learning.py 45,4 ko
Newer Older
"""Learn to estimate functions from examples. (Chapters 18, 20)"""
MircoT's avatar
MircoT a validé
import copy
import heapq
import math
import random
from collections import defaultdict
Donato Meoli's avatar
Donato Meoli a validé
from statistics import mean, stdev
Donato Meoli's avatar
Donato Meoli a validé
from utils import (
    removeall, unique, product, mode, argmax, argmax_random_tie, isclose, gaussian,
    dotproduct, vector_add, scalar_vector_product, weighted_sample_with_replacement,
    weighted_sampler, num_or_str, normalize, clip, sigmoid, print_table,
    open_data, sigmoid_derivative, probability, norm, matrix_multiplication, relu, relu_derivative,
    tanh, tanh_derivative, leaky_relu_derivative, elu, elu_derivative,
    mean_boolean_error)
MircoT's avatar
MircoT a validé

    """A data set for a machine learning problem. It has the following fields:
    d.examples   A list of examples. Each one is a list of attribute values.
    d.attrs      A list of integers to index into an example, so example[attr]
                 gives a value. Normally the same as range(len(d.examples[0])).
    d.attrnames  Optional list of mnemonic names for corresponding attrs.
    d.target     The attribute that a learning algorithm will try to predict.
                 By default the final attribute.
    d.inputs     The list of attrs without the target.
    d.values     A list of lists: each sublist is the set of possible
                 values for the corresponding attribute. If initially None,
                 it is computed from the known examples by self.setproblem.
                 If not None, an erroneous value raises ValueError.
    d.distance   A function from a pair of examples to a nonnegative number.
                 Should be symmetric, etc. Defaults to mean_boolean_error
                 since that can handle any field types.
    d.name       Name of the data set (for output display only).
    d.source     URL or other source where the data came from.
    d.exclude    A list of attribute indexes to exclude from d.inputs. Elements
                 of this list can either be integers (attrs) or attrnames.

    Normally, you call the constructor and you're done; then you just
    access fields like d.examples and d.target and d.inputs."""

    def __init__(self, examples=None, attrs=None, attrnames=None, target=-1,
                 inputs=None, values=None, distance=mean_boolean_error,
                 name='', source='', exclude=()):
        """Accepts any of DataSet's fields. Examples can also be a
        string or file from which to parse examples using parse_csv.
        Optional parameter: exclude, as documented in .setproblem().
        >>> DataSet(examples='1, 2, 3')
        <DataSet(): 1 examples, 3 attributes>
        """
        self.name = name
        self.source = source
        self.values = values
        self.distance = distance
        self.got_values_flag = bool(values)
        # Initialize .examples from string or list or data directory
        if isinstance(examples, str):
            self.examples = parse_csv(examples)
Aman Deep Singh's avatar
Aman Deep Singh a validé
        elif examples is None:
            self.examples = parse_csv(open_data(name + '.csv').read())
Aman Deep Singh's avatar
Aman Deep Singh a validé
            self.examples = examples
Aman Deep Singh's avatar
Aman Deep Singh a validé
        # Attrs are the indices of examples, unless otherwise stated.   
        if self.examples is not None and attrs is None:
            attrs = list(range(len(self.examples[0])))
        # Initialize .attrnames from string, list, or by default
withal's avatar
withal a validé
        if isinstance(attrnames, str):
            self.attrnames = attrnames.split()
        else:
            self.attrnames = attrnames or attrs
        self.setproblem(target, inputs=inputs, exclude=exclude)

    def setproblem(self, target, inputs=None, exclude=()):
        """Set (or change) the target and/or inputs.
        This way, one DataSet can be used multiple ways. inputs, if specified,
        is a list of attributes, or specify exclude as a list of attributes
withal's avatar
withal a validé
        to not use in inputs. Attributes can be -n .. n, or an attrname.
        Also computes the list of possible values, if that wasn't done yet."""
        self.target = self.attrnum(target)
        exclude = list(map(self.attrnum, exclude))
            self.inputs = removeall(self.target, inputs)
        else:
            self.inputs = [a for a in self.attrs
                           if a != self.target and a not in exclude]
            self.update_values()
        """Check that my fields make sense."""
        assert len(self.attrnames) == len(self.attrs)
        assert self.target in self.attrs
        assert self.target not in self.inputs
        assert set(self.inputs).issubset(set(self.attrs))
            # only check if values are provided while initializing DataSet
            list(map(self.check_example, self.examples))
        """Add an example to the list of examples, checking it first."""
        self.check_example(example)
        self.examples.append(example)

    def check_example(self, example):
        """Raise ValueError if example has any invalid values."""
        if self.values:
            for a in self.attrs:
                if example[a] not in self.values[a]:
                    raise ValueError('Bad value {} for attribute {} in {}'
                                     .format(example[a], self.attrnames[a], example))
        """Returns the number used for attr, which can be a name, or -n .. n-1."""
MircoT's avatar
MircoT a validé
        if isinstance(attr, str):
            return self.attrnames.index(attr)
MircoT's avatar
MircoT a validé
        elif attr < 0:
            return len(self.attrs) + attr
    def update_values(self):
        self.values = list(map(unique, zip(*self.examples)))

    def sanitize(self, example):
        """Return a copy of example, with non-input attributes replaced by None."""
MircoT's avatar
MircoT a validé
        return [attr_i if i in self.inputs else None
                for i, attr_i in enumerate(example)]
    def classes_to_numbers(self, classes=None):
        """Converts class names to numbers."""
        if not classes:
            # If classes were not given, extract them from values
            classes = sorted(self.values[self.target])
        for item in self.examples:
            item[self.target] = classes.index(item[self.target])
Anthony Marakis's avatar
Anthony Marakis a validé
    def remove_examples(self, value=''):
        """Remove examples that contain given value."""
        self.examples = [x for x in self.examples if value not in x]
        self.update_values()
    def split_values_by_classes(self):
        """Split values into buckets according to their class."""
        buckets = defaultdict(lambda: [])
        target_names = self.values[self.target]

