search-4e.ipynb 89,4 ko
Newer Older
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "*Note: This is not yet ready, but shows the direction I'm leaning in for Fourth Edition Search.*\n",
    "\n",
    "# State-Space Search\n",
    "\n",
    "This notebook describes several state-space search algorithms, and how they can be used to solve a variety of problems. We start with a simple algorithm and a simple domain: finding a route from city to city.  Later we will explore other algorithms and domains.\n",
    "\n",
    "## The Route-Finding Domain\n",
    "\n",
    "Like all state-space search problems, in a route-finding problem you will be given:\n",
    "- A start state (for example, `'A'` for the city Arad).\n",
    "- A goal state (for example, `'B'` for the city Bucharest).\n",
    "- Actions that can change state (for example, driving from `'A'` to `'S'`).\n",
    "\n",
    "You will be asked to find:\n",
    "- A path from the start state, through intermediate states, to the goal state.\n",
    "\n",
    "We'll use this map:\n",
    "\n",
    "<img src=\"http://robotics.cs.tamu.edu/dshell/cs625/images/map.jpg\" height=\"366\" width=\"603\">\n",
    "\n",
    "A state-space search problem can be represented by a *graph*, where the vertexes of the graph are the states of the problem (in this case, cities) and the edges of the graph are the actions (in this case, driving along a road).\n",
    "\n",
    "We'll represent a city by its single initial letter. \n",
    "We'll represent the graph of connections as a `dict` that maps each city to a list of the neighboring cities (connected by a road). For now we don't explicitly represent the actions, nor the distances\n",
    "between cities."
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "romania = {\n",
    " 'A': ['Z', 'T', 'S'],\n",
    " 'B': ['F', 'P', 'G', 'U'],\n",
    " 'C': ['D', 'R', 'P'],\n",
    " 'D': ['M', 'C'],\n",
    " 'E': ['H'],\n",
    " 'F': ['S', 'B'],\n",
    " 'G': ['B'],\n",
    " 'H': ['U', 'E'],\n",
    " 'I': ['N', 'V'],\n",
    " 'L': ['T', 'M'],\n",
    " 'M': ['L', 'D'],\n",
    " 'N': ['I'],\n",
    " 'O': ['Z', 'S'],\n",
    " 'P': ['R', 'C', 'B'],\n",
    " 'R': ['S', 'C', 'P'],\n",
    " 'S': ['A', 'O', 'F', 'R'],\n",
    " 'T': ['A', 'L'],\n",
    " 'U': ['B', 'V', 'H'],\n",
    " 'V': ['U', 'I'],\n",
    " 'Z': ['O', 'A']}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "Suppose we want to get from `A` to `B`. Where can we go from the start state, `A`?"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Z', 'T', 'S']"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "romania['A']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "We see that from `A` we can get to any of the three cities `['Z', 'T', 'S']`. Which should we choose?  *We don't know.* That's the whole point of *search*: we don't know which immediate action is best, so we'll have to explore, until we find a *path* that leads to the goal. \n",
    "\n",
    "How do we explore? We'll start with a simple algorithm that will get us from `A` to `B`. We'll keep a *frontier*&mdash;a collection of not-yet-explored states&mdash;and expand the frontier outward until it reaches the goal. To be more precise:\n",
    "\n",
    "- Initially, the only state in the frontier is the start state, `'A'`.\n",
    "- Until we reach the goal, or run out of states in the frontier to explore, do the following:\n",
    "  - Remove the first state from the frontier. Call it `s`.\n",
    "  - If `s` is the goal, we're done. Return the path to `s`.\n",
    "  - Otherwise, consider all the neighboring states of `s`. For each one:\n",
    "    - If we have not previously explored the state, add it to the end of the frontier.\n",
    "    - Also keep track of the previous state that led to this new neighboring state; we'll need this to reconstruct the path to the goal, and to keep us from re-visiting previously explored states.\n",
    "    \n",
    "# A Simple Search Algorithm: `breadth_first`\n",
    "    \n",
    "The function `breadth_first` implements this strategy:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": true,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "from collections import deque # Doubly-ended queue: pop from left, append to right.\n",
    "\n",
    "def breadth_first(start, goal, neighbors):\n",
    "    \"Find a shortest sequence of states from start to the goal.\"\n",
    "    frontier = deque([start]) # A queue of states\n",
    "    previous = {start: None}  # start has no previous state; other states will\n",
    "    while frontier:\n",
    "        s = frontier.popleft()\n",
    "        if s == goal:\n",
    "            return path(previous, s)\n",
    "        for s2 in neighbors[s]:\n",
    "            if s2 not in previous:\n",
    "                frontier.append(s2)\n",
    "                previous[s2] = s\n",
    "                \n",
    "def path(previous, s): \n",
    "    \"Return a list of states that lead to state s, according to the previous dict.\"\n",
    "    return [] if (s is None) else path(previous, previous[s]) + [s]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "A couple of things to note: \n",
    "\n",
