Newer
Older
"""Search (Chapters 3-4)
The way to use this code is to subclass Problem to create a class of problems,
then create problem instances and solve them with calls to the various search
functions."""
Donato Meoli
a validé
import bisect
import math
import random
import sys
from collections import deque
is_in, argmin, argmax, argmax_random_tie, probability, weighted_sampler,
memoize, print_table, open_data, PriorityQueue, name,
distance, vector_add
Donato Meoli
a validé
# ______________________________________________________________________________
"""The abstract class for a formal problem. You should subclass
this and implement the methods actions and result, and possibly
__init__, goal_test, and path_cost. Then you will create instances
of your subclass and solve them with the various search functions."""
def __init__(self, initial, goal=None):
"""The constructor specifies the initial state, and possibly a goal
state, if there is a unique goal. Your subclass's constructor can add
other arguments."""
def actions(self, state):
"""Return the actions that can be executed in the given
state. The result would typically be a list, but if there are
many actions, consider yielding them one at a time in an
iterator, rather than building them all at once."""
def result(self, state, action):
"""Return the state that results from executing the given
action in the given state. The action must be one of
self.actions(state)."""
def goal_test(self, state):
"""Return True if the state is a goal. The default method compares the
state to self.goal or checks for state in self.goal if it is a
list, as specified in the constructor. Override this method if
checking against a single self.goal is not enough."""
if isinstance(self.goal, list):
return is_in(state, self.goal)
else:
return state == self.goal
def path_cost(self, c, state1, action, state2):
"""Return the cost of a solution path that arrives at state2 from
state1 via action, assuming cost c to get up to state1. If the problem
is such that the path doesn't matter, this function will only look at
state2. If the path does matter, it will consider c and maybe state1
and action. The default method costs 1 for every step in the path."""
return c + 1
withal
a validé
def value(self, state):
Donato Meoli
a validé
"""For optimization problems, each state has a value. Hill-climbing
and related algorithms try to maximize this value."""
Donato Meoli
a validé
# ______________________________________________________________________________
class Node:
"""A node in a search tree. Contains a pointer to the parent (the node
that this is a successor of) and to the actual state for this node. Note
that if a state is arrived at by two paths, then there are two nodes with
the same state. Also includes the action that got us to this state, and
the total path_cost (also known as g) to reach the node. Other functions
may add an f and h value; see best_first_graph_search and astar_search for
an explanation of how the f and h values are handled. You will not need to
subclass this class."""
def __init__(self, state, parent=None, action=None, path_cost=0):
"""Create a search tree Node, derived from a parent by an action."""
self.state = state
self.parent = parent
self.action = action
self.path_cost = path_cost
self.depth = 0
if parent:
self.depth = parent.depth + 1
def __repr__(self):
return "<Node {}>".format(self.state)
def __lt__(self, node):
return self.state < node.state
"""List the nodes reachable in one step from this node."""
return [self.child_node(problem, action)
for action in problem.actions(self.state)]
def child_node(self, problem, action):
next_state = problem.result(self.state, action)
next_node = Node(next_state, self, action,
Donato Meoli
a validé
problem.path_cost(self.path_cost, self.state,
action, next_state))
Donato Meoli
a validé
"""Return the sequence of actions to go from the root to this node."""
return [node.action for node in self.path()[1:]]
def path(self):
"""Return a list of nodes forming the path from the root to this node."""
node, path_back = self, []
while node:
path_back.append(node)
node = node.parent
return list(reversed(path_back))
# We want for a queue of nodes in breadth_first_graph_search or
# astar_search to have no duplicated states, so we treat nodes
# with the same state as equal. [Problem: this may not be what you
# want in other contexts.]
def __eq__(self, other):
return isinstance(other, Node) and self.state == other.state
def __hash__(self):
return hash(self.state)
Donato Meoli
a validé
# ______________________________________________________________________________
class SimpleProblemSolvingAgentProgram:
"""Abstract framework for a problem-solving agent. [Figure 3.1]"""
def __init__(self, initial_state=None):
"""State is an abstract representation of the state
of the world, and seq is the list of actions required
to get to a particular state from the initial state(root)."""