        for v in self.examples:
C.G.Vedant's avatar
C.G.Vedant a validé
            item = [a for a in v if a not in target_names]  # Remove target from item
            buckets[v[self.target]].append(item)  # Add item to bucket of its class

        return buckets

    def find_means_and_deviations(self):
        """Finds the means and standard deviations of self.dataset.
        means     : A dictionary for each class/target. Holds a list of the means
                    of the features for the class.
        deviations: A dictionary for each class/target. Holds a list of the sample
                    standard deviations of the features for the class."""
        target_names = self.values[self.target]
        feature_numbers = len(self.inputs)

        item_buckets = self.split_values_by_classes()
        means = defaultdict(lambda: [0] * feature_numbers)
        deviations = defaultdict(lambda: [0] * feature_numbers)

        for t in target_names:
            # Find all the item feature values for item in class t
            features = [[] for i in range(feature_numbers)]
            for item in item_buckets[t]:
                for i in range(feature_numbers):
                    features[i].append(item[i])

            # Calculate means and deviations fo the class
            for i in range(feature_numbers):
                means[t][i] = mean(features[i])
                deviations[t][i] = stdev(features[i])

        return means, deviations

        return '<DataSet({}): {:d} examples, {:d} attributes>'.format(
            self.name, len(self.examples), len(self.attrs))

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
def parse_csv(input, delim=','):
withal's avatar
withal a validé
    r"""Input is a string consisting of lines, each line has comma-delimited
    fields.  Convert this into a list of lists. Blank lines are skipped.
    Fields that look like numbers are converted to numbers.
    The delim defaults to ',' but '\t' and None are also reasonable values.
    >>> parse_csv('1, 2, 3 \n 0, 2, na')
    lines = [line for line in input.splitlines() if line.strip()]
MircoT's avatar
MircoT a validé
    return [list(map(num_or_str, line.split(delim))) for line in lines]
Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
class CountingProbDist:
    """A probability distribution formed by observing and counting examples.
    If p is an instance of this class and o is an observed value, then
    there are 3 main operations:
    p.add(o) increments the count for observation o by 1.
    p.sample() returns a random element from the distribution.
    p[o] returns the probability for o (as in a regular ProbDist)."""

    def __init__(self, observations=None, default=0):
        """Create a distribution, and optionally add in some observations.
        By default this is an unsmoothed distribution, but saying default=1,
        for example, gives you add-one smoothing."""
        if observations is None:
            observations = []
        for o in observations:
            self.add(o)

    def add(self, o):
        """Add an observation o to the distribution."""
        self.smooth_for(o)
        self.dictionary[o] += 1
        self.n_obs += 1
        self.sampler = None

    def smooth_for(self, o):
        """Include o among the possible observations, whether or not
        it's been observed yet."""
        if o not in self.dictionary:
            self.dictionary[o] = self.default
            self.n_obs += self.default
            self.sampler = None

    def __getitem__(self, item):
        """Return an estimate of the probability of item."""
        self.smooth_for(item)
        return self.dictionary[item] / self.n_obs

    # (top() and sample() are not used in this module, but elsewhere.)

    def top(self, n):
        """Return (count, obs) tuples for the n most frequent observations."""
        return heapq.nlargest(n, [(v, k) for (k, v) in self.dictionary.items()])
        """Return a random sample from the distribution."""
MircoT's avatar
MircoT a validé
            self.sampler = weighted_sampler(list(self.dictionary.keys()),
                                            list(self.dictionary.values()))
Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
    """A very dumb algorithm: always pick the result that was most popular
    in the training data.  Makes a baseline for comparison."""
    most_popular = mode([e[dataset.target] for e in dataset.examples])
        """Always return same result: the most popular from the training set."""
Donato Meoli's avatar
Donato Meoli a validé

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
def NaiveBayesLearner(dataset, continuous=True, simple=False):
    if simple:
        return NaiveBayesSimple(dataset)
        return NaiveBayesContinuous(dataset)
    else:
        return NaiveBayesDiscrete(dataset)


def NaiveBayesSimple(distribution):
    """A simple naive bayes classifier that takes as input a dictionary of
    CountingProbDist objects and classifies items according to these distributions.
    The input dictionary is in the following form:
        (ClassName, ClassProb): CountingProbDist"""
    target_dist = {c_name: prob for c_name, prob in distribution.keys()}
    attr_dists = {c_name: count_prob for (c_name, _), count_prob in distribution.items()}

    def predict(example):
        """Predict the target value for example. Calculate probabilities for each
        class and pick the max."""
Donato Meoli's avatar
Donato Meoli a validé

        def class_probability(targetval):
            attr_dist = attr_dists[targetval]
            return target_dist[targetval] * product(attr_dist[a] for a in example)

        return argmax(target_dist.keys(), key=class_probability)

    return predict


def NaiveBayesDiscrete(dataset):
    """Just count how many times each value of each input attribute
    occurs, conditional on the target value. Count the different
    target values too."""