    "1. We always add new states to the end of the frontier queue. That means that all the states that are adjacent to the start state will come first in the queue, then all the states that are two steps away, then three steps, etc.\n",
    "That's what we mean by *breadth-first* search.\n",
    "2. We recover the path to an `end` state by following the trail of `previous[end]` pointers, all the way back to `start`.\n",
    "The dict `previous` is a map of `{state: previous_state}`. \n",
    "3. When we finally get an `s` that is the goal state, we know we have found a shortest path, because any other state in the queue must correspond to a path that is as long or longer.\n",
    "3. Note that `previous`  contains all the states that are currently in `frontier` as well as all the states that were in `frontier` in the past.\n",
    "4. If no path to the goal is found, then `breadth_first` returns `None`. If a path is found, it returns the sequence of states on the path.\n",
    "\n",
    "Some examples:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['A', 'S', 'F', 'B']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('A', 'B', romania)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['L', 'T', 'A', 'S', 'F', 'B', 'U', 'V', 'I', 'N']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('L', 'N', romania)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['N', 'I', 'V', 'U', 'B', 'F', 'S', 'A', 'T', 'L']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('N', 'L', romania)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['E']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('E', 'E', romania)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "Now let's try a different  kind of problem that can be solved with the same search function.\n",
    "\n",
    "## Word Ladders Problem\n",
    "\n",
    "A *word ladder* problem is this: given a start word and a goal word, find the shortest way to transform the start word into the goal word by changing one letter at a time, such that each change results in a word. For example starting with `green` we can reach `grass` in 7 steps:\n",
    "\n",
    "`green` &rarr; `greed` &rarr; `treed` &rarr; `trees` &rarr; `tress` &rarr; `cress` &rarr; `crass` &rarr; `grass`\n",
    "\n",
    "We will need a dictionary of words. I'll make a local copy of the list of 5-letter words from the [Stanford GraphBase](http://www-cs-faculty.stanford.edu/~uno/sgb.html) project (the `!` indicates that these are shell commands, not Python):"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "! [ -e sgb-words.txt ] || curl -O http://www-cs-faculty.stanford.edu/~uno/sgb-words.txt"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "which\r\n",
      "there\r\n",
      "their\r\n",
      "about\r\n",
      "would\r\n",
      "these\r\n",
      "other\r\n",
      "words\r\n",
      "could\r\n",
      "write\r\n"
     ]
    }
   ],
   "source": [
    "! head sgb-words.txt"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "We can assign `WORDS` to be the set of all the words in this file:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "5757"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "WORDS = set(open('sgb-words.txt').read().split())\n",
    "len(WORDS)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "And define `neighboring_words` to return the set of all words that are a one-letter change away from a given `word`:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def neighboring_words(word):\n",
    "    \"All words that are one letter away from this word.\"\n",
    "    neighbors = {word[:i] + c + word[i+1:]\n",
    "                 for i in range(len(word))\n",
    "                 for c in 'abcdefghijklmnopqrstuvwxyz'\n",
    "                 if c != word[i]}\n",
    "    return neighbors & WORDS"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "For example:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'cello', 'hallo', 'hells', 'hullo', 'jello'}"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "neighboring_words('hello')"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'would'}"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "neighboring_words('world')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "Now we can create  `word_neighbors` as a dict of `{word: {neighboring_word, ...}}`: "
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "word_neighbors = {word: neighboring_words(word)\n",
    "                  for word in WORDS}"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "Now the `breadth_first` function can be used to solve a word ladder problem:"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['green', 'greed', 'treed', 'trees', 'tress', 'cress', 'crass', 'grass']"
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('green', 'grass', word_neighbors)"
   ]
  },
  {
   "cell_type": "code",
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['smart',\n",
       " 'start',\n",
       " 'stars',\n",
       " 'sears',\n",
       " 'bears',\n",
       " 'beans',\n",
       " 'brans',\n",
       " 'brand',\n",
       " 'braid',\n",
       " 'brain']"
      ]
     },
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('smart', 'brain', word_neighbors)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['frown',\n",
       " 'flown',\n",
       " 'flows',\n",
       " 'slows',\n",
