6dy5MyEhIdSuXVudyH9hMplo06YNzZs3JyIiwug4IiIiImIGgoKCaNmyJeHh4UZHEZECQMVOyTYl\nS5bk6NGjlCxZ0ugoIg909OhRoqOjiY6OJj09nZCQEEJCQvD391fh838SEhJo0KABR44coUyZMkbH\nEREREZECLj4+nrZt23Ly5EkcHR2NjiMi+ZyKnZJt3Nzc2LlzJ+7u7kZHEflXJpOJ+Pj4zMKnvb09\noaGhhISE4OPjY3Q8w40YMYILFy6wePFio6OIiIiIiBno1KkT9erV0+giEXliKnZKtvHy8mLt2rVU\nqVLF6Cgij8RkMvH9998TFRXFsmXLKFGiRGbHp6enp9HxDHHz5k18fHxY9v/Yu+/4ms/+j+Pvkx0Z\nZoyipYhRFI3ZofaqURRVW42qVaVGhITEKKUtOmyldmmb1uhNaYtatYnaO3YViQzJ9/dHb/k1N1rj\nnFwZr+fjcR7J+Z7veJ/cd7+Sz/lc17V4sapUqWI6DgAAANK5/fv3q3r16jpy5Ih8fHxMxwGQhrFK\nB+zG09NTMTExpmMAD81ms6lixYqaOHGiTp8+rcmTJ+vcuXN6/vnnFRAQoHHjxunkyZOmY6YoHx8f\njR07Vj179lRCQoLpOAAAAEjnnnnmGdWsWVMff/yx6SgA0jiKnbAbDw8Pip1I85ycnPTSSy9pypQp\nOnv2rMaOHatDhw7pueeeU5UqVfTRRx/p3LlzpmOmiNatW8vLy0vTp083HQUAAAAZwPDhw/Xhhx/q\n2rVrpqMASMModsJuPDw8dOvWLdMxALtxcXFRjRo1NG3aNEVGRiooKEg7d+7UM888o5dfflmffvqp\nLl68aDqmw9hsNk2aNEnDhg3T1atXTccBAABAOufv76+GDRtqwoQJpqMASMOYsxN2U6dOHb3zzjuq\nW7eu6SiAQ8XExGj16tVatGiRVqxYoQoVKqhly5Z69dVXlS1bNtPx7K5Hjx6y2WyaMmWK6SgAAABI\n506cOKGAgAAdPHhQOXLkMB0HQBpEZyfshjk7kVF4eHiocePGmj9/vs6dO6cuXbpo5cqVKliwoBo0\naKC5c+fq+vXrpmPazciRI7V06VLt3r3bdBQAAACkcwUKFNBrr72mcePGmY4CII2i2Am7YRg7MqJM\nmTLptdde09KlS3XmzBm1bt1aS5YsUf78+fXqq69q0aJFioqKMh3zsWTPnl0hISHq1auXGAwAAAAA\nRwsMDNT06dN1/vx501EApEEUO2E3LFCEjM7Hx0dvvPGGvv32W504cUKNGjXSrFmz9MQTT6hly5Za\nvnx5mv1vpEuXLrp586YWLFhgOgoAAADSuXz58qlt27YaM2aM6SgA0iDm7ITdvPXWWypdurTeeust\n01GAVOXy5ctatmyZFi5cqJ07d+qVV15Ry5YtVbt2bbm5uZmO98A2btyoli1b6uDBg/L29jYdBwAA\nAOnY+fPn9cwzz2j37t3Kly+f6TgA0hA6O2E3dHYC95YjRw517dpVP/74oyIiIlSxYkWNGTNGefLk\nUefOnfXDDz/o9u3bpmP+q+eff17VqlVTaGio6SgAAABI53Lnzq0333xTYWFhpqMASGPo7ITdDB48\nWD4+PhoyZIjpKECacPr0aS1ZskQLFy7UiRMn1KxZM7Vs2VIvvviinJ2dTce7p8jISJUqVUqbNm2S\nv7+/6TgAAABIx65cuSJ/f39t375dBQsWNB0HQBpBZyfshs5O4OHkz59f/fr109atW7V582Y99dRT\neuedd5Q/f3716dNHmzZtUmJioumYyeTJk0eDBg1S3759WawIAAAADpU9e3a9/fbbGjlypOkoANIQ\nip2wG09PT4qdwCN6+umnNWjQIO3cuVPr1q1T9uzZ9eabb6pAgQIaMGCAtm/fnmqKi71799axY8f0\n3XffmY4CAACAdK5fv34KDw/XoUOHTEcBkEZQ7ITdeHh46NatW6ZjAGle0aJFNWzYMO3PQE1aAAAg\nAElEQVTfv1/ff/+93N3d9frrr6tIkSIKDAzUnj17jBY+3dzc9PHHH6tv3758wAEAAACHypIli/r2\n7auQkBDTUQCkERQ7YTcMYwfsy2azqVSpUgoNDdWhQ4e0ePFixcfHq1GjRipRooSCg4MVERFhJFvt\n2rVVunRpffDBB0auDwAAgIyjd+/eWrNmjfbt22c6CoA0gGIn7IZh7IDj2Gw2lStXTu+//76OHz+u\nWbNm6dq1a6pZs6aeffZZjRo1SkePHk3RTBMmTNDEiRN1+vTpFL0uAAAAMhYfHx8NGDBAwcHBpqMA\nSAModsJu6OwEUobNZlOlSpX04Ycf6vTp05o0aZLOnDmjKlWqqHz58ho/frxOnTrl8BwFCxbU22+/\nrf79+zv8WgAAAMjYevTooU2bNmnnzp2mowBI5Sh2wm6YsxNIeU5OTnrppZf0ySef6OzZsxo9erR+\n//13lStXTs8//7w+/vhjRUZGOuz6AwcO1JYtW7Ru3TqHXQMAAADIlCmTBg8erGHDhpmOAiCVo9gJ\nu6GzEzDLxcVFNWvW1LRp03Tu3DkFBgbqt99+U4kSJVStWjV99tlnunTpkl2vmSlTJn3wwQfq3bu3\nbt++bddzAwAAAH/XtWtX7d69W5s3bzYdBUAqRrETdsOcnUDq4ebmpvr162vOnDmKjIxUnz599NNP\nP6lIkSKqU6eOZs6cqT/++MMu12ratKly5cqlTz75xC7nAwAAAO7F3d1dQ4cOpbsTwD+yWZZlmQ6B\n9GH79u3q1q2bfvvtN9NRANxHVFSUvv/+ey1atEhr1qzRSy+9pJYtW6pRo0by9fV95PMeOHBAVatW\n1cGDB5U9e3Y7JgYAAAD+X3x8vIoVK6ZZs2bppZdeMh0HQCpEZyfshmHsQOrn5eWlFi1a6KuvvtLp\n06fVsmVLLVq0SPnz51fTpk21ePFiRUVFPfR5S5Qooa1bt8rHx8cBqQEAAIC/uLq6avjw4Ro6dKjo\n3QJwLxQ7YTcMYwfSFl9fX7Vp00bh4eE6ceKEGjZsqBkzZihv3rxq1aqVli9f/lD/TRcoUEBubm4O\nTAwAAABIb7zxhi5evKg1a9aYjgIgFWIYO+zm7NmzqlChgs6ePWs6CoDHcOnSJS1btkyLFi3Szp07\n1bBhQ7Vs2VK1atWimAkAAIBUYdGiRZo4caJ+/fVX2Ww203EApCJ0dsJuPDw8dOvWLdMxADwmPz8/\ndevWTT/++KMOHDig8uXLa/To0XriiSf05ptv6j//+Q8rrwMAAMCo1157TdHR0fr+++9NRwGQytDZ\nCbuJioqSn5+foqOjTUcB4ACnTp3SkiVLtGjRIp08eVKvvfaaJk6cKFdXV9PRAAAAkAF9/fXXGjFi\nhLZv3y4nJ3q5APyFYifsxrIsHTlyRIULF2YYAZDOHT16VDt37lTdunXl7e1tOg4AAAAyIMuyVL58\neQ0ePFjNmjUzHQdAKkGxEwAAAAAApEkrV65U//79tWfPHjk7O5uOAyAVoM8bAAAAAACkSXXr1lXm\nzJm1aNEi01EApBJ0dgIAjFqzZo2+/vpr5cqVS7lz5076eud7d3d30xEBAACQiv3444/q3r27Dhw4\nIBcXF9NxABhGsRMAYIxlWYqIiNDatWt1/vx5XbhwQefPn0/6/sKFC/Ly8kpWBP3fYuidrzlz5mSx\nJAAAgAyqWrVqateunTp27Gg6CgDDKHYCAFIty7L0xx9/JCuA/u/3d75evnxZWbJkuW8x9O/bcuTI\nwZxOAAAA6ciGDRvUtm1b/f7773JzczMdB4BBFDuRYuLj4+Xk5ESBAYBDJCQk6MqVK/ctiv79+2vX\nril79ux3FUXvVSDNli2bbDab6bcHAACAf1G3bl01adJE3bt3Nx0FgEEUO2E3q1evVqVKlZQ5c+ak\nbXf+72Wz2TR9+nQlJiaqa9eupiICgKS/Pny5dOnSPTtE//f7qKgo5cyZ875F0b9/7+vrm2YLo9Om\nTdNPP/0kT09PVatWTa+//nqafS8AACBj2rZtm1599VUdOXJEHh4epuMAMIRiJ+zGyclJGzduVOXK\nle/5+tSpUzVt2jRt2LCBBUcApBmxsbFJ84febwj9ne/j4uL+dQj9na/e3t6m35okKSoqSn369NGm\nTZvUqFEjnT9/XocPH1arVq3Uq1cvSVJERIRGjBihzZs3y9nZWe3atdOwYcMMJwcAALhb48aNVb16\ndfXp08d0FACGUOyE3Xh5eWnBggWqXLmyoqOjFRMTo5iYGN26dUsxMTHasmWLBg8erKtXrypLliym\n4wKA3UVFRSUrjN6vQBoZGSlnZ+d/HUJ/53tHdib8+uuvql27tmbNmqXmzZtLkj777DMFBQXp6NGj\nunDhgqpXr66AgAD1799fhw8f1rRp0/Tyyy8rLCzMYbkAAAAexe7du1W3bl0dOXJEXl5epuMAMIBi\nJ+wmT548unDhgjw9PSX9NXT9zhydzs7O8vLykmVZ2r17t7JmzWo4LYCUdvv2bSUmJjJhvP6a4uPG\njRsP1C165776oCvSP+zPd+7cuRo4cKCOHj0qNzc3OTs76+TJk2rYsKF69uwpV1dXBQUF6eDBg0nd\nqDNnzlRISIh27typbNmyOeJHBAAA8MhatGihgIAAvffee6ajADDAxXQApB8JCQl69913Vb16dbm4\nuMjFxUWurq5JX52dnZWYmCgfHx/TUQEYYFmWnn/+ec2YMUOlS5c2Hccom80mX19f+fr6qkiRIv+4\nr2VZunbt2j3nEz18+HCybZcuXVLmzJnvKoYGBQXd90MmHx8fxcbG6ttvv1XLli0lSStXrlRERISu\nX78uV1dXZc2aVd7e3oqNjZW7u7uKFSum2NhY/fLLL2rcuLHdfz4AAACPIyQkRFWrVlX37t3l6+tr\nOg6AFEaxE3bj4uKi5557TvXq1TMdBUAq5OrqqhYtWigsLEyLFi0yHSfNsNlsypo1q7JmzarixYv/\n476JiYlJK9L/vQj6T/Mk161bV506dVLv3r01c+ZM5cyZU2fOnFFCQoL8/PyUN29enT59WvPnz1fr\n1q118+ZNTZo0SZcuXVJUVJS93y4AAMBjK168uOrWrauPPvpIQUFBpuMASGEMY4fdBAYGqmHDhqpU\nqdJdr1mWxaq+AHTz5k0VKlRI69ev/9fCHVLOtWvXtGHDBv3yyy/y9vaWzWbT119/rZ49e6pDhw4K\nCgrS+PHjZVmWihcvLh8fH50/f16jRo1KmudT+uteL4n7PQAAMO7IkSOqVKmSDh8+zDRqQAZDsRMp\n5o8//lB8fLxy5MghJycn03EAGDJq1CgdOHBA8+bNMx0F9zFy5Eh9++23mjp1qsqWLStJ+vPPP3Xg\nwAHlzp1bM2fO1Nq1a/X+++/rhRdeSDrOsiwtWLBAgwcPfqDFl1LLivQAACB96tKli3LlyqXQ0FDT\nUQCkIIqdsJslS5aoUKFCKleuXLLtiYmJcnJy0tKlS7V9+3b17NlT+fLlM5QSgGnXr19XoUKFtGnT\npn+drxKOt3PnTiUkJKhs2bKyLEvLly/XW2+9pf79+2vAgAFJXZp//5CqatWqypcvnyZNmnTXAkXx\n8fE6c+bMP65If+dhs9nuWxT93wLpncXvAAAAHtTJkydVrlw5HTx4UH5+fqbjAEghFDthN88995wa\nNmyo4ODge77+66+/qlevXvrggw9UtWrVlA0HIFUJDg7WqVOnNHPmTNNRMrxVq1YpKChIN27cUM6c\nOXX16lXVrFlTYWFh8vLy0ldffSVnZ2dVqFBB0dHRGjx4sH755Rd9/fXX95y25EFZlqWbN28+0Ir0\n58+fl4eHx7+uSJ87d+5HWpEeAACkXz179pSnp6fGjRtnOgqAFMICRbCbzJkz6+zZs/r999918+ZN\n3bp1SzExMYqOjlZsbKzOnTunXbt26dy5c6ajAjCsT58+Kly4sI4fP66CBQuajpOhVatWTTNmzNCh\nQ4d0+fJlFS5cWDVr1kx6/fbt2woMDNTx48fl5+ensmXLavHixY9V6JT+mtfTx8dHPj4+Kly48D/u\ne2dF+nsVQzdu3JisMHrx4kX5+vr+6xD6XLlyyc/PTy4u/CoEAEB6NmTIEJUqVUr9+vVTnjx5TMcB\nkALo7ITdtG3bVl9++aXc3NyUmJgoZ2dnubi4yMXFRa6urvL29lZ8fLxmz56tGjVqmI4LALiPey0q\nFx0drStXrihTpkzKnj27oWT/LjExUVevXn2gbtGrV68qW7Zs/9gteudr9uzZmW8aAIA06t1331V8\nfLw+/vhj01EApACKnbCbFi1aKDo6WuPGjZOzs3OyYqeLi4ucnJyUkJCgrFmzyt3d3XRcAEAGd/v2\nbV2+fPm+xdC/b7tx44Zy5MjxQHOMZsmShRXpAQBIRS5evKjixYtr586devLJJ03HAeBgFDthN+3a\ntZOTk5Nmz55tOgoAAHYVFxenixcv3nfBpb8XSG/dunVXZ+j9CqTe3t4URgEASAFDhgzRlStX9Pnn\nn5uOAsDBKHbCblatWqW4uDg1atRI0v8Pg7QsK+nh5OTEH3UAgHTt1q1bunDhwgOtSG9Z1gOvSJ8p\nUybTbw0AgDTr6tWr8vf315YtW1SoUCHTcQA4EMVOAAAAQx5mRXo3Nzflzp1ba9asYQgeAACPICQk\nRMeOHdOcOXNMRwHgQBQ7YVcJCQmKiIjQkSNHVKBAAZUpU0YxMTHasWOHbt26pZIlSypXrlymYwKw\no5dfflklS5bU5MmTJUkFChRQz5491b9///se8yD7APh/lmXpzz//1IULF1SgQAHmvgYA4BH8+eef\nKlKkiH7++WcVK1bMdBwADuJiOgDSl7Fjx2ro0KFyc3OTn5+fRo4cKZvNpj59+shms6lJkyYaM2YM\nBU8gDbl06ZKGDx+uFStWKDIyUlmyZFHJkiU1aNAg1apVS8uWLZOrq+tDnXPbtm3y8vJyUGIg/bHZ\nbMqSJYuyZMliOgoAAGlW5syZ1a9fPwUHB2vhwoWm4wBwECfTAZB+/PTTT/ryyy81ZswYxcTEaOLE\niRo/frymTZumTz75RLNnz9b+/fs1depU01EBPIRmzZpp69atmjFjhg4dOqTvvvtO9erV05UrVyRJ\n2bJlk4+Pz0Od08/Pj/kHAQAAkOJ69uyp9evXa8+ePaajAHAQip2wm9OnTytz5sx69913JUnNmzdX\nrVq15O7urtatW6tx48Zq0qSJtmzZYjgpgAd17do1/fLLLxozZoxq1Kihp556SuXLl1f//v3VqlUr\nSX8NY+/Zs2ey427evKk2bdrI29tbuXPn1vjx45O9XqBAgWTbbDabli5d+o/7AAAAAI/L29tbAwcO\n1PDhw01HAeAgFDthN66uroqOjpazs3OybVFRUUnPY2NjFR8fbyIegEfg7e0tb29vffvtt4qJiXng\n4yZMmKDixYtrx44dCgkJ0ZAhQ7Rs2TIHJgUAAAAeTPfu3bVt2zb99ttvpqMAcACKnbCb/Pnzy7Is\nffnll5KkzZs3a8uWLbLZbJo+fbqWLl2q1atX6+WXXzYbFMADc3Fx0ezZszVv3jxlyZJFlStXVv/+\n/f+1Q7tixYoKDAyUv7+/unXrpnbt2mnChAkplBoAAAC4P09PTy1atEgFChQwHQWAA1DshN2UKVNG\n9evXV8eOHVW7dm21bdtWuXLlUkhIiAYOHKg+ffooT5486tKli+moAB5Cs2bNdO7cOYWHh6tevXra\ntGmTKlWqpFGjRt33mMqVK9/1/MCBA46OCgAAADyQKlWqKHv27KZjAHAAVmOH3WTKlEkjRoxQxYoV\ntXbtWjVu3FjdunWTi4uLdu3apSNHjqhy5cry8PAwHRXAQ/Lw8FCtWrVUq1YtDRs2TG+++aaCg4PV\nv39/u5zfZrPJsqxk25jyArCfhIQExcfHy93dXTabzXQcAACM499DIP2i2Am7cnV1VZMmTdSkSZNk\n2/Pnz6/8+fMbSgXA3kqUKKHbt2/fdx7PzZs33/W8ePHi9z2fn5+fIiMjk55fuHAh2XMAj++NN95Q\n/fr11blzZ9NRAAAAAIeh2AmHuNOh9fdPyyzL4tMzII25cuWKXnvtNXXq1EmlS5eWj4+Ptm/frvff\nf181atSQr6/vPY/bvHmzRo8erebNm2v9+vX64osvkubzvZfq1atrypQpqlKlipydnTVkyBC6wAE7\ncnZ2VkhIiKpVq6bq1aurYMGCpiMBAAAADkGxEw5xr6ImhU4g7fH29lalSpX00Ucf6ciRI4qNjVXe\nvHnVunVrDR069L7H9evXT3v27FFYWJi8vLw0YsQINW/e/L77f/DBB+rcubNefvll5cqVS++//74i\nIiIc8ZaADKtkyZIaOHCg2rdvr3Xr1snZ2dl0JAAAAMDubNb/TpIGAACAdCkhIUHVq1dXw4YN7Tbn\nLgAAAJCaUOyE3d1rCDsAAEgdjh8/rgoVKmjdunUqWbKk6TgAAACAXTmZDoD0Z9WqVfrzzz9NxwAA\nAPdQsGBBjRkzRm3atFFcXJzpOAAAAIBdUeyE3Q0ePFjHjx83HQMAANxHp06d9OSTTyokJMR0FAAA\nAMCuWKAIdufp6amYmBjTMQAAwH3YbDZ9++23pmMAAAAAdkdnJ+zOw8ODYicAAAAAAABSHMVO2J2H\nh4du3bplOgaAdOTll1/WF198YToGAAAAACCVo9gJu6OzE4C9BQUFKSwsTAkJCaajAAAAAABSMYqd\nsDvm7ARgb9WrV1eOHDm0ZMkS01EAAAAAAKkYxU7YHcPYAdibzWZTUFCQQkNDlZiYaDoOAAAA0jjL\nsvi9EkinKHbC7hjGDsAR6tSpI09PTy1fvtx0FOCRdejQQTab7a7Hrl27TEcDACBDWbFihbZt22Y6\nBgAHoNgJu2MYOwBHsNlsGjZsmEaOHCnLskzHAR5ZzZo1FRkZmexRsmRJY3ni4uKMXRsAABPi4+PV\nq1cvxcfHm44CwAEodsLu6OwE4CivvPKKbDabwsPDTUcBHpm7u7ty586d7OHi4qIVK1bohRdeUJYs\nWZQtWzbVq1dPv//+e7JjN23apDJlysjDw0PlypXTd999J5vNpg0bNkj664+3Tp06qWDBgvL09JS/\nv7/Gjx+f7AOCNm3aqEmTJho1apTy5s2rp556SpI0Z84cBQQEyMfHR7ly5VLLli0VGRmZdFxcXJx6\n9uypPHnyyN3dXfnz51dgYGAK/MQAALCvuXPn6umnn9YLL7xgOgoAB3AxHQDpD3N2AnAUm82moUOH\nauTIkWrYsKFsNpvpSIDdREVF6d1331XJkiUVHR2tESNGqFGjRtq3b59cXV11/fp1NWzYUPXr19f8\n+fN1+vRp9e3bN9k5EhIS9OSTT2rx4sXy8/PT5s2b1bVrV/n5+al9+/ZJ+61du1a+vr764Ycfkgqh\n8fHxGjlypIoWLapLly7pvffeU+vWrbVu3TpJ0sSJExUeHq7FixfrySef1JkzZ3T48OGU+wEBAGAH\n8fHxCg0N1Zw5c0xHAeAgNouxgLCzcePG6cKFCxo/frzpKADSocTERJUuXVrjx49X3bp1TccBHkqH\nDh00b948eXh4JG178cUXtXLlyrv2vX79urJkyaJNmzapUqVKmjJlioYPH64zZ84kHf/FF1+offv2\n+uWXX+7bndK/f3/t27dPq1atkvRXZ+eaNWt06tQpubm53Tfrvn37VKpUKUVGRip37tzq0aOHjhw5\notWrV/NBAwAgzZo5c6bmz5+vNWvWmI4CwEEYxg67Y85OAI7k5OSkoUOHasSIEczdiTTppZde0q5d\nu5Ie06dPlyQdPnxYr7/+up5++mn5+vrqiSeekGVZOnXqlCTp4MGDKl26dLJCacWKFe86/5QpUxQQ\nECA/Pz95e3tr0qRJSee4o1SpUncVOrdv365GjRrpqaeeko+PT9K57xzbsWNHbd++XUWLFlWvXr20\ncuVKVrEFAKQp8fHxCgsL0/Dhw01HAeBAFDthdwxjB+Bor732mq5evaqff/7ZdBTgoWXKlEmFCxdO\neuTNm1eS1KBBA129elXTpk3Tli1b9Ntvv8nJyemhFhD68ssv1b9/f3Xq1EmrV6/Wrl271K1bt7vO\n4eXllez5jRs3VKdOHfn4+GjevHnatm2bVqxYIen/FzAqX768Tpw4odDQUMXHx6tNmzaqV68eHzoA\nANKMefPmqUCBAnrxxRdNRwHgQMzZCbtjgSIAjubs7Kwff/xRefLkMR0FsIsLFy7o8OHDmjFjRtIf\nYFu3bk3WOVmsWDEtXLhQsbGxcnd3T9rn7zZs2KAqVaqoR48eSduOHDnyr9c/cOCArl69qjFjxih/\n/vySpD179ty1n6+vr1q0aKEWLVqobdu2euGFF3T8+HE9/fTTD/+mAQBIYR07dlTHjh1NxwDgYHR2\nwu4Yxg4gJeTJk4d5A5Fu5MiRQ9myZdPUqVN15MgRrV+/Xm+//bacnP7/V7W2bdsqMTFRXbt2VURE\nhP7zn/9ozJgxkpT034K/v7+2b9+u1atX6/DhwwoODtbGjRv/9foFChSQm5ubJk2apOPHj+u77767\na4jf+PHjtXDhQh08eFCHDx/WggULlDlzZj3xxBN2/EkAAAAAj4diJ+yOzk4AKYFCJ9ITZ2dnLVq0\nSDt27FDJkiXVq1cvjR49Wq6urkn7+Pr6Kjw8XLt371aZMmU0cOBAhYSESFLSPJ49evRQ06ZN1bJl\nS1WoUEFnz569a8X2e8mVK5dmz56tpUuXqnjx4goNDdWECROS7ePt7a2xY8cqICBAAQEBSYse/X0O\nUQAAAMA0VmOH3a1du1ZhYWH68ccfTUcBkMElJiYm64wD0puvvvpKLVq00OXLl5U1a1bTcQAAAADj\nmLMTdkdnJwDTEhMTFR4ergULFqhw4cJq2LDhPVetBtKaWbNmqUiRIsqXL5/27t2rfv36qUmTJhQ6\nAQAAgP+i3QV2x5ydAEyJj4+XJO3atUv9+vVTQkKCfv75Z3Xu3FnXr183nA54fOfPn9cbb7yhokWL\nqlevXmrYsKHmzJljOhYAAOnS7du3ZbPZ9PXXXzv0GAD2RbETdufh4aFbt26ZjgEgA4mOjtaAAQNU\nunRpNWrUSEuXLlWVKlW0YMECrV+/Xrlz59aQIUNMxwQe2+DBg3Xy5EnFxsbqxIkTmjx5sry9vU3H\nAgAgxTVq1Eg1atS452sRERGy2Wz64YcfUjiV5OLiosjISNWrVy/Frw3gLxQ7YXcMYweQkizL0uuv\nv65NmzYpNDRUpUqVUnh4uOLj4+Xi4iInJyf16dNHP/30k+Li4kzHBQAAgB107txZ69at04kTJ+56\nbcaMGXrqqadUs2bNlA8mKXfu3HJ3dzdybQAUO+EADGMHkJJ+//13HTp0SG3btlWzZs0UFhamCRMm\naOnSpTp79qxiYmK0YsUK5ciRQ1FRUabjAgAAwA4aNGigXLlyadasWcm2x8fHa+7cuerUqZOcnJzU\nv39/+fv7y9PTUwULFtSgQYMUGxubtP/JkyfVqFEjZcuWTZkyZVLx4sW1ZMmSe17zyJEjstls2rVr\nV9K2/x22zjB2wDyKnbA7OjsBpCRvb2/dunVLL730UtK2ihUr6umnn1aHDh1UoUIFbdy4UfXq1WMR\nF8BOYmNjVapUKX3xxRemowAAMigXFxe1b99es2fPVmJiYtL28PBwXb58WR07dpQk+fr6avbs2YqI\niNDkyZM1b948jRkzJmn/7t27Ky4uTuvXr9f+/fs1YcIEZc6cOcXfDwD7odgJu2POTgApKV++fCpW\nrJg+/PDDpF90w8PDFRUVpdDQUHXt2lXt27dXhw4dJCnZL8MAHo27u7vmzZun/v3769SpU6bjAAAy\nqM6dO+vUqVNas2ZN0rYZM2aodu3ayp8/vyRp2LBhqlKligoUKKAGDRpo0KBBWrBgQdL+J0+e1Isv\nvqjSpUurYMGCqlevnmrXrp3i7wWA/biYDoD0x93dXbGxsbIsSzabzXQcABnAuHHj1KJFC9WoUUNl\ny5bVL7/8okaNGqlixYqqWLFi0n5xcXFyc3MzmBRIP5599ln169dPHTp00Jo1a+TkxGfoAICUVaRI\nEVWtWlUzZ85U7dq1de7cOa1evVoLFy5M2mfRokX6+OOPdfToUd28eVO3b99O9m9Wnz591LNnT33/\n/feqUaOGmjZtqrJly5p4OwDshN9KYXdOTk5JBU8ASAmlSpXSpEmTVLRoUe3YsUOlSpVScHCwJOnK\nlStatWqV2rRpo27duumTTz7R4cOHzQYG0okBAwYoNjZWkyZNMh0FAJBBde7cWV9//bWuXr2q2bNn\nK1u2bGrcuLEkacOGDXrjjTdUv359hYeHa+fOnRoxYkSyRSu7deumY8eOqX379jp48KAqVaqk0NDQ\ne17rTpHUsqykbfHx8Q58dwAeBcVOOARD2QGktJo1a+qzzz7Td999p5kzZypXrlyaPXu2qlatqlde\neUVnz57V1atXNXnyZLVu3dp0XCBdcHZ21pw5cxQaGqqIiAjTcQAAGVDz5s3l4eGhefPmaebMmWrX\nrp1cXV0lSRs3btRTTz2lwMBAlS9fXkWKFLnn6u358+dXt27dtGTJEg0bNkxTp06957X8/PwkSZGR\nkUnb/r5YEYDUgWInHIJFigCYkJCQIG9vb509e1a1atVSly5dVKlSJUVEROiHH37QsmXLtGXLFsXF\nxWns2LGm4wLpQuHChRUaGqq2bdvS3QIASHGenp5q3bq1goODdfToUXXu3DnpNX9/f506dUoLFizQ\n0aNHNXnyZC1evDjZ8b169dLq1at17Ngx7dy5U6tXr1aJEiXueS0fHx8FBARozJgxOnDggDZs2KD3\n3nvPoe8PwMOj2AmH8PT0pNgJIMU5OztLkiZMmKDLly9r7dq1mj59uooUKSInJyc5OzvLx8dH5cuX\n1969ew2nBdKPrl27KmfOnPcd9gcAgCO9+eab+uOPP1SlShUVL148afurr76qd0n+/PkAACAASURB\nVN55R71791aZMmW0fv16hYSEJDs2ISFBb7/9tkqUKKE6deoob968mjVr1n2vNXv2bN2+fVsBAQHq\n0aMH//YBqZDN+vtkE4CdFC9eXMuWLUv2Dw0ApIQzZ86oevXqat++vQIDA5