    target_vals = dataset.values[dataset.target]
    target_dist = CountingProbDist(target_vals)
    attr_dists = {(gv, attr): CountingProbDist(dataset.values[attr])
                  for gv in target_vals
                  for attr in dataset.inputs}
        targetval = example[dataset.target]
        target_dist.add(targetval)
            attr_dists[targetval, attr].add(example[attr])
        """Predict the target value for example. Consider each possible value,
        and pick the most likely by looking at each attribute independently."""
Donato Meoli's avatar
Donato Meoli a validé

        def class_probability(targetval):
            return (target_dist[targetval] *
                    product(attr_dists[targetval, attr][example[attr]]
                            for attr in dataset.inputs))
Donato Meoli's avatar
Donato Meoli a validé

        return argmax(target_vals, key=class_probability)

    return predict


def NaiveBayesContinuous(dataset):
    """Count how many times each target value occurs.
    Also, find the means and deviations of input attribute values for each target value."""
    means, deviations = dataset.find_means_and_deviations()

    target_vals = dataset.values[dataset.target]
    target_dist = CountingProbDist(target_vals)

    def predict(example):
        """Predict the target value for example. Consider each possible value,
        and pick the most likely by looking at each attribute independently."""
Donato Meoli's avatar
Donato Meoli a validé

        def class_probability(targetval):
            prob = target_dist[targetval]
            for attr in dataset.inputs:
                prob *= gaussian(means[targetval][attr], deviations[targetval][attr], example[attr])
            return prob

        return argmax(target_vals, key=class_probability)
Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
def NearestNeighborLearner(dataset, k=1):
    """k-NearestNeighbor: the k nearest neighbors vote."""
Donato Meoli's avatar
Donato Meoli a validé

    def predict(example):
        """Find the k closest items, and have them vote for the best."""
        best = heapq.nsmallest(k, ((dataset.distance(e, example), e)
                                   for e in dataset.examples))
        return mode(e[dataset.target] for (d, e) in best)
Donato Meoli's avatar
Donato Meoli a validé

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
C.G.Vedant's avatar
C.G.Vedant a validé
def truncated_svd(X, num_val=2, max_iter=1000):
    """Compute the first component of SVD."""
C.G.Vedant's avatar
C.G.Vedant a validé

    def normalize_vec(X, n=2):
        """Normalize two parts (:m and m:) of the vector."""
C.G.Vedant's avatar
C.G.Vedant a validé
        X_m = X[:m]
        X_n = X[m:]
        norm_X_m = norm(X_m, n)
Donato Meoli's avatar
Donato Meoli a validé
        Y_m = [x / norm_X_m for x in X_m]
C.G.Vedant's avatar
C.G.Vedant a validé
        norm_X_n = norm(X_n, n)
Donato Meoli's avatar
Donato Meoli a validé
        Y_n = [x / norm_X_n for x in X_n]
C.G.Vedant's avatar
C.G.Vedant a validé
        return Y_m + Y_n

    def remove_component(X):
        """Remove components of already obtained eigen vectors from X."""
C.G.Vedant's avatar
C.G.Vedant a validé
        X_m = X[:m]
        X_n = X[m:]
        for eivec in eivec_m:
            coeff = dotproduct(X_m, eivec)
Donato Meoli's avatar
Donato Meoli a validé
            X_m = [x1 - coeff * x2 for x1, x2 in zip(X_m, eivec)]
C.G.Vedant's avatar
C.G.Vedant a validé
        for eivec in eivec_n:
            coeff = dotproduct(X_n, eivec)
Donato Meoli's avatar
Donato Meoli a validé
            X_n = [x1 - coeff * x2 for x1, x2 in zip(X_n, eivec)]
C.G.Vedant's avatar
C.G.Vedant a validé
        return X_m + X_n

    m, n = len(X), len(X[0])
Donato Meoli's avatar
Donato Meoli a validé
    A = [[0] * (n + m) for _ in range(n + m)]
C.G.Vedant's avatar
C.G.Vedant a validé
    for i in range(m):
        for j in range(n):
Donato Meoli's avatar
Donato Meoli a validé
            A[i][m + j] = A[m + j][i] = X[i][j]
C.G.Vedant's avatar
C.G.Vedant a validé

    eivec_m = []
    eivec_n = []
    eivals = []

    for _ in range(num_val):
Donato Meoli's avatar
Donato Meoli a validé
        X = [random.random() for _ in range(m + n)]
C.G.Vedant's avatar
C.G.Vedant a validé
        X = remove_component(X)
        X = normalize_vec(X)

        for i in range(max_iter):
C.G.Vedant's avatar
C.G.Vedant a validé
            old_X = X
            X = matrix_multiplication(A, [[x] for x in X])
            X = [x[0] for x in X]
            X = remove_component(X)
            X = normalize_vec(X)
            # check for convergence
            if norm([x1 - x2 for x1, x2 in zip(old_X, X)]) <= 1e-10:
                break

        projected_X = matrix_multiplication(A, [[x] for x in X])
        projected_X = [x[0] for x in projected_X]
Donato Meoli's avatar
Donato Meoli a validé
        new_eigenvalue = norm(projected_X, 1) / norm(X, 1)
        ev_m = X[:m]
        ev_n = X[m:]
        if new_eigenvalue < 0:
            new_eigenvalue = -new_eigenvalue
            ev_m = [-ev_m_i for ev_m_i in ev_m]
        eivals.append(new_eigenvalue)
        eivec_m.append(ev_m)
        eivec_n.append(ev_n)
C.G.Vedant's avatar
C.G.Vedant a validé
    return (eivec_m, eivec_n, eivals)

Donato Meoli's avatar
Donato Meoli a validé

C.G.Vedant's avatar
C.G.Vedant a validé
# ______________________________________________________________________________