       " 'slots',\n",
       " 'slits',\n",
       " 'spits',\n",
       " 'spite',\n",
       " 'smite',\n",
658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600
       " 'smile']"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "breadth_first('frown', 'smile', word_neighbors)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# More General Search Algorithms\n",
    "\n",
    "Now we'll embelish the `breadth_first` algorithm to make a family of search algorithms with more capabilities:\n",
    "\n",
    "1. We distinguish between an *action* and the *result* of an action.\n",
    "3. We allow different measures of the cost of a solution (not just the number of steps in the sequence).\n",
    "4. We search through the state space in an order that is more likely to lead to an optimal solution quickly.\n",
    "\n",
    "Here's how we do these things:\n",
    "\n",
    "1. Instead of having a graph of neighboring states, we instead have an object of type *Problem*. A Problem\n",
    "has one method, `Problem.actions(state)` to return a collection of the actions that are allowed in a state,\n",
    "and another method, `Problem.result(state, action)` that says what happens when you take an action.\n",
    "2. We keep a set, `explored` of states that have already been explored. We also have a class, `Frontier`, that makes it efficient to ask if a state is on the frontier.\n",
    "3. Each action has a cost associated with it (in fact, the cost can vary with both the state and the action).\n",
    "4. The `Frontier` class acts as a priority queue, allowing the \"best\" state to be explored next.\n",
    "We represent a sequence of actions and resulting states as a linked list of `Node` objects.\n",
    "\n",
    "The algorithm `breadth_first_search` is basically the same  as `breadth_first`, but using our new conventions:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def breadth_first_search(problem):\n",
    "    \"Search for goal; paths with least number of steps first.\"\n",
    "    if problem.is_goal(problem.initial): \n",
    "        return Node(problem.initial)\n",
    "    frontier = FrontierQ(Node(problem.initial), LIFO=False)\n",
    "    explored = set()\n",
    "    while frontier:\n",
    "        node = frontier.pop()\n",
    "        explored.add(node.state)\n",
    "        for action in problem.actions(node.state):\n",
    "            child = node.child(problem, action)\n",
    "            if child.state not in explored and child.state not in frontier:\n",
    "                if problem.is_goal(child.state):\n",
    "                    return child\n",
    "                frontier.add(child)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Next is `uniform_cost_search`, in which each step can have a different cost, and we still consider first one os the states with minimum cost so far."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def uniform_cost_search(problem, costfn=lambda node: node.path_cost):\n",
    "    frontier = FrontierPQ(Node(problem.initial), costfn)\n",
    "    explored = set()\n",
    "    while frontier:\n",
    "        node = frontier.pop()\n",
    "        if problem.is_goal(node.state):\n",
    "            return node\n",
    "        explored.add(node.state)\n",
    "        for action in problem.actions(node.state):\n",
    "            child = node.child(problem, action)\n",
    "            if child.state not in explored and child not in frontier:\n",
    "                frontier.add(child)\n",
    "            elif child in frontier and frontier.cost[child] < child.path_cost:\n",
    "                frontier.replace(child)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Finally, `astar_search`  in which the cost includes an estimate of the distance to the goal as well as the distance travelled so far."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 20,
   "metadata": {
    "button": false,
    "collapsed": true,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def astar_search(problem, heuristic):\n",
    "    costfn = lambda node: node.path_cost + heuristic(node.state)\n",
    "    return uniform_cost_search(problem, costfn)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Search Tree Nodes\n",
    "\n",
    "The solution to a search problem is now a linked list of `Node`s, where each `Node`\n",
    "includes a `state` and the `path_cost` of getting to the state. In addition, for every `Node` except for the first (root) `Node`, there is a previous `Node` (indicating the state that lead to this `Node`) and an `action` (indicating the action taken to get here)."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class Node(object):\n",
    "    \"\"\"A node in a search tree. A search tree is spanning tree over states.\n",
    "    A Node contains a state, the previous node in the tree, the action that\n",
    "    takes us from the previous state to this state, and the path cost to get to \n",
    "    this state. If a state is arrived at by two paths, then there are two nodes \n",
    "    with the same state.\"\"\"\n",
    "\n",
    "    def __init__(self, state, previous=None, action=None, step_cost=1):\n",
    "        \"Create a search tree Node, derived from a previous Node by an action.\"\n",