NWX78zx9LNmzdVrFgx\nDR06VN27dzcZFUhXIiMjVaZMGYWHh6tChQqm4wAAACCDorMTDsGcnQBMiY6OVkxMjN544w1JfxU5\nnZycFBMTo6+++krVqlVTjhw59OqrrxpOCqQvefLk0aRJk9SuXTtFR0ebjgMAAIAMimInHII5OwGY\n4u/vr2zZsmnUqFE6efKk4uLiNH/+fPXp00fjxo1T3rx5NXnyZOXKlct0VCDdadGihcqVK6dBgwaZ\njgIAAIAMysV0AKRPzNkJwKRPP/1U7733nsqWLav4+HgVKVJEvr6+qlOnjjp27KgCBQqYjgikW1Om\nTFHp0qXVqFEj1axZ03QcAAAAZDAUO+EQDGMHYFLlypW1cuVKrV69Wu7u7pKkMmXKKF++fIaTAelf\n1qxZNWPGDHXq1El79uxRlixZTEcCAABABkKxEw7BMHYApnl7e6tZs2amYwAZUu3atdWoUSP16tVL\nc+fONR0HAAAAGQhzdsIhGMYOAEDGNnbsWG3ZskVLly41HQUAkE4lJCSoWLFiWrt2rekoAFIRip1w\nCDo7AaRGlmWZjgBkGF5eXvriiy/Us2dPRUZGmo4DAEiHFi1apBw5cqh69eqmowBIRSh2wiGYsxNA\nahMbG6sffvjBdAwgQ6lUqZK6dOmiLl268GEDAMCuEhISNGLECAUHB8tms5mOAyAVodgJh6CzE0Bq\nc/r0abVp00bXr183HQXIUIKCgnTu3DlNnz7ddBQAQDpyp6uzRo0apqMASGUodsIhmLMTQGpTuHBh\n1a1bV5MnTzYdBchQ3NzcNHfuXA0ZMkTHjh0zHQcAkA7c6eocPnw4XZ0A7kKxEw7BMHYAqVFgYKA+\n/PBD3bx503QUIEN55plnNHjwYLVv314JCQmm4wAA0rjFixcre/bsqlmzpukoAFIhip1wCIaxA0iN\nihUrpmrVqunTTz81HQXIcPr27StnZ2d98MEHpqMAANIw5uoE8G8odsIhGMYOILUaOnSoJkyYoOjo\naNNRgAzFyclJs2fP1rhx47Rnzx7TcQAAadTixYuVLVs2ujoB3BfFTjgEnZ0AUqtSpUqpcuXKmjp1\nqukoQIZToEABvf/++2rbtq1iY2NNxwEApDEJCQkaOXIkc3UC+EcUO+EQzNkJIDUbOnSoxo0bx4cy\ngAEdOnRQgQIFFBwcbDoKACCNWbJkibJkyaJatWqZjgIgFaPYCYegsxNAalauXDmVLVtWM2fONB0F\nyHBsNpumTZum2bNna+PGjabjAADSCObqBPCgKHbCIZizE0BqFxQUpDFjxiguLs50FCDDyZkzpz79\n9FO1b99eN2/eNB0HAJAGLFmyRJkzZ6arE8C/otgJh2AYO4DUrmLFiipevLjmzJljOgqQITVp0kQv\nvvii+vfvbzoKACCVuzNXJ12dAB4ExU44BMPYAaQFQUFBGj16tOLj401HATKkDz/8UKtWrdLKlStN\nRwEApGJLly6Vr6+vateubToKgDSAYiccgmHsANKCF154QQUKFND8+fNNRwEypMyZM2vWrFl68803\ndeXKFdNxAACpEHN1AnhYFDvhEHR2AkgrgoKCFBYWpoSEBNNRgAypWrVqatmypd566y1ZlmU6DgAg\nlVm6dKl8fHzo6gTwwCh2wiGYsxNAWvHyyy8rZ86cWrRokekoQIYVFhamffv2acGCBaajAABSkcTE\nRLo6ATw0ip1wCDo7AaQVNptNw4YNU2hoqBITE03HATIkT09PzZ07V3379tWZM2dMxwEApBJ3ujrr\n1KljOgqANIRiJxyCOTsBpCW1atWSj4+PvvrqK9NRgAzrueeeU69evdSpUyeGswMA6OoE8MgodsIh\nGMYOIC2x2WwKCgqiuxMwbPDgwfrzzz/1ySefmI4CADDsq6++kpeXF12dAB4axU44hLu7u+Li4iga\nAEgzGjRoIGdnZ4WHh5uOAmRYLi4u+uKLLzR8+HAdOnTIdBwAgCGJiYkKCQmhqxPAI6HYCYew2Wzy\n8PBQbGys6SgA8EDudHeOGDGCIbSAQUWLFlVwcLDatm2r27dvm44DADDgTldn3bp1TUcBkAZR7ITD\nsEgRgLSmcePGiouL08qVK01HATK0Hj16KHPmzBozZozpKACAFHanq3P48OF0dQJ4JBQ74TDM2wkg\nrXFyclJQUJBGjhxJdydgkJOTk2bOnKmPP/5YO3bsMB0HAJCCli1bpkyZMqlevXqmowBIoyh2wmHo\n7ASQFjVr1kzXrl3T2rVrTUcBMrR8+fJp4sSJatu2Lb9PAEAGwVydAOyBYiccxtPTkz9OAKQ5zs7O\nCgwM1IgRI0xHATK81q1b65lnnlFgYKDpKACAFLBs2TJ5enrS1QngsVDshMMwjB1AWtWqVSudO3dO\nP/30k+koQIZms9n06aefauHChVq/fr3pOAAAB0pMTNSIESOYqxPAY6PYCYdhGDuAtMrFxUWBgYEa\nOXKk6ShAhpc9e3ZNmzZNHTp00PXr103HAQA4yPLly+Xu7q769eubjgIgjaPYCYdhGDuAtKxNmzY6\nevSoNm3aZDoKkOHVr19fderUUd++fU1HAQA4AHN1ArAnip1wGDo7AaRlrq6uGjRoEN2dQCrxwQcf\n6KefftI333xjOgoAwM7o6gRgTxQ74TDM2QkgrevQoYP27dunbdu2mY4CZHje3t764osv1L17d128\neNF0HACAnTBXJwB7o9gJh6GzE0Ba5+7uroEDB9LdCaQSzz//vNq3b6+uXbvKsizTcQAAdvD111/L\n1dVVDRo0MB0FQDpBsRMOw5ydANKDzp07a/v27dq1a5fpKAAkhYSE6Pjx45ozZ47pKACAx8RcnQAc\ngWInHIZh7ADSA09PTw0YMEChoaGmowDQXx3Xc+fO1YABA3Ty5EnTcQAAj+Gbb76hqxOA3VHshMMw\njB1AetGtWzdt2LBB+/btMx0FgKTSpUurf//+6tChgxITE03HAQA8gjtdnczVCcDeKHbCYRjGDiC9\nyJQpk9555x2FhYWZjgLgv/r376/4+Hh99NFHpqMAAB7BN998I2dnZ73yyiumowBIZyh2wmHo7ASQ\nnvTo0UNr167VwYMHTUcBIMnZ2Vlz5sxRWFiY9u/fbzoOAOAh0NUJwJEodsJhmLMTQHri4+Oj3r17\na9SoUaajAPivQoUKadSoUWrbtq3i4uJMxwEAPKBvv/1WTk5OatiwoekoANIhip1wGDo7AaQ3vXr1\n0ooVK3T06FHTUQD8V5cuXZQnTx4WEQOANMKyLFZgB+BQFDvhMMzZCSC9yZw5s95++22NHj3adBQA\n/2Wz2TR9+nRNnTpVW7ZsMR0HAPAvvvnmG9lsNro6ATgMxU44DMPYAaRHffr00fLly3Xy5EnTUQD8\nV548eTR58mS1bdtW0dHRpuMAAO7jTlcnc3UCcCSKnXCYp59+WhUrVjQdAwDsKlu2bOratavGjBlj\nOgqAv2nevLkqVKig9957z3QUAMB9fPvtt5KkRo0aGU4CID2zWZZlmQ6B9Ck+Pl7x8fHKlCmT6SgA\nYFeXLl1S//79NW3aNLm5uZmOA+C//vjjDz377LOaPn26ateubToOAOBvLMtSuXLlFBwcrMaNG5uO\nAyAdo9gJAMAjiImJkYeHh+kYAP7Hf/7zH3Xq1El79uxR1qxZTccBAPzXN998o+DgYO3YsYMh7AAc\nimInAAAA0pVevXrp6tWr+vLLL01HAQDor67O5557TsOGDVOTJk1MxwGQzjFnJwAAANKVsWPHavv2\n7Vq8eLHpKAAASeHh4bIsi+HrAFIEnZ0AAABId7Zu3aqGDRtq165dypMnj+k4AJBh0dUJIKXR2QkA\nAIB0p0KFCurWrZs6d+4sPtsHAHPCw8OVmJhIVyeAFEOxEwAAAOlSUFCQLly4oGnTppmOAgAZkmVZ\nCgkJ0fDhw1mUCECKodgJAACAdMnV1VVz585VYGCgjh49ajoOAGQ43333nRISEujqBJCiKHYCAAAg\n3SpRooQCAwPVrl07JSQkmI4DABmGZVkKDg7W8OHD5eRE6QFAyuGOAwAAgHStd+/ecnNz0/jx401H\nAYAM4/vvv9ft27fp6gSQ4liNHQAAAOneyZMnFRAQoDVr1ujZZ581HQcA0jXLslS+fHkNGTJETZs2\nNR0HQAZDZyeMotYOAABSwlNPPaXx48erbdu2io2NNR0HANK177//XvHx8WrSpInpKAAyIIqdMGrf\nvn1aunSpEhMTTUcBAIf6888/devWLdMxgAytXbt2KlSokIYNG2Y6CgCkW3fm6hw2bBhzdQIwgjsP\njLEsS7GxsRo7dqxKly6tRYsWsXAAgHQpMTFRS5YsUdGiRTV79mzudYAhNptNn3/+ub744gtt2LDB\ndBwASJdWrFihuLg4vfrqq6ajAMigmLMTxlmWpVWrVikkJETXr1/X0KFD1bJlSzk7O5uOBgB2tWnT\nJg0YMEA3btzQ2LFjVbduXdlsNtOxgAznm2++Ub9+/bRr1y75+PiYjgMA6YZlWapQoYIGDRqkZs2a\nmY4DIIOi2IlUw7IsrVmzRiEhIbp06ZICAwPVunVrubi4mI4GAHZjWZa++eYbDRo0SHnz5tX777+v\n5557znQsIMPp1KmTXFxcNHXqVNNRACDd+P777zV48GDt2rWLIewAjKHYiVTHsiytW7dOISEhOnv2\nrAIDA9WmTRu5urqajgYAdnP79m3NmDFDISEhqlatmkJDQ1WwYEHTsYAM4/r163r22Wc1efJkNWjQ\nwHQcAEjz7nR1Dhw4UM2bNzcdB0AGxkctSHVsNpuqV6+un376STNmzNC8efPk7++vadOmKS4uznQ8\nALivGzdu6I8//nigfV1cXNStWzcdOnRI/v7+CggIUL9+/XTlyhUHpwQgSb6+vpo9e7a6dOmiy5cv\nm44DAGneypUrFRMTo6ZNm5qOAiCDo9iJVK1q1apau3at5s6dqyVLlqhIkSL67LPPFBsbazoaANxl\n9OjRmjx58kMd4+3treHDh2v//v2KiYlRsWLFNHbsWFZuB1JA1apV9frrr6t79+5isBMAPLo7K7AP\nHz6c4esAjOMuhDThhRde0A8//KCFCxfq22+/VeHChTVlyhTFxMSYjgYASYoUKaJDhw490rG5c+fW\nJ598og0bNmjLli2s3A6kkLCwMEVERGj+/PmmowBAmrVy5UrdunWLrk4AqQLFTqQplStX1ooVK7Rs\n2TKtWrVKhQoV0kcffUQHFIBUoUiRIjp8+PBjnaNo0aJatmyZFi5cqGnTpqls2bJatWoVXWeAg3h4\neGjevHl65513dPr0adNxACDNsSxLISEhGjZsGF2dAFIF7kRIk8qXL6/w8HCFh4dr/fr1KlSokCZM\nmKCoqCjT0QBkYP7+/o9d7LyjSpUq2rBhg0aMGKE+ffqoVq1a2rFjh13ODSC5smXLqk+fPurYsaMS\nExNNxwGANGXVqlWKiopSs2bNTEcBAEkUO5HGlStXTsuXL9eKFSu0adMmFSpUSOPGjdPNmzdNRwOQ\nAfn5+en27du6evWqXc5ns9nUpEkT7du3T82bN1eDBg30xhtv6Pjx43Y5P4D/N3DgQN28eVNTpkwx\nHQUA0gzm6gSQGtksxsUBAAAAOnToUFJXdbFixUzHAYBUb+XKlRowYID27NlDsRNAqsHdCAAAANBf\nU1GMGDFC7dq10+3bt03HAYBUjbk6AaRW3JEAAEgnWLkdeHxvvfWWsmbNqlGjRpmOAgCp2s6dO3Xj\nxg01b97cdBQASIZh7AAApBPPPvusxo4dqzp16shms5mOA6RZZ8+eVdmyZbVixQoFBASYjgMAqc6d\nMkJsbKw8PDwMpwGA5OjsRIY1ZMgQXb582XQMALCb4OBgVm4H7CBv3rz66KOP1LZtW926dct0HABI\ndWw2m2w2m9zd3U1HAYC7UOzM4Gw2m5YuXfpY55g9e7a8vb3tlCjlXL16Vf7+/nrvvfd08eJF03EA\nGFSgQAGNHz/e4ddx9P3y1VdfZeV2wE5atWql0qVLa8iQIaajAECqxUgSAKkRxc506s4nbfd7dOjQ\nQZIUGRmphg0bPta1WrZsqWPHjtkhdcr67LPPtHv3bkVFRalYsWJ69913df78edOxANhZhw4dku59\nLi4uevLJJ/XWW2/pjz/+SNpn27Zt6tGjh8OzpMT90tXVVd27d9fhw4fl7++vgIAAvfvuu7py5YpD\nrwukNzabTZ988omWLFmidevWmY4DAACAB0SxM52KjIxMekybNu2ubR999JEkKXfu3I899MDT01M5\nc+Z87MyPIy4u7pGOy58/v6ZMmaK9e/fq9u3bKlGihPr27atz587ZOSEAk2rWrKnIyEidOHFC06dP\nV3h4eLLipp+fnzJlyuTwHCl5v/T29tbw4cO1f/9+RUdHq1ixYnr//fcZkgs8hOzZs2vatGnq0KGD\n/vzzT9NxAAAA8AAodqZTuXPnTnpkyZLlrm2ZM2eWlHwY+4kTJ2Sz2bRw4UJVrVpVnp6eKlu2rPbs\n2aN9+/apSpUq8vLy0gsvvJBsWOT/Dss8ffq0GjdurGzZsilTpkwqVqyYFi5cmPT63r17VbNmTXl6\neipbtmx3/QGxbds21a5dWzly5JCvr69eeOEF/frrr8nen81m05QpU9S0aVN5eXlpyJAhSkhIUOfO\nnVWwYEF5enqqSJEiev/995WYmPivP687c3Pt379fTk5OKlmypHr27KkzZ848wk8fQGrj7u6u3Llz\nK1++fKpdu7ZatmypH374Ien1/x3GbrPZ9Omnn6px48bKlCmT/P39tW7dOp05c0Z16tSRl5eXypQp\nk2xezDv3wrVr16pkyZLy8vJStWrV/vF+KUkrVqxQxYoV5enpqezZs6thw4aKiYm5Zy5Jevnll9Wz\nZ88Hfu+5c+fWp59+qg0bNmjz5s0qWrSo5syZw8rtwAOqV6+e6tevrz59+piOAgBGsKYxgLSGYifu\nMnz4cA0cOFA7d+5UlixZ9Prrr6tXr14KCwvT1q1bFRMTo969e9/3+B49eig6Olrr1q3T/v379eGH\nHyYVXKOiolSnTh15e3tr69atWr58uTZt2qROnTolHX/jxg21bdtWv/zyi7Zu3aoyZcqofv36dw3B\nDAkJUf369bV37169/fbbSkxMVN68ebV48WJFREQoLCxMo0aN0qxZsx74vefJk0cTJkxQRESEPD09\nVbp0ab311ls6efLkQ/4UAaRWx44d06pVq+Tq6vqP+4WGhqpVq1bavXu3AgIC1KpVK3Xu3Fk9evTQ\nzp079cQTTyRNCXJHbGysRo8erZkzZ+rXX3/VtWvX1L179/teY9WqVWrUqJFq1aql3377TevWrVPV\nqlUf6EOah1W0aFEtW7ZMCxYs0Oeff65y5cpp9erV/AEDPIBx48Zpw4YNWr58uekoAJAi/v77wZ15\nOR3x+wkAOISFdG/JkiXW/f6nlmQtWbLEsizLOn78uCXJ+uyzz5JeDw8PtyRZX331VdK2WbNmWV5e\nXvd9XqpUKSs4OPie15s6darl6+trXb9+PWnbunXrLEnW4cOH73lMYmKilTt3bmvu3LnJcvfs2fOf\n3rZlWZY1cOBAq0aNGv+63/1cvHjRGjRokJUtWzarS5cu1rFjxx75XADMaN++veXs7Gx5eXlZHh4e\nliRLkjVhwoSkfZ566ilr3LhxSc8lWYMGDUp6vnfvXkuS9cEHHyRtu3PvunTpkmVZf90LJVkHDx5M\n2mfevHmWm5ublZiYmLTP3++XVapUsVq2bHnf7P+by7Isq2rVqtbbb7/9sD+GZBITE61ly5ZZ/v7+\nVo0aNazffvvtsc4HZAQbN260cuXKZZ0/f950FABwuJiYGOuXX36x3nzzTWvo0KFWdHS06UgA8MDo\n7MRdSpcunfR9rly5JEmlSpVKti0qKkrR0dH3PL5Pnz4KDQ1V5cqVNXToUP32229Jr0VERKh06dLy\n8fFJ2lalShU5OTnpwIEDkqSLFy+qW7du8vf3V+bMmeXj46OLFy/q1KlTya4TEBBw17U/++wzBQQE\nyM/PT97e3po4ceJdxz0MPz8/jR49WocOHVLOnDkVEBCgzp076+jRo498TgAp76WXXtKuXbu0detW\n9erVS/Xr1//HDnXpwe6F0l/3rDvc3d1VtGjRpOdPPPGE4uLiki2G9Hc7d+5UjRo1Hv4NPSabzXbX\nyu1t2rTRiRMnUjwLkFZUqVJFnTp1UpcuXeiIBpDuhYWFqUePHtq7d6/mz5+vokWLJvu7DgBSM4qd\nuMvfh3beGbJwr233G8bQuXNnHT9+XB07dtShQ4dUpUoVBQcH/+t175y3ffv22rZtmyZOnKhNmzZp\n165dypcv312LEHl5eSV7vmjRIvXt21cdOnTQ6tWrtWvXLvXo0eORFy/6u+zZsys0NFRHjhxR/vz5\nVbFiRbVv316HDh167HMDcLxMmTKpcOHCKlWqlD7++GNFR0dr5MiR/3jMo9wLXVxckp3jcYd9OTk5\n3VVUiY+Pf6Rz3cudldsPHTqkwoUL67nnntO7776rq1ev2u0aQHoSHBysU6dOPdQUOQCQ1kRGRmrC\nhAmaOHGiVq9erU2bNil//vxasGCBJOn27duSmMsTQOpFsRMOkS9fPnXt2lWLFy/WiBEjNHXqVElS\n8eLFtXfvXt24cSNp302bNikxMVHFixeXJG3YsEG9evVSgwYN9Mwzz8jHx0eRkZH/es0NGzaoYsWK\n6tmzp8qVK6fChQvbvQMza9asCg4O1pEjR1S4cGE9//zzatOmjSIiIux6HQCONXz4cI0dO1bnzp0z\nmqNs2bJau3btfV/38/NLdv+LiYnRwYMH7Z7Dx8dHwcHBSSu3Fy1aVOPGjUtaKAnAX9zc3DR37lwN\nHDgw2eJjAJCeTJw4UTVq1FCNGjWUOXNm5cqVSwMGDNDSpUt148aNpA93P//8c+3Zs8dwWgC4G8VO\n2F2fPn20atUqHTt2TLt27dKqVatUokQJSdIbb7yhTJkyqV27dtq7d69+/vlndevWTU2bNlXhwoUl\nSf7+/po3b54OHDigbdu2qVWrVnJzc/vX6/r7+2vHjh1auXKlDh8+rJEjR+qnn35yyHvMkiWLgoKC\ndPToUT3zzDOqWrWqWrVqpX379jnkevg/9u48rOa8fwP4fU6bEtGQyhLSymSJTMPYZRk7I8uUEMma\nVMquxJRQjLGNNcbMGEs8gwwSSsKQFi0iDOYxSKlEy/n9Mb/OwwzGUH3O6dyv6+qP6ZxT93kuT3Xu\n8/5+3kTlq0uXLrC2tsaSJUuE5pg7dy727NmDefPmISUlBcnJyVi1apX8mJBu3bph165dOHXqFJKT\nkzFu3Dj5NEVFeHlz+7lz52BhYYEdO3ZwczvRSz7++GP4+PjAxcWFyzqIqMp58eIFfvvtN5iZmcl/\nxpWUlKBr167Q1NTEgQMHAADp6emYPHnyK8eTEREpCpadVO5KS0sxbdo0WFtbo2fPnqhXrx62b98O\n4M9LSSMjI5Gbmws7OzsMHDgQ9vb22LJli/zxW7ZsQV5eHmxtbTFixAiMGzcOjRs3/sfv6+bmhuHD\nh2PUqFFo164dsrKyMGvWrIp6mgCAmjVrws/PD5mZmWjTpg26d++OL7744l+9w1lSUoLExETk5ORU\nYFIi+qtZs2Zh8+bNuHXrlrAMffv2xf79+3HkyBG0bt0anTt3RlRUFKTSP389+/n5oVu3bhg4cCAc\nHBzQsWNHtG7dusJzlW1u/+6777B+/XrY2tpyczvRSzw9PSGTybBq1SrRUYiIypWmpiZGjhyJZs2a\nyf8eUVNTg56eHjp27IiDBw8C+PMN2wEDBqBJkyYi4xIRvZZExlcuROUmPz8f69evR0hICOzt7TF/\n/vx/LCYSExOxfPlyXLlyBe3bt0dQUBD09fUrKTER0dvJZDLs378ffn5+aNSoEYKDgyulcCVSdDdu\n3ED79u0RFRWFFi1aiI5DRFRuys4H19DQgEwmk59BHhUVBTc3N+zZswe2trZIS0uDqampyKhERK/F\nyU6iclS9enXMmjULmZmZ6NSpEwYPHvyPl7g1aNAAI0aMwNSpU7F582aEhobynDwiUhgSiQRDhgxB\nUlIShgwZgr59+3JzOxGApk2bYtmyZXByciqXZYhERKI9efIEwJ8l51+LzhcvXsDe3h76+vqws7PD\nkCFDWHQSkcJi2UlUAXR0dODh4YHr16/L/0B4k9q1a6Nv37549OgRTE1N0bt3b1SrVk1+e3luXiYi\nel8aGhpwd3d/ZXO7l5cXN7eTShs/fjwaNGgAf39/0VGIiD7I48ePMWnSJOzYsUP+hubLr2M0NTVR\nrVo1WFtbo6ioCMuXLxeUlIjon6ktWrRokegQRFWVVCp9a9n58rulw4cPh6OjI4YPHy5fyHT79m1s\n3boVJ06cgImJCWrVqlUpuYmI3kRLSwtdunTBmDFj8Msvv2Dy5MmQSCSwtbWVb2clUhUSiQTdunXD\nxIkT0bFjRzRo0EB0JCKi9/LNN98gNDQUWVlZuHjxIoqKilC7dm3o6elhw4YNaN26NaRSKezt7dGp\nUyfY2dmJjkxE9Eac7CQSqGzD8fLly6GmpobBgwdDV1dXfvvjx4/x4MEDnDt3Dk2bNsXKlSu5+ZWI\nFELZ5vYzZ84gNjaWm9tJZRkaGmLt2rVwcnJCfn6+6DhERO/l008/ha2tLcaOHYvs7GzMnj0b8+bN\nw7hx4+Dj44OCggIAgIGBAfr16yc4LRHR27HsJBKobAoqNDQUjo6Of1tw0KpVKwQGBqJsALtmzZqV\nHZGI6K0sLS2xf//+Vza3Hzt2THQsoko1dOhQ2Nvbw8fHR3QUIqL3Ym9vDW6M4AAAIABJREFUj08+\n+QTPnj3D8ePHERYWhtu3b2Pnzp1o2rQpjhw5gszMTNExiYjeCctOIkHKJjRXrVoFmUyGIUOGoEaN\nGq/cp6SkBOrq6ti0aRNsbGwwcOBASKWv/t/22bNnlZaZiOhNOnTogJiYGCxYsADTpk1Dz549cfny\nZdGxiCrN6tWrcejQIURGRoqOQkT0XmbOnImjR4/izp07GDp0KMaMGYMaNWpAR0cHM2fOxKxZs+QT\nnkREioxlJ1Elk8lkOH78OM6fPw/gz6nO4cOHw8bGRn57GTU1Ndy+fRvbt2/H9OnTUbdu3Vfuc/Pm\nTQQGBsLHxwdJSUmV/EyI6J8EBwdj1qxZomNUmtdtbndycsKtW7dERyOqcLVq1cLWrVsxfvx4Lu4i\nIqVTUlKCpk2bwtjYWH5V2Zw5c7B06VLExMRg5cqV+OSTT6CjoyM2KBHRO2DZSVTJZDIZTpw4gQ4d\nOsDU1BS5ubkYOnSofKqzbGFR2eRnYGAgzM3NXzkbp+w+jx8/hkQiwbVr12BjY4PAwMBKfjZE9DZm\nZmbIyMgQHaPSvby53dTUFG3atOHmdlIJ3bt3x9ChQzF16lTRUYiI3plMJoOamhoAYP78+fj9998x\nYcIEyGQyDB48GADg6OgIX19fkTGJiN4Zy06iSiaVSrFs2TKkp6ejS5cuyMnJgZ+fHy5fvvzK8iGp\nVIq7d+9i27ZtmDFjBgwMDP72tWxtbbFgwQLMmDEDANC8efNKex5E9M9UtewsU6NGDSxatAhJSUnI\ny8uDhYUFli9fjsLCQtHRiCrMsmXL8Ouvv+KHH34QHYWI6K3KjsN6edjCwsICn3zyCbZt24Y5c+bI\nX4NwSSoRKROJ7OVrZomo0mVlZcHHxwfVq1fHpk2bUFBQAG1tbWhoaGDy5MmIiopCVFQUDA0NX3mc\nTCaT/2Hy5ZdfIi0tDRcuXBDxFIjoDZ49e4batWsjLy9PvpBMlaWmpsLPzw+//vorlixZgtGjR//t\nHGKiquDChQvo168fLl++DGNjY9FxiIj+JicnB0uXLkWfPn3QunVr6OnpyW+7d+8ejh8/jkGDBqFm\nzZqvvO4gIlIGLDuJFERhYSG0tLQwe/ZsxMbGYtq0aXB1dcXKlSsxYcKENz7u0qVLsLe3xw8//CC/\nzISIFIeJiQmioqLQtGlT0VEURkxMDLy9vVFQUIDg4GA4ODiIjkRU7rZv344RI0ZAU1OTJQERKRx3\nd3ds2LABjRo1Qv/+/eU7BF4uPQHg+fPn0NLSEpSSiOj9cJyCSEFUq1YNEokEXl5eqFu3Lr788kvk\n5+dDW1sbJSUlr31MaWkpwsLC0Lx5cxadRApK1S9lf52XN7dPnToVDg4O3NxOVY6zszOLTiJSSE+f\nPkVcXBzWr1+PWbNmISIiAl988QXmzZuH6OhoZGdnAwCSkpIwceJE5OfnC05MRPTvsOwkUjAGBgbY\nv38/fv/9d0ycOBHOzs6YOXMmcnJy/nbfq1ev4ocffsDcuXMFJCWid8Gy8/XKNrcnJydj0KBB3NxO\nVY5EImHRSUQK6c6dO2jTpg0MDQ0xbdo03L59G/Pnz8fBgwcxfPhwLFiwAKdPn8aMGTOQnZ2N6tWr\ni45MRPSv8DJ2IgX38OFDxMfHo1evXlBTU8O9e/dgYGAAdXV1jB07FpcuXUJCQgJfUBEpqJUrV+LW\nrVsICwsTHUWhPX36FCEhIfj6668xduxYzJkzB/r6+qJjEVWYFy9eICwsDE2bNsXQoUNFxyEiFVJa\nWoqMjAzUq1cPtWrVeuW2tWvXIiQkBE+ePEFOTg7S0tJgZmYmKCkR0fvhZCeRgqtTpw769u0LNTU1\n5OTkYNGiRbCzs8OKFSvw008/YcGCBSw6iRQYJzvfTY0aNbB48eJXNreHhIS88+Z2vndLyubOnTvI\nyMjA/Pnz8fPPP4uOQ0QqRCqVwsLC4pWis7i4GAAwZcoU3Lx5EwYGBnBycmLRSURKiWUnkRLR09PD\nypUr0aZNGyxYsAD5+fkoKirCs2fP3vgYFgBEYrHs/HeMjIywfv16nDlzBjExMbCwsMDhw4f/8WdZ\nUVERsrOzER8fX0lJid6fTCaDqakpwsLC4OLiggkTJuD58+eiYxGRClNXVwfw59Tn+fPnkZGRgTlz\n5ghORUT0fngZO5GSKigowKJFixASEoLp06djyZIl0NXVfeU+MpkMhw4dwt27dzFu3DhuUiQS4MWL\nF6hRowby8vKgoaEhOo7SOXv2LMzMzGBgYPDWKXZXV1fExcVBQ0MD2dnZWLhwIcaOHVuJSYn+mUwm\nQ0lJCdTU1CCRSOQl/meffYZhw4bBw8NDcEIiIuDEiRM4fvw4li1bJjoKEdF74WQnkZLS0dFBcHAw\n8vPzMWrUKGhra//tPhKJBEZGRvjPf/4DU1NTrFmz5p0vCSWi8qGpqYn69evj5s2boqMopY4dO/5j\n0fnNN99g9+7dmDx5Mn788UcsWLAAgYGBOHLkCABOuJNYpaWluHfvHkpKSiCRSKCuri7/91y2xKig\noAA1atQQnJSIVI1MJnvt78hu3bohMDBQQCIiovLBspNIyWlra8POzg5qamqvvb1du3b4+eefceDA\nARw/fhympqYIDQ1FQUFBJSclUl3m5ua8lP0D/NO5xOvXr4erqysmT54MMzMzjBs3Dg4ODti0aRNk\nMhkkEgnS0tIqKS3R/xQVFaFBgwZo2LAhunfvjn79+mHhwoWIiIjAhQsXkJmZicWLF+PKlSswNjYW\nHZeIVMyMGTOQl5f3t89LJBJIpawKiEh58ScYkYpo27YtIiIi8J///AenT5+GqakpQkJCkJ+fLzoa\nUZXHczsrzosXL2Bqair/WVY2oSKTyeQTdImJibCyskK/fv1w584dkXFJxWhoaMDT0xMymQzTpk1D\n8+bNcfr0afj7+6Nfv36ws7PDpk2bsGbNGvTp00d0XCJSIdHR0Th8+PBrrw4jIlJ2LDuJVEzr1q2x\nb98+REZG4vz582jatCmCgoJe+64uEZUPlp0VR1NTE507d8ZPP/2EvXv3QiKR4Oeff0ZMTAz09PRQ\nUlKCjz/+GJmZmahZsyZMTEwwfvz4ty52IypPXl5eaNGiBU6cOIGgoCCcPHkSly5dQlpaGo4fP47M\nzEy4ubnJ73/37l3cvXtXYGIiUgWLFy/GvHnz5IuJiIiqEpadRCrKxsYGe/bswYkTJ3DlyhU0bdoU\nS5cuRW5uruhoRFUOy86KUTbF6eHhga+++gpubm5o3749ZsyYgaSkJHTr1g1qamooLi5GkyZN8N13\n3+HixYvIyMhArVq1EB4eLvgZkKo4ePAgNm/ejIiICEgkEpSUlKBWrVpo3bo1tLS05GXDw4cPsX37\ndvj6+rLwJKIKEx0djdu3b+PLL78UHYWIqEKw7CRScS1atMDu3bsRHR2NlJQUmJqaIiAgAE+ePBEd\njajKYNlZ/oqLi3HixAncv38fADBp0iQ8fPgQ7u7uaNGiBezt7TFy5EgAkBeeAGBkZITu3bujqKgI\niYmJeP78ubDnQKqjcePGWLp0KVxcXJCXl/fGc7br1KmDdu3aoaCgAI6OjpWckohUxeLFizF37lxO\ndRJRlcWyk4gAAFZWVti5cydiYmKQmZmJZs2aYeHChXj8+LHoaERKr3Hjxrh//z4KCwtFR6kyHj16\nhN27d8Pf3x+5ubnIyclBSUkJ9u/fjzt37mD27NkA/jzTs2wDdnZ2NoYMGYItW7Zgy5YtCA4OhpaW\nluBnQqpi1qxZmDlzJlJTU197e0lJCQCgZ8+eqFGjBmJjY3H8+PHKjEhEKuD06dO4desWpzqJqEpj\n2UlErzA3N8e2bdsQFxeH3377DWZmZpg3bx4ePXokOhqR0lJXV0ejRo1w48YN0VGqjHr16sHd3R0x\nMTGwtrbGoEGDYGxsjJs3b2LBggUYMGAAAMinViIiItC7d288fvwYGzZsgIuLi8D0pKrmzZuHtm3b\nvvK5suMY1NTUcOXKFbRu3RpHjx7F+vXr0aZNGxExiagKKzurU0NDQ3QUIqIKw7KTiF6rWbNm2Lx5\nMy5evIgHDx7AzMwMvr6++OOPP0RHI1JK5ubmvJS9nLVt2xZXr17Fhg0bMHjwYOzcuROnTp3CwIED\n5fcpLi7GoUOHMGHCBOjq6uLnn39G7969AfyvZCKqLFLpn396Z2Rk4MGDBwAAiUQCAAgKCoKdnR0M\nDQ1x9OhRuLq6Ql9fX1hWIqp6Tp8+jaysLE51ElGVx7KTiN6qSZMm2LhxIy5fvoycnBxYWFjA29sb\n//3vf0VHI1IqPLez4nz++eeYPn06evbsiVq1ar1ym7+/P8aPH4/PP/8cW7ZsQbNmzVBaWgrgfyUT\nUWU7cuQIhgwZAgDIyspCp06dEBAQgMDAQOzatQutWrWSF6Nl/16JiD5U2VmdnOokoqqOZScRvRMT\nExOsW7cOCQkJKCwshJWVFTw9PeXLQYjo7Vh2Vo6ygujOnTsYNmwYwsLC4OzsjK1bt8LExOSV+xCJ\nMnnyZFy5cgU9e/ZEq1atUFJSgmPHjsHT0/Nv05xl/16fPXsmIioRVRFnzpzBzZs34eTkJDoKEVGF\n41/7RPSvNGzYEGvWrEFSUhJKS0vRvHlzTJ8+HXfv3hUdjUihseysXAYGBjA0NMS3336LZcuWAfjf\nApi/4uXsVNnU1dVx6NAhnDhxAv3790dERAQ+/fTT125pz8vLw7p16xAWFiYgKRFVFTyrk4hUCctO\nInovxsbGCA0NRUpKCjQ1NfHxxx9jypQpuH37tuhoRAqJZWfl0tLSwtdffw1HR0f5C7vXFUkymQy7\ndu1Cr169cOXKlcqOSSqsa9eumDhxIs6cOSNfpPU6urq60NLSwqFDhzB9+vRKTEhEVcXZs2dx48YN\nTnUSkcpg2UlEH8TQ0BAhISFITU2Frq4uWrVqBTc3N2RlZYmORqRQGjZsiIcPH6KgoEB0FHqJRCKB\no6MjBgwYgD59+sDZ2Rm3bt0SHYtUxPr161G/fn2cOnXqrfcbOXIk+vfvj6+//vof70tE9Fc8q5OI\nVA3LTiIqFwYGBggKCkJ6ejo++ugj2NrawtXVFTdu3BAdjUghqKmpoUmTJrh+/broKPQXGhoamDJl\nCtLT09G4cWO0adMG3t7eyM7OFh2NVMCBAwfw6aefvvH2nJwchIWFITAwED179oSpqWklpiMiZXf2\n7Flcv34dzs7OoqMQEVUalp1EVK7q1KmDpUuXIiMjA8bGxrCzs8PYsWN5+S4ReCm7oqtRowb8/f2R\nlJSE3NxcWFhYYMWKFSgsLBQdjaqwunXrwsDAAAUFBX/7t5aQkIBBgwbB398fS5YsQWRkJBo2bCgo\nKREpI57VSUSqiGUnEVUIfX19+Pv7IyMjA40bN4a9vT2cnZ2RlpYmOhqRMObm5iw7lYCRkRE2bNiA\n6OhonDlzBpaWlti5cydKS0tFR6MqLDw8HEuWLIFMJkNhYSG+/vprdOrUCc+fP0d8fDxmzJghOiIR\nKZmYmBhOdRKRSmLZSUQVqnbt2li4cCEyMzNhYWGBzz77DKNGjUJKSoroaESVjpOdysXKygoHDhxA\neHg4vv76a7Rt2xbHjx8XHYuqqK5du2Lp0qUICQnB6NGjMXPmTHh6euLMmTNo0aKF6HhEpIR4VicR\nqSqWnURUKfT09DB37lxkZmbCxsYGXbt2haOjIxITE0VHI6o0LDuV02effYZz585hzpw5cHd3R69e\nvZCQkCA6FlUx5ubmCAkJwezZs5GSkoKzZ89i4cKFUFNTEx2NiJRQTEwMMjIyONVJRCqJZScRVaoa\nNWrA19cXmZmZaNu2LXr27ImhQ4eyOCCVwLJTeUkkEgwbNgwpKSkYMGAAevXqhTFjxuD27duio1EV\n4unpiR49eqBRo0Zo37696DhEpMTKpjo1NTVFRyEiqnQsO4lICF1dXXh7eyMzMxMdOnRA7969MWjQ\nIPz666+ioxFVGGNjY+Tm5uLp06eio9B7enlzu4mJCVq3bg0fHx9ubqdys3XrVpw4cQKHDx8WHYWI\nlFRsbCzS09M51UlEKotlJxEJVb16dXh6euLGjRvo1q0b+vfvj/79+yM+Pl50NKJyJ5VKYWpqyunO\nKqBmzZrw9/dHYmIinjx5ws3tVG7q16+Pc+fOoVGjRqKjEJGS4lQnEak6lp1EpBC0tbUxffp0ZGZm\nonfv3hg6dCj69OmDc+fOiY5GVK54KXvVYmxsjI0bN+LUqVM4ffo0LC0tsWvXLm5upw/Srl27vy0l\nkslk8g8iojeJjY1FWloaxowZIzoKEZEwLDuJSKFUq1YNU6ZMwfXr1zFo0CCMHDkSDg4OOHv2rOho\nROXC3NycZWcVZG1tjYiICISHh2PNmjXc3E4VYv78+diyZYvoGESkwBYvXow5c+ZwqpOIVBrLTiJS\nSFpaWnBzc0N6ejqGDx8OZ2dndOvWDdHR0aKjEX0QTnZWbX/d3N67d28uYKNyIZFIMGLECPj6+uLG\njRui4xCRAjp37hxSU1Ph4uIiOgoRkVAsO4lIoWlqasLV1RVpaWlwcnLC+PHj0blzZ5w8eZKX8pFS\nYtlZ9b28ub1///7c3E7lpkWLFvD19YWLiwtKSkpExyEiBcOzOomI/sSyk4iUgoaGBsaOHYvU1FS4\nurrC3d0dn332GY4dO8bSk5QKy07V8fLm9kaNGnFzO5ULDw8PSCQSrFy5UnQUIlIg586dw7Vr1zjV\nSUQEQCJjS0BESqikpAQ//PADDh48iK1bt0JbW1t0JKJ3IpPJULNmTdy5cwe1atUSHYcq0b1797Bo\n0SIcOHAAvr6+mDJlCrS0tETHIiV08+ZN2NnZ4eTJk/j4449FxyEiBdC7d28MHjwYbm5uoqMQEQnH\nspOIlFrZxmOplIPqpDzatGmDDRs2oF27dqKjkAApKSnw8/PD1atXsWTJEowcOZI/w+hf27JlC1av\nXo34+Hheskqk4uLi4uDo6IiMjAz+PCAiAi9jJyIlJ5VKWRKQ0jEzM0N6erroGCRI2eb27du3Y/Xq\n1dzcTu9l7NixaNSoERYtWiQ6ChEJxg3sRESvYkNARERUyXhuJwFAp06dEBcXx83t9F4kEgk2bdqE\nLVu2IDY2VnQcIhLk/PnzSElJwdixY0VHISJSGCw7iYiIKpm5uTnLTgLAze30YerVq4d169bB2dkZ\neXl5ouMQkQCLFy+Gn58fpzqJiF7CspOIiKiScbKT/up1m9tnz56NJ0+eiI5GCm7w4MHo0KEDvL29\nRUchokp2/vx5JCUlcaqTiOgvWHYSERFVsrKykzsC6a9q1qyJgIAAJCYmIjs7G+bm5li5ciWeP38u\nOhopsNWrV+Pw4cM4cuSI6ChEVInKzurU0tISHYWISKGw7CQiIqpkH330EQDg0aNHgpOQojI2NsbG\njRtx6tQpnDp1CpaWlti1axdKS0tFRyMFpKenh61bt2LChAn8uUKkIuLj4znVSUT0Biw7iYiIKplE\nIuGl7PROrK2tcfDgwVc2t584cUJ0LFJA3bp1w7BhwzBlyhTRUYioEpSd1cmpTiKiv2PZSUREJICZ\nmRnS09NFxyAl8fLm9kmTJqFPnz64evWq6FikYJYtW4aEhATs3r1bdBQiqkDx8fFITEzEuHHjREch\nIlJILDuJiIgE4GQn/Vtlm9uTk5Px+eefw8HBAS4uLrhz547oaKQgtLW1ER4ejhkzZuDu3bui4xBR\nBeFUJxHR27HsJCIiEsDc3JxlJ70XTU1NTJ06Fenp6WjYsCFatWrFze0k17ZtW0ydOhXjxo3jEjSi\nKujChQu4evUqpzqJiN6CZScRqQS+4CNFw8lO+lDc3E5v4ufnh+zsbKxbt050FCIqZ5zqJCL6Zyw7\niajK27p1K4qKikTHIHpFWdnJIp4+1Os2t3/33Xfc3K7CNDQ0sGPHDixYsIBvqhBVIRcuXEBCQgLG\njx8vOgoRkUKTyPgqi4iqOGNjY8THx6NBgwaioxC9om7dukhMTIShoaHoKFSFnD59Gt7e3iguLkZw\ncDC6d+8uOhIJsmbNGuzatQtnz56Furq66DhE9IH69euHPn36YMqUKaKjEBEpNE52ElGVV7t2bWRn\nZ4uOQfQ3vJSdKkLZ5nZfX1+4ublxc7sKmzJlCnR1dREUFCQ6ChF9oIsXL+LKlSuc6iQiegcsO4mo\nymPZSYqKZSdVFIlEgi+++AIpKSnc3K7CpFIptm7dirCwMFy+fFl0HCL6AGVndVarVk10FCIihcey\nk4iqPJadpKjMzMyQnp4uOgZVYdzcTg0bNsTKlSvx5ZdforCwUHQcInoPFy9exOXLlznVSUT0jlh2\nElGVx7KTFJW5uTknO6lSvLy5/fHjxzA3N8eqVau4uV1FjB49GlZWVpg3b57oKET0Hvz9/eHr68up\nTiKid8QFRURERIJcvnwZY8aM4XmKVOlSUlLg6+uLxMREBAYGYsSIEZBK+R54Vfbw4UPY2Nhg9+7d\n6Ny5s+g4RPSOLl26hIEDB+L69essO4mI3hHLTiIiIkGePn0KQ0NDPH36lEUTCfHy5vbly5ejW7du\noiNRBfr5558xdepUJCQkoGbNmqLjENE7GDBgABwcHDB16lTRUYiIlAbLTiIiIoGMjIxw4cIFNGjQ\nQHQUUlEymQw//fQT/Pz8YGZmhqCgINjY2IiORRVk4sSJKCkpwebNm0VHIaJ/wKlOIqL3wzESIiIi\ngbiRnUR73eb2sWPHcnN7FbVixQpERUUhIiJCdBQi+gf+/v6YPXs2i04ion+JZScREZFALDtJUby8\nub1+/fpo1aoVfH19ubm9iqlRowa2b9+OSZMm4cGDB6LjENEb/Prrr7h48SImTJggOgoRkdJh2UlE\n9BaLFi1CixYtRMegKszMzAzp6emiYxDJ1axZE0uWLMHVq1fx6NEjWFhYcHN7FfPZZ5/B2dkZkyZN\nAk+0IlJMixcv5gZ2IqL3xLKTiBSWi4sL+vXrJzSDl5cXoqOjhWagqo2TnaSo6tevj02bNuHkyZOI\nioqClZUVdu/ejdLSUtHRqBz4+/sjIyMDO3bsEB2FiP6CU51ERB+GZScR0Vvo6urio48+Eh2DqjBz\nc3OWnaTQmjdvjoMHD2Lr1q1YtWoV7OzscPLkSdGx6ANpaWlh586d8PLywq1bt0THIaKX8KxOIqIP\nw7KTiJSSRCLBTz/99MrnGjdujJCQEPl/p6eno3PnzqhWrRosLCxw+PBh6OrqYtu2bfL7JCYmokeP\nHtDW1oa+vj5cXFyQk5Mjv52XsVNFMzU1xc2bN1FSUiI6CtFbde7cGefPn8fs2bMxceJE9O3bl0cw\nKLmWLVti1qxZGDt2LCd2iRTE5cuXceHCBU51EhF9AJadRFQllZaWYvDgwVBXV0dcXBy2bduGxYsX\nv3LmXH5+Pnr16gVdXV3Ex8dj//79iI2Nxbhx4wQmJ1Wjo6ODOnXqcPM1KYWXN7f36dMHqampLOqV\nnLe3N54/f47Vq1eLjkJE+POsztmzZ0NbW1t0FCIipaUuOgARUUX45ZdfkJaWhmPHjqF+/foAgFWr\nVqFDhw7y+3z33XfIz89HeHg4atSoAQDYuHEjunbtiuvXr6NZs2ZCspPqKTu3s3HjxqKjEL0TTU1N\nTJs2DTKZDBKJRHQc+gBqamrYsWMH2rdvDwcHB1hbW4uORKSyyqY6d+/eLToKEZFS42QnEVVJqamp\nMDY2lhedANCuXTtIpf/7sXft2jXY2NjIi04A+PTTTyGVSpGSklKpeUm1cUkRKSsWnVWDqakpAgMD\n4ezsjKKiItFxiFSWv78/fHx8ONVJRPSBWHYSkVKSSCSQyWSvfK48X6DxBTxVJjMzM559SERCTZw4\nEQYGBliyZInoKEQq6fLlyzh//jwmTpwoOgoRkdJj2UlESqlu3bq4f/++/L//+9//vvLflpaWuHfv\nHu7duyf/3MWLF19ZwGBlZYXExEQ8ffpU/rnY2FiUlpbCysqqgp8B0f9wspOIRJNIJNi8eTPWr1+P\n+Ph40XGIVA6nOomIyg/LTiJSaLm5ubhy5corH1lZWejWrRvWrl2Lixcv4vLly3BxcUG1atXkj+vZ\nsycsLCwwZswYJCQkIC4uDp6enlBXV5dPbY4ePRo6OjpwdnZGYmIiTp8+DTc3NwwZMoTndVKlMjc3\nZ9lJRMIZGRlhzZo1cHJyQkFBgeg4RCrjypUrOH/+PNzc3ERHISKqElh2EpFCO3PmDFq3bv3Kh5eX\nF1asWIGmTZuiS5cuGDZsGFxdXWFgYCB/nFQqxf79+/H8+XPY2dlhzJgxmDt3LiQSibwU1dHRQWRk\nJHJzc2FnZ4eBAwfC3t4eW7ZsEfV0SUU1bdoUt2/fRnFxsegoRKTihg8fjrZt28LX11d0FCKVwalO\nIqLyJZH99dA7IqIqKiEhAa1atcLFixdha2v7To/x8/NDVFQU4uLiKjgdqbomTZrgl19+4VQxEQmX\nnZ0NGxsbbNmyBT179hQdh6hKS0hIQJ8+fZCZmcmyk4ionHCyk4iqrP379+PYsWO4efMmoqKi4OLi\ngpYtW6JNmzb/+FiZTIbMzEycOHECLVq0qIS0pOp4biepmpKSEjx58kR0DHqN2rVrY/PmzRg3bhyy\ns7NFxyGq0vz9/eHt7c2ik4ioHLHsJKIq6+nTp5g6dSqsra0xevRoWFlZITIy8p02refk5MDa2hqa\nmpqYP39+JaQlVceyk1RNaWkpvvzyS7i5ueGPP/4QHYf+wsHBAQMHDsS0adNERyGqshISEhAbG8uz\nOomIyhnLTiKqspydnZGeno5nz57h3r17+O6771CvXr13emytWrXw/PlznD17FiYmJhWclIhlJ6ke\nDQ0NhIeHQ1tbG9bW1ggNDUVRUZHoWPSSoKAgxMfHY8+ePaKjEFVJZWd16ujoiI5CRFSlsOwkIiJS\nAGZmZkhPTxcdg+i9PH78+L22d9euXRuhoaGIjo7GkSNHYGNjg6PekGmFAAAgAElEQVRHj1ZAQnof\n1atXR3h4OKZOnYr79++LjkNUpVy9epVTnUREFYRlJxERkQLgZCcpqz/++AOtW7fGnTt33vtrWFtb\n4+jRowgODsa0adPQr18/lv8Kon379pg4cSJcXV3BvaZE5afsrE5OdRIRlT+WnUSkEu7evQsjIyPR\nMYjeqEmTJrh37x5evHghOgrROystLcWYMWMwYsQIWFhYfNDXkkgk6N+/P5KSktC5c2d8+umn8Pb2\nRk5OTjmlpfc1f/583L9/H99++63oKERVwtWrVxETE4NJkyaJjkJEVCWx7CQilWBkZITU1FTRMYje\nSENDAw0bNsSNGzdERyF6ZytXrkR2djaWLFlSbl9TS0sL3t7eSEpKwqNHj2BpaYnNmzejtLS03L4H\n/TuampoIDw+Hn58fMjMzRcchUnqc6iQiqlgSGa9HISIiUgh9+/aFu7s7+vfvLzoK0T+Ki4vDwIED\nER8fX6GL3C5cuIAZM2bgxYsXCAsLQ4cOHSrse9HbrVy5Evv27UN0dDTU1NRExyFSSomJiXBwcEBm\nZibLTiKiCsLJTiIiIgXBcztJWWRnZ2PkyJHYsGFDhRadANCuXTvExMRg5syZcHR0xKhRo/Dbb79V\n6Pek1/Pw8IC6ujpWrFghOgqR0vL394eXlxeLTiKiCsSyk4iISEGw7CRlIJPJ4Orqiv79+2PQoEGV\n8j0lEglGjx6N1NRUmJqaomXLlggICMCzZ88q5fvTn6RSKbZt24bly5fj6tWrouMQKZ3ExEScOXOG\nZ3USEVUwlp1EREQKwszMjBuoSeF98803yMrKwvLlyyv9e+vq6iIgIAAXL15EQkICrKyssGfPHm4J\nr0SNGzdGcHAwnJyc8Pz5c9FxiJRK2VRn9erVRUchIqrSeGYnERGRgrhx4wa6dOmC27dvi45CpFS6\ndOmCsLAwtGzZUnQUlSCTyTB48GBYWlriq6++Eh2HSCkkJSWhR48eyMzMZNlJRFTBONlJRASgsLAQ\noaGhomOQijMxMcGDBw94aS7RvzRixAg4ODhg0qRJ+OOPP0THqfIkEgk2btyIbdu24ezZs6LjECkF\nTnUSEVUelp1EpJL+OtReVFQET09P5OXlCUpEBKipqaFJkybIzMwUHYVIqUyaNAnXrl2DlpYWrK2t\nERYWhqKiItGxqjQDAwOsX78eY8aM4e9Oon+QlJSE06dPw93dXXQUIiKVwLKTiFTCvn37kJaWhpyc\nHAB/TqUAQElJCUpKSqCtrQ0tLS08efJEZEwiLikiek/6+voICwtDdHQ0fv75Z9jY2CAyMlJ0rCpt\n0KBB6NSpE2bNmiU6CpFC8/f3x6xZszjVSURUSVh2EpFKmDt3Ltq0aQNnZ2esW7cOZ86cQXZ2NtTU\n1KCmpgZ1dXVoaWnh0aNHoqOSimPZSfRhrK2tERkZiaCgIEyZMgUDBgzg/6cqUGhoKCIjI3H48GHR\nUYgUUtlU5+TJk0VHISJSGSw7iUglREdHY/Xq1cjPz8fChQvh7OyMESNGYN68efIXaPr6+njw4IHg\npKTqWHaSosrKyoJEIsHFixcV/ntLJBIMGDAAycnJ6NixI+zt7eHj44Pc3NwKTqp69PT0sG3bNkyY\nMIFvGBK9RkBAAKc6iYgqGctOIlIJBgYGGD9+PI4fP46EhAT4+PhAT08PERERmDBhAjp27IisrCwu\nhiHhWHaSSC4uLpBIJJBIJNDQ0EDTpk3h5eWF/Px8NGzYEPfv30erVq0AAKdOnYJEIsHDhw/LNUOX\nLl0wderUVz731+/9rrS0tODj44PExET88ccfsLS0xNatW1FaWlqekVVely5d4OjoCHd397+diU2k\nypKTkxEdHc2pTiKiSsayk4hUSnFxMYyMjODu7o4ff/wRe/fuRWBgIGxtbWFsbIzi4mLREUnFmZmZ\nIT09XXQMUmE9evTA/fv3cePGDSxZsgTffPMNvLy8oKamBkNDQ6irq1d6pg/93kZGRti6dSsiIiKw\nceNG2NnZITY2tpxTqrbAwEAkJSVh9+7doqMQKYyAgAB4enpyqpOIqJKx7CQilfLXF8rm5uZwcXFB\nWFgYTp48iS5duogJRvT/GjRogCdPnnC7MQmjpaUFQ0NDNGzYEKNGjcLo0aNx4MCBVy4lz8rKQteu\nXQEAdevWhUQigYuLCwBAJpMhODgYpqam0NbWxscff4ydO3e+8j38/f1hYmIi/17Ozs4A/pwsjY6O\nxtq1a+UTpllZWeV2CX27du0QExMDDw8PDB8+HKNHj8Zvv/32QV+T/qStrY3w8HB4eHjwf1Mi/DnV\nGRUVxalOIiIBKv+teSIigR4+fIjExEQkJyfj9u3bePr0KTQ0NNC5c2cMHToUwJ8v1Mu2tRNVNqlU\nClNTU1y/fv1fX7JLVBG0tbVRVFT0yucaNmyIvXv3YujQoUhOToa+vj60tbUBAPPmzcNPP/2EtWvX\nwsLCAufOncOECRNQu3ZtfP7559i7dy9CQkKwe/dufPzxx3jw4AHi4uIAAGFhYUhPT4elpSWWLl0K\n4M8y9c6dO+X2fKRSKb788ksMGjQIX331FVq2bImZM2di1qxZ8udA78fW1hbTpk3D2LFjERkZCamU\ncxWkusrO6tTV1RUdhYhI5fAvECJSGYmJiZg4cSJGjRqFkJAQnDp1CsnJyfj111/h7e0NR0dH3L9/\nn0UnCcdzO0lRxMfH47vvvkP37t1f+byamhr09fUB/HkmsqGhIfT09JCfn4+VK1fi22+/Re/evdGk\nSROMGjUKEyZMwNq1awEAt27dgpGRERwcHNCoUSO0bdtWfkannp4eNDU1oaOjA0NDQxgaGkJNTa1C\nnpuuri6WLFmCCxcu4PLly7C2tsbevXt55uQH8vPzQ25uLtatWyc6CpEwKSkpnOokIhKIZScRqYS7\nd+9i1qxZuH79OrZv3464uDicOnUKR48exb59+xAYGIg7d+4gNDRUdFQilp0k1NGjR6Grq4tq1arB\n3t4enTp1wpo1a97psSkpKSgsLETv3r2hq6sr/1i3bh0yMzMBAF988QUKCwvRpEkTjB8/Hnv27MHz\n588r8im9VdOmTbF3715s3rwZixYtQrdu3XD16lVheZSduro6duzYgYULFyItLU10HCIhys7q5FQn\nEZEYLDuJSCVcu3YNmZmZiIyMhIODAwwNDaGjowMdHR0YGBhg5MiR+PLLL3Hs2DHRUYlYdpJQnTp1\nwpUrV5CWlobCwkLs27cPBgYG7/TYsi3nhw4dwpUrV+QfycnJ8p+vDRs2RFpaGjZs2ICaNWti1qxZ\nsLW1RX5+foU9p3fRrVs3XL58GV988QV69OgBd3f3ct80ryosLCywaNEiODs7c/EfqZyUlBScPHkS\nU6ZMER2FiEhlsewkIpVQvXp15OXlQUdH5433uX79OmrUqFGJqYhej2UniaSjo4NmzZrBxMQEGhoa\nb7yfpqYmAKCkpET+OWtra2hpaeHWrVto1qzZKx8mJiby+1WrVg2ff/45Vq1ahQsXLiA5ORkxMTHy\nr/vy16xM6urqmDx5MlJTU6GhoQErKyusXr36b2eW0j+bPHky9PT0sGzZMtFRiCoVpzqJiMTjgiIi\nUglNmjSBiYkJZsyYgdmzZ0NNTQ1SqRQFBQW4c+cOfvrpJxw6dAjh4eGioxLBzMwM6enpomMQvZWJ\niQkkEgl+/vln9O/fH9ra2qhRowa8vLzg5eUFmUyGTp06IS8vD3FxcZBKpZg4cSK2bduG4uJitG/f\nHrq6uvjhhx+goaEBMzMzAEDjxo0RHx+PrKws6Orqys8GrUz6+vpYvXo13Nzc4OHhgfXr1yM0NBQO\nDg6VnkVZSaVSbNmyBW3atEHfvn1ha2srOhJRhbt27RpOnjyJTZs2iY5CRKTSWHYSkUowNDTEqlWr\nMHr0aERHR8PU1BTFxcUoLCzEixcvoKuri1WrVqFXr16ioxLByMgIBQUFyMnJgZ6enug4RK9Vv359\nLF68GHPnzoWrqyucnZ2xbds2BAQEoF69eggJCYG7uztq1qyJVq1awcfHBwBQq1YtBAUFwcvLC0VF\nRbC2tsa+ffvQpEkTAICXlxfGjBkDa2trPHv2DDdv3hT2HJs3b45jx47h4MGDcHd3R4sWLbBixQo0\na9ZMWCZl0qBBA4SGhsLJyQmXLl3itnuq8gICAjBz5kxOdRIRCSaRceUkEamQFy9eYM+ePUhOTkZR\nURFq166Npk2bok2bNjA3Nxcdj0guODgY48aNQ506dURHISIAz58/x6pVq7B8+XK4urpi3rx5PPrk\nHchkMjg6OqJBgwZYuXKl6DhEFebatWvo3LkzMjMz+bOBiEgwlp1EREQKqOzXs0QiEZyEiF527949\nzJkzB8eOHcPSpUvh7OwMqZTH4L/No0ePYGNjg507d6Jr166i4xBViFGjRuHjjz+Gn5+f6ChERCqP\nZScRqZyyH3svl0kslIiI6N+Ij4/H9OnTUVJSgtWrV8Pe3l50JIV2+PBhTJ48GQkJCTyeg6qc1NRU\ndOrUiVOdREQKgm9DE5HKKSs3pVIppFIpi04iUjlRUVGiIyg9Ozs7xMbGYvr06Rg2bBicnJxw9+5d\n0bEUVt++fdGrVy94eHiIjkJU7srO6mTRSUSkGFh2EhEREamQBw8ewMnJSXSMKkEqlcLJyQlpaWlo\n1KgRbGxsEBgYiMLCQtHRFNKKFStw+vRpHDhwQHQUonKTmpqKX375BVOnThUdhYiI/h/LTiJSKTKZ\nDDy9g4hUVWlpKcaMGcOys5zp6uoiMDAQFy5cwKVLl2BlZYV9+/bx981f6OrqYseOHXB3d8eDBw9E\nxyEqFwEBAfDw8OBUJxGRAuGZnUSkUh4+fIi4uDj069dPdBSiD1JYWIjS0lLo6OiIjkJKJDg4GBER\nETh16hQ0NDREx6myTpw4AQ8PD9StWxehoaGwsbERHUmh+Pr6IjU1Ffv37+dRMqTUys7qvH79OmrW\nrCk6DhER/T9OdhKRSrl37x63ZFKVsGXLFoSEhKCkpER0FFISsbGxWLFiBXbv3s2is4J1794dly9f\nxtChQ9GjRw9MmTIFjx49Eh1LYSxevBg3b97Etm3bREch+iB79uyBh4cHi04iIgXDspOIVErt2rWR\nnZ0tOgbRP9q8eTPS0tJQWlqK4uLiv5WaDRs2xJ49e3Djxg1BCUmZPH78GKNGjcKmTZvQqFEj0XFU\ngrq6OqZMmYJr165BKpXCysoKa9asQVFRkehowmlpaSE8PBw+Pj7IysoSHYfovchkMnh6emL27Nmi\noxAR0V+w7CQilcKyk5SFr68voqKiIJVKoa6uDjU1NQDA06dPkZKSgtu3byM5ORkJCQmCk5Kik8lk\nGD9+PAYNGoQBAwaIjqNyPvroI6xZswYnT57EgQMH0KpVKxw/flx0LOFsbGzg7e0NFxcXlJaWio5D\n9K9JJBJUr15d/vuZiIgUB8/sJCKVIpPJoKWlhby8PGhqaoqOQ/RGAwcORF5eHrp27YqrV68iIyMD\n9+7dQ15eHqRSKQwMDKCjo4OvvvoKn3/+uei4pMDWrFmD7du3IyYmBlpaWqLjqDSZTIaIiAh4enrC\nxsYGK1asgKmpqehYwpSUlKBz584YMmQIPD09RcchIiKiKoKTnUSkUiQSCWrVqsXpTlJ4n376KaKi\nohAREYFnz56hY8eO8PHxwdatW3Ho0CFEREQgIiICnTp1Eh2VFNivv/6KgIAA/PDDDyw6FYBEIsGg\nQYOQkpKC9u3bw87ODr6+vnj69Ok7Pb64uLiCE1YuNTU1bN++HUuXLkVycrLoOERUSZ4+fQoPDw+Y\nmJhAW1sbn376KS5cuCC/PS8vD9OmTUODBg2gra0NCwsLrFq1SmBiIlI26qIDEBFVtrJL2evVqyc6\nCtEbNWrUCLVr18Z3330HfX19aGlpQVtbm5fL0TvLzc2Fo6Mj1qxZo9LTg4qoWrVq8PPzw5gxY+Dn\n5wdLS0ssXboUzs7Ob9xOLpPJcPToURw+fBidOnXCiBEjKjl1xTA1NcWyZcvg5OSEuLg4XnVBpAJc\nXV1x9epVbN++HQ0aNMDOnTvRo0cPpKSkoH79+vD09MTx48cRHh6OJk2a4PTp05gwYQLq1KkDJycn\n0fGJSAlwspOIVA7P7SRl0KJFC1SrVg3Gxsb46KOPoKurKy86ZTKZ/IPodWQyGdzc3NCtWzc4OjqK\njkNvYGxsjO3bt2Pv3r24c+fOW+9bXFyM3NxcqKmpwc3NDV26dMHDhw8rKWnFcnV1hZGREQICAkRH\nIaIK9uzZM+zduxdfffUVunTpgmbNmmHRokVo1qwZ1q1bBwCIjY2Fk5MTunbtisaNG8PZ2RmffPIJ\nzp8/Lzg9ESkLlp1EpHJYdpIysLKywpw5c1BSUoK8vDz89NNPSEpKAvDnpbBlH0Svs3nzZiQlJSE0\nNFR0FHoHn3zyCebOnfvW+2hoaGDUqFFYs2YNGjduDE1NTeTk5FRSwoolkUjw7bffYuPGjYiLixMd\nh4gqUHFxMUpKSlCtWrVXPq+trY2zZ88CADp27IhDhw7J3wSKjY3FlStX0Lt370rPS0TKiWUnEakc\nlp2kDNTV1TFlyhTUrFkTz549Q0BAAD777DO4u7sjMTFRfj9uMaa/SkpKgp+fH3788Udoa2uLjkPv\n6J/ewHjx4gUAYNeuXbh16xamT58uP56gKvwcMDIywtq1a+Hs7Iz8/HzRcYiogtSoUQP29vZYsmQJ\n7t69i5KSEuzcuRPnzp3D/fv3AQCrV69Gy5Yt0ahRI2hoaKBz584ICgpCv379BKcnImXBspOIVA7L\nTlIWZQWGrq4usrOzERQUBAsLCwwZMgQ+Pj6Ii4uDVMpf5fQ/+fn5cHR0xPLly2FlZSU6DpUTmUwm\nP8vS19cXI0eOhL29vfz2Fy9eICMjA7t27UJkZKSomB9s2LBhsLOzw+zZs0VHIXpvN2/efOUKDFX9\nGD169BuP2wkPD4dUKkWDBg2gpaWF1atXY+TIkfK/adasWYPY2FgcPHgQly5dwqpVq+Dl5YWjR4++\n9uvJZDLhz1cRPmrXro3nz59X2L9tImUikfHALyJSMfPmzYOWlhbmz58vOgrRW718Ludnn32Gfv36\nwc/PDw8ePEBwcDB+//13WFtbY9iwYTA3NxeclhTB+PHjUVRUhO3bt0Mi4TEHVUVxcTHU1dXh6+uL\n77//Hrt3736l7HR3d8d//vMf6Onp4eHDhzA1NcX333+Phg0bCkz9fp48eQIbGxt8++23cHBwEB2H\niCpQfn4+cnNzYWRkBEdHR/mxPXp6etizZw8GDhwov6+rqyuysrJw/PhxgYmJSFlwHISIVA4nO0lZ\nSCQSSKVSSKVS2Nrays/sLCkpgZubGwwMDDBv3jwu9SAAf17efPbsWXzzzTcsOquQ0tJSqKur4/bt\n21i7di3c3NxgY2Mjv33ZsmUIDw/HwoUL8csvvyA5ORlSqRTh4eECU7+/WrVqYfPmzRg/fjx/V1Ol\n4xxQ5apevTqMjIyQnZ2NyMhIDBw4EEVFRSgqKpIvZSyjpqZWJY7sIKLKoS46ABFRZatdu7a8NCJS\nZLm5udi7dy/u37+PmJgYpKenw8rKCrm5uZDJZKhXrx66du0KAwMD0VFJsPT0dHh4eOD48ePQ1dUV\nHYfKSWJiIrS0tGBubo4ZM2agefPmGDRoEKpXrw4AOH/+PAICArBs2TK4urrKH9e1a1eEh4fD29sb\nGhoaouK/t549e2LQoEGYOnUqdu3aJToOqYDS0lIcOnQI+vr66NChA4+IqWCRkZEoLS2FpaUlrl+/\nDm9vb1haWmLs2LHyMzp9fX2hq6sLExMTREdHY8eOHQgODhYdnYiUBMtOIlI5nOwkZZGdnQ1fX1+Y\nm5tDU1MTpaWlmDBhAmrWrIl69eqhTp060NPTQ926dUVHJYEKCwvh6OgIf39/tGzZUnQcKielpaUI\nDw9HSEgIRo0ahRMnTmDDhg2wsLCQ32f58uVo3rw5ZsyYAeB/59b99ttvMDIykhed+fn5+PHHH2Fj\nYwNbW1shz+ffCgoKQuvWrfHjjz9i+PDhouNQFfX8+XPs2rULy5cvR/Xq1bF8+XJOxleCnJwc+Pn5\n4bfffoO+vj6GDh2KwMBA+c+s77//Hn5+fhg9ejQeP34MExMTBAQEYOrUqYKTE5GyYNlJRCqHZScp\nCxMTE+zbtw8fffQR7t+/DwcHB0ydOlW+qIQIALy8vNCsWTNMmjRJdBQqR1KpFMHBwbC1tcWCBQuQ\nl5eHBw8eyIuYW7du4cCBA9i/fz+AP4+3UFNTQ2pqKrKystC6dWv5WZ/R0dE4fPgwvvrqKzRq1Ahb\ntmxR+PM8dXR0EB4ejv79+6Njx44wNjYWHYmqkNzcXGzcuBGhoaFo3rw51q5di65du7LorCTDhw9/\n65sYhoaG2Lp1ayUmIqKqhvP5RKRyWHaSMunQoQMsLS3RqVMnJCUlvbbo5BlWqmvv3r04fPgwNm3a\nxBfpVZSjoyPS0tKwaNEieHt7Y+7cuQCAI0eOwNzcHG3atAEA+fl2e/fuxZMnT9CpUyeoq/8519C3\nb18EBARg0qRJOHHixBs3GisaOzs7TJo0Ca6urjxLkcrF77//jjlz5qBp06a4dOkSDh06hMjISHTr\n1o0/Q4mIqhCWnUSkclh2kjIpKzLV1NRgYWGB9PR0HDt2DAcOHMCPP/6Imzdv8mwxFXXz5k24u7vj\n+++/R61atUTHoQq2YMECPHjwAL169QIAGBkZ4ffff0dhYaH8PkeOHMGxY8fQsmVL+Rbj4uJiAECD\nBg0QFxcHKysrTJgwofKfwHuaN28e/vvf/2Ljxo2io5ASy8jIgJubG6ytrZGbm4v4+Hjs3r0brVu3\nFh2NSKi8vDy+mURVEi9jJyKVw7KTlIlUKsWzZ8/wzTffYP369bhz5w5evHgBADA3N0e9evXwxRdf\n8BwrFfPixQuMGDECvr6+sLOzEx2HKkmtWrXQuXNnAIClpSVMTExw5MgRDBs2DDdu3MC0adPQokUL\neHh4AID8MvbS0lJERkZiz549OHbs2Cu3KToNDQ2Eh4ejU6dO6N69O5o1ayY6EimRixcvIigoCKdO\nnYK7uzvS0tJ4zjXRS4KDg9G2bVsMGDBAdBSiciWRscYnIhUjk8mgqamJgoICpdxSS6onLCwMK1as\nQN++fWFmZoaTJ0+iqKgIHh4eyMzMxO7du+Hi4oKJEyeKjkqVxNvbG6mpqTh48CAvvVRhP/zwA6ZM\nmQI9PT0UFBTA1tYWQUFBaN68OYD/LSy6ffs2vvjiC+jr6+PIkSPyzyuT0NBQ7NmzB6dPn5Zfsk/0\nOjKZDMeOHUNQUBCuX78OT09PuLq6QldXV3Q0IoWze/dubNy4EVFRUaKjEJUrlp1EpJLq1q2L5ORk\nGBgYiI5C9FYZGRkYOXIkhg4dipkzZ6JatWooKCjAihUrEBsbiyNHjiAsLAzffvstEhMTRcelSnD4\n8GG4ubnh8uXLqFOnjug4pAAOHz4MS0tLNG7cWH6sRWlpKaRSKV68eIG1a9fCy8sLWVlZaNiwoXyZ\nkTIpLS1Fjx494ODgAF9fX9FxSAEVFxdjz549CA4ORnFxMXx8fDBixAi+sU30FkX/x959RzV1P+4D\nfwKCslwIDoaCBFDqAid1a91U6wJRlCXUGfdERaufFkUFV51AVVAcrbYObF24J4IoW4YLFXEhoIzk\n94c/8y111CpwSfK8zsk5Ztx7n1gPJU/eo7AQDRo0wMGDB9G8eXOh4xCVGi7yRUQqiVPZSVGoqakh\nNTUVEokEVapUAfBml+JWrVohPj4eANCtWzfcvn1byJhUTu7evQt3d3eEhYWx6CS5Pn36wNzcXH4/\nLy8POTk5AIDExET4+/tDIpEobNEJvPlZGBISguXLlyMmJkboOFSB5OXlYe3atbC0tMTPP/+MxYsX\n4/r163BxcWHRSfQvNDQ0MG7cOKxatUroKESlimUnEakklp2kKMzMzKCmpobz58+XeHzv3r2wt7dH\ncXExcnJyUK1aNTx//lyglFQeioqK4OzsjAkTJqBDhw5Cx6EK6O2ozv3796Nr165YuXIlNm7ciMLC\nQqxYsQIAFG76+t+ZmprC398fLi4ueP36tdBxSGDZ2dlYtGgRzMzM8NdffyE0NBSnTp1C3759Ffrf\nOVF58/Lywm+//YasrCyhoxCVmoq/KjkRURlg2UmKQk1NDRKJBB4eHmjfvj1MTU0RFRWFkydP4o8/\n/oC6ujrq1KmDrVu3ykd+knJatGgRNDU1OYWX/tWwYcNw9+5d+Pj4ID8/H1OnTgUAhR3V+XcjR47E\nvn37MH/+fPj5+QkdhwRw+/ZtrFixAlu3bsV3332HyMhIWFtbCx2LSGHVqlULgwYNwoYNG+Dj4yN0\nHKJSwTU7iUglDRs2DA4ODnB2dhY6CtG/Kioqws8//4zIyEhkZWWhdu3amDx5Mtq1ayd0NConx48f\nx4gRIxAVFYU6deoIHYcUxOvXrzF79mwEBATAyckJGzZsgJ6e3juvk8lkkMlk8pGhFV1WVhaaNm2K\nXbt2cZSzComNjcWyZctw8OBBuLu7Y9KkSTAyMhI6FpFSiI2NRc+ePZGeng5NTU2h4xB9MZadRKSS\nxo4dCxsbG4wbN07oKESf7NmzZygsLEStWrU4RU+FPHz4ELa2tvjll1/QvXt3oeOQAoqOjsa+ffsw\nYcIE6Ovrv/N8cXEx2rZtCz8/P3Tt2lWAhP/d77//jkmTJiEmJua9BS4pB5lMhtOnT8PPzw9RUVHI\nzMwUOhIRESkAxfj6loiolHEaOymi6tWrw8DAgEWnCpFKpRg5ciTc3NxYdNJna968OXx9fd9bdAJv\nlsuYPXs2PDw8MHDgQKSmppZzwv/u22+/RZcuXeRT9Em5SKVS7Nu3D/b29vDw8ED//v2RlpYmdCwi\nIlIQLDuJSCWx7CQiRbB06VLk5eXB19dX6CikxEQiEQYOHIG+X5oAACAASURBVIi4uDjY2dmhVatW\nmDt3Ll6+fCl0tI9auXIl/vrrLxw4cEDoKFRKXr9+jS1btqBx48ZYsmQJpk6dioSEBHh5eXFdaiIi\n+mQsO4lIJbHsJKKK7uzZs1i5ciXCwsJQqRL3lKSyp6Wlhblz5+L69evIyMiAtbU1tm3bBqlUKnS0\n96patSpCQkLg5eWFx48fCx2HvsCLFy+wbNkymJubY/fu3fj5559x6dIlDB48WOE31SIiovLHNTuJ\nSCXl5eVBKpVCV1dX6ChEn+zt/7I5jV35ZWdnw9bWFmvWrIGDg4PQcUhFnTt3DhKJBJUqVUJgYCBa\nt24tdKT3mjZtGtLT07F7927+fFQwmZmZWLVqFTZt2oQePXpgxowZaN68udCxiIhIwXFkJxGpJG1t\nbRadpHCio6Nx8eJFoWNQGZPJZHB3d8egQYNYdJKg7O3tcfHiRXh7e2PAgAFwdXWtkBvELF68GPHx\n8QgNDRU6Cn2i5ORkeHl5wcbGBi9fvsTly5cRFhZW4YrOkJCQcv998eTJkxCJRBytTB+Unp4OkUiE\nK1euCB2FqMJi2UlERKQgTp48ibCwMKFjUBlbtWoV7t+/j59++knoKERQU1ODq6srEhISULt2bTRp\n0gR+fn54/fq10NHkqlSpgu3bt2PKlCm4c+eO0HFUzn+ZKHj58mUMHjwY9vb2qFu3LhITE7F69WqY\nmZl9UYbOnTtj/Pjx7zz+pWWlo6NjuW/YZW9vj8zMzA9uKEbKzdXVFf369Xvn8StXrkAkEiE9PR0m\nJibIzMyscF8OEFUkLDuJiIgUhFgsRnJystAxqAxduXIFS5YsQXh4ODQ1NYWOQyRXtWpV+Pn54fz5\n8zh37hxsbGywf//+/1R0laUWLVpAIpHAzc2twq4xqoyePn36r0sHyGQyREREoEuXLhg8eDA6dOiA\ntLQ0LFy4EAYGBuWU9F0FBQX/+hotLS0YGhqWQ5r/o6mpiTp16nBJBvogdXV11KlT56PreRcWFpZj\nIqKKh2UnERGRgmDZqdyeP38OR0dHrF27Fubm5kLHIXovsViM/fv3Y+3atZg9ezZ69uyJmzdvCh0L\nADBz5kzk5uZi7dq1QkdRejdu3EDfvn3RuHHjj/73l8lkmDFjBqZPnw4PDw+kpKRAIpEIspTQ2xFz\nfn5+MDY2hrGxMUJCQiASid65ubq6Anj/yNBDhw6hTZs20NLSgr6+PhwcHPDq1SsAbwrUmTNnwtjY\nGNra2mjVqhWOHDkiP/btFPVjx46hTZs20NbWRsuWLREVFfXOaziNnT7kn9PY3/6bOXToEFq3bg1N\nTU0cOXIEd+7cQf/+/VGzZk1oa2vD2toaO3fulJ8nNjYW3bt3h5aWFmrWrAlXV1c8f/4cAPDnn39C\nU1MT2dnZJa49Z84cNG3aFMCb9cWHDRsGY2NjaGlpwcbGBsHBweX0t0D0cSw7iYiIFISZmRnu3r3L\nb+uVkEwmg5eXF3r06IEhQ4YIHYfoX/Xs2RMxMTHo168fOnfujIkTJ+LJkyeCZqpUqRK2bt2KhQsX\nIiEhQdAsyurq1av4+uuv0bJlS+jo6CAyMhI2NjYfPeaHH37A9evXMWLECGhoaJRT0veLjIzE9evX\nERERgWPHjsHR0RGZmZny25EjR6CpqYlOnTq99/iIiAh8++23+Oabb3D16lWcOHECnTp1ko8mdnNz\nQ2RkJMLCwnDjxg2MGjUKDg4OiImJKXGe2bNn46effkJUVBT09fUxfPjwCjNKmhTXzJkzsXjxYiQk\nJKBNmzYYO3Ys8vLycOLECdy8eRMBAQGoXr06ACA3Nxc9e/aErq4uLl26hN9++w3nzp2Du7s7AKBb\nt26oVasWdu/eLT+/TCZDWFgYRowYAQB49eoVbG1tceDAAdy8eRMSiQTe3t44duxY+b95on/48Lhn\nIiIiqlA0NTVhZGSEtLQ0WFpaCh2HStGmTZuQkJCACxcuCB2F6JNpaGhg4sSJGDZsGObPn49GjRrB\n19cXo0eP/uj0yrIkFouxaNEiuLi44Ny5c4KXa8okNTUVbm5uePLkCR48eCAvTT5GJBKhSpUq5ZDu\n01SpUgVBQUGoXLmy/DEtLS0AwKNHj+Dl5YUxY8bAzc3tvcf/8MMPGDx4MBYvXix/7O0ot1u3bmHH\njh1IT0+HqakpAGD8+PE4evQoNmzYgHXr1pU4T5cuXQAA8+fPR/v27XHv3j0YGxuX7hsmhRQREfHO\niOJPWZ7D19cXPXr0kN/PyMjAoEGD0KxZMwAosTZuWFgYcnNzsW3bNujp6QEANm7ciC5duiAlJQUW\nFhZwcnJCaGgovv/+ewDA2bNncefOHTg7OwMAjIyMMH36dPk5vby8cPz4cezYsQPdunX7zHdPVDo4\nspOIiEiBcCq78rl+/Trmzp2L8PBw+YduIkViYGCAn3/+GX/++SfCw8Nha2uLEydOCJZnzJgxqFmz\nJn788UfBMiiLhw8fyv9sbm6Ovn37olGjRnjw4AGOHj0KNzc3zJs3r8TU2Irsq6++KlF0vlVQUICB\nAweiUaNGWL58+QePv3bt2gdLnKioKMhkMjRu3Bi6urry28GDB3Hr1q0Sr31bkAJAvXr1ALwpW4kA\noGPHjoiOji5x+5QNKlu2bFnivkQiweLFi9GuXTv4+Pjg6tWr8ufi4+PRtGlTedEJvNkcS01NDXFx\ncQCAESNG4OzZs8jIyAAAhIaGolOnTvJSvri4GEuWLEHTpk2hr68PXV1d/Prrr7h9+/YX/x0QfSmW\nnURERApELBYjKSlJ6BhUSnJzc+Ho6Ijly5fD2tpa6DhEX6RZs2Y4ceIE5s+fDzc3NwwaNAhpaWnl\nnkMkEiEoKAhr1qyRr2lHn04qlWLx4sWwsbHBkCFDMHPmTPm6nL169cKzZ8/Qtm1bjB07Ftra2oiM\njISzszN++OEH+Xp/5a1q1arvvfazZ89QrVo1+X0dHZ33Hu/t7Y2nT58iPDwc6urqn5VBKpVCJBLh\n8uXLJUqq+Ph4BAUFlXjt30ccv92IiBtr0Vva2tqwsLAocfuUUb///Pft4eGBtLQ0uLm5ISkpCfb2\n9vD19f3X87z9N2lrawtra2uEhYWhsLAQu3fvlk9hBwB/f38sX74c06dPx7FjxxAdHY0BAwZ80uZf\nRGWNZScREZEC4chO5TJ+/Hi0adMGI0eOFDoKUakQiUQYPHgw4uPj0aJFC7Rs2RI+Pj54+fJlueYw\nMjJCYGAgXFxckJ+fX67XVmTp6eno3r079u/fDx8fH/Tq1QuHDx+Wb/rUqVMn9OjRA+PHj8exY8ew\ndu1anDp1CitXrkRISAhOnTolSG4rKyv5yMq/i4qKgpWV1UeP9ff3x4EDB3DgwAFUrVr1o69t0aLF\nB9cjbNGiBWQyGR48ePBOUWVkZPTf3hBRKTE2NoaXlxd27dqFRYsWYePGjQCARo0aITY2Fjk5OfLX\nnjt3DlKpFI0aNZI/NmLECISGhiIiIgK5ubkYPHiw/LkzZ87AwcEBLi4uaN68ORo2bMgv5KnCYNlJ\nRESkQCwtLVl2KomtW7fiwoULWLNmjdBRiEqdlpYWfHx8EBMTg7S0NFhbW2P79u3lugnLsGHD0KxZ\nM8yePbvcrqnoTp8+jYyMDBw8eBDDhg3DnDlzYG5ujqKiIrx+/RoA4OnpifHjx8PExER+nEQiQV5e\nHhITEwXJPWbMGKSmpmLChAmIiYlBYmIiVq5ciR07dpRYU/Cfjh49ijlz5mDdunXQ0tLCgwcP8ODB\ngw+OUJ07dy52794NHx8fxMXF4ebNm1i5ciXy8vJgaWmJ4cOHw9XVFXv27EFqaiquXLkCf39//Prr\nr2X11ok+SCKRICIiAqmpqYiOjkZERAQaN24MABg+fDi0tbUxcuRIxMbG4tSpU/D29sbAgQNhYWEh\nP8fw4cMRFxeHefPmwcHBocQXApaWljh27BjOnDmDhIQEjB8/XpDR/ETvw7KTiIhIgXBkp3JITEzE\n1KlTER4e/s4mBETKxNjYGKGhoQgPD0dAQAC+/vprXL58udyuv3btWuzevRvHjx8vt2sqsrS0NBgb\nGyMvLw/Am92XpVIpevfuLV/r0szMDHXq1CnxfH5+PmQyGZ4+fSpIbnNzc5w6dQrJycno0aMHWrdu\njZ07d2L37t3o3bv3B487c+YMCgsLMXToUNStW1d+k0gk7319nz598Ntvv+Hw4cNo0aIFOnXqhBMn\nTkBN7c3H6uDgYLi5uWHGjBmwtrZGv379cOrUKdSvX79M3jfRx0ilUkyYMAGNGzfGN998g9q1a+OX\nX34B8Gaq/JEjR/DixQu0bt0a/fv3R7t27d5ZcqF+/fpo3749YmJiSkxhBwAfHx+0bt0avXv3RseO\nHaGjo4Phw4eX2/sj+hiRrDy/XiUiIqIvUlRUBF1dXTx79qxC7XBLny4/P1++3p23t7fQcYjKjVQq\nRUhICObOnYtevXrhxx9/lJdmZenw4cP4/vvvcf369RLrN9K7EhIS4OjoCAMDAzRo0AA7d+6Erq4u\ntLW10aNHD0ydOhVisfid49atW4fNmzdj7969JXZ8JiIiEgJHdhIRESmQSpUqoX79+khNTRU6Cn2m\nqVOnwtraGl5eXkJHISpXampqcHd3R2JiIgwMDPDVV19h6dKl8unRZaV3797o06cPJk6cWKbXUQbW\n1tb47bff5CMSg4KCkJCQgB9++AFJSUmYOnUqACAvLw8bNmzApk2b0L59e/zwww/w9PRE/fr1y3Wp\nAiIiovdh2UlERKRgOJVdce3evRtHjhzBxo0b5budEqmaqlWrYunSpTh//jxOnz4NGxsb/P7772Va\nki1btgxnz57l2omfwNzcHHFxcfj6668xdOhQVK9eHcOHD0fv3r2RkZGBrKwsaGtr486dOwgICECH\nDh2QnJyMsWPHQk1NjT/biIhIcCw7iYiIFIxYLOZulwooNTUV48aNQ3h4OKfSEuHNz7I//vgDa9as\nwcyZM9GrVy/ExcWVybV0dXWxdetWjB07Fg8fPiyTayiigoKCd0pmmUyGqKgotGvXrsTjly5dgqmp\nKfT09AAAM2fOxM2bN/Hjjz9y7WEiIqpQWHYSEREpGI7sVDwFBQVwcnLCnDlz0LJlS6HjEFUovXr1\nwvXr19GnTx906tQJEomkTDa6sbe3h7u7O0aPHq3SU61lMhkiIiLQpUsXTJky5Z3nRSIRXF1dsX79\neqxatQq3bt2Cj48PYmNjMXz4cPl60W9LTyIiooqGZScRqaTCwkLk5+cLHYPos1haWrLsVDCzZ8/+\n6A6/RKpOQ0MDEokEcXFxeP36NaytrbF+/XoUFxeX6nV8fX1x+/ZtBAcHl+p5FUFRURFCQ0PRvHlz\nzJgxA56enli5cuV7p517e3vD3Nwc69atwzfffIMjR45g1apVcHJyEiA5ERHRf8Pd2IlIJZ06dQoJ\nCQncIIQUUkZGBr7++mvcvXtX6Cj0CQ4cOICxY8fi2rVr0NfXFzoOkUKIjo6GRCLBs2fPEBgYiM6d\nO5fauWNjY9G1a1dcunRJJXYOz83NRVBQEJYvX44GDRrIlwz4lLU1ExMToa6uDgsLi3JISkQVXWxs\nLHr16oW0tDRoamoKHYfogziyk4hU0vXr1xETEyN0DKLPYmJiguzsbOTl5Qkdhf7F3bt34enpibCw\nMBadRP9B8+bNcfLkSfj4+MDV1RVDhgxBenp6qZy7SZMmmDFjBkaNGlXqI0crkuzsbCxcuBBmZmY4\nceIEwsPDcfLkSfTu3fuTNxGysrJi0UlEck2aNIGVlRX27NkjdBSij2LZSUQq6enTp6hevbrQMYg+\ni5qaGszNzZGSkiJ0FPqIoqIiDBs2DBKJBO3btxc6DpHCEYlEGDJkCOLj49G0aVPY2dlh3rx5yM3N\n/eJzv12rMiAg4IvPVdFkZGRg4sSJEIvFuHv3Lk6fPo1ff/0Vbdq0EToaESkBiUSCgIAAlV77mCo+\nlp1EpJKePn2KGjVqCB2D6LNxk6KKz9fXF1paWpg5c6bQUYgUmpaWFubNm4fo6GjcunUL1tbWCAsL\n+6IP2urq6ggJCcFPP/2EGzdulGJa4Vy/fh0jRoyAra0ttLS0cOPGDWzatAlWVlZCRyMiJdKvXz9k\nZ2fjwoULQkch+iCWnUSkklh2kqJj2VmxpaamIjg4GNu2bYOaGn/dIioNJiYmCAsLw44dO7B8+XK0\nb98eV65c+ezzmZub48cff4SLiwsKCgpKMWn5kclkiIyMRJ8+fdCrVy80adIEqamp8PPzQ7169YSO\nR0RKSF1dHRMmTEBgYKDQUYg+iL99E5FKYtlJik4sFiMpKUnoGPQBZmZmSEhIQO3atYWOQqR02rdv\nj0uXLsHd3R0ODg5wd3fHgwcPPutcHh4eMDY2xsKFC0s5ZdkqLi7Gr7/+irZt28LLywsDBw5EWloa\nZs6ciWrVqgkdj4iUnJubG/78809ulkkVFstOIlJJ+/btw8CBA4WOQfTZLC0tObKzAhOJRNDT0xM