    """A fork of a decision tree holds an attribute to test, and a dict
    of branches, one for each of the attribute's values."""
C.G.Vedant's avatar
C.G.Vedant a validé
    def __init__(self, attr, attrname=None, default_child=None, branches=None):
        """Initialize by saying what attribute this node tests."""
        self.attr = attr
        self.attrname = attrname or attr
C.G.Vedant's avatar
C.G.Vedant a validé
        self.default_child = default_child
        """Given an example, classify it using the attribute and the branches."""
withal's avatar
withal a validé
        attrvalue = example[self.attr]
C.G.Vedant's avatar
C.G.Vedant a validé
        if attrvalue in self.branches:
            return self.branches[attrvalue](example)
        else:
            # return default class when attribute is unknown
            return self.default_child(example)
        """Add a branch.  If self.attr = val, go to the given subtree."""
        self.branches[val] = subtree

    def display(self, indent=0):
        name = self.attrname
MircoT's avatar
MircoT a validé
        print('Test', name)
        for (val, subtree) in self.branches.items():
            print(' ' * 4 * indent, name, '=', val, '==>', end=' ')
            subtree.display(indent + 1)
Donato Meoli's avatar
Donato Meoli a validé
        print()  # newline
Donato Meoli's avatar
Donato Meoli a validé
        return ('DecisionFork({0!r}, {1!r}, {2!r})'.format(self.attr, self.attrname, self.branches))
    """A leaf of a decision tree holds just a result."""

    def __init__(self, result):
        self.result = result

    def __call__(self, example):
        return self.result

    def display(self, indent=0):
MircoT's avatar
MircoT a validé
        print('RESULT =', self.result)
    def __repr__(self):
        return repr(self.result)
Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
    target, values = dataset.target, dataset.values
    def decision_tree_learning(examples, attrs, parent_examples=()):
            return plurality_value(parent_examples)
        elif all_same_class(examples):
            return DecisionLeaf(examples[0][target])
withal's avatar
withal a validé
        elif len(attrs) == 0:
            A = choose_attribute(attrs, examples)
C.G.Vedant's avatar
C.G.Vedant a validé
            tree = DecisionFork(A, dataset.attrnames[A], plurality_value(examples))
            for (v_k, exs) in split_by(A, examples):
Donato Meoli's avatar
Donato Meoli a validé
                subtree = decision_tree_learning(exs, removeall(A, attrs), examples)
        """Return the most popular target value for this set of examples.
        (If target is binary, this is the majority; otherwise plurality.)"""
Donato Meoli's avatar
Donato Meoli a validé
        popular = argmax_random_tie(values[target], key=lambda v: count(target, v, examples))
        """Count the number of examples that have example[attr] = val."""
        return sum(e[attr] == val for e in examples)
        """Are all these examples in the same target class?"""
withal's avatar
withal a validé
        class0 = examples[0][target]
        return all(e[target] == class0 for e in examples)

    def choose_attribute(attrs, examples):
        """Choose the attribute with the highest information gain."""
Donato Meoli's avatar
Donato Meoli a validé
        return argmax_random_tie(attrs, key=lambda a: information_gain(a, examples))
withal's avatar
withal a validé

    def information_gain(attr, examples):
        """Return the expected reduction in entropy from splitting by attr."""
Donato Meoli's avatar
Donato Meoli a validé

            return information_content([count(target, v, examples)
                                        for v in values[target]])
Donato Meoli's avatar
Donato Meoli a validé

Donato Meoli's avatar
Donato Meoli a validé
        remainder = sum((len(examples_i) / N) * I(examples_i)
withal's avatar
withal a validé
                        for (v, examples_i) in split_by(attr, examples))
        """Return a list of (val, examples) pairs for each val of attr."""
        return [(v, [e for e in examples if e[attr] == v])
                for v in values[attr]]

    return decision_tree_learning(dataset.examples, dataset.inputs)
def information_content(values):
    """Number of bits to represent the probability distribution in values."""
withal's avatar
withal a validé
    probabilities = normalize(removeall(0, values))
    return sum(-p * math.log2(p) for p in probabilities)
Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
C.G.Vedant's avatar
C.G.Vedant a validé


def RandomForest(dataset, n=5):
C.G.Vedant's avatar
C.G.Vedant a validé
    """An ensemble of Decision Trees trained using bagging and feature bagging."""
C.G.Vedant's avatar
C.G.Vedant a validé

    def data_bagging(dataset, m=0):
        """Sample m examples with replacement"""
        n = len(dataset.examples)
Donato Meoli's avatar
Donato Meoli a validé
        return weighted_sample_with_replacement(m or n, dataset.examples, [1] * n)
C.G.Vedant's avatar
C.G.Vedant a validé

    def feature_bagging(dataset, p=0.7):
        """Feature bagging with probability p to retain an attribute"""
        inputs = [i for i in dataset.inputs if probability(p)]
        return inputs or dataset.inputs

    def predict(example):
C.G.Vedant's avatar
C.G.Vedant a validé
        print([predictor(example) for predictor in predictors])
C.G.Vedant's avatar
C.G.Vedant a validé
        return mode(predictor(example) for predictor in predictors)

C.G.Vedant's avatar
C.G.Vedant a validé
    predictors = [DecisionTreeLearner(DataSet(examples=data_bagging(dataset),
                                              attrs=dataset.attrs,
                                              attrnames=dataset.attrnames,
                                              target=dataset.target,
                                              inputs=feature_bagging(dataset))) for _ in range(n)]

C.G.Vedant's avatar
C.G.Vedant a validé
    return predict

Donato Meoli's avatar
Donato Meoli a validé

C.G.Vedant's avatar
C.G.Vedant a validé
# ______________________________________________________________________________
MircoT's avatar
MircoT a validé
# A decision list is implemented as a list of (test, value) pairs.