    "        self.state     = state\n",
    "        self.previous  = previous\n",
    "        self.action    = action\n",
    "        self.path_cost = 0 if previous is None else (previous.path_cost + step_cost)\n",
    "\n",
    "    def __repr__(self): return \"<Node {}: {}>\".format(self.state, self.path_cost)\n",
    "    \n",
    "    def __lt__(self, other): return self.path_cost < other.path_cost\n",
    "    \n",
    "    def child(self, problem, action):\n",
    "        \"The Node you get by taking an action from this Node.\"\n",
    "        result = problem.result(self.state, action)\n",
    "        return Node(result, self, action, \n",
    "                    problem.step_cost(self.state, action, result))    "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Frontiers\n",
    "\n",
    "A frontier is a collection of Nodes that acts like both a Queue and a Set. A frontier, `f`, supports these operations:\n",
    "\n",
    "* `f.add(node)`: Add a node to the Frontier.\n",
    "\n",
    "* `f.pop()`: Remove and return the \"best\" node from the frontier.\n",
    "\n",
    "* `f.replace(node)`: add this node and remove a previous node with the same state.\n",
    "\n",
    "* `state in f`: Test if some node in the frontier has arrived at state.\n",
    "\n",
    "* `f[state]`: returns the node corresponding to this state in frontier.\n",
    "\n",
    "* `len(f)`: The number of Nodes in the frontier. When the frontier is empty, `f` is *false*.\n",
    "\n",
    "We provide two kinds of frontiers: One for \"regular\" queues, either first-in-first-out (for breadth-first search) or last-in-first-out (for depth-first search), and one for priority queues, where you can specify what cost function on nodes you are trying to minimize."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "from collections import OrderedDict\n",
    "import heapq\n",
    "\n",
    "class FrontierQ(OrderedDict):\n",
    "    \"A Frontier that supports FIFO or LIFO Queue ordering.\"\n",
    "    \n",
    "    def __init__(self, initial, LIFO=False):\n",
    "        \"\"\"Initialize Frontier with an initial Node.\n",
    "        If LIFO is True, pop from the end first; otherwise from front first.\"\"\"\n",
    "        self.LIFO = LIFO\n",
    "        self.add(initial)\n",
    "    \n",
    "    def add(self, node):\n",
    "        \"Add a node to the frontier.\"\n",
    "        self[node.state] = node\n",
    "        \n",
    "    def pop(self):\n",
    "        \"Remove and return the next Node in the frontier.\"\n",
    "        (state, node) = self.popitem(self.LIFO)\n",
    "        return node\n",
    "    \n",
    "    def replace(self, node):\n",
    "        \"Make this node replace the nold node with the same state.\"\n",
    "        del self[node.state]\n",
    "        self.add(node)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "button": false,
    "collapsed": true,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class FrontierPQ:\n",
    "    \"A Frontier ordered by a cost function; a Priority Queue.\"\n",
    "    \n",
    "    def __init__(self, initial, costfn=lambda node: node.path_cost):\n",
    "        \"Initialize Frontier with an initial Node, and specify a cost function.\"\n",
    "        self.heap   = []\n",
    "        self.states = {}\n",
    "        self.costfn = costfn\n",
    "        self.add(initial)\n",
    "    \n",
    "    def add(self, node):\n",
    "        \"Add node to the frontier.\"\n",
    "        cost = self.costfn(node)\n",
    "        heapq.heappush(self.heap, (cost, node))\n",
    "        self.states[node.state] = node\n",
    "        \n",
    "    def pop(self):\n",
    "        \"Remove and return the Node with minimum cost.\"\n",
    "        (cost, node) = heapq.heappop(self.heap)\n",
    "        self.states.pop(node.state, None) # remove state\n",
    "        return node\n",
    "    \n",
    "    def replace(self, node):\n",
    "        \"Make this node replace a previous node with the same state.\"\n",
    "        if node.state not in self:\n",
    "            raise ValueError('{} not there to replace'.format(node.state))\n",
    "        for (i, (cost, old_node)) in enumerate(self.heap):\n",
    "            if old_node.state == node.state:\n",
    "                self.heap[i] = (self.costfn(node), node)\n",
    "                heapq._siftdown(self.heap, 0, i)\n",
    "                return\n",
    "\n",
    "    def __contains__(self, state): return state in self.states\n",
    "    \n",
    "    def __len__(self): return len(self.heap)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Search Problems\n",
    "\n",
    "`Problem` is the abstract class for all search problems. You can define your own class of problems as a subclass of `Problem`. You will need to override the `actions` and  `result` method to describe how your problem works. You will also have to either override `is_goal` or pass a collection of goal states to the initialization method.  If actions have different costs, you should override the `step_cost` method. "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class Problem(object):\n",
    "    \"\"\"The abstract class for a search problem.\"\"\"\n",
    "\n",
    "    def __init__(self, initial=None, goals=(), **additional_keywords):\n",