self.state = initial_state
self.seq = []
def __call__(self, percept):
"""[Figure 3.1] Formulate a goal and problem, then
search for a sequence of actions to solve it."""
self.state = self.update_state(self.state, percept)
if not self.seq:
goal = self.formulate_goal(self.state)
problem = self.formulate_problem(self.state, goal)
self.seq = self.search(problem)
return self.seq.pop(0)
def update_state(self, state, percept):
def formulate_goal(self, state):
def formulate_problem(self, state, goal):
def search(self, problem):
Donato Meoli
a validé
# ______________________________________________________________________________
def breadth_first_tree_search(problem):
"""Search the shallowest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
Repeats infinitely in case of loops. [Figure 3.7]"""
frontier = deque([Node(problem.initial)]) # FIFO queue
while frontier:
node = frontier.popleft()
if problem.goal_test(node.state):
return node
frontier.extend(node.expand(problem))
return None
def depth_first_tree_search(problem):
"""Search the deepest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
Repeats infinitely in case of loops. [Figure 3.7]"""
frontier = [Node(problem.initial)] # Stack
if problem.goal_test(node.state):
return node
frontier.extend(node.expand(problem))
return None
def depth_first_graph_search(problem):
"""Search the deepest nodes in the search tree first.
Search through the successors of a problem to find a goal.
The argument frontier should be an empty queue.
Does not get trapped by loops.
If two paths reach a state, only use the first one. [Figure 3.7]"""
frontier = [(Node(problem.initial))] # Stack
explored = set()
while frontier:
node = frontier.pop()
if child.state not in explored and
child not in frontier)
return None
def breadth_first_graph_search(problem):
Note that this function can be implemented in a
single line as below:
return graph_search(problem, FIFOQueue())
node = Node(problem.initial)
if problem.goal_test(node.state):
return node
frontier = deque([node])
node = frontier.popleft()
explored.add(node.state)
for child in node.expand(problem):
if child.state not in explored and child not in frontier:
if problem.goal_test(child.state):
return child
frontier.append(child)
return None
def best_first_graph_search(problem, f):
"""Search the nodes with the lowest f scores first.
You specify the function f(node) that you want to minimize; for example,
if f is a heuristic estimate to the goal, then we have greedy best
first search; if f is node.depth then we have breadth-first search.
There is a subtlety: the line "f = memoize(f, 'f')" means that the f
values will be cached on the nodes as they are computed. So after doing
a best first search you can examine the f values of the path returned."""