    def decision_list_learning(examples):
            return [(True, False)]
        t, o, examples_t = find_examples(examples)
            raise Exception
        return [(t, o)] + decision_list_learning(examples - examples_t)
withal's avatar
withal a validé
        """Find a set of examples that all have the same outcome under
        some test. Return a tuple of the test, outcome, and examples."""
        raise NotImplementedError
        """Does the example pass the test?"""
        raise NotImplementedError
        """Predict the outcome for the first passing test."""
        for test, outcome in predict.decision_list:
            if passes(example, test):
                return outcome
Donato Meoli's avatar
Donato Meoli a validé

    predict.decision_list = decision_list_learning(set(dataset.examples))

    return predict

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
Donato Meoli's avatar
Donato Meoli a validé
def NeuralNetLearner(dataset, hidden_layer_sizes=[3], learning_rate=0.01, epochs=100, activation=sigmoid):
    """Layered feed-forward network.
    hidden_layer_sizes: List of number of hidden units per hidden layer
    learning_rate: Learning rate of gradient descent
    epochs: Number of passes over the dataset
    i_units = len(dataset.inputs)
    o_units = len(dataset.values[dataset.target])

    # construct a network
Nouman Ahmed's avatar
Nouman Ahmed a validé
    raw_net = network(i_units, hidden_layer_sizes, o_units, activation)
Donato Meoli's avatar
Donato Meoli a validé
    learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs, activation)
MircoT's avatar
MircoT a validé
    def predict(example):
        # Input nodes
        i_nodes = learned_net[0]

        # Activate input layer
        for v, n in zip(example, i_nodes):
            n.value = v

        # Forward pass
        for layer in learned_net[1:]:
            for node in layer:
                inc = [n.value for n in node.inputs]
                in_val = dotproduct(inc, node.weights)
                node.value = node.activation(in_val)

        # Hypothesis
        o_nodes = learned_net[-1]
        prediction = find_max_node(o_nodes)
        return prediction
MircoT's avatar
MircoT a validé

    return predict
def random_weights(min_value, max_value, num_weights):
    return [random.uniform(min_value, max_value) for _ in range(num_weights)]
Nouman Ahmed's avatar
Nouman Ahmed a validé
def BackPropagationLearner(dataset, net, learning_rate, epochs, activation=sigmoid):
Anthony Marakis's avatar
Anthony Marakis a validé
    """[Figure 18.23] The back-propagation algorithm for multilayer networks"""
    # Initialise weights
    for layer in net:
        for node in layer:
            node.weights = random_weights(min_value=-0.5, max_value=0.5,
                                          num_weights=len(node.weights))

    examples = dataset.examples
    '''
    As of now dataset.target gives an int instead of list,
    Changing dataset class will have effect on all the learners.
    Will be taken care of later.
    o_nodes = net[-1]
    i_nodes = net[0]
    o_units = len(o_nodes)
    idx_t = dataset.target
    idx_i = dataset.inputs
    n_layers = len(net)

    inputs, targets = init_examples(examples, idx_i, idx_t, o_units)
    for epoch in range(epochs):
        # Iterate over each example
        for e in range(len(examples)):
            i_val = inputs[e]
            t_val = targets[e]

            # Activate input layer
            for v, n in zip(i_val, i_nodes):
                n.value = v

            # Forward pass
            for layer in net[1:]:
                for node in layer:
                    inc = [n.value for n in node.inputs]
                    in_val = dotproduct(inc, node.weights)
                    node.value = node.activation(in_val)

            # Initialize delta
            delta = [[] for _ in range(n_layers)]

            # Compute outer layer delta

            # Error for the MSE cost function
            err = [t_val[i] - o_nodes[i].value for i in range(o_units)]
Antonis Maronikolakis's avatar
Antonis Maronikolakis a validé
            # Calculate delta at output
Nouman Ahmed's avatar
Nouman Ahmed a validé
            if node.activation == sigmoid:
                delta[-1] = [sigmoid_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
            elif node.activation == relu:
Nouman Ahmed's avatar
Nouman Ahmed a validé
                delta[-1] = [relu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
            elif node.activation == tanh:
                delta[-1] = [tanh_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
            elif node.activation == elu:
                delta[-1] = [elu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]
            else:
                delta[-1] = [leaky_relu_derivative(o_nodes[i].value) * err[i] for i in range(o_units)]

            # Backward pass
            h_layers = n_layers - 2
            for i in range(h_layers, 0, -1):
                layer = net[i]
                h_units = len(layer)
Donato Meoli's avatar
Donato Meoli a validé
                nx_layer = net[i + 1]
                # weights from each ith layer node to each i + 1th layer node
                w = [[node.weights[k] for node in nx_layer] for k in range(h_units)]
Nouman Ahmed's avatar
Nouman Ahmed a validé
                if activation == sigmoid:
Donato Meoli's avatar
Donato Meoli a validé
                    delta[i] = [sigmoid_derivative(layer[j].value) * dotproduct(w[j], delta[i + 1])
                                for j in range(h_units)]
                elif activation == relu:
Donato Meoli's avatar
Donato Meoli a validé
                    delta[i] = [relu_derivative(layer[j].value) * dotproduct(w[j], delta[i + 1])
                                for j in range(h_units)]
                elif activation == tanh:
Donato Meoli's avatar
Donato Meoli a validé
                    delta[i] = [tanh_derivative(layer[j].value) * dotproduct(w[j], delta[i + 1])
                                for j in range(h_units)]
                elif activation == elu:
Donato Meoli's avatar
Donato Meoli a validé
                    delta[i] = [elu_derivative(layer[j].value) * dotproduct(w[j], delta[i + 1])
                                for j in range(h_units)]
Donato Meoli's avatar
Donato Meoli a validé
                    delta[i] = [leaky_relu_derivative(layer[j].value) * dotproduct(w[j], delta[i + 1])
                                for j in range(h_units)]