    "        \"\"\"Provide an initial state and optional goal states.\n",
    "        A subclass can have additional keyword arguments.\"\"\"\n",
    "        self.initial = initial  # The initial state of the problem.\n",
    "        self.goals = goals      # A collection of possibe goal states.\n",
    "        self.__dict__.update(**additional_keywords)\n",
    "\n",
    "    def actions(self, state):\n",
    "        \"Return a list of actions executable in this state.\"\n",
    "        raise NotImplementedError # Override this!\n",
    "\n",
    "    def result(self, state, action):\n",
    "        \"The state that results from executing this action in this state.\"\n",
    "        raise NotImplementedError # Override this!\n",
    "\n",
    "    def is_goal(self, state):\n",
    "        \"True if the state is a goal.\" \n",
    "        return state in self.goals # Optionally override this!\n",
    "\n",
    "    def step_cost(self, state, action, result=None):\n",
    "        \"The cost of taking this action from this state.\"\n",
    "        return 1 # Override this if actions have different costs        "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def action_sequence(node):\n",
    "    \"The sequence of actions to get to this node.\"\n",
    "    actions = []\n",
    "    while node.previous:\n",
    "        actions.append(node.action)\n",
    "        node = node.previous\n",
    "    return actions[::-1]\n",
    "\n",
    "def state_sequence(node):\n",
    "    \"The sequence of states to get to this node.\"\n",
    "    states = [node.state]\n",
    "    while node.previous:\n",
    "        node = node.previous\n",
    "        states.append(node.state)\n",
    "    return states[::-1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Two Location Vacuum World"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 26,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "dirt  = '*'\n",
    "clean = ' '\n",
    "\n",
    "class TwoLocationVacuumProblem(Problem):\n",
    "    \"\"\"A Vacuum in a world with two locations, and dirt.\n",
    "    Each state is a tuple of (location, dirt_in_W, dirt_in_E).\"\"\"\n",
    "\n",
    "    def actions(self, state): return ('W', 'E', 'Suck')\n",
    "    \n",
    "    def is_goal(self, state): return dirt not in state\n",
    " \n",
    "    def result(self, state, action):\n",
    "        \"The state that results from executing this action in this state.\"        \n",
    "        (loc, dirtW, dirtE) = state\n",
    "        if   action == 'W':                   return ('W', dirtW, dirtE)\n",
    "        elif action == 'E':                   return ('E', dirtW, dirtE)\n",
    "        elif action == 'Suck' and loc == 'W': return (loc, clean, dirtE)\n",
    "        elif action == 'Suck' and loc == 'E': return (loc, dirtW, clean) \n",
    "        else: raise ValueError('unknown action: ' + action)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 27,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<Node ('E', ' ', ' '): 3>"
      ]
     },
     "execution_count": 27,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "problem = TwoLocationVacuumProblem(initial=('W', dirt, dirt))\n",
    "result = uniform_cost_search(problem)\n",
    "result"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 28,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Suck', 'E', 'Suck']"
      ]
     },
     "execution_count": 28,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 29,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('W', '*', '*'), ('W', ' ', '*'), ('E', ' ', '*'), ('E', ' ', ' ')]"
      ]
     },
     "execution_count": 29,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "state_sequence(result)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 30,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "['Suck']"
      ]
     },
     "execution_count": 30,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "problem = TwoLocationVacuumProblem(initial=('E', clean, dirt))\n",
    "result = uniform_cost_search(problem)\n",
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Water Pouring Problem\n",
    "\n",
    "Here is another problem domain, to show you how to define one. The idea is that we have a number of water jugs and a water tap and the goal is to measure out a specific amount of water (in, say, ounces or liters). You can completely fill or empty a jug, but because the jugs don't have markings on them, you can't partially fill them with a specific amount. You can, however, pour one jug into another, stopping when the seconfd is full or the first is empty."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 31,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class PourProblem(Problem):\n",
    "    \"\"\"Problem about pouring water between jugs to achieve some water level.\n",
    "    Each state is a tuples of levels. In the initialization, provide a tuple of \n",
    "    capacities, e.g. PourProblem(capacities=(8, 16, 32), initial=(2, 4, 3), goals={7}), \n",
    "    which means three jugs of capacity 8, 16, 32, currently filled with 2, 4, 3 units of \n",
    "    water, respectively, and the goal is to get a level of 7 in any one of the jugs.\"\"\"\n",
    "    \n",