f = memoize(f, 'f')
node = Node(problem.initial)
frontier = PriorityQueue('min', f)
while frontier:
node = frontier.pop()
if problem.goal_test(node.state):
return node
explored.add(node.state)
for child in node.expand(problem):
if child.state not in explored and child not in frontier:
frontier.append(child)
elif child in frontier:
if f(child) < frontier[child]:
del frontier[child]
frontier.append(child)
return None
return best_first_graph_search(problem, lambda node: node.path_cost)
def depth_limited_search(problem, limit=50):
Donato Meoli
a validé
def recursive_dls(node, problem, limit):
if problem.goal_test(node.state):
return node
return 'cutoff'
else:
result = recursive_dls(child, problem, limit - 1)
if result == 'cutoff':
return result
return 'cutoff' if cutoff_occurred else None
# Body of depth_limited_search:
return recursive_dls(Node(problem.initial), problem, limit)
def iterative_deepening_search(problem):
result = depth_limited_search(problem, depth)
if result != 'cutoff':
return result
Donato Meoli
a validé
# ______________________________________________________________________________
# Bidirectional Search
# Pseudocode from https://webdocs.cs.ualberta.ca/%7Eholte/Publications/MM-AAAI2016.pdf
def bidirectional_search(problem):
e = problem.find_min_edge()
Donato Meoli
a validé
gF, gB = {problem.initial: 0}, {problem.goal: 0}
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
openF, openB = [problem.initial], [problem.goal]
closedF, closedB = [], []
U = infinity
def extend(U, open_dir, open_other, g_dir, g_other, closed_dir):
"""Extend search in given direction"""
n = find_key(C, open_dir, g_dir)
open_dir.remove(n)
closed_dir.append(n)
for c in problem.actions(n):
if c in open_dir or c in closed_dir:
if g_dir[c] <= problem.path_cost(g_dir[n], n, None, c):
continue
open_dir.remove(c)
g_dir[c] = problem.path_cost(g_dir[n], n, None, c)
open_dir.append(c)
if c in open_other:
U = min(U, g_dir[c] + g_other[c])
return U, open_dir, closed_dir, g_dir
def find_min(open_dir, g):
"""Finds minimum priority, g and f values in open_dir"""
m, m_f = infinity, infinity
for n in open_dir:
f = g[n] + problem.h(n)
Donato Meoli
a validé
pr = max(f, 2 * g[n])
m = min(m, pr)
m_f = min(m_f, f)
return m, m_f, min(g.values())
def find_key(pr_min, open_dir, g):
"""Finds key in open_dir with value equal to pr_min
and minimum g value."""
m = infinity
state = -1
for n in open_dir:
Donato Meoli
a validé
pr = max(g[n] + problem.h(n), 2 * g[n])
if pr == pr_min:
if g[n] < m:
m = g[n]
state = n
return state
while openF and openB:
pr_min_f, f_min_f, g_min_f = find_min(openF, gF)
pr_min_b, f_min_b, g_min_b = find_min(openB, gB)
C = min(pr_min_f, pr_min_b)
if U <= max(C, f_min_f, f_min_b, g_min_f + g_min_b + e):
return U
if C == pr_min_f:
# Extend forward
U, openF, closedF, gF = extend(U, openF, openB, gF, gB, closedF)
else:
# Extend backward
U, openB, closedB, gB = extend(U, openB, openF, gB, gF, closedB)
return infinity
Donato Meoli
a validé
# ______________________________________________________________________________
# Informed (Heuristic) Search
greedy_best_first_graph_search = best_first_graph_search
Donato Meoli
a validé
# Greedy best-first search is accomplished by specifying f(n) = h(n).
def astar_search(problem, h=None):
"""A* search is best-first graph search with f(n) = g(n)+h(n).
You need to specify the h function when you call astar_search, or
else in your Problem subclass."""
h = memoize(h or problem.h, 'h')
return best_first_graph_search(problem, lambda n: n.path_cost + h(n))
Donato Meoli
a validé
# ______________________________________________________________________________
# A* heuristics
class EightPuzzle(Problem):
""" The problem of sliding tiles numbered from 1 to 8 on a 3x3 board,
where one of the squares is a blank. A state is represented as a tuple of length 9,
where element at index i represents the tile number at index i (0 if it's an empty square) """
Donato Meoli
a validé
def __init__(self, initial, goal=(1, 2, 3, 4, 5, 6, 7, 8, 0)):
""" Define goal state and initialize a problem """
self.goal = goal
Problem.__init__(self, initial, goal)
Donato Meoli
a validé
def find_blank_square(self, state):
"""Return the index of the blank square in a given state"""
Donato Meoli
a validé
def actions(self, state):
""" Return the actions that can be executed in the given state.