6\nBpHSUldXh4eHBxISEqCvr4+vvvoKy5Ytw+vXr//TeUQiETZt2oQtW7bg/PnzZZS29Lx+/RqbN29G\n48aN4efnh5kzZyIuLg6enp6oXLmy0PGISEVUq1YNI0aMwNq1a4WOQvReIhlXlSUiIlI49+7dg52d\n3WePZiIiUiZJSUmYMmUKEhMTsWLFCvTr1++TdxwHgL1792LWrFmIjo6Gjo5OGSb9PM+fP8f69esR\nGBiI5s2bY+bMmejYseN/eo9ERKUpOTkZ9vb2yMjIgLa2ttBxiEpg2UlERKSAZDIZdHV1kZmZiapV\nqwodh4ioQjh8+DAmT56MBg0aYOXKlWjUqNEnHzty5Ejo6upi3bp1ZZjwv8nMzERAQAA2b96M3r17\nY8aMGWjatKnQsYiIAAAODg749ttvMXr0aKGjEJXAaexEREQKSCQSwcLCAikpKUJHUTnx8fHYs2cP\nTp06hczMTKHjENHf9O7dG7GxsejZsyc6duyISZMm4enTp5907KpVq3DgwAEcOXKkjFP+u8TERIwe\nPRo2NjZ49eoVrl69iu3bt7PoJKIKRSKRIDAwEBxDRxUNy04iIiIFxR3Zy99vv/2GoUOHYuzYsRgy\nZAh++eWXEs/zl30i4WloaGDy5Mm4efMm8vPzYW1tjQ0bNqC4uPijx1WvXh3BwcHw8PDAkydPyilt\nSRcvXsTAgQPRoUMHGBsbIykpCYGBgWjQoIEgeYiIPqZbt24AgGPHjgmchKgklp1EpLREIhH27NlT\n6uf19/cv8aHD19cXX331Valfh+jfsOwsX48ePYKbmxs8PT2RnJyM6dOnY+PGjXjx4gVkMhlevXrF\n9fOIKhBDQ0Ns2LABERERCA0NhZ2dHSIjIz96TLdu3TBo0CCMGzeunFK++ZLk8OHD6Ny5MxwdHdGl\nSxekpaVhwYIFqFWrVrnlICL6r0QikXx0J1FFwrKTiCoMV1dXiEQieHh4vPPczJkzIRKJ0K9fPwGS\nfdy0adP+9cMTUVkQi8VISkoSOobKWLp0Kbp06QKJRIJq1arBw8MDhoaGcHNzQ9u2bTFmzBhcvXpV\n6JhE9A8tWrRAZGQk5syZg5EjR2Lo0KHIyMj44Ot//PFHXLt2DTt37izTXIWFhdi+fTuaNWuGWbNm\nYfTo0UhOTsaECRMq5CZJRETvM3z4cFy4cIFLK1GFwrKTiCoUExMT7Nq1C7m5ufLHioqKsHXrVpia\nmgqY7MN0dXWhr68vdAxSQRzZWb60tLSQn58vX//Px8cH6enp6NSpE3r16oWUlBRs3rwZBQUFAicl\non8SiUQYOnQo4uPj8dVXX8HW1hbz588v8fvGW9ra2ti2bRskEgnu3btX6llyc3OxatUqiMVibNmy\nBUuXLkV0dDSGDx8ODQ2NUr8eEVFZ0tbWhqenJ1avXi10FCI5lp1EVKE0bdoUYrEYu3btkj928OBB\nVKlSBZ07dy7x2uDgYDRu3BhVqlSBpaUlVq5cCalUWuI1T548wZAhQ6CjowNzc3Ns3769xPOzZs2C\nlZUVtLS00KBBA8yYMQOvXr0q8ZqlS5eiTp060NXVxciRI/Hy5csSz/9zGvvly5fRo0cP1KpVC1Wr\nVkX79u1x/vz5L/lrIXovS0tLlp3lyNDQEOfOncOUKVPg4eGBDRs24MCBA5g4cSIWLlyIQYMGITQ0\nlJsWEVVg2tramD9/Pq5du4bk5GRYW1tjx44d76y326pVK0ybNg0PHz4stbV4Hz9+DF9fX5iZmSEy\nMhK7du3CiRMn0KtXLy6BQUQKbdy4cdi2bRueP38udBQiACw7iagC8vDwQFBQkPx+UFAQ3NzcSnwQ\n2LRpE+bMmYNFixYhPj4ey5cvh5+fH9atW1fiXIsWLUL//v0RExMDR0dHuLu74/bt2/LndXR0EBQU\nhPj4eKxbtw47d+7EkiVL5M/v2rULPj4+WLhwIaKiomBlZYUVK1Z8NH9OTg5cXFxw+vRpXLp0Cc2b\nN0efPn2QnZ39pX81RCUYGhqioKDgk3capi8zYcIEzJs3D3l5eRCLxWjWrBlMTU3lm57Y29tDLBYj\nPz9f4KRE9G9MTU2xY8cOhIWFYdmyZejQocM7y1BMmzYNTZo0+eIiMj09HRMnToSlpSXu37+P06dP\nY+/evWjduvUXnZeIqKIwNjZGjx49EBwcLHQUIgCASMZtQ4mognB1dcXjx4+xbds21KtXD9evX4ee\nnh7q16+P5ORkzJ8/H48fP8aBAwdgamqKJUuWwMXFRX58QEAANm7ciLi4OABvpqzNmjULP/74I4A3\n0+GrVq2KjRs3YsSIEe/NsH79evj7+8vXnLG3t4eNjQ02bdokf0337t2RkpKC9PR0AG9Gdu7Zswc3\nbtx47zllMhnq1auHZcuWffC6RJ/Lzs4OP//8Mz80l5HCwkK8ePGixFIVMpkMaWlpGDBgAA4fPgwj\nIyPIZDI4OTnh2bNnOHLkiICJiei/Ki4uRnBwMHx8fNCvXz/873//g6Gh4RefNyYmBkuXLkVERARG\njx4NiUSCunXrlkJiIqKK5/z58xgxYgSSkpKgrq4udBxScRzZSUQVTo0aNfDdd98hKCgIv/zyCzp3\n7lxivc6srCzcuXMH3t7e0NXVld9mzZqFW7dulThX06ZN5X+uVKkSDAwM8OjRI/lje/bsQfv27eXT\n1CdPnlxi5Gd8fDzatWtX4pz/vP9Pjx49gre3NywtLVGtWjXo6enh0aNHJc5LVFq4bmfZCQ4OhrOz\nM8zMzODt7S0fsSkSiWBqaoqqVavCzs4Oo0ePRr9+/XD58mWEh4cLnJqI/it1dXV4enoiMTER1atX\nx++//46ioqLPOpdMJsO1a9fQu3dv9OnTB82aNUNqaip++uknFp1EpNTatm0LfX19HDhwQOgoRKgk\ndAAiovdxd3fHqFGjoKuri0WLFpV47u26nOvXr4e9vf1Hz/PPhf5FIpH8+AsXLsDJyQkLFizAypUr\n5R9wpk2b9kXZR40ahYcPH2LlypVo0KABKleujG7dunHTEioTLDvLxtGjRzFt2jSMHTsW3bt3x5gx\nY9C0aVOMGzcOwJsvTw4dOgRfX19ERkaiV69eWLJkCapXry5wciL6XNWqVYO/vz+kUinU1D5vTIhU\nKsWTJ08wePBg7Nu3D5UrVy7llEREFZNIJMKkSZMQGBiI/v37Cx2HVBzLTiKqkLp16wZNTU08fvwY\nAwYMKPFc7dq1Ua9ePdy6dQsjR4787GucPXsWRkZGmDdvnvyxjIyMEq9p1KgRLly4AHd3d/ljFy5c\n+Oh5z5w5g1WrVqFv374AgIcPH3LDEiozYrGY06ZLWX5+Pjw8PODj44PJkycDeLPmXm5uLhYtWoRa\ntWpBLBbjm2++wYoVK/Dq1StUqVJF4NREVFo+t+gE3owS7dq1KzccIiKVNHjwYEyfPh3Xr18vMcOO\nqLyx7CSiCkkkEuH69euQyWTvHRWxcOFCTJgwAdWrV0efPn1QWFiIqKgo3Lt3D7Nnz/6ka1haWuLe\nvXsIDQ1Fu3btcOTIEezYsaPEayQSCUaOHIlWrVqhc+fO2LNnDy5evIiaNWt+9Lzbt29HmzZtkJub\nixkzZkBTU/O//QUQfSKxWIzVq1cLHUOprF+/Hra2tiW+5Pjrr7/w7NkzmJiY4N69e6hVqxaMjY3R\nqFEjjtwiohJYdBKRqtLU1MSYMWOwatUqbN68Weg4pMK4ZicRVVh6enqoWrXqe5/z9PREUFAQtm3b\nhmbNmqFDhw7YuHEjzMzMPvn8Dg4OmD59OiZNmoSmTZvir7/+emfKvKOjI3x9fTF37ly0aNECsbGx\nmDJlykfPGxQUhJcvX8LOzg5OTk5wd3dHgwYNPjkX0X9haWmJ5ORkcL/B0tOuXTs4OTlBR0cHAPDT\nTz8hNTUV+/btw4kTJ3DhwgXEx8dj27ZtAFhsEBEREb3l7e2NvXv3IisrS+gopMK4GzsREZGCq1mz\nJhITE2FgYCB0FKVRWFgIDQ0NFBYW4sCBAzA1NYWdnZ18LT9HR0c0a9YMc+bMEToqERERUYXi4eEB\nc3NzzJ07V+gopKI4spOIiEjBcZOi0vHixQv5nytVerPSj4aGBvr37w87OzsAb9byy8nJQWpqKmrU\nqCFITiIiIqKKTCKR4OXLl5x5RILhmp1EREQK7m3ZaW9vL3QUhTV58mRoa2vDy8sL9evXh0gkgkwm\ng0gkKrFZiVQqxZQpU1BUVIQxY8YImJiIiIioYmratCmaNGkidAxSYSw7iYiIFBxHdn6ZLVu2IDAw\nENra2khJScGUKVNgZ2cnH935VkxMDFauXIkTJ07g9OnTAqUlIiIiqvi4pjkJidPYiYiIFBzLzs/3\n5MkT7NmzBz/99BP279+PS5cuwcPDA3v37sWzZ89KvNbMzAytW7dGcHAwTE1NBUpMREREREQfw7KT\niIhIwYnFYiQlJQkdQyGpqamhR48esLGxQbdu3RAfByECrAAAIABJREFUHw+xWAxvb2+sWLECqamp\nAICcnBzs2bMHbm5u6Nq1q8CpiYiIiIjoQ7gbOxGplIsXL2L8+PG4fPmy0FGISs2zZ89gYmKCFy9e\ncMrQZ8jPz4eWllaJx1auXIl58+ahe/fumDp1KtasWYP09HRcvHhRoJREREREyiE3Nxfnz59HjRo1\nYG1tDR0dHaEjkZJh2UlEKuXtjzwWQqRsDA0NERMTg7p16wodRaEVFxdDXV0dAHD16lW4uLjg3r17\nyMvLQ2xsLKytrQVOSETlTSqVltiojIiIPl92djacnJyQlZWFhw8fom/fvti8ebPQsUjJ8P/aRKRS\nRCIRi05SSly3s3Soq6tDJpNBKpXCzs4Ov/zyC3JycrB161YWnUQq6tdff0ViYqLQMYiIFJJUKsWB\nAwfw7bffYvHixfjrr79w7949LF26FOHh4Th9+jRCQkKEjklKhmUnERGREmDZWXpEIhHU1NTw5MkT\nDB8+HH379sWwYcOEjkVEApDJZJg7dy6ys7OFjkJEpJBcXV0xdepU2NnZ4dSpU5g/fz569OiBHj16\noGPHjvDy8sLq1auFjklKhmUnERGREmDZWfpkMhmcnZ3xxx9/CB2FiARy5swZqKuro127dkJHISJS\nOImJibh48SJGjx6NBQsW4MiRIxgzZgx27dolf02dOnVQuXJlZGVlCZiUlA3LTiIiIiXAsvPzFBcX\nQyaT4X1LmOvr62PBggUCpCKiimLLli3w8PDgEjhERJ+hoKAAUqkUTk5OAN7Mnhk2bBiys7MhkUiw\nZMkSLFu2DDY2NjAwMHjv72NEn4NlJxERkRIQi8VISkoSOobC+d///gc3N7cPPs+Cg0h1PX/+HPv2\n7YOLi4vQUYiIFFKTJk0gk8lw4MAB+WOnTp2CWCyGoaEhDh48iHr16mHUqFEA+HsXlR7uxk5ERKQE\ncnJyULt2bbx8+ZK7Bn+iyMhIODo6IioqCvXq1RM6DhFVMBs2bMBff/2FPXv2CB2FiEhhbdq0CWvW\nrEG3bt3QsmVLhIWFoU6dOti8eTPu3buHqlWrQk9PT+iYpGQqCR2AiIiIvpyenh6qV6+Oe/fuwcTE\nROg4FV5WVhZGjBiB4OBgFp1E9F5btmzBwoULhY5BRKTQRo8ejZycHGzfvh379++Hvr4+fH19AQBG\nRkYA3vxeZmBgIGBKUjYc2UlESqu4uBjq6ury+zKZjFMjSKl16tQJCxYsQNeuXYWOUqFJpVL069cP\nTZo0gZ+fn9BxiIiIiJTew4cP8fz5c1haWgJ4s1TI/v37sXbtWlSuXBkGBgYYOHAgvv32W470pC/G\neW5EpLT+XnQCb9aAycrKwp07d5CTkyNQKqKyw02KPs2KFSvw9OlTLF68WOgoRERERCrB0NAQlpaW\nKCgowOLFiyEWi+Hq6oqsrCwMGjQIZmZmCA4Ohqenp9BRSQlwGjsRKaVXr15h4sSJWLt2LTQ0NFBQ\nUIDNmzcjIiICBQUFMDIywoQJE9C8eXOhoxKVGpad/+7ChQtYunQpLl26BA0NDaHjEBEREakEkUgE\nqVSKRYsWITg4GO3bt0f16tWRnZ2N06dPY8+ePUhKSkL79u0RERGBXr16CR2ZFBhHdhKRUnr48CE2\nb94sLzrXrFmDSZMmQUdHB2KxGBcuXED37t2RkZEhdFSiUsOy8+OePn2KYcOGYcOGDWjQoIHQcYiI\niIhUypUrV7B8+XJMmzYNGzZsQFBQENatW4eMjAz4+/vD0tISTk5OWLFihdBRScFxZCcRKaUnT56g\nWrVqAIC0tDRs2rQJAQEBGDt2LIA3Iz/79+8PPz8/rFu3TsioRKWGZeeHyWQyeHp6wsHBAd99953Q\ncYiIiIhUzsWLF9G1a1dIJBKoqb0Ze2dkZISuXbsiLi4OANCrVy+oqanh1atXqFKlipBxSYFxZCcR\nKaVHjx6hRo0aAICioiJoampi5MiRkEqlKC4uRpUqVTBkyBDExMQInJSo9DRs2BCpqakoLi4WOkqF\ns27dOqSlpWHZsmVCRyGiCszX1xdfffWV0DGIiJSSvr4+4uPjUVRUJH8sKSkJW7duhY2NDQCgbdu2\n8PX1ZdFJX4RlJxEppefPnyM9PR2BgYFYsmQJZDIZXr9+DTU1NfnGRTk5OSyFSKloa2vDwMAAt2/f\nFjpKhRIdHQ1fX1+Eh4ejcuXKQschos/k6uoKkUgkv9WqVQv9+vVDQkKC0NHKxcmTJyESifD48WOh\noxARfRZnZ2eoq6tj1qxZCAoKQlBQEHx8fCAWizFw4EAAQM2aNVG9enWBk5KiY9lJREqpVq1aaN68\nOf744w/Ex8fDysoKmZmZ8udzcnIQHx8PS0tLAVMSlT5LS0tOZf+bnJwcDB06FKtWrYJYLBY6DhF9\noe7duyMzMxOZmZn4888/kZ+frxBLUxQUFAgdgYioQggJCcH9+/excOFCBAQE4PHjx5g1axbMzMyE\njkZKhGUnESmlzp0746+//sK6deuwYcMGTJ8+HbVr15Y/n5ycjJcvX3KXP1I6XLfz/8hkMnz//ffo\n2LEjhg0bJnQcIioFlStXRp06dVCnTh3Y2tpi8uTJSEhIQH5+PtLT0yESiXDlypUSx4hEIuzZs0d+\n//79+xg+fDj09fWhra2N5s2b48SJEyWO2blzJxo2bAg9PT0MGDCgxGjKy5cvo0ePHqhVqxaqVq2K\n9u3b4/z58+9cc+3atRg4cCB0dHQwZ84cAEBcXBz69u0LPT09GBoaYtiwYXjw4IH8uNjYWHTr1g1V\nq1aFrq4umjVrhhMnTiA9PR1dunQBABgYGEAkEsHV1bVU/k6JiMrT119/je3bt+Ps2bMIDQ3F8ePH\n0adPH6FjkZLhBkVEpJSOHTuGnJwc+XSIt2QyGUQiEWxtbREWFiZQOqKyw7Lz/wQHByM6OhqXL18W\nOgoRlYGcnByEh4ejSZMm0NLS+qRjcnNz0alTJxgaGmLfvn2oV6/eO+t3p6enIzw8HL/99htyc3Ph\n5OSEuXPnYsOGDfLruri4IDAwECKRCGvWrEGfPn2QkpICfX19+XkWLlyI//3vf/D394dIJEJmZiY6\nduwIDw8P+Pv7o7CwEHPnzkX//v1x/vx5qKmpwdnZGc2aNcOlS5dQqVIlxMbGokqVKjAxMcHevXsx\naNAg3Lx5EzVr1vzk90xEVNFUqlQJxsbGMDY2FjoKKSmWnUSklH799Vds2LABvXv3xtChQ+Hg4ICa\nNWtCJBIBeFN6ApDfJ1IWYrEYx48fFzqG4OLi4jBz5kycPHkS2traQscholISEREBXV1dAG+KSxMT\nExw6dOiTjw8LC8ODBw9w/vx51KpVC8Cbzd3+rqioCCEhIahWrRoAwMvLC8HBwfLnu3btWuL1q1ev\nxt69e3H48GGMGDFC/rijoyM8PT3l9+fPn49mzZrBz89P/tjWrVtRs2ZNXLlyBa1bt0ZGRgamTZsG\na2trAICFhYX8tTVr1gQAGBoayrMTESmDtwNSiEoLp7ETkVKKi4tDz549oa2tDR8fH7i6uiIsLAz3\n798HAPnmBkTKhiM7gby8PAwdOhR+fn7ynT2JSDl07NgR0dHRiI6OxqVLl9CtWzf06NEDd+7c+aTj\nr127hqZNm360LKxfv7686ASAevXq4dGjR/L7jx49gre3NywtLVGtWjXo6enh0aNH72wO17JlyxL3\nr169ilOnTkFXV1d+MzExAQDcunULADBlyhR4enqia9euWLJkicpsvkREqksmk33yz3CiT8Wyk4iU\n0sOHD+Hu7o5t27ZhyZIleP36NWbMmAFXV1fs3r0bWVlZQkckKhPm5ubIyMhAYWGh0FEEI5FI0KxZ\nM7i5uQkdhYhKmba2NiwsLGBhYYFWrVph8+bNePHiBTZu3Ag1tTcfbd7O3gDwWT8LNTQ0StwXiUSQ\nSqXy+6NGjcLly5excuVKnDt3DtHR0TA2Nn5nEyIdHZ0S96VSKfr27Ssva9/ekpOT0a9fPwCAr68v\n4uLiMGDAAJw7dw5NmzZFUFDQf34PRESKQiqVonPnzrh48aLQUUiJsOwkIqWUk5ODKlWqoEqVKhg5\nciQOHz6MgIAA+YL+Dg4OCAkJ4e6opHQqV66MevXqIT09XegogtixYwciIyOxfv16jt4mUgEikQhq\namrIy8uDgYEBACAzM1P+fHR0dInXt2jRAtevXy+x4dB/debMGUyYMAF9+/aFjY0N9PT0SlzzQ2xt\nbXHz5k3Ur19fXti+venp6clfJxaLMXHiRBw8eBAeHh7YvHkzAEBTUxMAUFxc/NnZiYgqGnV1dYwf\nPx6BgYFCRyElwrKTiJRSbm6u/ENPUVER1NTUMHjwYBw5cgQREREwMjKCu7u7fFo7kTKxtLRUyans\nycnJmDhxIsLDw0sUB0SkPF6/fo0HDx7gwYMHiI+Px4QJE/Dy5Us4ODhAS0sLbdu2hZ+fH27evIlz\n585h2rRpJY53dnaGoaEh+vfvj9OnTyM1NRW///77O7uxf4ylpSW2b9+OuLg4XL58GU5OTvIi8mPG\njRuH58+fw9HRERcvXkRqaiqOHj0KLy8v5OTkID8/H+PGjcPJkyeRnp6Oixcv4syZM2jcuDGAN9Pr\nRSIRDh48iKysLLx8+fK//eUREVVQHh4eiIiIwL1794SOQkqCZScRKaW8vDz5eluVKr3Zi00qlUIm\nk6FDhw7Yu3cvYmJiuAMgKSVVXLfz9evXcHR0xIIFC9CiRQuh4xBRGTl69Cjq1q2LunXrok2bNrh8\n+TJ2796Nzp07A4B8ynerVq3g7e2NxYsXlzheR0cHkZGRMDY2hoODA7766issWLDgP40EDwoKwsuX\nL2FnZwcnJye4u7ujQYMG/3pcvXr1cPbsWaipqaFXr16wsbHBuHHjULlyZVSuXBnq6up4+vQpXF1d\nYWVlhe+++w7t2rXDihUrAABGRkZYuHAh5s6di9q1a2P8+PGfnJmIqCKrVq0ahg8fjnXr1gkdhZSE\nSPb3RW2IiJTEkydPUL16dfn6XX8nk8kgk8ne+xyRMggMDERycjLWrFkjdJRyM3HiRNy9exd79+7l\n9HUiIiIiBZOUlIT27dsjIyMDWlpaQschBcdP+kSklGrWrPnBMvPt+l5EykrVRnbu27cPf/zxB7Zs\n2cKik4iIiEgBWVpaonXr1ggNDRU6CikBftonIpUgk8nk09iJlJ0qlZ0ZGRnw8vLCjh07UKNGDaHj\nEBEREdFnkkgkCAwM5Gc2+mIsO4lIJbx8+RLz58/nqC9SCQ0aNMD9+/fx+vVroaOUqcLCQjg5OWH6\n9Olo27at0HGIiIiI6At0794dUqn0P20aR/Q+LDuJSCU8evQIYWFhQscgKhcaGhowMTFBamqq0FHK\n1Lx581CjRg1MnTpV6ChERERE9IVEIhEmTpyIwMBAoaOQgmPZSUQq4enTp5ziSirF0tJSqaeyR0RE\nIDQ0FL/88gvX4CUiIiJSEi4uLjh37hxu3boldBRSYPx0QEQqgWUnqRplXrfz/v37cHV1xfbt22Fg\nYCB0HCJSQL169cL27duFjkFERP+gra0NDw8PrF69WugopMBYdhKRSmDZSapGWcvO4uJiDB8+HGPH\njkWnTp2EjkNECuj27du4fPkyBg0aJHQUIiJ6j3HjxmHr1q148eKF0FFIQbHsJCKVwLKTVI2ylp2L\nFy+GSCTC3LlzhY5CRAoqJCQETk5O0NLSEjoKERG9h4mJCbp3746QkBCho5CCYtlJRCqBZSepGmUs\nO0+cOIH169cjNDQU6urqQschIgUklUoRFBQEDw8PoaMQEdFHTJo0CatWrUJxcbHQUUgBsewkIpXA\nspNUjampKbKyspCfny90lFLx6NEjuLi4ICQkBHXr1hU6DhEpqGPHjqFmzZqwtbUVOgoREX1Eu3bt\nUKNGDRw6dEjoKKSAWHYSkUpg2UmqRl1dHQ0aNEBKSorQUb6YVCrFqFGj4OLigp49ewodh4gU2JYt\nWziqk4hIAYhEIkgkEgQGBgodhRQQy04iUgksO0kVKctUdn9/f7x48QKLFi0SOgoRKbDs7GxERETA\n2dlZ6ChERPQJhg4dips3byI2NlboKKRgWHYSkUpg2UmqyNLSUuHLznPnzmH58uXYsWMHNDQ0hI5D\nRAps+/bt6NevH38fICJSEJqamhg7dixWrVoldBRSMCw7iUglsOwkVaToIzufPHkCZ2dnbNy4Eaam\npkLHISIFJpPJsHnzZk5hJyJSMN7e3tizZw8eP34sdBRSICw7iUglPH36FNWrVxc6BlG5UuSyUyaT\nwcPDAwMGDED//v2FjkNECu7y5cvIy8tDp06dhI5CRET/gaGhIQYMGIBNmzYJHYUUCMtOIlIJHNlJ\nqkiRy841a9bg9u3b8PPzEzoKESmBtxsTqanx4w8RkaKRSCRYu3YtCgsLhY5CCkIkk8lkQocgIipL\nUqkUGhoaKCgogLq6utBxiMqNVCqFrq4uHj16BF1dXaHjfLKoqCj07NkT58+fh4WFhdBxiEjB5ebm\nwsTEBLGxsTAyMhI6DhERfYbOnTvj+++/h5OTk9BRSAHwq00iUnrPnz+Hrq4ui05SOWpqamjYsCFS\nUlKEjvLJXrx4AUdHR6xevZpFJxGVit27d8Pe3p5FJxGRApNIJAgMDBQ6BikIlp1EpPQ4hZ1UmVgs\nRlJSktAxPolMJoO3tze6du3Kb+2JqNRs2bIFnp6eQscgIqIv8O233+LBgwe4ePGi0FFIAbDsJCKl\nx7KTVJmlpaXCrNu5ZcsW3LhxAwEBAUJHISIlkZCQgOTkZPTt21foKERE9AXU1dUxYcIEju6kT8Ky\nk4iUHstOUmWKsknRjRs3MGvWLISHh0NLS0voOESkJIKCgjBy5EhoaGgIHYWIiL6Qu7s7IiIicO/e\nPaGjUAXHspOIlB7LTlJlilB25ubmwtHREf7+/mjcuLHQcYhISRQWFmLr1q3w8PAQOgoREZWC6tWr\nw9nZGT///LPQUaiCY9lJREqPZSepMkUoOydOnAhbW1uMGjVK6ChEpEQOHDgAsVgMKysroaMQEVEp\nmTBhAjZu3Ij8/Hyho1AFxrKTiJQey05SZXXq1EF+fj6eP38udJT3Cg0NxZkzZ7Bu3TqIRCKh4xCR\nEtmyZQtHdRIRKRkrKyu0atUKYWFhQkehCoxlJxEpPZadpMpEIhEsLCwq5OjOpKQkTJo0CeHh4dDT\n0xM6DhEpkXv37uHcuXMYMmSI0FGIiKiUSSQSBAYGQiaTCR2FKiiWnUSk9Fh2kqoTi8VISkoSOkYJ\nr169gqOjIxYtWoTmzZsLHYeIlExISAiGDBkCHR0doaMQEVEp++abb1BUVISTJ08KHYUqKJadRKT0\nWHaSqquI63ZOmzYNDRs2xPfffy90FCJSMlKpFEFBQfD09BQ6ChERlQGRSASJRIKAgACho1AFxbKT\niJQey05SdZaWlhWq7Ny7dy8OHTqEzZs3c51OIip1kZGR0NHRQcuWLYWOQkREZcTFxQXnzp3DrVu3\nhI5CFRDLTiJSeiw7SdVVpJGdaWlpGDNmDHbu3Inq1asLHYeIlJCamhrGjx/PL1OIiJSYtrY23N3d\nsWbNGqGjUAUkknFFVyJScg0bNkRERATEYrHQUYgEkZWVBSsrKzx58kTQHAUFBejQoQOGDh2KqVOn\nCpqFiJTX2483LDuJiJTb7du30aJFC6SlpaFq1apCx6EKhCM7iUjpiUQijuwklVarVi1IpVJkZ2cL\nmmPu3LkwMDDA5MmTBc1BRMpNJBKx6CQiUgGmpqbo1q0bQkJChI5CFQzLTiJSajKZDDdu3IC+vr7Q\nUYgEIxKJBJ/KfujQIezcuRMhISFQU+OvH0RERET05SQSCVavXg2pVCp0FKpA+GmDiJSaSCRClSpV\nOMKDVJ5YLEZSUpIg17579y7c3d0RFhaGWrVqCZKBiIiIiJSPvb09qlWrhkOHDgkdhSoQlp1EREQq\nQKiRnUVFRXB2dsb48ePRoUOHcr8+ERERESkvkUgEiUSCgIAAoaNQBcKyk4iISAVYWloKUnYuWrQI\nmpqamD17drlfm4iIiIiU39ChQ3Hz5k3cuHFD6ChUQVQSOgARERGVPSFGdh4/fhybN29GVFQU1NXV\ny/XaRKS8srKysH//fhQVFUEmk6Fp06b4+uuvhY5FREQCqVy5MsaMGYNVq1Zh48aNQsehCkAkk8lk\nQocgIiKisvX06VPUr18fz58/L5c1bB8+fAhbW1uEhITgm2++KfPrEZFq2L9/P5YtW4abN29CR0cH\nRkZGKCoqgqmpKYYOHYpvv/0WOjo6QsckIqJy9vDhQ1hbWyMlJYWb0xKnsRMREamCGjVqQFNTE48e\nPSrza0mlUowcORKurq4sOomoVM2cORNt2rRBamoq7t69C39/fzg6OkIqlWLp0qXYsmWL0BGJiEgA\ntWvXxoABAziykwBwZCcREZHKaNeuHZYtW4b27duX6XV++uknHDhwACdPnkSlSlwxh4hKR2pqKuzt\n7XH16lUYGRmVeO7u3bvYsmULFi5ciNDQUAwbNkyglEREJJTo6Gg4ODggNTUVGhoaQschAXFkJxER\nkYooj3U7z549i5UrV2LHjh0sOomoVIlEIujr62PDhg0AAJlMhuLiYgCAsbExFixYAFdXVxw9ehSF\nhYVCRiUiIgE0b94c5ubm+PXXX4WOQgJj2UlEKk8qlSIzMxNSqVToKERlSiwWIykpqczOn52dDWdn\nZ2zevBkmJiZldh0iUk1mZmYYMmQIdu7ciZ07dwLAO5ufmZubIy4ujiN6iIhUlEQiQWBgoNAxSGAs\nO4mIALRq1Qq6urpo0qQJvvvuO0yfPh0bNmzA8ePHcfv2bRahpBTKcmSnTCaDu7s7Bg0aBAcHhzK5\nBhGprrcrb40bNw7ffPMNXFxcYGNjg8DAQCQmJiIpKQnh4eEIDQ2Fs7OzwGmJiEgo/fv3R2ZmJi5d\nuiR0FBIQ1+wkIvr/Xr58iVu3biElJQXJyclISUmR37Kzs2FmZgYLCwtYWFhALBbL/2xqavrOyBKi\niigqKgpubm6IiYkp9XMHBgZi+/btOHv2LDQ1NUv9/EREz58/R05ODmQyGbKzs7Fnzx6EhYUhIyMD\nZmZmePHiBRwdHREQEMD/LxMRqbDly5cjKioKoaGhQkchgbDsJCL6BHl5eUhNTX2nBE1JScHDhw9R\nv379d0pQCwsL1K9fn1PpqMLIyclBnTp18PLlS4hEolI775UrV9C7d29cvHgR5ubmpXZeIiLgTckZ\nFBSERYsWoW7duiguLkbt2rXRrVs3fPfdd9DQ0MC1a9fQokULNGrUSOi4REQksGfPnsHMzAw3b95E\nvXr1hI5DAmDZSUT0hV69eoXU1NR3StCUlBTcv38fxsbG75SgFhYWMDMz4wg4Knd16tR5707Gn+v5\n8+ewtbXFjz/+iKFDh5bKOYmI/m7GjBk4c+YMJBIJatasiTVr1uCPP/6AnZ0ddHR04O/vj5YtWwod\nk4iIKpBx48ahRo0aWLx4sdBRSAAsO4mIylBBQQHS0tLeW4TeuXMH9erVe6cEtbCwgLm5OapUqSJ0\nfFJCHTp0wA8//IDOnTt/8blkMhmcnJxQs2ZN/Pzzz18ejojoPYyMjLBx40b07dsXAJCVlYURI0ag\nU6dOOHr0KO7evYuDBw9CLBYLnJSIiCqKxMREdOzYERkZGfxcpYIqCR2AiEiZaWpqwsrKClZWVu88\nV1hYiIyMjBIF6PHjx5GcnIyMjAzUrl37vUVow4YNoa2tLcC7IWXwdpOi0ig7N23ahISEBFy4cOHL\ngxERvUdKSgoMDQ1RtWpV+WMGBga4du0aNm7ciDlz5sDa2hoHDx7EpEmTIJPJSnWZDiIiUkxWVlaw\ns7PDrl27MHLkSKHjUDlj2UlEJBANDQ15gflPRUVFuHPnToki9PTp00hJSUFaWhr09fXfKUHFYjEa\nNmwIXV3dcn8v+fn52L17N2JiYqCn9//au/Ooquv8j+OviwYiiwqBqGCskhuagFaaW6aknhzNMbcp\nQk1Tp2XEpvFnLkfHJnMZTcxMiAIrR6k0LS1JzZLCFUkkwQ0VRdExFUSIe39/dLwT4Q568cvzcY7n\nyPf7vd/P+3s9srz4fD5vF/Xo0UPh4eGqWZMvM1VNUFCQ9u3bV+H77N69W//3f/+nzZs3y9HRsRIq\nA4CyLBaLfH195ePjo8WLFys8PFyFhYVKSEiQyWTSfffdJ0nq3bu3vvvuO40dO5avOwAAq3feeUf3\n3nsvvwirhvhuAACqoJo1a8rPz09+fn567LHHypwrLS3VsWPHrCFoVlaWfvzxR2VnZ2v//v2qU6dO\nuRD08t9/PzOmMuXn5+vHH3/UhQsXNHfuXKWmpio+Pl6enp6SpK1bt2r9+vW6ePGimjRpogcffFAB\nAQFlvungm5A7IygoSImJiRW6R0FBgZ566inNnj1b999/fyVVBgBlmUwm1axZU/3799fzzz+vLVu2\nyMnJSb/88otmzpxZ5tri4mKCTgBAGd7e3vx8UU2xZycAGIjZbNbx48etIegf9wmtXbv2FUPQwMBA\n1atX75bHLS0tVW5urnx8fBQaGqpOnTpp+vTp1uX2kZGRys/Pl729vY4ePaqioiJNnz5dTzzxhLVu\nOzs7nT17VidOnJCXl5fq1q1bKe8Jytq9e7cGDRqkPXv23PI9nn32WVksFsXHx1deYQBwDadOnVJc\nXJxOnjypZ555RiEhIZKkzMxMderUSe+++671awoAAKjeCDsBoJqwWCzKy8u7YhCalZVlXVZ/pc7x\n7u7uN/xbUS8vL40fP14vv/yy7OzsJP22QbiTk5O8vb1lNpsVHR2t999/X9u3b5evr6+k335gnTp1\nqrZs2aK8vDyFhYUpPj7+isv8cesKCwvl7u6ugoIC67/Pzfjggw80Y8YMbdu2zSZbJgDAZefPn9ey\nZcv0zTff6MMPP7R1OQAAoIog7AQAyGKxKD8CGnabAAAeCUlEQVQ//4qzQbOysmSxWHTixInrdjIs\nKCiQp6en4uLi9NRTT131ujNnzsjT01MpKSkKDw+XJLVv316FhYVatGiRvL29NWzYMJWUlGj16tXs\nCVnJvL299f3331v3u7tRP//8szp06KDk5GTrrCoAsKW8vDxZLBZ5eXnZuhQAAFBFsLENAEAmk0ke\nHh7y8PDQww8/XO786dOn5eDgcNXXX95v8+DBgzKZTNa9On9//vI4krRy5Urdc889CgoKkiRt2bJF\nKSkp2rVrlzVEmzt3rpo3b66DBw+qWbNmlfKc+M3ljuw3E3ZevHhRAwYM0PTp0wk6AVQZ9evXt3UJ\nAACgirn59WsAgGrnesvYzWazJGnv3r1ydXWVm5tbmfO/bz6UmJioyZMn6+WXX1bdunV16dIlrVu3\nTt7e3goJCdGvv/4qSapTp468vLyUnp5+m56q+rocdt6McePGKTg4WM8999xtqgoArq2kpEQsSgMA\nANdD2AkAqDQZGRny9PS0NjuyWCwqLS2VnZ2dCgoKNH78eE2aNEmjR4/WjBkzJEmXLl3S3r171aRJ\nE0n/C07z8vLk4eGhX375xXovVI6bDTuXL1+udevW6d1336WjJQCbefzxx5WcnGzrMgAAQBXHMnYA\nQIVYLBadPXtW7u7u2rdvn3x9fVWnTh1JvwWXNWrUUFpaml588UWdPXtWCxcuVERERJnZnnl5edal\n6pdDzZycHNWoUaNCXeJxZUFBQdq0adMNXXvgwAGNGTNGa9assf67AsCddvDgQaWlpalDhw62LgUA\nAFRxhJ0AgAo5duyYunfvrqKiIh06dEh+fn5655131KlTJ7Vr104JCQmaPXu22rdvr9dff12urq6S\nftu/02KxyNXVVYWFhdbO3jVq1JAkpaWlydHRUX5+ftbrLyspKVGfPn3KdY739fXVPffcc4ffgbtP\nkyZNbmhmZ3FxsQYOHKgJEyZYG0kBgC3ExcVp8ODB122UBwAAQDd2AECFWCwWpaena+fOncrNzdX2\n7du1fft2tWnTRvPnz1erVq105swZRUREKCwsTMHBwQoKClLLli3l4OAgOzs7DR06VIcPH9ayZcvU\nsGFDSVJoaKjatGmj2bNnWwPSy0pKSrR27dpyneOPHTumRo0alQtBAwMD5efnd80mS9VJUVGR6tat\nqwsXLqhmzav/3nPcuHHKysrSypUrWb4OwGZKS0vl6+urNWvW0CANAABcF2EnAOC2yszMVFZWljZt\n2qT09HQdOHBAhw8f1rx58zRy5EjZ2dlp586dGjJkiHr27KmePXtq0aJFWr9+vTZs2KBWrVrd8FjF\nxcU6dOhQuRA0KytLR44cUYMGDcqFoIGBgQoICKh2s4V8fX2VnJysgICAK55fvXq1Ro8erZ07d8rd\n3f0OVwcA//Pll19q8uTJSk1NtXUpAADgLkDYCQCwCbPZLDu7//XJ+/TTTzVz5kwdOHBA4eHhmjJl\nisLCwiptvJKSEuXk5FwxCD106JA8PT3LhaBBQUEKCAhQ7dq1K62OqiIzM1ONGze+4rMdPXpUYWFh\nWrFiBfvjAbC5J598Ut27d9fIkSNtXQoAALgLEHYCMKTIyEjl5+dr9erVti4Ft+D3zYvuhNLSUh05\ncqRcCJqdna0DBw7Izc2tXAh6eUaoi4vLHavzTjCbzRo8eLBCQkI0YcIEW5cDoJo7efKkmjRpopyc\nnHJbmgAAAFwJYScAm4iMjNT7778vSapZs6bq1aun5s2bq3///nruuecq3GSmMsLOy812tm7dWqkz\nDHF3MZvNOnbsWLkQNDs7W/v375eLi0u5EPTyn7uxe7nZbNbFixfl6OhYZuYtANjC7NmzlZ6ervj4\neFuXAgAA7hJ0YwdgM926dVNCQoJKS0t16tQpffPNN5o8ebISEhKUnJwsJyencq8pLi6Wvb29DapF\ndWVnZycfHx/5+PioS5cuZc5ZLBYdP368TAi6YsUKaxhaq1atK4aggYGBcnNzs9ETXZudnd0V/+8B\nwJ1msVi0ZMkSLV682NalAACAuwhTNgDYjIODg7y8vNSoUSO1bt1af/vb37Rx40bt2LFDM2fOlPRb\nE5UpU6YoKipKdevW1ZAhQyRJ6enp6tatmxwdHeXm5qbIyEj98ssv5caYPn266tevL2dnZz377LO6\nePGi9ZzFYtHMmTMVEBAgR0dHtWzZUomJidbzfn5+kqTw8HCZTCZ17txZkrR161Z1795d9957r1xd\nXdWhQwelpKTcrrcJVZjJZFLDhg3VsWNHDRs2TK+//rqWL1+unTt36ty5c/rpp5/05ptvqmvXriou\nLtaqVas0evRo+fn5yc3NTe3atdOQIUOsIX9KSopOnTolFl0AgJSSkiKz2czewQAA4KYwsxNAldKi\nRQtFREQoKSlJU6dOlSTNmTNHEydO1LZt22SxWFRQUKAePXqobdu2Sk1N1ZkzZzRixAhFRUUpKSnJ\neq9NmzbJ0dFRycnJOnbsmKKiovT3v/9d8+fPlyRNnDhRK1asUExMjIKDg5WSkqIRI0aoXr166tWr\nl1JTU9W2bVutXbtWrVq1ss4oPX/+vP7yl79o3rx5MplMWrBggXr27Kns7Gy6VsPKZDKpfv36ql+/\nfrkf1C0Wi/Lz88vsEbp27VrrDFGz2XzFrvFBQUHy9PS8o/uZAoCtLFmyRMOGDeNzHgAAuCns2QnA\nJq61p+arr76q+fPnq7CwUL6+vmrZsqU+//xz6/l3331X0dHROnr0qLU5zMaNG9WlSxdlZWUpMDBQ\nkZGR+uyzz3T06FE5OztLkhITEzVs2DCdOXNGknTvvffqq6++0iOPPGK990svvaR9+/bpiy++uOE9\nOy0Wixo2bKg333xTQ4cOrZT3B9XbmTNnrtg1Pjs7W0VFRVcNQhs0aEAoAMAQzp8/Lx8fH2VmZsrL\ny8vW5QAAgLsIMzsBVDl/7MT9x6Bx7969CgkJKdMF++GHH5adnZ0yMjIUGBgoSQoJCbEGnZL00EMP\nqbi4WPv379elS5dUVFSkiIiIMmOVlJTI19f3mvWdPHlSr732mjZs2KC8vDyVlpbq4sWLysnJqchj\nA1Zubm5q27at2rZtW+7c2bNntX//fmsIunnzZr333nvKzs7W+fPnFRAQYA1AZ8yYoZo1+VIP4O6z\nbNkydenShaATAADcNH4CAlDlZGRkyN/f3/rxzTRLudFZbWazWZL0+eefq3HjxmXOXa8T/DPPPKO8\nvDzNnTtXvr6+cnBw0KOPPqri4uIbrhO4VXXr1lVoaKhCQ0PLnTt//rw1CD18+LANqgOAyrFkyRJN\nnDjR1mUAAIC7EGEngCrlp59+0tq1a6/5A07Tpk0VFxen8+fPW2d3btmyRWazWU2bNrVel56eroKC\nAmtY+sMPP8je3l4BAQEym81ycHDQ4cOH1bVr1yuOc3mPztLS0jLHv/vuO82fP1+9evWSJOXl5en4\n8eO3/tBAJXFxcVHr1q3VunVrW5cCALdsz549OnLkiCIiImxdCgAAuAvRjR2AzVy6dEknTpxQbm6u\n0tLSNGfOHHXu3FmhoaGKjo6+6uuGDBmi2rVr6+mnn1Z6erq+/fZbjRw5Uv369bMuYZekX3/9VVFR\nUdqzZ4++/vprvfrqqxoxYoScnJzk4uKi6OhoRUdHKy4uTtnZ2dq1a5cWLVqkxYsXS5I8PT3l6Oio\ndevWKS8vz9rtvUmTJkpMTFRGRoa2bt2qgQMHWoNRAABQMbGxsYqMjGQbDgAAcEsIOwHYzPr169Wg\nQQM1btxYjz76qFatWqUpU6bo22+/vebS9dq1a2vdunU6d+6c2rZtqz59+uihhx5SXFxcmes6deqk\n5s2bq0uXLurbt6+6du2qmTNnWs9PmzZNU6ZM0axZs9S8eXM99thjSkpKkp+fnySpZs2amj9/vpYs\nWaKGDRuqT58+kqS4uDhduHBBoaGhGjhwoKKioq67zycAALi+S5cuKSEhQVFRUbYuBQAA3KXoxg4A\nAACgSli+fLkWLlyoDRs22LoUAABwl2JmJwAAAIAqITY2VsOHD7d1GQAA4C7GzE4AAAAANnf48GG1\nadNGR48elaOjo63LAQAAdylmdgIAAACwufj4eA0cOJCgEwAAVAhhJwAAAACbKi0tVVxcHEvYAQA3\n7cSJE+revbucnJxkMpkqdK/IyEj17t27kiqDrRB2AgAAALCp5ORkubu764EHHrB1KQCAKiYyMlIm\nk6ncnwcffFCSNGvWLOXm5mrXrl06fvx4hcaaN2+eEhMTK6Ns2FBNWxcAAAAAoHqjMREA4Fq6deum\nhISEMsfs7e0lSdnZ2QoNDVVQUNAt3//XX39VjRo1VKdOnQrViaqBmZ0AAAAAbCY/P1/r1q3T4MGD\nbV0KAKCKcnBwkJeXV5k/bm5u8vX11cqVK/XBBx/IZDIpMjJSkpSTk6O+ffvKxcVFLi4u6tevn44e\nPWq935QpU9SiRQvFx8crICBADg4OKigoKLeM3WKxaObMmQoICJCjo6NatmzJzM+7ADM7AQAAANhM\nYmKievfurbp169q6FADAXWbr1q0aPHiw3NzcNG/ePDk6OspsNqtPnz5ydHTUhg0bJEljx47Vn/70\nJ23dutW6r+fBgwf14Ycfavny5bK3t1etWrXK3X/ixIlasWKFYmJiFBwcrJSUFI0YMUL16tVTr169\n7uiz4sYRdgIAAACwCYvFotjYWL311lu2LgUAUIWtXbtWzs7OZY6NGTNGb7zxhhwcHOTo6CgvLy9J\n0tdff63du3dr//798vX1lSR9+OGHCgwMVHJysrp16yZJKi4uVkJCgurXr3/FMQsKCjRnzhx99dVX\neuSRRyRJfn5+Sk1NVUxMDGFnFUbYCQAAAMAmUlNTdfHiRXXq1MnWpQAAqrCOHTtq8eLFZY5dbUXA\n3r171bBhQ2vQKUn+/v5q2LChMjIyrGGnt7f3VYNOScrIyFBRUZEiIiLKdHkvKSkpc29UPYSdAAAA\nAGwiNjZWUVFRZX6IBADgj2rXrq3AwMAK3+f3X2+cnJyuea3ZbJYkff7552rcuHGZc/fcc0+Fa8Ht\nQ9gJAAAA4I67cOGCli9frj179ti6FACAgTRt2lS5ubk6dOiQdQbmgQMHlJubq2bNmt3wfZo1ayYH\nBwcdPnxYXbt2vU3V4nYg7AQAAABwxy1fvlwdOnRQw4YNbV0KAKCKu3Tpkk6cOFHmWI0aNeTh4VHu\n2m7duikkJERDhgzRvHnzJEl//etf1aZNm5sKLV1cXBQdHa3o6GhZLBZ17NhRFy5c0A8//CA7Ozs9\n99xzFXso3DaEnQAAAADuuNjYWEVHR9u6DADAXWD9+vVq0KBBmWONGjXS0aNHy11rMpm0cuVKvfDC\nC+rSpYuk3wLQt95666a3TZk2bZrq16+vWbNm6fnnn5erq6tat26tV1555dYfBredyWKxWGxdBAAA\nAIDqIzMzU126dFFOTg77ngEAgEplZ+sCAAAAAFQvsbGxevrppwk6AQBApSPsBACgGpoyZYpatGhh\n6zIAVEMlJSX64IMPFBUVZetSAACAARF2AgBQheXl5enFF19UQECAHBwc1KhRIz3++OP64osvKnTf\n6Ohobdq0qZKqBIAbt3r1agUHBys4ONjWpQAAAAOiQREAAFXUoUOH1L59e7m4uOj1119Xq1atZDab\nlZycrFGjRiknJ6fca4qLi2Vvb3/dezs7O8vZ2fl2lA0A17RkyRINGzbM1mUAAACDYmYnAABV1OjR\noyVJ27Zt04ABAxQcHKymTZtq7Nix2r17t6Tfuk3GxMSoX79+cnJy0oQJE1RaWqphw4bJz89Pjo6O\nCgoK0syZM2U2m633/uMydrPZrGnTpsnHx0cODg5q2bKlVq5caT3/8MMPa9y4cWXqO3funBwdHfXJ\nJ59IkhITExUeHi4XFxd5enrqz3/+s44dO3bb3h8Ad59jx44pJSVF/fv3t3UpAADAoAg7AQCogs6c\nOaO1a9dqzJgxV5yBWbduXevfp06dqp49eyo9PV1jxoyR2WxWo0aN9J///Ed79+7VP//5T82YMUPv\nvffeVcebN2+e3nzzTb3xxhtKT09X37591a9fP+3atUuSNHToUH388cdlAtOkpCTVqlVLvXr1kvTb\nrNKpU6cqLS1Nq1evVn5+vgYNGlRZbwkAA4iPj9eAAQPk5ORk61IAAIBBmSwWi8XWRQAAgLJSU1PV\nrl07ffLJJ+rbt+9VrzOZTBo7dqzeeuuta97v1Vdf1bZt27R+/XpJv83sXLFihX766SdJUqNGjTRy\n5EhNmjTJ+prOnTvL29tbiYmJOn36tBo0aKAvv/xSjz76qCSpW7du8vf31+LFi684ZmZmppo2baoj\nR47I29v7pp4fgPGYzWYFBgZq2bJlCg8Pt3U5AADAoJjZCQBAFXQzv4sMCwsrd2zRokUKCwuTh4eH\nnJ2dNXfu3Cvu8Sn9thw9NzdX7du3L3O8Q4cOysjIkCS5u7srIiJCS5culSTl5uZqw4YNGjp0qPX6\nHTt2qE+fPrrvvvvk4uJiretq4wKoXjZu3FjmcwMAAMDtQNgJAEAVFBQUJJPJpL1791732j8uB122\nbJleeuklRUZGat26ddq1a5dGjx6t4uLim67DZDJZ/z506FAlJSWpqKhIH3/8sXx8fPTII49IkgoK\nCtSjRw/Vrl1bCQkJ2rp1q9auXStJtzQuAOO53Jjo959XAAAAKhthJwAAVZCbm5t69OihBQsW6MKF\nC+XOnz179qqv/e6779SuXTuNHTtWbdq0UWBgoPbv33/V611dXdWwYUN9//335e7TrFkz68dPPPGE\nJGn16tVaunSpBg8ebA0tMjMzlZ+frxkzZqhjx466//77dfLkyZt6ZgDG9d///ldffPGFhgwZYutS\nAACAwRF2AgBQRcXExMhisSgsLEzLly/Xzz//rMzMTL399tsKCQm56uuaNGmiHTt26Msvv1RWVpam\nTZumTZs2XXOs8ePHa9asWfroo4+0b98+TZo0SZs3b1Z0dLT1mlq1aunJJ5/U9OnTtWPHjjJL2Bs3\nbiwHBwctWLBABw4c0Jo1a/Taa69V/E0AYAhLly7V448/Lnd3d1uXAgAADI6wEwCAKsrf3187duzQ\nY489pr///e8KCQlR165dtWrVqqs2BZKkkSNHasCAARo8eLDCw8N16NAhjRs37ppjvfDCCxo/frxe\neeUVtWjRQp9++qmSkpLUqlWrMtcNHTpUaWlpeuCBB8rM+vTw8ND777+vzz77TM2aNdPUqVM1Z86c\nir0BAAzBYrFYl7ADAADcbnRjBwAAAHDbbN++Xf3799f+/ftlZ8dcCwAAcHvx3QYAAACA2yY2NlZR\nUVEEnQAA4I5gZicAAACA26KwsFDe3t5KS0uTj4+PrcsBAADVAL9eBQAAAHBbJCUlqV27dgSdAADg\njiHsBAAAAHBbxMbGavjw4bYuAwAAVCMsYwcAAABQ6bKystShQwcdOXJE9vb2ti4HAABUE8zsBAAA\nAFDpEhISNHToUIJOAABwRzGzEwAAAEClslgsKiws1KVLl+Tm5mbrcgAAQDVC2AkAAAAAAADAEFjG\nDgAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAAAAAABDIOwEAAAAAAAAYAiEnQAAAAAAAAAMgbATAAAA\nAAAAgCEQdgIAAAAAAAAwBMJOAAAAAAAAAIZA2AkAAAAAAADAEAg7AQAAAAAAABgCYScAAAAAAAAA\nQyDsBAAAAAAAAGAIhJ0AAAAAAAAADIGwEwAAAAAAAIAhEHYCAAAAAAAAMATCTgAAAAAAAACGQNgJ\nAAAAAAAAwBAIOwEAAAAAAAAYAmEnAAAAAAAAAEMg7AQAAAAAAABgCISdAAAAAAAAAAyBsBMAAAAA\nAACAIRB2AgAAAAAAADAEwk4AAAAAAAAAhkDYCQAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAIByfH19\nNWvWrDsy1saNG2UymZSfn39HxgMAAMZlslgsFlsXAQAAAODOycvL07/+9S+tXr1aR44ckaurqwID\nAzVo0CA9++yzcnZ21qlTp+Tk5KTatWvf9nqKi4t15swZ1a9fXyaT6baPBwAAjKumrQsAAAAAcOcc\nOnRI7du3l6urq6ZNm6aQkBA5Ojpqz549WrJkidzd3TV48GB5eHhUeKzi4mLZ29tf9zp7e3t5eXlV\neDwAAACWsQMAAADVyPPPPy87Oztt27ZNAwcOVLNmzeTn56fevXvrs88+06BBgySVX8ZuMpm0YsWK\nMve60jUxMTHq16+fnJycNGHCBEnSmjVrFBwcrFq1aqljx476+OOPZTKZdOjQIUnll7HHx8fL2dm5\nzFgsdQcAADeCsBMAAACoJk6fPq1169ZpzJgxcnJyuuI1FV1GPnXqVPXs2VPp6ekaM2aMcnJy1K9f\nP/Xq1UtpaWl64YUX9Morr1RoDAAAgKsh7AQAAACqiezsbFksFgUHB5c57u3tLWdnZzk7O2vUqFEV\nGuOpp57S8OHD5e/vLz8/P7399tvy9/fXnDlzFBwcrP79+1d4DAAAgKsh7AQAAACquc2bN2vXrl1q\n27atioqKKnSvsLCwMh9nZmYqPDy8zLF27dpVaAwAAICroUERAAAAUE0EBgbKZDIpMzOzzHE/Pz9J\numbndZPJJIvFUuZYSUlJueuutjz+ZtjZ2d3QWAAAAH/EzE4AAACgmnB3d1f37t21YMECXbhw4aZe\n6+HhoePHj1s/zsvLK/Px1dx///3atm1bmWOpqanXHauwsFDnzp2zHtu1a9dN1QsAAKonwk4AAACg\nGlm4cKHMZrNCQ0P10UcfKSMjQ/v27dNHH32ktLQ01ahR44qv69q1q2JiYrRt2zbt3LlTkZGRqlWr\n1nXHGzVqlPbv36/o6Gj9/PPP+uSTT/TOO+9IunozpHbt2snJyUn/+Mc/lJ2draSkJC1cuPDWHxoA\nAFQbhJ0AAABANeLv76+dO3cqIiJCr732mh544AG1adNGc+bM0ejRo/Xvf//7iq+bPXu2/P391blz\nZ/Xv31/Dhw+Xp6fndce77777lJSUpFWrVqlVq1aaO3euJk+eLElXDUvd3Ny0dOlSff3112rZsqUW\nL16sadOm3fpDAwCAasNk+eNmOAAAAABwG82bN0+TJk3S2bNnrzq7EwAA4FbQoAgAAADAbRUTE6Pw\n8HB5eHjohx9+0LRp0xQZGUnQCQAAKh1hJwAAAIDbKjs7WzNmzNDp06fl7e2tUaNGadKkSbYuCwAA\nGBDL2AEAAAAAAAAYAg2KAAAAAAAAABgCYScAAAAAAAAAQyDsBAAAAAAAAGAIhJ0AAAAAAAAADIGw\nEwAAAAAAAIAhEHYCAAAAAAAAMATCTgAAAAAAAACGQNgJAAAAAAAAwBAIOwEAAAAAAAAYAmEnAAAA\nAAAAAEMg7AQAAAAAAABgCISdAAAAAAAAAAyBsBMAAAAAAACAIRB2AgAAAAAAADAEwk4AAAAAAAAA\nhkDYCQAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAAAAAABDIOwEAAAAAAAAYAiEnQAAAAAAAAAMgbAT\nAAAAAAAAgCEQdgIAAAAAAAAwBMJOAAAAAAAAAIZA2AkAAAAAAADAEAg7AQAAAAAAABgCYScAAAAA\nAAAAQyDsBAAAAAAAAGAIhJ0AAAAAAAAADIGwEwAAAAAAAIAhEHYCAAAAAAAAMATCTgAAAAAAAACG\nQNgJAAAAAAAAwBAIOwEAAAAAAAAYAmEnAAAAAAAAAEMg7AQAAAAAAABgCISdAAAAAAAAAAyBsBMA\nAAAAAACAIRB2AgAAAAAAADAEwk4AAAAAAAAAhkDYCQAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAAAA\nAABDIOwEAAAAAAAAYAiEnQAAAAAAAAAMgbATAAAAAAAAgCEQdgIAAAAAAAAwBMJOAAAAAAAAAIZA\n2AkAAAAAAADAEAg7AQAAAAAAABgCYScAAAAAAAAAQyDsBAAAAAAAAGAIhJ0AAAAAAAAADIGwEwAA\nAAAAAIAhEHYCAAAAAAAAMATCTgAAAAAAAACGQNgJAAAAAAAAwBAIOwEAAAAAAAAYAmEnAAAAAAAA\nAEMg7AQAAAAAAABgCISdAAAAAAAAAAyBsBMAAAAAAACAIRB2AgAAAAAAADAEwk4AAAAAAAAAhkDY\nCQAAAAAAAMAQCDsBAAAAAAAAGAJhJwAAAAAAAABDIOwEAAAAAAAAYAiEnQAAAAAAAAAMgbATAAAA\nAAAAgCEQdgIAAAAAAAAwBMJOAAAAAAAAAIbw/w8Gv+6fOvtiAAAAAElFTkSuQmCC\n",
"text/plain": [
"<matplotlib.figure.Figure at 0x7efbc06a4b70>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"show_map(node_colors)"
]
},
{
"cell_type": "markdown",
"source": [
"Voila! You see, the romania map as shown in the Figure[3.2] in the book. Now, see how different searching algorithms perform with our problem statements."