    "    def actions(self, state):\n",
    "        \"\"\"The actions executable in this state.\"\"\"\n",
    "        jugs = range(len(state))\n",
    "        return ([('Fill', i)    for i in jugs if state[i] != self.capacities[i]] +\n",
    "                [('Dump', i)    for i in jugs if state[i] != 0] +\n",
    "                [('Pour', i, j) for i in jugs for j in jugs if i != j])\n",
    "\n",
    "    def result(self, state, action):\n",
    "        \"\"\"The state that results from executing this action in this state.\"\"\"\n",
    "        result = list(state)\n",
    "        act, i, j = action[0], action[1], action[-1]\n",
    "        if act == 'Fill': # Fill i to capacity\n",
    "            result[i] = self.capacities[i]\n",
    "        elif act == 'Dump': # Empty i\n",
    "            result[i] = 0\n",
    "        elif act == 'Pour':\n",
    "            a, b = state[i], state[j]\n",
    "            result[i], result[j] = ((0, a + b) \n",
    "                                    if (a + b <= self.capacities[j]) else\n",
    "                                    (a + b - self.capacities[j], self.capacities[j]))\n",
    "        else:\n",
    "            raise ValueError('unknown action', action)\n",
    "        return tuple(result)\n",
    "\n",
    "    def is_goal(self, state):\n",
    "        \"\"\"True if any of the jugs has a level equal to one of the goal levels.\"\"\"\n",
    "        return any(level in self.goals for level in state)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 32,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "(2, 13)"
      ]
     },
     "execution_count": 32,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "p7 = PourProblem(initial=(2, 0), capacities=(5, 13), goals={7})\n",
    "p7.result((2, 0),  ('Fill', 1))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 33,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
      ]
     },
     "execution_count": 33,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "result = uniform_cost_search(p7)\n",
    "action_sequence(result)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Visualization Output"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 34,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def showpath(searcher, problem):\n",
    "    \"Show what happens when searcvher solves problem.\"\n",
    "    problem = Instrumented(problem)\n",
    "    print('\\n{}:'.format(searcher.__name__))\n",
    "    result = searcher(problem)\n",
    "    if result:\n",
    "        actions = action_sequence(result)\n",
    "        state = problem.initial\n",
    "        path_cost = 0\n",
    "        for steps, action in enumerate(actions, 1):\n",
    "            path_cost += problem.step_cost(state, action, 0)\n",
    "            result = problem.result(state, action)\n",
    "            print('  {} =={}==> {}; cost {} after {} steps'\n",
    "                  .format(state, action, result, path_cost, steps,\n",
    "                          '; GOAL!' if problem.is_goal(result) else ''))\n",
    "            state = result\n",
    "    msg = 'GOAL FOUND' if result else 'no solution'\n",
    "    print('{} after {} results and {} goal checks'\n",
    "          .format(msg, problem._counter['result'], problem._counter['is_goal']))\n",
    "        \n",
    "from collections import Counter\n",
    "\n",
    "class Instrumented:\n",
    "    \"Instrument an object to count all the attribute accesses in _counter.\"\n",
    "    def __init__(self, obj):\n",
    "        self._object = obj\n",
    "        self._counter = Counter()\n",
    "    def __getattr__(self, attr):\n",
    "        self._counter[attr] += 1\n",
    "        return getattr(self._object, attr)    "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (2, 0) ==('Pour', 0, 1)==> (0, 2); cost 1 after 1 steps\n",
      "  (0, 2) ==('Fill', 0)==> (5, 2); cost 2 after 2 steps\n",
      "  (5, 2) ==('Pour', 0, 1)==> (0, 7); cost 3 after 3 steps\n",
      "GOAL FOUND after 83 results and 22 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(uniform_cost_search, p7)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 1 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 2 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 3 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 4 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 5 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 6 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 7 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 8 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 9 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 10 after 10 steps\n",
      "GOAL FOUND after 110 results and 32 goal checks\n"
     ]
    }
   ],
   "source": [
    "p = PourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
    "showpath(uniform_cost_search, p)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class GreenPourProblem(PourProblem):    \n",
    "    def step_cost(self, state, action, result=None):\n",
    "        \"The cost is the amount of water used in a fill.\"\n",
    "        if action[0] == 'Fill':\n",
    "            i = action[1]\n",
    "            return self.capacities[i] - state[i]\n",