The result would be a list, since there are only four possible actions
in any given state of the environment """
Donato Meoli
a validé
possible_actions = ['UP', 'DOWN', 'LEFT', 'RIGHT']
index_blank_square = self.find_blank_square(state)
if index_blank_square % 3 == 0:
possible_actions.remove('LEFT')
if index_blank_square < 3:
possible_actions.remove('UP')
if index_blank_square % 3 == 2:
possible_actions.remove('RIGHT')
if index_blank_square > 5:
possible_actions.remove('DOWN')
return possible_actions
def result(self, state, action):
""" Given state and action, return a new state that is the result of the action.
Action is assumed to be a valid action in the state """
# blank is the index of the blank square
blank = self.find_blank_square(state)
new_state = list(state)
Donato Meoli
a validé
delta = {'UP': -3, 'DOWN': 3, 'LEFT': -1, 'RIGHT': 1}
neighbor = blank + delta[action]
new_state[blank], new_state[neighbor] = new_state[neighbor], new_state[blank]
return tuple(new_state)
def goal_test(self, state):
""" Given a state, return True if state is a goal state or False, otherwise """
return state == self.goal
def check_solvability(self, state):
""" Checks if the given state is solvable """
inversion = 0
for i in range(len(state)):
Donato Meoli
a validé
for j in range(i + 1, len(state)):
if (state[i] > state[j]) and state[i] != 0 and state[j] != 0:
Donato Meoli
a validé
return inversion % 2 == 0
Donato Meoli
a validé
def h(self, node):
""" Return the heuristic value for a given state. Default heuristic function used is
h(n) = number of misplaced tiles """
return sum(s != g for (s, g) in zip(node.state, self.goal))
Donato Meoli
a validé
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
# ______________________________________________________________________________
class PlanRoute(Problem):
""" The problem of moving the Hybrid Wumpus Agent from one place to other """
def __init__(self, initial, goal, allowed, dimrow):
""" Define goal state and initialize a problem """
self.dimrow = dimrow
self.goal = goal
self.allowed = allowed
Problem.__init__(self, initial, goal)
def actions(self, state):
""" Return the actions that can be executed in the given state.
The result would be a list, since there are only three possible actions
in any given state of the environment """
possible_actions = ['Forward', 'TurnLeft', 'TurnRight']
x, y = state.get_location()
orientation = state.get_orientation()
# Prevent Bumps
if x == 1 and orientation == 'LEFT':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if y == 1 and orientation == 'DOWN':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if x == self.dimrow and orientation == 'RIGHT':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
if y == self.dimrow and orientation == 'UP':
if 'Forward' in possible_actions:
possible_actions.remove('Forward')
return possible_actions
def result(self, state, action):
""" Given state and action, return a new state that is the result of the action.
Action is assumed to be a valid action in the state """
x, y = state.get_location()
proposed_loc = list()
# Move Forward
if action == 'Forward':
if state.get_orientation() == 'UP':
proposed_loc = [x, y + 1]
elif state.get_orientation() == 'DOWN':
proposed_loc = [x, y - 1]
elif state.get_orientation() == 'LEFT':
proposed_loc = [x - 1, y]
elif state.get_orientation() == 'RIGHT':
proposed_loc = [x + 1, y]
else:
raise Exception('InvalidOrientation')
# Rotate counter-clockwise
elif action == 'TurnLeft':
if state.get_orientation() == 'UP':
state.set_orientation('LEFT')
elif state.get_orientation() == 'DOWN':
state.set_orientation('RIGHT')
elif state.get_orientation() == 'LEFT':
state.set_orientation('DOWN')
elif state.get_orientation() == 'RIGHT':
state.set_orientation('UP')
else:
raise Exception('InvalidOrientation')
# Rotate clockwise
elif action == 'TurnRight':
if state.get_orientation() == 'UP':
state.set_orientation('RIGHT')
elif state.get_orientation() == 'DOWN':
state.set_orientation('LEFT')
elif state.get_orientation() == 'LEFT':
state.set_orientation('UP')
elif state.get_orientation() == 'RIGHT':
state.set_orientation('DOWN')
else:
raise Exception('InvalidOrientation')
if proposed_loc in self.allowed:
state.set_location(proposed_loc[0], [proposed_loc[1]])
return state
def goal_test(self, state):
""" Given a state, return True if state is a goal state or False, otherwise """
return state.get_location() == tuple(self.goal)
def h(self, node):
""" Return the heuristic value for a given state."""