            #  Update weights
            for i in range(1, n_layers):
                layer = net[i]
Donato Meoli's avatar
Donato Meoli a validé
                inc = [node.value for node in net[i - 1]]
                units = len(layer)
                for j in range(units):
                    layer[j].weights = vector_add(layer[j].weights,
Donato Meoli's avatar
Donato Meoli a validé
                                                  scalar_vector_product(learning_rate * delta[i][j], inc))
    return net
def PerceptronLearner(dataset, learning_rate=0.01, epochs=100):
    """Logistic Regression, NO hidden layer"""
    i_units = len(dataset.inputs)
    o_units = len(dataset.values[dataset.target])
    hidden_layer_sizes = []
    raw_net = network(i_units, hidden_layer_sizes, o_units)
    learned_net = BackPropagationLearner(dataset, raw_net, learning_rate, epochs)
MircoT's avatar
MircoT a validé
    def predict(example):
        o_nodes = learned_net[1]

        # Forward pass
        for node in o_nodes:
            in_val = dotproduct(example, node.weights)
            node.value = node.activation(in_val)

        # Hypothesis
        return find_max_node(o_nodes)

    return predict


class NNUnit:
    """Single Unit of Multiple Layer Neural Network
    inputs: Incoming connections
    weights: Weights to incoming connections
    """

Nouman Ahmed's avatar
Nouman Ahmed a validé
    def __init__(self, activation=sigmoid, weights=None, inputs=None):
        self.weights = weights or []
        self.inputs = inputs or []
Nouman Ahmed's avatar
Nouman Ahmed a validé
        self.activation = activation
Nouman Ahmed's avatar
Nouman Ahmed a validé
def network(input_units, hidden_layer_sizes, output_units, activation=sigmoid):
    """Create Directed Acyclic Network of given number layers.
    hidden_layers_sizes : List number of neuron units in each hidden layer
    excluding input and output layers
    """
    layers_sizes = [input_units] + hidden_layer_sizes + [output_units]
Nouman Ahmed's avatar
Nouman Ahmed a validé
    net = [[NNUnit(activation) for n in range(size)]
           for size in layers_sizes]
    n_layers = len(net)

    # Make Connection
    for i in range(1, n_layers):
        for n in net[i]:
Donato Meoli's avatar
Donato Meoli a validé
            for k in net[i - 1]:
                n.inputs.append(k)
                n.weights.append(0)
    return net


def init_examples(examples, idx_i, idx_t, o_units):
Anthony Marakis's avatar
Anthony Marakis a validé
    inputs, targets = {}, {}
Anthony Marakis's avatar
Anthony Marakis a validé
    for i, e in enumerate(examples):
        # Input values of e
        inputs[i] = [e[i] for i in idx_i]

        if o_units > 1:
            # One-Hot representation of e's target
            t = [0 for i in range(o_units)]
            t[e[idx_t]] = 1
            targets[i] = t
        else:
            # Target value of e
            targets[i] = [e[idx_t]]

    return inputs, targets


def find_max_node(nodes):
    return nodes.index(argmax(nodes, key=lambda node: node.value))

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
def LinearLearner(dataset, learning_rate=0.01, epochs=100):
    """Define with learner = LinearLearner(data); infer with learner(x)."""
    idx_i = dataset.inputs
    idx_t = dataset.target  # As of now, dataset.target gives only one index.
    examples = dataset.examples
    num_examples = len(examples)

    # X transpose
    X_col = [dataset.values[i] for i in idx_i]  # vertical columns of X

    # Add dummy
    ones = [1 for _ in range(len(examples))]
    X_col = [ones] + X_col
Donato Meoli's avatar
Donato Meoli a validé
    # Initialize random weights
    num_weights = len(idx_i) + 1
    w = random_weights(min_value=-0.5, max_value=0.5, num_weights=num_weights)

    for epoch in range(epochs):
        err = []
        # Pass over all examples
        for example in examples:
            y = dotproduct(w, x)
            t = example[idx_t]
            err.append(t - y)

        # update weights
        for i in range(len(w)):
            w[i] = w[i] + learning_rate * (dotproduct(err, X_col[i]) / num_examples)

    def predict(example):
        x = [1] + example
        return dotproduct(w, x)
Donato Meoli's avatar
Donato Meoli a validé

    return predict

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
    """Given a list of learning algorithms, have them vote."""
Donato Meoli's avatar
Donato Meoli a validé

    def train(dataset):
        predictors = [learner(dataset) for learner in learners]
        def predict(example):
            return mode(predictor(example) for predictor in predictors)
Donato Meoli's avatar
Donato Meoli a validé

Donato Meoli's avatar
Donato Meoli a validé

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
def AdaBoost(L, K):
    def train(dataset):
        examples, target = dataset.examples, dataset.target
        N = len(examples)
Donato Meoli's avatar
Donato Meoli a validé
        epsilon = 1 / (2 * N)
        w = [1 / N] * N
        h, z = [], []
        for k in range(K):
withal's avatar
withal a validé
            h_k = L(dataset, w)
            h.append(h_k)
            error = sum(weight for example, weight in zip(examples, w)
                        if example[target] != h_k(example))
            # Avoid divide-by-0 from either 0% or 100% error rates:
            error = clip(error, epsilon, 1 - epsilon)
            for j, example in enumerate(examples):
withal's avatar
withal a validé
                if example[target] == h_k(example):
Donato Meoli's avatar
Donato Meoli a validé
                    w[j] *= error / (1 - error)
            w = normalize(w)
Donato Meoli's avatar
Donato Meoli a validé
            z.append(math.log((1 - error) / error))
        return WeightedMajority(h, z)
Donato Meoli's avatar
Donato Meoli a validé

withal's avatar
withal a validé
def WeightedMajority(predictors, weights):
    """Return a predictor that takes a weighted vote."""
Donato Meoli's avatar
Donato Meoli a validé

withal's avatar
withal a validé
    def predict(example):
        return weighted_mode((predictor(example) for predictor in predictors),
                             weights)
Donato Meoli's avatar
Donato Meoli a validé

withal's avatar
withal a validé
    return predict

withal's avatar
withal a validé
def weighted_mode(values, weights):
    """Return the value with the greatest total weight.
    >>> weighted_mode('abbaa', [1, 2, 3, 1, 2])
withal's avatar
withal a validé
    totals = defaultdict(int)
    for v, w in zip(values, weights):
        totals[v] += w
    return max(totals, key=totals.__getitem__)
Donato Meoli's avatar
Donato Meoli a validé

# _____________________________________________________________________________
# Adapting an unweighted learner for AdaBoost

def WeightedLearner(unweighted_learner):
    """Given a learner that takes just an unweighted dataset, return
    one that takes also a weight for each example. [p. 749 footnote 14]"""
Donato Meoli's avatar
Donato Meoli a validé

    def train(dataset, weights):
        return unweighted_learner(replicated_dataset(dataset, weights))
Donato Meoli's avatar
Donato Meoli a validé

def replicated_dataset(dataset, weights, n=None):
    """Copy dataset, replicating each example in proportion to its weight."""
    n = n or len(dataset.examples)
    result = copy.copy(dataset)
    result.examples = weighted_replicate(dataset.examples, weights, n)
    return result

def weighted_replicate(seq, weights, n):
    """Return n selections from seq, with the count of each element of
    seq proportional to the corresponding weight (filling in fractions
    randomly).
    >>> weighted_replicate('ABC', [1, 2, 1], 4)
    assert len(seq) == len(weights)
    weights = normalize(weights)
Donato Meoli's avatar
Donato Meoli a validé
    wholes = [int(w * n) for w in weights]
    fractions = [(w * n) % 1 for w in weights]
    return (flatten([x] * nx for x, nx in zip(seq, wholes)) +
            weighted_sample_with_replacement(n - sum(wholes), seq, fractions))
def flatten(seqs): return sum(seqs, [])

Donato Meoli's avatar
Donato Meoli a validé

# _____________________________________________________________________________
# Functions for testing learners on examples

def err_ratio(predict, dataset, examples=None, verbose=0):
    """Return the proportion of the examples that are NOT correctly predicted.
    verbose - 0: No output; 1: Output wrong; 2 (or greater): Output correct"""
    examples = examples or dataset.examples
MircoT's avatar
MircoT a validé
    if len(examples) == 0:
        return 0.0
    for example in examples:
        desired = example[dataset.target]
        output = predict(dataset.sanitize(example))
        if output == desired:
            right += 1
            if verbose >= 2:
                print('   OK: got {} for {}'.format(desired, example))
            print('WRONG: got {}, expected {} for {}'.format(
MircoT's avatar
MircoT a validé
                output, desired, example))
Donato Meoli's avatar
Donato Meoli a validé
    return 1 - (right / len(examples))
def grade_learner(predict, tests):
    """Grades the given learner based on how many tests it passes.
    tests is a list with each element in the form: (values, output)."""
    return mean(int(predict(X) == y) for X, y in tests)


Anthony Marakis's avatar
Anthony Marakis a validé
def train_test_split(dataset, start=None, end=None, test_split=None):
    """If you are giving 'start' and 'end' as parameters,
    then it will return the testing set from index 'start' to 'end'
    and the rest for training.
Donato Meoli's avatar
Donato Meoli a validé
    If you give 'test_split' as a parameter then it will return
    test_split * 100% as the testing set and the rest as
    if test_split == None:
        train = examples[:start] + examples[end:]
        val = examples[start:end]
    else:
        total_size = len(examples)
        val_size = int(total_size * test_split)
        train_size = total_size - val_size
        train = examples[:train_size]
        val = examples[train_size:total_size]

def cross_validation(learner, size, dataset, k=10, trials=1):
    """Do k-fold cross_validate and return their mean.
    That is, keep out 1/k of the examples for testing on each of k runs.
    Shuffle the examples first; if trials>1, average over several shuffles.
Donato Meoli's avatar
Donato Meoli a validé
    Returns Training error, Validation error"""
    k = k or len(dataset.examples)
        trial_errT = 0
        trial_errV = 0
        for t in range(trials):
Donato Meoli's avatar
Donato Meoli a validé
            errT, errV = cross_validation(learner, size, dataset, k=10, trials=1)
            trial_errT += errT
            trial_errV += errV
Donato Meoli's avatar
Donato Meoli a validé
        return trial_errT / trials, trial_errV / trials
        examples = dataset.examples
        random.shuffle(dataset.examples)
Donato Meoli's avatar
Donato Meoli a validé
            train_data, val_data = train_test_split(dataset, fold * (n / k), (fold + 1) * (n / k))
            dataset.examples = train_data
            h = learner(dataset, size)
            fold_errT += err_ratio(h, dataset, train_data)
            fold_errV += err_ratio(h, dataset, val_data)
            # Reverting back to original once test is completed
            dataset.examples = examples
Donato Meoli's avatar
Donato Meoli a validé
        return fold_errT / k, fold_errV / k
Donato Meoli's avatar
Donato Meoli a validé

# TODO: The function cross_validation_wrapper needs to be fixed (the while loop runs forever!)
def cross_validation_wrapper(learner, dataset, k=10, trials=1):
    """[Fig 18.8]
    Return the optimal value of size having minimum error
    on validation set.
    err_train: A training error array, indexed by size
    err_val: A validation error array, indexed by size
    """
    err_val = []
    err_train = []
    size = 1
    while True:
        errT, errV = cross_validation(learner, size, dataset, k)
        # Check for convergence provided err_val is not empty
Donato Meoli's avatar
Donato Meoli a validé
        if err_train and isclose(err_train[-1], errT, rel_tol=1e-6):
            best_size = 0
            min_val = math.inf

            i = 0
                if err_val[i] < min_val:
                    min_val = err_val[i]
                    best_size = i
                i += 1
        err_val.append(errV)
        err_train.append(errT)
        print(err_val)
        size += 1