    "        return 0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 184 results and 48 goal checks\n"
     ]
    }
   ],
   "source": [
    "p = GreenPourProblem(initial=(0, 0), capacities=(7, 13), goals={2})\n",
    "showpath(uniform_cost_search, p)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {
    "button": false,
    "collapsed": true,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def compare_searchers(problem, searchers=None):\n",
    "    \"Apply each of the search algorithms to the problem, and show results\"\n",
    "    if searchers is None: \n",
    "        searchers = (breadth_first_search, uniform_cost_search)\n",
    "    for searcher in searchers:\n",
    "        showpath(searcher, problem)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 100 results and 31 goal checks\n",
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 0)==> (7, 0); cost 7 after 1 steps\n",
      "  (7, 0) ==('Pour', 0, 1)==> (0, 7); cost 7 after 2 steps\n",
      "  (0, 7) ==('Fill', 0)==> (7, 7); cost 14 after 3 steps\n",
      "  (7, 7) ==('Pour', 0, 1)==> (1, 13); cost 14 after 4 steps\n",
      "  (1, 13) ==('Dump', 1)==> (1, 0); cost 14 after 5 steps\n",
      "  (1, 0) ==('Pour', 0, 1)==> (0, 1); cost 14 after 6 steps\n",
      "  (0, 1) ==('Fill', 0)==> (7, 1); cost 21 after 7 steps\n",
      "  (7, 1) ==('Pour', 0, 1)==> (0, 8); cost 21 after 8 steps\n",
      "  (0, 8) ==('Fill', 0)==> (7, 8); cost 28 after 9 steps\n",
      "  (7, 8) ==('Pour', 0, 1)==> (2, 13); cost 28 after 10 steps\n",
      "GOAL FOUND after 184 results and 48 goal checks\n"
     ]
    }
   ],
   "source": [
    "compare_searchers(p)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Random Grid\n",
    "\n",
    "An environment where you can move in any of 4 directions, unless there is an obstacle there.\n",
    "\n",
    "\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{(0, 0): [(0, 1), (1, 0)],\n",
       " (0, 1): [(0, 2), (0, 0), (1, 1)],\n",
       " (0, 2): [(0, 3), (0, 1), (1, 2)],\n",
       " (0, 3): [(0, 4), (0, 2)],\n",
       " (0, 4): [(0, 3), (1, 4)],\n",
       " (1, 0): [(1, 1), (2, 0), (0, 0)],\n",
       " (1, 1): [(1, 2), (1, 0), (2, 1), (0, 1)],\n",
       " (1, 2): [(1, 1), (2, 2), (0, 2)],\n",
       " (1, 3): [(1, 4), (1, 2), (0, 3)],\n",
       " (1, 4): [(2, 4), (0, 4)],\n",
       " (2, 0): [(2, 1), (3, 0), (1, 0)],\n",
       " (2, 1): [(2, 2), (2, 0), (3, 1), (1, 1)],\n",
       " (2, 2): [(2, 1), (3, 2), (1, 2)],\n",
       " (2, 3): [(2, 4), (2, 2), (3, 3)],\n",
       " (2, 4): [(3, 4), (1, 4)],\n",
       " (3, 0): [(3, 1), (4, 0), (2, 0)],\n",
       " (3, 1): [(3, 2), (3, 0), (4, 1), (2, 1)],\n",
       " (3, 2): [(3, 3), (3, 1), (4, 2), (2, 2)],\n",
       " (3, 3): [(3, 4), (3, 2), (4, 3)],\n",
       " (3, 4): [(3, 3), (4, 4), (2, 4)],\n",
       " (4, 0): [(4, 1), (3, 0)],\n",
       " (4, 1): [(4, 2), (4, 0), (3, 1)],\n",
       " (4, 2): [(4, 3), (4, 1), (3, 2)],\n",
       " (4, 3): [(4, 4), (4, 2), (3, 3)],\n",
       " (4, 4): [(4, 3), (3, 4)]}"
      ]
     },
     "execution_count": 41,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "import random\n",
    "\n",
    "N, S, E, W = DIRECTIONS = [(0, 1), (0, -1), (1, 0), (-1, 0)]\n",
    "\n",
    "def Grid(width, height, obstacles=0.1):\n",
    "    \"\"\"A 2-D grid, width x height, with obstacles that are either a collection of points,\n",
    "    or a fraction between 0 and 1 indicating the density of obstacles, chosen at random.\"\"\"\n",
    "    grid = {(x, y) for x in range(width) for y in range(height)}\n",
    "    if isinstance(obstacles, (float, int)):\n",
    "        obstacles = random.sample(grid, int(width * height * obstacles))\n",
    "    def neighbors(x, y):\n",
    "        for (dx, dy) in DIRECTIONS:\n",
    "            (nx, ny) = (x + dx, y + dy)\n",
    "            if (nx, ny) not in obstacles and 0 <= nx < width and 0 <= ny < height:\n",
    "                yield (nx, ny)\n",
    "    return {(x, y): list(neighbors(x, y))\n",
    "            for x in range(width) for y in range(height)}\n",
    "\n",
    "Grid(5, 5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class GridProblem(Problem):\n",
    "    \"Create with a call like GridProblem(grid=Grid(10, 10), initial=(0, 0), goal=(9, 9))\"\n",
    "    def actions(self, state): return DIRECTIONS\n",
    "    def result(self, state, action):\n",
    "        #print('ask for result of', state, action)\n",
    "        (x, y) = state\n",
    "        (dx, dy) = action\n",
    "        r = (x + dx, y + dy)\n",
    "        return r if r in self.grid[state] else state"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "no solution after 12 results and 3 goal checks\n"
1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062
     ]
    }
   ],
   "source": [
    "gp = GridProblem(grid=Grid(5, 5, 0.3), initial=(0, 0), goals={(4, 4)})\n",
    "showpath(uniform_cost_search, gp)\n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "button": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "source": [
    "# Finding a hard PourProblem\n",
    "\n",
    "What solvable two-jug PourProblem requires the most steps? We can define the hardness as the number of steps, and then iterate over all PourProblems with capacities up to size M, keeping the hardest one."