# Manhattan Heuristic Function
x1, y1 = node.state.get_location()
x2, y2 = self.goal
return abs(x2 - x1) + abs(y2 - y1)
# ______________________________________________________________________________
def recursive_best_first_search(problem, h=None):
h = memoize(h or problem.h, 'h')
def RBFS(problem, node, flimit):
Donato Meoli
a validé
return node, 0 # (The second value is immaterial)
successors = node.expand(problem)
if len(successors) == 0:
return None, infinity
for s in successors:
s.f = max(s.path_cost + h(s), node.f)
while True:
best = successors[0]
if best.f > flimit:
return None, best.f
if len(successors) > 1:
alternative = successors[1].f
alternative = infinity
result, best.f = RBFS(problem, best, min(flimit, alternative))
if result is not None:
return result, best.f
node = Node(problem.initial)
node.f = h(node)
result, bestf = RBFS(problem, node, infinity)
return result
def hill_climbing(problem):
"""From the initial node, keep choosing the neighbor with highest value,
stopping when no neighbor is better. [Figure 4.2]"""
current = Node(problem.initial)
while True:
withal
a validé
neighbors = current.expand(problem)
if not neighbors:
break
Donato Meoli
a validé
neighbor = argmax_random_tie(neighbors, key=lambda node: problem.value(node.state))
withal
a validé
if problem.value(neighbor.state) <= problem.value(current.state):
break
current = neighbor
withal
a validé
return current.state
def exp_schedule(k=20, lam=0.005, limit=100):
"""One possible schedule function for simulated annealing"""
return lambda t: (k * math.exp(-lam * t) if t < limit else 0)
def simulated_annealing(problem, schedule=exp_schedule()):
"""[Figure 4.5] CAUTION: This differs from the pseudocode as it
returns a state instead of a Node."""
current = Node(problem.initial)
T = schedule(t)
if T == 0:
return current.state
withal
a validé
neighbors = current.expand(problem)
if not neighbors:
return current.state
next_choice = random.choice(neighbors)
delta_e = problem.value(next_choice.state) - problem.value(current.state)
if delta_e > 0 or probability(math.exp(delta_e / T)):
Donato Meoli
a validé
def simulated_annealing_full(problem, schedule=exp_schedule()):
""" This version returns all the states encountered in reaching
the goal state."""
states = []
current = Node(problem.initial)
for t in range(sys.maxsize):
states.append(current.state)
T = schedule(t)
if T == 0:
return states
neighbors = current.expand(problem)
if not neighbors:
return current.state
next_choice = random.choice(neighbors)
delta_e = problem.value(next_choice.state) - problem.value(current.state)
if delta_e > 0 or probability(math.exp(delta_e / T)):
Donato Meoli
a validé
"""[Figure 4.11]Used when the environment is nondeterministic and completely observable.
Contains OR nodes where the agent is free to choose any action.
After every action there is an AND node which contains all possible states
the agent may reach due to stochastic nature of environment.
The agent must be able to handle all possible states of the AND node (as it
may end up in any of them).