]
},
{
"cell_type": "markdown",
"## SEARCHING ALGORITHMS VISUALIZATION\n",
"In this section, we have visualizations of the following searching algorithms:\n",
"1. Breadth First Tree Search - Implemented\n",
"2. Depth First Tree Search - Implemented\n",
"3. Depth First Graph Search - Implemented\n",
"4. Breadth First Search - Implemented\n",
"5. Best First Graph Search - Implemented\n",
"6. Uniform Cost Search - Implemented\n",
"7. Depth Limited Search\n",
"8. Iterative Deepening Search\n",
"9. A\\*-Search - Implemented\n",
"10. Recursive Best First Search\n",
"\n",
"We add the colors to the nodes to have a nice visualisation when displaying. So, these are the different colors we are using in these visuals:\n",
"* Un-explored nodes - <font color='black'>white</font>\n",
"* Frontier nodes - <font color='orange'>orange</font>\n",
"* Currently exploring node - <font color='red'>red</font>\n",
"* Already explored nodes - <font color='gray'>gray</font>\n",
"Now, we will define some helper methods to display interactive buttons and sliders when visualising search algorithms."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def final_path_colors(problem, solution):\n",
" \"returns a node_colors dict of the final path provided the problem and solution\"\n",
" \n",
" # get initial node colors\n",
" final_colors = dict(initial_node_colors)\n",
" # color all the nodes in solution and starting node to green\n",
" final_colors[problem.initial] = \"green\"\n",
" for node in solution:\n",
" final_colors[node] = \"green\" \n",
" return final_colors\n",
"\n",
"\n",
"def display_visual(user_input, algorithm=None, problem=None):\n",
" if user_input == False:\n",
" def slider_callback(iteration):\n",
" # don't show graph for the first time running the cell calling this function\n",
" try:\n",
" show_map(all_node_colors[iteration])\n",
" except:\n",
" pass\n",
" def visualize_callback(Visualize):\n",
" if Visualize is True:\n",
" button.value = False\n",
" \n",
" global all_node_colors\n",
" \n",
" iterations, all_node_colors, node = algorithm(problem)\n",
" solution = node.solution()\n",
" all_node_colors.append(final_path_colors(problem, solution))\n",
" \n",
" slider.max = len(all_node_colors) - 1\n",
" \n",
" for i in range(slider.max + 1):\n",
" slider.value = i\n",
" \n",
" slider = widgets.IntSlider(min=0, max=1, step=1, value=0)\n",
" slider_visual = widgets.interactive(slider_callback, iteration = slider)\n",
" display(slider_visual)\n",
" button = widgets.ToggleButton(value = False)\n",
" button_visual = widgets.interactive(visualize_callback, Visualize = button)\n",
" display(button_visual)\n",
" \n",
" if user_input == True:\n",
" node_colors = dict(initial_node_colors)\n",
" if algorithm == None:\n",
" algorithms = {\"Breadth First Tree Search\": breadth_first_tree_search,\n",
" \"Depth First Tree Search\": depth_first_tree_search,\n",
" \"Breadth First Search\": breadth_first_search,\n",
" \"Depth First Graph Search\": depth_first_graph_search,\n",
" \"Uniform Cost Search\": uniform_cost_search,\n",
" \"A-star Search\": astar_search}\n",
" algo_dropdown = widgets.Dropdown(description = \"Search algorithm: \",\n",
" options = sorted(list(algorithms.keys())),\n",
" value = \"Breadth First Tree Search\")\n",
" display(algo_dropdown)\n",
" \n",
" def slider_callback(iteration):\n",
" # don't show graph for the first time running the cell calling this function\n",
" try:\n",
" show_map(all_node_colors[iteration])\n",
" except:\n",
" pass\n",
" def visualize_callback(Visualize):\n",
" if Visualize is True:\n",
" button.value = False\n",
" \n",
" problem = GraphProblem(start_dropdown.value, end_dropdown.value, romania_map)\n",
" global all_node_colors\n",
" \n",
" if algorithm == None:\n",
" user_algorithm = algorithms[algo_dropdown.value]\n",
" \n",
"# print(user_algorithm)\n",
"# print(problem)\n",
" \n",
" iterations, all_node_colors, node = user_algorithm(problem)\n",
" solution = node.solution()\n",
" all_node_colors.append(final_path_colors(problem, solution))\n",
" slider.max = len(all_node_colors) - 1\n",
" \n",
" for i in range(slider.max + 1):\n",
" slider.value = i\n",
"# time.sleep(.5)\n",
" start_dropdown = widgets.Dropdown(description = \"Start city: \",\n",
" options = sorted(list(node_colors.keys())), value = \"Arad\")\n",
" display(start_dropdown)\n",
" end_dropdown = widgets.Dropdown(description = \"Goal city: \",\n",
" options = sorted(list(node_colors.keys())), value = \"Fagaras\")\n",
" display(end_dropdown)\n",
" \n",
" button = widgets.ToggleButton(value = False)\n",
" button_visual = widgets.interactive(visualize_callback, Visualize = button)\n",
" display(button_visual)\n",
" \n",
" slider = widgets.IntSlider(min=0, max=1, step=1, value=0)\n",
" slider_visual = widgets.interactive(slider_callback, iteration = slider)\n",
" display(slider_visual)"
]
},
{
"cell_type": "markdown",
"## BREADTH-FIRST TREE SEARCH\n",
"We have a working implementation in search module. But as we want to interact with the graph while it is searching, we need to modify the implementation. Here's the modified breadth first tree search."
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"collapsed": true
},
"source": [
"def tree_search(problem, frontier):\n",
" \"\"\"Search through the successors of a problem to find a goal.\n",
" The argument frontier should be an empty queue.\n",
" Don't worry about repeated paths to a state. [Figure 3.7]\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" frontier.append(Node(problem.initial))\n",
" node_colors[Node(problem.initial).state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" # modify the currently searching node to red\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" # modify goal node to green after reaching the goal\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" frontier.extend(node.expand(problem))\n",
" \n",
" for n in node.expand(problem):\n",
" node_colors[n.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" # modify the color of explored nodes to gray\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None\n",
"\n",
"def breadth_first_tree_search(problem):\n",
" \"Search the shallowest nodes in the search tree first.\"\n",
" iterations, all_node_colors, node = tree_search(problem, FIFOQueue())\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "markdown",
"Now, we use ipywidgets to display a slider, a button and our romania map. By sliding the slider we can have a look at all the intermediate steps of a particular search algorithm. By pressing the button **Visualize**, you can see all the steps without interacting with the slider. These two helper functions are the callback functions which are called when we interact with the slider and the button.\n",
"\n"
]
},
{
"cell_type": "code",
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
"execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "d55324f7343a4c71a9a2d4da6d037037"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b07a3813dd724c51a9b37f646cf2be25"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Fagaras', romania_map)\n",
"display_visual(user_input = False, algorithm = breadth_first_tree_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Depth-First Tree Search:\n",
"Now let's discuss another searching algorithm, Depth-First Tree Search."
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {
"collapsed": true
},
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
"source": [
"def depth_first_tree_search(problem):\n",
" \"Search the deepest nodes in the search tree first.\"\n",
" # This algorithm might not work in case of repeated paths\n",
" # and may run into an infinite while loop.\n",
" iterations, all_node_colors, node = tree_search(problem, Stack())\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "523b10cf84e54798a044ee714b864b52"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "aecea953f6a448c192ac8e173cf46e35"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Oradea', romania_map)\n",
"display_visual(user_input = False, algorithm = depth_first_tree_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {
"## BREADTH-FIRST SEARCH\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 17,
},
"outputs": [],
"source": [
"def breadth_first_search(problem):\n",
" \"[Figure 3.11]\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier = FIFOQueue()\n",
" frontier.append(node)\n",
" \n",
" # modify the color of frontier nodes to blue\n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored.add(node.state) \n",
" \n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" if problem.goal_test(child.state):\n",
" node_colors[child.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, child)\n",
" frontier.append(child)\n",
"\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None"
]
},
{
"cell_type": "code",
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "735a3dea191a42b6bd97fdfd337ea3e7"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "ef445770d70a4b7c9d1544b98a55ca4d"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = breadth_first_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Depth-First Graph Search: \n",
"Although we have a working implementation in search module, we have to make a few changes in the algorithm to make it suitable for visualization."
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"collapsed": true
},
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
"source": [
"def graph_search(problem, frontier):\n",
" \"\"\"Search through the successors of a problem to find a goal.\n",
" The argument frontier should be an empty queue.\n",
" If two paths reach a state, only use the first one. [Figure 3.7]\"\"\"\n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" frontier.append(Node(problem.initial))\n",
" explored = set()\n",
" \n",
" # modify the color of frontier nodes to orange\n",
" node_colors[Node(problem.initial).state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" while frontier:\n",
" # Popping first node of queue\n",
" node = frontier.pop()\n",
" \n",
" # modify the currently searching node to red\n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" # modify goal node to green after reaching the goal\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" frontier.extend(child for child in node.expand(problem)\n",
" if child.state not in explored and\n",
" child not in frontier)\n",
" \n",
" for n in frontier:\n",
" # modify the color of frontier nodes to orange\n",
" node_colors[n.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" # modify the color of explored nodes to gray\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" return None\n",
"\n",
"\n",
"def depth_first_graph_search(problem):\n",
" \"\"\"Search the deepest nodes in the search tree first.\"\"\"\n",
" iterations, all_node_colors, node = graph_search(problem, Stack())\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "61149ffbc02846af97170f8975d4f11d"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "90b1f8f77fdb4207a3570fbe88a0bdf6"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = depth_first_graph_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"## UNIFORM COST SEARCH\n",
"\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 22,
},
"outputs": [],
"source": [
"def best_first_graph_search(problem, f):\n",
" \"\"\"Search the nodes with the lowest f scores first.\n",
" You specify the function f(node) that you want to minimize; for example,\n",
" if f is a heuristic estimate to the goal, then we have greedy best\n",
" first search; if f is node.depth then we have breadth-first search.\n",
" There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n",
" values will be cached on the nodes as they are computed. So after doing\n",
" a best first search you can examine the f values of the path returned.\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" f = memoize(f, 'f')\n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier = PriorityQueue(min, f)\n",
" frontier.append(node)\n",
" \n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" elif child in frontier:\n",
" incumbent = frontier[child]\n",
" if f(child) < f(incumbent):\n",
" del frontier[incumbent]\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None\n",
"\n",
"def uniform_cost_search(problem):\n",
" \"[Figure 3.14]\"\n",
" iterations, all_node_colors, node = best_first_graph_search(problem, lambda node: node.path_cost)\n",
" return(iterations, all_node_colors, node)"
"cell_type": "code",
"execution_count": 23,
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a667c668001e4e598478ba4a870c6aec"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "135c6bd739de4aab8fc7b2fcb6b90954"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = uniform_cost_search, problem = romania_problem)"
"cell_type": "markdown",
"metadata": {},
"## A\\* SEARCH\n",
"\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 24,
},
"outputs": [],
"source": [
"def best_first_graph_search(problem, f):\n",
" \"\"\"Search the nodes with the lowest f scores first.\n",
" You specify the function f(node) that you want to minimize; for example,\n",
" if f is a heuristic estimate to the goal, then we have greedy best\n",
" first search; if f is node.depth then we have breadth-first search.\n",
" There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n",
" values will be cached on the nodes as they are computed. So after doing\n",
" a best first search you can examine the f values of the path returned.\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" f = memoize(f, 'f')\n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier = PriorityQueue(min, f)\n",
" frontier.append(node)\n",
" \n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" elif child in frontier:\n",
" incumbent = frontier[child]\n",
" if f(child) < f(incumbent):\n",
" del frontier[incumbent]\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None\n",
"\n",
"def astar_search(problem, h=None):\n",
" \"\"\"A* search is best-first graph search with f(n) = g(n)+h(n).\n",
" You need to specify the h function when you call astar_search, or\n",
" else in your Problem subclass.\"\"\"\n",
" h = memoize(h or problem.h, 'h')\n",
" iterations, all_node_colors, node = best_first_graph_search(problem, lambda n: n.path_cost + h(n))\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
"execution_count": 43,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "3e62c492a82044e4813ad5d84e698874"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "b661fd0c0c8d495db2672aedc25b9a44"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = astar_search, problem = romania_problem)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"scrolled": false
},
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7f1ffa858c92429bb28f74c23c0c939c"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "7a98e98ffec14520b93ce542f5169bcc"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "094beb8cf34c4a5b87f8368539d24091"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "a8f89c87de964ee69004902763e68a54"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "2ccdb4aba3ee4371a78306755e5642ad"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"# display_visual(user_input = True, algorithm = breadth_first_tree_search)\n",
"display_visual(user_input = True)"
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## BEST FIRST SEARCH\n",
"Let's change all the node_colors to starting position and define a different problem statement."
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [],
"source": [
"def best_first_graph_search(problem, f):\n",
" \"\"\"Search the nodes with the lowest f scores first.\n",
" You specify the function f(node) that you want to minimize; for example,\n",
" if f is a heuristic estimate to the goal, then we have greedy best\n",
" first search; if f is node.depth then we have breadth-first search.\n",
" There is a subtlety: the line \"f = memoize(f, 'f')\" means that the f\n",
" values will be cached on the nodes as they are computed. So after doing\n",
" a best first search you can examine the f values of the path returned.\"\"\"\n",
" \n",
" # we use these two variables at the time of visualisations\n",
" iterations = 0\n",
" all_node_colors = []\n",
" node_colors = dict(initial_node_colors)\n",
" \n",
" f = memoize(f, 'f')\n",
" node = Node(problem.initial)\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" frontier = PriorityQueue(min, f)\n",
" frontier.append(node)\n",
" \n",
" node_colors[node.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" explored = set()\n",
" while frontier:\n",
" node = frontier.pop()\n",
" \n",
" node_colors[node.state] = \"red\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" \n",
" if problem.goal_test(node.state):\n",
" node_colors[node.state] = \"green\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return(iterations, all_node_colors, node)\n",
" \n",
" explored.add(node.state)\n",
" for child in node.expand(problem):\n",
" if child.state not in explored and child not in frontier:\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" elif child in frontier:\n",
" incumbent = frontier[child]\n",
" if f(child) < f(incumbent):\n",
" del frontier[incumbent]\n",
" frontier.append(child)\n",
" node_colors[child.state] = \"orange\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
"\n",
" node_colors[node.state] = \"gray\"\n",
" iterations += 1\n",
" all_node_colors.append(dict(node_colors))\n",
" return None\n",
"\n",
"def best_first_search(problem, h=None):\n",
" \"\"\"Best-first graph search is an informative searching algorithm with f(n) = h(n).\n",
" You need to specify the h function when you call best_first_search, or\n",
" else in your Problem subclass.\"\"\"\n",
" h = memoize(h or problem.h, 'h')\n",
" iterations, all_node_colors, node = best_first_graph_search(problem, lambda n: h(n))\n",
" return(iterations, all_node_colors, node)"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "5ae2d521b74743afa988c462a851c269"
}
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "559c20b044a4469db7f0ab8c3fae1022"
}
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"all_node_colors = []\n",
"romania_problem = GraphProblem('Arad', 'Bucharest', romania_map)\n",
"display_visual(user_input = False, algorithm = best_first_search, problem = romania_problem)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Different heuristics provide different efficiency in solving A* problems which are generally defined by the number of explored nodes as well as the branching factor. With the classic 8 puzzle we can show the efficiency of different heuristics through the number of explored nodes.\n",
"The *8 Puzzle Problem* consists of a 3x3 tray in which the goal is to get the initial configuration to the goal state by shifting the numbered tiles into the blank space.\n",
" Initial State Goal State\n",
" | 7 | 2 | 4 | | 0 | 1 | 2 |\n",
" | 5 | 0 | 6 | | 3 | 4 | 5 |\n",
" | 8 | 3 | 1 | | 6 | 7 | 8 |\n",
" \n",
"We have a total of 9 blank tiles giving us a total of 9! initial configuration but not all of these are solvable, the solvability of a configuration can be checked by calculating the Inversion Permutation. If the total Inversion Permutation is even then the initial configuration is solvable else the initial configuration is not solvable which means that only 9!/2 initial states lead to a solution.\n",
"1.) Manhattan Distance:- For the 8 puzzle problem Manhattan distance is defined as the distance of a tile from its goal state( for the tile numbered '1' in the initial configuration Manhattan distance is 4 \"2 for left and 2 for upward displacement\").\n",
"2.) No. of Misplaced Tiles:- The heuristic calculates the number of misplaced tiles between the current state and goal state.\n",
"3.) Sqrt of Manhattan Distance:- It calculates the square root of Manhattan distance.\n",
"4.) Max Heuristic:- It assign the score as max of Manhattan Distance and No. of misplaced tiles. "
]
},
{
"cell_type": "code",
"execution_count": 2,
Aman Deep Singh
a validé
"metadata": {
"collapsed": true
},
"# heuristics for 8 Puzzle Problem\n",
"\n",
"def linear(state,goal):\n",
" return sum([1 if state[i] != goal[i] else 0 for i in range(8)])\n",
"\n",
"def manhanttan(state,goal):\n",
"\tindex_goal = {0:[2,2], 1:[0,0], 2:[0,1], 3:[0,2], 4:[1,0], 5:[1,1], 6:[1,2], 7:[2,0], 8:[2,1]}\n",
"\tindex_state = {}\n",
"\tindex = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]\n",
"\tx=0\n",
"\ty=0\n",
"\tfor i in range(len(state)):\n",
"\t\tindex_state[state[i]] = index[i]\n",
"\tmhd = 0\n",
"\tfor i in range(8):\n",
"\t\tfor j in range(2):\n",
"\t\t\tmhd = abs(index_goal[i][j] - index_state[i][j]) + mhd\n",
"\treturn mhd\n",
"\n",
"def sqrt_manhanttan(state,goal):\n",
"\tindex_goal = {0:[2,2], 1:[0,0], 2:[0,1], 3:[0,2], 4:[1,0], 5:[1,1], 6:[1,2], 7:[2,0], 8:[2,1]}\n",
"\tindex_state = {}\n",
"\tindex = [[0,0], [0,1], [0,2], [1,0], [1,1], [1,2], [2,0], [2,1], [2,2]]\n",
"\tx=0\n",
"\ty=0\n",
"\tfor i in range(len(state)):\n",
"\t\tindex_state[state[i]] = index[i]\n",
"\tmhd = 0\n",
"\tfor i in range(8):\n",
"\t\tfor j in range(2):\n",
"\t\t\tmhd = (index_goal[i][j] - index_state[i][j])**2 + mhd\n",
"\treturn math.sqrt(mhd)\n",
"\n",
"def max_heuristic(state,goal):\n",
"\tscore1 = manhanttan(state, goal)\n",
"\tscore2 = linear(state, goal)\n",
"\treturn max(score1, score2)\t\t\n"
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"True\n",
"Number of explored nodes by the following heuristic are: 126\n",
"[2, 4, 3, 1, 5, 6, 7, 8, 0]\n",
"[2, 4, 3, 1, 5, 0, 7, 8, 6]\n",
"[2, 4, 3, 1, 0, 5, 7, 8, 6]\n",
"[2, 0, 3, 1, 4, 5, 7, 8, 6]\n",
"[0, 2, 3, 1, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 0, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 0, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 0, 7, 8, 6]\n",
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
"[1, 2, 3, 4, 5, 6, 7, 8, 0]\n",
"Number of explored nodes by the following heuristic are: 129\n",
"[2, 4, 3, 1, 5, 6, 7, 8, 0]\n",
"[2, 4, 3, 1, 5, 0, 7, 8, 6]\n",
"[2, 4, 3, 1, 0, 5, 7, 8, 6]\n",
"[2, 0, 3, 1, 4, 5, 7, 8, 6]\n",
"[0, 2, 3, 1, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 0, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 0, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 0, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 6, 7, 8, 0]\n",
"Number of explored nodes by the following heuristic are: 126\n",
"[2, 4, 3, 1, 5, 6, 7, 8, 0]\n",
"[2, 4, 3, 1, 5, 0, 7, 8, 6]\n",
"[2, 4, 3, 1, 0, 5, 7, 8, 6]\n",
"[2, 0, 3, 1, 4, 5, 7, 8, 6]\n",
"[0, 2, 3, 1, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 0, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 0, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 0, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 6, 7, 8, 0]\n",
"Number of explored nodes by the following heuristic are: 139\n",
"[2, 4, 3, 1, 5, 6, 7, 8, 0]\n",
"[2, 4, 3, 1, 5, 0, 7, 8, 6]\n",
"[2, 4, 3, 1, 0, 5, 7, 8, 6]\n",
"[2, 0, 3, 1, 4, 5, 7, 8, 6]\n",
"[0, 2, 3, 1, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 0, 4, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 0, 5, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 0, 7, 8, 6]\n",
"[1, 2, 3, 4, 5, 6, 7, 8, 0]\n"
]
}
],
"source": [
"# Solving the puzzle \n",
"puzzle = EightPuzzle()\n",
"puzzle.checkSolvability([2,4,3,1,5,6,7,8,0]) # checks whether the initialized configuration is solvable or not\n",
"puzzle.solve([2,4,3,1,5,6,7,8,0],[1,2,3,4,5,6,7,8,0],max_heuristic) # Max_heuristic\n",
"puzzle.solve([2,4,3,1,5,6,7,8,0],[1,2,3,4,5,6,7,8,0],linear) # Linear\n",
"puzzle.solve([2,4,3,1,5,6,7,8,0],[1,2,3,4,5,6,7,8,0],manhanttan) # Manhattan\n",
"puzzle.solve([2,4,3,1,5,6,7,8,0],[1,2,3,4,5,6,7,8,0],sqrt_manhanttan) # Sqrt_manhattan"
{
"cell_type": "markdown",
"\n",
"Genetic algorithms (or GA) are inspired by natural evolution and are particularly useful in optimization and search problems with large state spaces.\n",
"\n",
"Given a problem, algorithms in the domain make use of a *population* of solutions (also called *states*), where each solution/state represents a feasible solution. At each iteration (often called *generation*), the population gets updated using methods inspired by biology and evolution, like *crossover*, *mutation* and *natural selection*."
]
},
{
"cell_type": "markdown",
"source": [
"### Overview\n",
"\n",
"A genetic algorithm works in the following way:\n",
"\n",
"1) Initialize random population.\n",
"\n",
"2) Calculate population fitness.\n",
"\n",
"3) Select individuals for mating.\n",
"\n",
"4) Mate selected individuals to produce new population.\n",
"\n",
" * Random chance to mutate individuals.\n",
"\n",
"5) Repeat from step 2) until an individual is fit enough or the maximum number of iterations was reached."
]
},
{
"cell_type": "markdown",
"### Glossary\n",
"\n",
"Before we continue, we will lay the basic terminology of the algorithm.\n",
"\n",
"* Individual/State: A list of elements (called *genes*) that represent possible solutions.\n",
"* Population: The list of all the individuals/states.\n",
"\n",
"* Gene pool: The alphabet of possible values for an individual's genes.\n",
"\n",
"* Generation/Iteration: The number of times the population will be updated.\n",
"\n",
"* Fitness: An individual's score, calculated by a function specific to the problem."
]
},
{
"cell_type": "markdown",
"### Crossover\n",
"\n",
"Two individuals/states can \"mate\" and produce one child. This offspring bears characteristics from both of its parents. There are many ways we can implement this crossover. Here we will take a look at the most common ones. Most other methods are variations of those below.\n",
"\n",
"* Point Crossover: The crossover occurs around one (or more) point. The parents get \"split\" at the chosen point or points and then get merged. In the example below we see two parents get split and merged at the 3rd digit, producing the following offspring after the crossover.\n",
"\n",
"\n",
"\n",
"* Uniform Crossover: This type of crossover chooses randomly the genes to get merged. Here the genes 1, 2 and 5 were chosen from the first parent, so the genes 3, 4 were added by the second parent.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"### Mutation\n",
"\n",
"When an offspring is produced, there is a chance it will mutate, having one (or more, depending on the implementation) of its genes altered.\n",
"\n",
"For example, let's say the new individual to undergo mutation is \"abcde\". Randomly we pick to change its third gene to 'z'. The individual now becomes \"abzde\" and is added to the population."
]
},
{
"cell_type": "markdown",
"At each iteration, the fittest individuals are picked randomly to mate and produce offsprings. We measure an individual's fitness with a *fitness function*. That function depends on the given problem and it is used to score an individual. Usually the higher the better.\n",
"The selection process is this:\n",
"1) Individuals are scored by the fitness function.\n",
"\n",
"2) Individuals are picked randomly, according to their score (higher score means higher chance to get picked). Usually the formula to calculate the chance to pick an individual is the following (for population *P* and individual *i*):\n",
"\n",
"$$ chance(i) = \\dfrac{fitness(i)}{\\sum_{k \\, in \\, P}{fitness(k)}} $$"
]
},
{
"cell_type": "markdown",
"### Implementation\n",
"\n",
"Below we look over the implementation of the algorithm in the `search` module.\n",
"\n",
"First the implementation of the main core of the algorithm:"
]
},
{
"cell_type": "code",
Aman Deep Singh
a validé
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">genetic_algorithm</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"o\">=</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">],</span> <span class=\"n\">f_thres</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">ngen</span><span class=\"o\">=</span><span class=\"mi\">1000</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"o\">=</span><span class=\"mf\">0.1</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""[Figure 4.8]"""</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">ngen</span><span class=\"p\">):</span>\n",
" <span class=\"n\">population</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">mutate</span><span class=\"p\">(</span><span class=\"n\">recombine</span><span class=\"p\">(</span><span class=\"o\">*</span><span class=\"n\">select</span><span class=\"p\">(</span><span class=\"mi\">2</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">)),</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">))]</span>\n",
"\n",
" <span class=\"n\">fittest_individual</span> <span class=\"o\">=</span> <span class=\"n\">fitness_threshold</span><span class=\"p\">(</span><span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">f_thres</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">)</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">fittest_individual</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">fittest_individual</span>\n",
"\n",
"\n",
" <span class=\"k\">return</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">fitness_fn</span><span class=\"p\">)</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
Aman Deep Singh
a validé
"psource(genetic_algorithm)"
]
},
{
"cell_type": "markdown",
"source": [
"The algorithm takes the following input:\n",
"\n",
"* `population`: The initial population.\n",
"\n",
"* `fitness_fn`: The problem's fitness function.\n",
"\n",
"* `gene_pool`: The gene pool of the states/individuals. By default 0 and 1.\n",
"* `f_thres`: The fitness threshold. If an individual reaches that score, iteration stops. By default 'None', which means the algorithm will not halt until the generations are ran.\n",
"\n",
"* `ngen`: The number of iterations/generations.\n",
"\n",
"* `pmut`: The probability of mutation.\n",
"\n",
"The algorithm gives as output the state with the largest score."