ESHAN PANDEY's avatar
ESHAN PANDEY a validé
def leave_one_out(learner, dataset, size=None):
    """Leave one out cross-validation over the dataset."""
    return cross_validation(learner, size, dataset, k=len(dataset.examples))
Donato Meoli's avatar
Donato Meoli a validé

# TODO learning_curve needs to be fixed
def learning_curve(learner, dataset, trials=10, sizes=None):
        sizes = list(range(2, len(dataset.examples) - 10, 2))
    def score(learner, size):
        random.shuffle(dataset.examples)
        return train_test_split(learner, dataset, 0, size)
Donato Meoli's avatar
Donato Meoli a validé

    return [(size, mean([score(learner, size) for t in range(trials)]))
            for size in sizes]

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
withal's avatar
withal a validé
# The rest of this file gives datasets for machine learning problems.
orings = DataSet(name='orings', target='Distressed',
                 attrnames="Rings Distressed Temp Pressure Flightnum")

zoo = DataSet(name='zoo', target='type', exclude=['name'],
              attrnames="name hair feathers eggs milk airborne aquatic " +
Donato Meoli's avatar
Donato Meoli a validé
                        "predator toothed backbone breathes venomous fins legs tail " +
                        "domestic catsize type")

iris = DataSet(name="iris", target="class",
               attrnames="sepal-len sepal-width petal-len petal-width class")

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
# The Restaurant example from [Figure 18.2]
def RestaurantDataSet(examples=None):
    """Build a DataSet of Restaurant waiting examples. [Figure 18.3]"""
    return DataSet(name='restaurant', target='Wait', examples=examples,
                   attrnames='Alternate Bar Fri/Sat Hungry Patrons Price ' +
Donato Meoli's avatar
Donato Meoli a validé
                             'Raining Reservation Type WaitEstimate Wait')
    branches = {value: (child if isinstance(child, DecisionFork)
                        else DecisionLeaf(child))
                for value, child in branches.items()}
C.G.Vedant's avatar
C.G.Vedant a validé
    return DecisionFork(restaurant.attrnum(attrname), attrname, print, branches)
""" [Figure 18.2]
A decision tree for deciding whether to wait for a table at a hotel.
"""

waiting_decision_tree = T('Patrons',
                          {'None': 'No', 'Some': 'Yes',
                           'Full': T('WaitEstimate',
                                     {'>60': 'No', '0-10': 'Yes',
                                      '30-60': T('Alternate',
                                                 {'No': T('Reservation',
                                                          {'Yes': 'Yes',
                                                           'No': T('Bar', {'No': 'No',
                                                                           'Yes': 'Yes'})}),
                                                  'Yes': T('Fri/Sat', {'No': 'No', 'Yes': 'Yes'})}
                                                 ),
                                      '10-30': T('Hungry',
                                                 {'No': 'Yes',
                                                  'Yes': T('Alternate',
                                                           {'No': 'Yes',
                                                            'Yes': T('Raining',
                                                                     {'No': 'No',
                                                                      'Yes': 'Yes'})})})})})
def SyntheticRestaurant(n=20):
    """Generate a DataSet with n examples."""
Donato Meoli's avatar
Donato Meoli a validé

MircoT's avatar
MircoT a validé
        example = list(map(random.choice, restaurant.values))
        example[restaurant.target] = waiting_decision_tree(example)
Donato Meoli's avatar
Donato Meoli a validé

    return RestaurantDataSet([gen() for i in range(n)])

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
def Majority(k, n):
    """Return a DataSet with n k-bit examples of the majority problem:
    k random bits followed by a 1 if more than half the bits are 1, else 0."""
    examples = []
    for i in range(n):
        bits = [random.choice([0, 1]) for i in range(k)]
        bits.append(int(sum(bits) > k / 2))
        examples.append(bits)
    return DataSet(name="majority", examples=examples)

def Parity(k, n, name="parity"):
    """Return a DataSet with n k-bit examples of the parity problem:
    k random bits followed by a 1 if an odd number of bits are 1, else 0."""
    examples = []
    for i in range(n):
        bits = [random.choice([0, 1]) for i in range(k)]
        bits.append(sum(bits) % 2)
        examples.append(bits)
    return DataSet(name=name, examples=examples)

def Xor(n):
    """Return a DataSet with n examples of 2-input xor."""
    return Parity(2, n, name="xor")

Donato Meoli's avatar
Donato Meoli a validé
    """2 inputs are chosen uniformly from (0.0 .. 2.0]; output is xor of ints."""
    examples = []
    for i in range(n):
        x, y = [random.uniform(0.0, 2.0) for i in '12']
        examples.append([x, y, int(x) != int(y)])
    return DataSet(name="continuous xor", examples=examples)

Donato Meoli's avatar
Donato Meoli a validé

# ______________________________________________________________________________
Anthony Marakis's avatar
Anthony Marakis a validé
def compare(algorithms=None, datasets=None, k=10, trials=1):
    """Compare various learners on various datasets using cross-validation.
    Print results as a table."""
Donato Meoli's avatar
Donato Meoli a validé
    algorithms = algorithms or [PluralityLearner, NaiveBayesLearner,  # default list
                                NearestNeighborLearner, DecisionTreeLearner]  # of algorithms

    datasets = datasets or [iris, orings, zoo, restaurant, SyntheticRestaurant(20),  # default list
Donato Meoli's avatar
Donato Meoli a validé
                            Majority(7, 100), Parity(7, 100), Xor(100)]  # of datasets
MircoT's avatar
MircoT a validé
    print_table([[a.__name__.replace('Learner', '')] +
                 [cross_validation(a, d, k, trials) for d in datasets]
                header=[''] + [d.name[0:7] for d in datasets], numfmt='%.2f')