Returns a conditional plan to reach goal state,
or failure if the former is not possible."""
plan = and_search(problem.result(state, action),
problem, path + [state, ])
if plan is not None:
return [action, plan]
def and_search(states, problem, path):
"""Returns plan in form of dictionary where we take action plan[s] if we reach state s."""
for s in states:
plan[s] = or_search(s, problem, path)
Donato Meoli
a validé
# Pre-defined actions for PeakFindingProblem
Donato Meoli
a validé
directions4 = {'W': (-1, 0), 'N': (0, 1), 'E': (1, 0), 'S': (0, -1)}
directions8 = dict(directions4)
directions8.update({'NW': (-1, 1), 'NE': (1, 1), 'SE': (1, -1), 'SW': (-1, -1)})
class PeakFindingProblem(Problem):
"""Problem of finding the highest peak in a limited grid"""
def __init__(self, initial, grid, defined_actions=directions4):
"""The grid is a 2 dimensional array/list whose state is specified by tuple of indices"""
Problem.__init__(self, initial)
self.grid = grid
self.defined_actions = defined_actions
self.n = len(grid)
assert self.n > 0
self.m = len(grid[0])
assert self.m > 0
def actions(self, state):
"""Returns the list of actions which are allowed to be taken from the given state"""
for action in self.defined_actions:
next_state = vector_add(state, self.defined_actions[action])
Donato Meoli
a validé
if 0 <= next_state[0] <= self.n - 1 and next_state[1] >= 0 and next_state[1] <= self.m - 1:
allowed_actions.append(action)
return allowed_actions
def result(self, state, action):
"""Moves in the direction specified by action"""
return vector_add(state, self.defined_actions[action])
def value(self, state):
"""Value of a state is the value it is the index to"""
x, y = state
assert 0 <= x < self.n
assert 0 <= y < self.m
return self.grid[x][y]
"""[Figure 4.21] The abstract class for an OnlineDFSAgent. Override
update_state method to convert percept to state. While initializing
the subclass a problem needs to be provided which is an instance of
a subclass of the Problem class."""
def __init__(self, problem):
self.problem = problem
self.s = None
self.a = None
self.untried = dict()
self.unbacktracked = dict()
s1 = self.update_state(percept)
if self.problem.goal_test(s1):
if s1 not in self.untried.keys():
self.untried[s1] = self.problem.actions(s1)
if s1 != self.result[(self.s, self.a)]:
self.result[(self.s, self.a)] = s1
if len(self.untried[s1]) == 0:
if len(self.unbacktracked[s1]) == 0:
# else a <- an action b such that result[s', b] = POP(unbacktracked[s'])
unbacktracked_pop = self.unbacktracked.pop(s1)
for (s, b) in self.result.keys():
if self.result[(s, b)] == unbacktracked_pop:
"""To be overridden in most cases. The default case
assumes the percept to be of type state."""
Donato Meoli
a validé
# ______________________________________________________________________________
class OnlineSearchProblem(Problem):
"""
A problem which is solved by an agent executing
actions, rather than by just computation.
Carried in a deterministic and a fully observable environment."""
def __init__(self, initial, goal, graph):
self.initial = initial
self.goal = goal
self.graph = graph
def actions(self, state):
return self.graph.graph_dict[state].keys()
def output(self, state, action):
return self.graph.graph_dict[state][action]
"""Returns least possible cost to reach a goal for the given state."""
return self.graph.least_costs[state]
def c(self, s, a, s1):
"""Returns a cost estimate for an agent to move from state 's' to state 's1'."""
return 1
def update_state(self, percept):
raise NotImplementedError
def goal_test(self, state):
if state == self.goal:
return True
return False
class LRTAStarAgent:
""" [Figure 4.24]
Abstract class for LRTA*-Agent. A problem needs to be
provided which is an instance of a subclass of Problem Class.
Takes a OnlineSearchProblem [Figure 4.23] as a problem.