]
},
{
"cell_type": "markdown",
"For each generation, the algorithm updates the population. First it calculates the fitnesses of the individuals, then it selects the most fit ones and finally crosses them over to produce offsprings. There is a chance that the offspring will be mutated, given by `pmut`. If at the end of the generation an individual meets the fitness threshold, the algorithm halts and returns that individual.\n",
"\n",
Aman Deep Singh
a validé
"The function of mating is accomplished by the method `recombine`:"
]
},
{
"cell_type": "code",
Aman Deep Singh
a validé
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">recombine</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">y</span><span class=\"p\">):</span>\n",
" <span class=\"n\">n</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">)</span>\n",
" <span class=\"n\">c</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">n</span><span class=\"p\">)</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">x</span><span class=\"p\">[:</span><span class=\"n\">c</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">y</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"p\">:]</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(recombine)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The method picks at random a point and merges the parents (`x` and `y`) around it.\n",
"\n",
"The mutation is done in the method `mutate`:"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">mutate</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"p\">):</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">uniform</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">)</span> <span class=\"o\">>=</span> <span class=\"n\">pmut</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">x</span>\n",
"\n",
" <span class=\"n\">n</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">x</span><span class=\"p\">)</span>\n",
" <span class=\"n\">g</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">gene_pool</span><span class=\"p\">)</span>\n",
" <span class=\"n\">c</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">n</span><span class=\"p\">)</span>\n",
" <span class=\"n\">r</span> <span class=\"o\">=</span> <span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">g</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"n\">new_gene</span> <span class=\"o\">=</span> <span class=\"n\">gene_pool</span><span class=\"p\">[</span><span class=\"n\">r</span><span class=\"p\">]</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">x</span><span class=\"p\">[:</span><span class=\"n\">c</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"p\">[</span><span class=\"n\">new_gene</span><span class=\"p\">]</span> <span class=\"o\">+</span> <span class=\"n\">x</span><span class=\"p\">[</span><span class=\"n\">c</span><span class=\"o\">+</span><span class=\"mi\">1</span><span class=\"p\">:]</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(mutate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We pick a gene in `x` to mutate and a gene from the gene pool to replace it with.\n",
"\n",
"To help initializing the population we have the helper function `init_population`\":"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">init_population</span><span class=\"p\">(</span><span class=\"n\">pop_number</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">state_length</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""Initializes population for genetic algorithm</span>\n",
"<span class=\"sd\"> pop_number : Number of individuals in population</span>\n",
"<span class=\"sd\"> gene_pool : List of possible values for individuals</span>\n",
"<span class=\"sd\"> state_length: The length of each individual"""</span>\n",
" <span class=\"n\">g</span> <span class=\"o\">=</span> <span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">gene_pool</span><span class=\"p\">)</span>\n",
" <span class=\"n\">population</span> <span class=\"o\">=</span> <span class=\"p\">[]</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">pop_number</span><span class=\"p\">):</span>\n",
" <span class=\"n\">new_individual</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">gene_pool</span><span class=\"p\">[</span><span class=\"n\">random</span><span class=\"o\">.</span><span class=\"n\">randrange</span><span class=\"p\">(</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"n\">g</span><span class=\"p\">)]</span> <span class=\"k\">for</span> <span class=\"n\">j</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">state_length</span><span class=\"p\">)]</span>\n",
" <span class=\"n\">population</span><span class=\"o\">.</span><span class=\"n\">append</span><span class=\"p\">(</span><span class=\"n\">new_individual</span><span class=\"p\">)</span>\n",
"\n",
" <span class=\"k\">return</span> <span class=\"n\">population</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(init_population)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The function takes as input the number of individuals in the population, the gene pool and the length of each individual/state. It creates individuals with random genes and returns the population when done."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Explanation\n",
"\n",
"Before we solve problems using the genetic algorithm, we will explain how to intuitively understand the algorithm using a trivial exmaple.\n",
"\n",
"#### Generating Phrases\n",
"\n",
"In this problem, we use a genetic algorithm to generate a particular target phrase from a population of random strings. This is a classic example that helps build intuition about how to use this algorithm in other problems as well. Before we break the problem down, let us try to brute force the solution. Let us say that we want to generate the phrase \"genetic algorithm\". The phrase is 17 characters long. We can use any character from the 26 lowercase characters and the space character. To generate a random phrase of length 17, each space can be filled in 27 ways. So the total number of possible phrases is\n",
"\n",
"$$ 27^{17} = 2153693963075557766310747 $$\n",
"\n",
"which is a massive number. If we wanted to generate the phrase \"Genetic Algorithm\", we would also have to include all the 26 uppercase characters into consideration thereby increasing the sample space from 27 characters to 53 characters and the total number of possible phrases then would be\n",
"\n",
"$$ 53^{17} = 205442259656281392806087233013 $$\n",
"\n",
"If we wanted to include punctuations and numerals into the sample space, we would have further complicated an already impossible problem. Hence, brute forcing is not an option. Now we'll apply the genetic algorithm and see how it significantly reduces the search space. We essentially want to *evolve* our population of random strings so that they better approximate the target phrase as the number of generations increase. Genetic algorithms work on the principle of Darwinian Natural Selection according to which, there are three key concepts that need to be in place for evolution to happen. They are:\n",
"\n",
"1. <strong> Heredity </strong>: There must be a process in place by which children receive the properties of their parents. <br> \n",
"For this particular problem, two strings from the population will be chosen as parents and will be split at a random index and recombined as described in the `recombine` function to create a child. This child string will then be added to the new generation.\n",
"<pre>\n",
"</pre>\n",
"2. <strong> Variation </strong>: There must be a variety of traits present in the population or a means with which to introduce variation. <br>If there is no variation in the sample space, we might never reach the global optimum. To ensure that there is enough variation, we can initialize a large population, but this gets computationally expensive as the population gets larger. Hence, we often use another method called mutation. In this method, we randomly change one or more characters of some strings in the population based on a predefined probability value called the mutation rate or mutation probability as described in the `mutate` function. The mutation rate is usually kept quite low. A mutation rate of zero fails to introduce variation in the population and a high mutation rate (say 50%) is as good as a coin flip and the population fails to benefit from the previous recombinations. An optimum balance has to be maintained between population size and mutation rate so as to reduce the computational cost as well as have sufficient variation in the population.\n",
"<pre>\n",
"</pre>\n",
"3. <strong> Selection </strong>: There must be some mechanism by which some members of the population have the opportunity to be parents and pass down their genetic information and some do not. This is typically referred to as \"survival of the fittest\". <br>\n",
"There has to be some way of determining which phrases in our population have a better chance of eventually evolving into the target phrase. This is done by introducing a fitness function that calculates how close the generated phrase is to the target phrase. The function will simply return a scalar value corresponding to the number of matching characters between the generated phrase and the target phrase."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before solving the problem, we first need to define our target phrase."
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
Aman Deep Singh
a validé
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
"target = 'Genetic Algorithm'"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"We then need to define our gene pool, i.e the elements which an individual from the population might comprise of. Here, the gene pool contains all uppercase and lowercase letters of the English alphabet and the space character."
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# The ASCII values of uppercase characters ranges from 65 to 91\n",
"u_case = [chr(x) for x in range(65, 91)]\n",
"# The ASCII values of lowercase characters ranges from 97 to 123\n",
"l_case = [chr(x) for x in range(97, 123)]\n",
"\n",
"gene_pool = []\n",
"gene_pool.extend(u_case) # adds the uppercase list to the gene pool\n",
"gene_pool.extend(l_case) # adds the lowercase list to the gene pool\n",
"gene_pool.append(' ') # adds the space character to the gene pool"
]
},
{
"cell_type": "markdown",
Aman Deep Singh
a validé
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
"We now need to define the maximum size of each population. Larger populations have more variation but are computationally more expensive to run algorithms on."
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"max_population = 100"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"As our population is not very large, we can afford to keep a relatively large mutation rate."
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"mutation_rate = 0.07 # 7%"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Great! Now, we need to define the most important metric for the genetic algorithm, i.e the fitness function. This will simply return the number of matching characters between the generated sample and the target phrase."
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def fitness_fn(sample):\n",
" # initialize fitness to 0\n",
" fitness = 0\n",
" for i in range(len(sample)):\n",
" # increment fitness by 1 for every matching character\n",
" if sample[i] == target[i]:\n",
" fitness += 1\n",
" return fitness"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Before we run our genetic algorithm, we need to initialize a random population. We will use the `init_population` function to do this. We need to pass in the maximum population size, the gene pool and the length of each individual, which in this case will be the same as the length of the target phrase."
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"population = init_population(max_population, gene_pool, len(target))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We will now define how the individuals in the population should change as the number of generations increases. First, the `select` function will be run on the population to select *two* individuals with high fitness values. These will be the parents which will then be recombined using the `recombine` function to generate the child."
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"parents = select(2, population, fitness_fn) "
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"# The recombine function takes two parents as arguments, so we need to unpack the previous variable\n",
"child = recombine(*parents)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we need to apply a mutation according to the mutation rate. We call the `mutate` function on the child with the gene pool and mutation rate as the additional arguments."
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"child = mutate(child, gene_pool, mutation_rate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The above lines can be condensed into\n",
Aman Deep Singh
a validé
"`child = mutate(recombine(*select(2, population, fitness_fn)), gene_pool, mutation_rate)`\n",
"\n",
"And, we need to do this `for` every individual in the current population to generate the new population."
]
},
{
"cell_type": "code",
Aman Deep Singh
a validé
"execution_count": 42,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
Aman Deep Singh
a validé
"population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, mutation_rate) for i in range(len(population))]"
]
},
{
"cell_type": "markdown",
Aman Deep Singh
a validé
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
"The individual with the highest fitness can then be found using the `max` function."
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"current_best = max(population, key=fitness_fn)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Let's print this out"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['j', 'F', 'm', 'F', 'N', 'i', 'c', 'v', 'm', 'j', 'V', 'o', 'd', 'r', 't', 'V', 'H']\n"
]
}
],
"source": [
"print(current_best)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We see that this is a list of characters. This can be converted to a string using the join function"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"jFmFNicvmjVodrtVH\n"
]
}
],
"source": [
"current_best_string = ''.join(current_best)\n",
"print(current_best_string)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now need to define the conditions to terminate the algorithm. This can happen in two ways\n",
"1. Termination after a predefined number of generations\n",
"2. Termination when the fitness of the best individual of the current generation reaches a predefined threshold value.\n",
Aman Deep Singh
a validé
"We define these variables below"
]
},
{
"cell_type": "code",
Aman Deep Singh
a validé
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
"execution_count": 46,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"ngen = 1200 # maximum number of generations\n",
"# we set the threshold fitness equal to the length of the target phrase\n",
"# i.e the algorithm only terminates whne it has got all the characters correct \n",
"# or it has completed 'ngen' number of generations\n",
"f_thres = len(target)"
]
},
{
"cell_type": "markdown",
"metadata": {
"collapsed": true
},
"source": [
"To generate `ngen` number of generations, we run a `for` loop `ngen` number of times. After each generation, we calculate the fitness of the best individual of the generation and compare it to the value of `f_thres` using the `fitness_threshold` function. After every generation, we print out the best individual of the generation and the corresponding fitness value. Lets now write a function to do this."
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
Aman Deep Singh
a validé
"def genetic_algorithm_stepwise(population, fitness_fn, gene_pool=[0, 1], f_thres=None, ngen=1200, pmut=0.1):\n",
" for generation in range(ngen):\n",
" population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, pmut) for i in range(len(population))]\n",
" # stores the individual genome with the highest fitness in the current population\n",
" current_best = ''.join(max(population, key=fitness_fn))\n",
" print(f'Current best: {current_best}\\t\\tGeneration: {str(generation)}\\t\\tFitness: {fitness_fn(current_best)}\\r', end='')\n",
" \n",
" # compare the fitness of the current best individual to f_thres\n",
" fittest_individual = fitness_threshold(fitness_fn, f_thres, population)\n",
" \n",
" # if fitness is greater than or equal to f_thres, we terminate the algorithm\n",
" if fittest_individual:\n",
" return fittest_individual, generation\n",
" return max(population, key=fitness_fn) , generation "
]
},
{
"cell_type": "markdown",
Aman Deep Singh
a validé
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
"The function defined above is essentially the same as the one defined in `search.py` with the added functionality of printing out the data of each generation."
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<!DOCTYPE html PUBLIC \"-//W3C//DTD HTML 4.01//EN\"\n",
" \"http://www.w3.org/TR/html4/strict.dtd\">\n",
"\n",
"<html>\n",
"<head>\n",
" <title></title>\n",
" <meta http-equiv=\"content-type\" content=\"text/html; charset=None\">\n",
" <style type=\"text/css\">\n",
"td.linenos { background-color: #f0f0f0; padding-right: 10px; }\n",
"span.lineno { background-color: #f0f0f0; padding: 0 5px 0 5px; }\n",
"pre { line-height: 125%; }\n",
"body .hll { background-color: #ffffcc }\n",
"body { background: #f8f8f8; }\n",
"body .c { color: #408080; font-style: italic } /* Comment */\n",
"body .err { border: 1px solid #FF0000 } /* Error */\n",
"body .k { color: #008000; font-weight: bold } /* Keyword */\n",
"body .o { color: #666666 } /* Operator */\n",
"body .ch { color: #408080; font-style: italic } /* Comment.Hashbang */\n",
"body .cm { color: #408080; font-style: italic } /* Comment.Multiline */\n",
"body .cp { color: #BC7A00 } /* Comment.Preproc */\n",
"body .cpf { color: #408080; font-style: italic } /* Comment.PreprocFile */\n",
"body .c1 { color: #408080; font-style: italic } /* Comment.Single */\n",
"body .cs { color: #408080; font-style: italic } /* Comment.Special */\n",
"body .gd { color: #A00000 } /* Generic.Deleted */\n",
"body .ge { font-style: italic } /* Generic.Emph */\n",
"body .gr { color: #FF0000 } /* Generic.Error */\n",
"body .gh { color: #000080; font-weight: bold } /* Generic.Heading */\n",
"body .gi { color: #00A000 } /* Generic.Inserted */\n",
"body .go { color: #888888 } /* Generic.Output */\n",
"body .gp { color: #000080; font-weight: bold } /* Generic.Prompt */\n",
"body .gs { font-weight: bold } /* Generic.Strong */\n",
"body .gu { color: #800080; font-weight: bold } /* Generic.Subheading */\n",
"body .gt { color: #0044DD } /* Generic.Traceback */\n",
"body .kc { color: #008000; font-weight: bold } /* Keyword.Constant */\n",
"body .kd { color: #008000; font-weight: bold } /* Keyword.Declaration */\n",
"body .kn { color: #008000; font-weight: bold } /* Keyword.Namespace */\n",
"body .kp { color: #008000 } /* Keyword.Pseudo */\n",
"body .kr { color: #008000; font-weight: bold } /* Keyword.Reserved */\n",
"body .kt { color: #B00040 } /* Keyword.Type */\n",
"body .m { color: #666666 } /* Literal.Number */\n",
"body .s { color: #BA2121 } /* Literal.String */\n",
"body .na { color: #7D9029 } /* Name.Attribute */\n",
"body .nb { color: #008000 } /* Name.Builtin */\n",
"body .nc { color: #0000FF; font-weight: bold } /* Name.Class */\n",
"body .no { color: #880000 } /* Name.Constant */\n",
"body .nd { color: #AA22FF } /* Name.Decorator */\n",
"body .ni { color: #999999; font-weight: bold } /* Name.Entity */\n",
"body .ne { color: #D2413A; font-weight: bold } /* Name.Exception */\n",
"body .nf { color: #0000FF } /* Name.Function */\n",
"body .nl { color: #A0A000 } /* Name.Label */\n",
"body .nn { color: #0000FF; font-weight: bold } /* Name.Namespace */\n",
"body .nt { color: #008000; font-weight: bold } /* Name.Tag */\n",
"body .nv { color: #19177C } /* Name.Variable */\n",
"body .ow { color: #AA22FF; font-weight: bold } /* Operator.Word */\n",
"body .w { color: #bbbbbb } /* Text.Whitespace */\n",
"body .mb { color: #666666 } /* Literal.Number.Bin */\n",
"body .mf { color: #666666 } /* Literal.Number.Float */\n",
"body .mh { color: #666666 } /* Literal.Number.Hex */\n",
"body .mi { color: #666666 } /* Literal.Number.Integer */\n",
"body .mo { color: #666666 } /* Literal.Number.Oct */\n",
"body .sa { color: #BA2121 } /* Literal.String.Affix */\n",
"body .sb { color: #BA2121 } /* Literal.String.Backtick */\n",
"body .sc { color: #BA2121 } /* Literal.String.Char */\n",
"body .dl { color: #BA2121 } /* Literal.String.Delimiter */\n",
"body .sd { color: #BA2121; font-style: italic } /* Literal.String.Doc */\n",
"body .s2 { color: #BA2121 } /* Literal.String.Double */\n",
"body .se { color: #BB6622; font-weight: bold } /* Literal.String.Escape */\n",
"body .sh { color: #BA2121 } /* Literal.String.Heredoc */\n",
"body .si { color: #BB6688; font-weight: bold } /* Literal.String.Interpol */\n",
"body .sx { color: #008000 } /* Literal.String.Other */\n",
"body .sr { color: #BB6688 } /* Literal.String.Regex */\n",
"body .s1 { color: #BA2121 } /* Literal.String.Single */\n",
"body .ss { color: #19177C } /* Literal.String.Symbol */\n",
"body .bp { color: #008000 } /* Name.Builtin.Pseudo */\n",
"body .fm { color: #0000FF } /* Name.Function.Magic */\n",
"body .vc { color: #19177C } /* Name.Variable.Class */\n",
"body .vg { color: #19177C } /* Name.Variable.Global */\n",
"body .vi { color: #19177C } /* Name.Variable.Instance */\n",
"body .vm { color: #19177C } /* Name.Variable.Magic */\n",
"body .il { color: #666666 } /* Literal.Number.Integer.Long */\n",
"\n",
" </style>\n",
"</head>\n",
"<body>\n",
"<h2></h2>\n",
"\n",
"<div class=\"highlight\"><pre><span></span><span class=\"k\">def</span> <span class=\"nf\">genetic_algorithm</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">gene_pool</span><span class=\"o\">=</span><span class=\"p\">[</span><span class=\"mi\">0</span><span class=\"p\">,</span> <span class=\"mi\">1</span><span class=\"p\">],</span> <span class=\"n\">f_thres</span><span class=\"o\">=</span><span class=\"bp\">None</span><span class=\"p\">,</span> <span class=\"n\">ngen</span><span class=\"o\">=</span><span class=\"mi\">1000</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"o\">=</span><span class=\"mf\">0.1</span><span class=\"p\">):</span>\n",
" <span class=\"sd\">"""[Figure 4.8]"""</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"n\">ngen</span><span class=\"p\">):</span>\n",
" <span class=\"n\">population</span> <span class=\"o\">=</span> <span class=\"p\">[</span><span class=\"n\">mutate</span><span class=\"p\">(</span><span class=\"n\">recombine</span><span class=\"p\">(</span><span class=\"o\">*</span><span class=\"n\">select</span><span class=\"p\">(</span><span class=\"mi\">2</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">fitness_fn</span><span class=\"p\">)),</span> <span class=\"n\">gene_pool</span><span class=\"p\">,</span> <span class=\"n\">pmut</span><span class=\"p\">)</span>\n",
" <span class=\"k\">for</span> <span class=\"n\">i</span> <span class=\"ow\">in</span> <span class=\"nb\">range</span><span class=\"p\">(</span><span class=\"nb\">len</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">))]</span>\n",
"\n",
" <span class=\"n\">fittest_individual</span> <span class=\"o\">=</span> <span class=\"n\">fitness_threshold</span><span class=\"p\">(</span><span class=\"n\">fitness_fn</span><span class=\"p\">,</span> <span class=\"n\">f_thres</span><span class=\"p\">,</span> <span class=\"n\">population</span><span class=\"p\">)</span>\n",
" <span class=\"k\">if</span> <span class=\"n\">fittest_individual</span><span class=\"p\">:</span>\n",
" <span class=\"k\">return</span> <span class=\"n\">fittest_individual</span>\n",
"\n",
"\n",
" <span class=\"k\">return</span> <span class=\"n\">argmax</span><span class=\"p\">(</span><span class=\"n\">population</span><span class=\"p\">,</span> <span class=\"n\">key</span><span class=\"o\">=</span><span class=\"n\">fitness_fn</span><span class=\"p\">)</span>\n",
"</pre></div>\n",
"</body>\n",
"</html>\n"
],
"text/plain": [
"<IPython.core.display.HTML object>"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"psource(genetic_algorithm)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We have defined all the required functions and variables. Let's now create a new population and test the function we wrote above."
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Current best: Genetic Algorithm\t\tGeneration: 472\t\tFitness: 17\r"
]
}
],
"source": [
"population = init_population(max_population, gene_pool, len(target))\n",
"solution, generations = genetic_algorithm_stepwise(population, fitness_fn, gene_pool, f_thres, ngen, mutation_rate)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The genetic algorithm was able to converge!\n",
"We implore you to rerun the above cell and play around with `target, max_population, f_thres, ngen` etc parameters to get a better intuition of how the algorithm works. To summarize, if we can define the problem states in simple array format and if we can create a fitness function to gauge how good or bad our approximate solutions are, there is a high chance that we can get a satisfactory solution using a genetic algorithm. \n",
"- There is also a better GUI version of this program `genetic_algorithm_example.py` in the GUI folder for you to play around with."
]
},
{
"cell_type": "markdown",
"source": [
"### Usage\n",
"Below we give two example usages for the genetic algorithm, for a graph coloring problem and the 8 queens problem.\n",
"First we will take on the simpler problem of coloring a small graph with two colors. Before we do anything, let's imagine how a solution might look. First, we have to represent our colors. Say, 'R' for red and 'G' for green. These make up our gene pool. What of the individual solutions though? For that, we will look at our problem. We stated we have a graph. A graph has nodes and edges, and we want to color the nodes. Naturally, we want to store each node's color. If we have four nodes, we can store their colors in a list of genes, one for each node. A possible solution will then look like this: ['R', 'R', 'G', 'R']. In the general case, we will represent each solution with a list of chars ('R' and 'G'), with length the number of nodes.\n",
"Next we need to come up with a fitness function that appropriately scores individuals. Again, we will look at the problem definition at hand. We want to color a graph. For a solution to be optimal, no edge should connect two nodes of the same color. How can we use this information to score a solution? A naive (and ineffective) approach would be to count the different colors in the string. So ['R', 'R', 'R', 'R'] has a score of 1 and ['R', 'R', 'G', 'G'] has a score of 2. Why that fitness function is not ideal though? Why, we forgot the information about the edges! The edges are pivotal to the problem and the above function only deals with node colors. We didn't use all the information at hand and ended up with an ineffective answer. How, then, can we use that information to our advantage?\n",
"We said that the optimal solution will have all the edges connecting nodes of different color. So, to score a solution we can count how many edges are valid (aka connecting nodes of different color). That is a great fitness function!\n",
"Let's jump into solving this problem using the `genetic_algorithm` function."
]
},
{
"cell_type": "markdown",
"source": [
"First we need to represent the graph. Since we mostly need information about edges, we will just store the edges. We will denote edges with capital letters and nodes with integers:"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"edges = {\n",
" 'A': [0, 1],\n",
" 'B': [0, 3],\n",
" 'C': [1, 2],\n",
" 'D': [2, 3]\n",
"}"
]
},
{
"cell_type": "markdown",
"Edge 'A' connects nodes 0 and 1, edge 'B' connects nodes 0 and 3 etc.\n",
"\n",
"We already said our gene pool is 'R' and 'G', so we can jump right into initializing our population. Since we have only four nodes, `state_length` should be 4. For the number of individuals, we will try 8. We can increase this number if we need higher accuracy, but be careful! Larger populations need more computating power and take longer. You need to strike that sweet balance between accuracy and cost (the ultimate dilemma of the programmer!)."
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[['R', 'G', 'G', 'R'], ['R', 'G', 'R', 'R'], ['G', 'R', 'G', 'R'], ['R', 'G', 'R', 'G'], ['G', 'R', 'R', 'G'], ['G', 'R', 'G', 'R'], ['G', 'R', 'R', 'R'], ['R', 'G', 'G', 'G']]\n"
"population = init_population(8, ['R', 'G'], 4)\n",
]
},
{
"cell_type": "markdown",
"We created and printed the population. You can see that the genes in the individuals are random and there are 8 individuals each with 4 genes.\n",
"Next we need to write our fitness function. We previously said we want the function to count how many edges are valid. So, given a coloring/individual `c`, we will do just that:"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def fitness(c):\n",
" return sum(c[n1] != c[n2] for (n1, n2) in edges.values())"
]
},
{
"cell_type": "markdown",
"Great! Now we will run the genetic algorithm and see what solution it gives."
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"solution = genetic_algorithm(population, fitness, gene_pool=['R', 'G'])\n",
"print(solution)"
]
},
{
"cell_type": "markdown",
"source": [
"The algorithm converged to a solution. Let's check its score:"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"4\n"
]
}
],
"source": [
"print(fitness(solution))"
]
},
{
"cell_type": "markdown",
"source": [
"The solution has a score of 4. Which means it is optimal, since we have exactly 4 edges in our graph, meaning all are valid!\n",
"*NOTE: Because the algorithm is non-deterministic, there is a chance a different solution is given. It might even be wrong, if we are very unlucky!*"
]
},
{
"cell_type": "markdown",
"#### Eight Queens\n",
"\n",
"Let's take a look at a more complicated problem.\n",
"\n",
"In the *Eight Queens* problem, we are tasked with placing eight queens on an 8x8 chessboard without any queen threatening the others (aka queens should not be in the same row, column or diagonal). In its general form the problem is defined as placing *N* queens in an NxN chessboard without any conflicts.\n",
"\n",
"First we need to think about the representation of each solution. We can go the naive route of representing the whole chessboard with the queens' placements on it. That is definitely one way to go about it, but for the purpose of this tutorial we will do something different. We have eight queens, so we will have a gene for each of them. The gene pool will be numbers from 0 to 7, for the different columns. The *position* of the gene in the state will denote the row the particular queen is placed in.\n",
"\n",
"For example, we can have the state \"03304577\". Here the first gene with a value of 0 means \"the queen at row 0 is placed at column 0\", for the second gene \"the queen at row 1 is placed at column 3\" and so forth.\n",
"\n",
"We now need to think about the fitness function. On the graph coloring problem we counted the valid edges. The same thought process can be applied here. Instead of edges though, we have positioning between queens. If two queens are not threatening each other, we say they are at a \"non-attacking\" positioning. We can, therefore, count how many such positionings are there.\n",
"\n",
"Let's dive right in and initialize our population:"
]
},
{
"cell_type": "code",
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[[0, 2, 7, 1, 7, 3, 2, 4], [2, 7, 5, 4, 4, 5, 2, 0], [7, 1, 6, 0, 1, 3, 0, 2], [0, 3, 6, 1, 3, 0, 5, 4], [0, 4, 6, 4, 7, 4, 1, 6]]\n"
]
}
],
"source": [
"population = init_population(100, range(8), 8)\n",
]
},
{
"cell_type": "markdown",
"We have a population of 100 and each individual has 8 genes. The gene pool is the integers from 0 to 7, in string form. Above you can see the first five individuals.\n",
"\n",
"Next we need to write our fitness function. Remember, queens threaten each other if they are at the same row, column or diagonal.\n",
"Since positionings are mutual, we must take care not to count them twice. Therefore for each queen, we will only check for conflicts for the queens after her.\n",
"\n",
"A gene's value in an individual `q` denotes the queen's column, and the position of the gene denotes its row. We can check if the aforementioned values between two genes are the same. We also need to check for diagonals. A queen *a* is in the diagonal of another queen, *b*, if the difference of the rows between them is equal to either their difference in columns (for the diagonal on the right of *a*) or equal to the negative difference of their columns (for the left diagonal of *a*). Below is given the fitness function."
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"def fitness(q):\n",
" non_attacking = 0\n",
" for row1 in range(len(q)):\n",
" for row2 in range(row1+1, len(q)):\n",
" col1 = int(q[row1])\n",
" col2 = int(q[row2])\n",
" row_diff = row1 - row2\n",
" col_diff = col1 - col2\n",
" if col1 != col2 and row_diff != col_diff and row_diff != -col_diff:\n",
" non_attacking += 1\n",
]
},
{
"cell_type": "markdown",
"Note that the best score achievable is 28. That is because for each queen we only check for the queens after her. For the first queen we check 7 other queens, for the second queen 6 others and so on. In short, the number of checks we make is the sum 7+6+5+...+1. Which is equal to 7\\*(7+1)/2 = 28.\n",
"\n",
"Because it is very hard and will take long to find a perfect solution, we will set the fitness threshold at 25. If we find an individual with a score greater or equal to that, we will halt. Let's see how the genetic algorithm will fare."
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"[5, 0, 6, 3, 7, 4, 1, 3]\n",
"26\n"
"solution = genetic_algorithm(population, fitness, f_thres=25, gene_pool=range(8))\n",
"print(solution)\n",
"print(fitness(solution))"
]
},
{
"cell_type": "markdown",
"Above you can see the solution and its fitness score, which should be no less than 25."
]
},
{
"cell_type": "markdown",
"source": [
"With that this tutorial on the genetic algorithm comes to an end. Hope you found this guide helpful!"
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
Aman Deep Singh
a validé
"version": "3.6.1"
}
},
"nbformat": 4,