"""
def __init__(self, problem):
self.problem = problem
# self.result = {} # no need as we are using problem.result
self.H = {}
self.s = None
self.a = None
Donato Meoli
a validé
def __call__(self, s1): # as of now s1 is a state rather than a percept
if self.problem.goal_test(s1):
self.a = None
return self.a
else:
if s1 not in self.H:
self.H[s1] = self.problem.h(s1)
if self.s is not None:
# self.result[(self.s, self.a)] = s1 # no need as we are using problem.output
# minimum cost for action b in problem.actions(s)
self.H[self.s] = min(self.LRTA_cost(self.s, b, self.problem.output(self.s, b),
Donato Meoli
a validé
self.H) for b in self.problem.actions(self.s))
# an action b in problem.actions(s1) that minimizes costs
self.a = argmin(self.problem.actions(s1),
key=lambda b: self.LRTA_cost(s1, b, self.problem.output(s1, b), self.H))
self.s = s1
return self.a
def LRTA_cost(self, s, a, s1, H):
"""Returns cost to move from state 's' to state 's1' plus
estimated cost to get to goal from s1."""
print(s, a, s1)
if s1 is None:
return self.problem.h(s)
else:
# sometimes we need to get H[s1] which we haven't yet added to H
# to replace this try, except: we can initialize H with values from problem.h
try:
return self.problem.c(s, a, s1) + self.H[s1]
return self.problem.c(s, a, s1) + self.problem.h(s1)
Donato Meoli
a validé
# ______________________________________________________________________________
# Genetic Algorithm
def genetic_search(problem, fitness_fn, ngen=1000, pmut=0.1, n=20):
"""Call genetic_algorithm on the appropriate parts of a problem.
This requires the problem to have states that can mate and mutate,
plus a value method that scores states."""
# NOTE: This is not tested and might not work.
# TODO: Use this function to make Problems work with genetic_algorithm.
s = problem.initial_state
states = [problem.result(s, a) for a in problem.actions(s)]
random.shuffle(states)
return genetic_algorithm(states[:n], problem.value, ngen, pmut)
def genetic_algorithm(population, fitness_fn, gene_pool=[0, 1], f_thres=None, ngen=1000, pmut=0.1):
"""[Figure 4.8]"""
for i in range(ngen):
population = [mutate(recombine(*select(2, population, fitness_fn)), gene_pool, pmut)
for i in range(len(population))]
fittest_individual = fitness_threshold(fitness_fn, f_thres, population)
if fittest_individual:
return fittest_individual
return argmax(population, key=fitness_fn)
def fitness_threshold(fitness_fn, f_thres, population):
if not f_thres:
return None
fittest_individual = argmax(population, key=fitness_fn)
if fitness_fn(fittest_individual) >= f_thres:
return fittest_individual
return None
def init_population(pop_number, gene_pool, state_length):
"""Initializes population for genetic algorithm
pop_number : Number of individuals in population
gene_pool : List of possible values for individuals
state_length: The length of each individual"""
g = len(gene_pool)
population = []
for i in range(pop_number):
new_individual = [gene_pool[random.randrange(0, g)] for j in range(state_length)]
population.append(new_individual)
return population
sampler = weighted_sampler(population, fitnesses)
return [sampler() for i in range(r)]
n = len(x)
return x[:c] + y[c:]
def recombine_uniform(x, y):
n = len(x)
indexes = random.sample(range(n), n)
for i in range(n):
ix = indexes[i]
result[ix] = x[ix] if i < n / 2 else y[ix]
return ''.join(str(r) for r in result)
Donato Meoli
a validé
def mutate(x, gene_pool, pmut):
if random.uniform(0, 1) >= pmut:
return x
n = len(x)
g = len(gene_pool)
c = random.randrange(0, n)
r = random.randrange(0, g)
new_gene = gene_pool[r]
Donato Meoli
a validé
return x[:c] + [new_gene] + x[c + 1:]
# _____________________________________________________________________________
# The remainder of this file implements examples for the search algorithms.
# ______________________________________________________________________________
# Graphs and Graph Problems
class Graph:
"""A graph connects nodes (vertices) by edges (links). Each edge can also
have a length associated with it. The constructor call is something like:
this makes a graph with 3 nodes, A, B, and C, with an edge of length 1 from
A to B, and an edge of length 2 from A to C. You can also do:
g = Graph({'A': {'B': 1, 'C': 2}, directed=False)