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "def hardness(problem):\n",
    "    L = breadth_first_search(problem)\n",
    "    #print('hardness', problem.initial, problem.capacities, problem.goals, L)\n",
    "    return len(action_sequence(L)) if (L is not None) else 0"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "3"
      ]
     },
     "execution_count": 45,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "hardness(p7)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[('Pour', 0, 1), ('Fill', 0), ('Pour', 0, 1)]"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "action_sequence(breadth_first_search(p7))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "((0, 0), (7, 9), {8})"
      ]
     },
     "execution_count": 47,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "C = 9 # Maximum capacity to consider\n",
    "\n",
    "phard = max((PourProblem(initial=(a, b), capacities=(A, B), goals={goal})\n",
    "             for A in range(C+1) for B in range(C+1)\n",
    "             for a in range(A) for b in range(B)\n",
    "             for goal in range(max(A, B))),\n",
    "            key=hardness)\n",
    "\n",
    "phard.initial, phard.capacities, phard.goals"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
      "  (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
      "  (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
      "  (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
      "  (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
      "  (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
      "  (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
      "  (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
      "  (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
      "  (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
      "  (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
      "  (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
      "  (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
      "  (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
      "GOAL FOUND after 150 results and 44 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(breadth_first_search, PourProblem(initial=(0, 0), capacities=(7, 9), goals={8}))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 49,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "uniform_cost_search:\n",
      "  (0, 0) ==('Fill', 1)==> (0, 9); cost 1 after 1 steps\n",
      "  (0, 9) ==('Pour', 1, 0)==> (7, 2); cost 2 after 2 steps\n",
      "  (7, 2) ==('Dump', 0)==> (0, 2); cost 3 after 3 steps\n",
      "  (0, 2) ==('Pour', 1, 0)==> (2, 0); cost 4 after 4 steps\n",
      "  (2, 0) ==('Fill', 1)==> (2, 9); cost 5 after 5 steps\n",
      "  (2, 9) ==('Pour', 1, 0)==> (7, 4); cost 6 after 6 steps\n",
      "  (7, 4) ==('Dump', 0)==> (0, 4); cost 7 after 7 steps\n",
      "  (0, 4) ==('Pour', 1, 0)==> (4, 0); cost 8 after 8 steps\n",
      "  (4, 0) ==('Fill', 1)==> (4, 9); cost 9 after 9 steps\n",
      "  (4, 9) ==('Pour', 1, 0)==> (7, 6); cost 10 after 10 steps\n",
      "  (7, 6) ==('Dump', 0)==> (0, 6); cost 11 after 11 steps\n",
      "  (0, 6) ==('Pour', 1, 0)==> (6, 0); cost 12 after 12 steps\n",
      "  (6, 0) ==('Fill', 1)==> (6, 9); cost 13 after 13 steps\n",
      "  (6, 9) ==('Pour', 1, 0)==> (7, 8); cost 14 after 14 steps\n",
      "GOAL FOUND after 159 results and 45 goal checks\n"
     ]
    }
   ],
   "source": [
    "showpath(uniform_cost_search, phard)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {
    "button": false,
    "collapsed": true,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [],
   "source": [
    "class GridProblem(Problem):\n",
    "    \"\"\"A Grid.\"\"\"\n",
    "\n",
    "    def actions(self, state): return ['N', 'S', 'E', 'W']        \n",
    " \n",
    "    def result(self, state, action):\n",
    "        \"\"\"The state that results from executing this action in this state.\"\"\"  \n",
    "        (W, H) = self.size\n",
    "        if action == 'N' and state > W:           return state - W\n",
    "        if action == 'S' and state + W < W * W:   return state + W\n",
    "        if action == 'E' and (state + 1) % W !=0: return state + 1\n",
    "        if action == 'W' and state % W != 0:      return state - 1\n",
    "        return state"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "\n",
      "breadth_first_search:\n",
      "  0 ==S==> 10; cost 1 after 1 steps\n",
      "  10 ==S==> 20; cost 2 after 2 steps\n",
      "  20 ==S==> 30; cost 3 after 3 steps\n",
      "  30 ==S==> 40; cost 4 after 4 steps\n",
      "  40 ==E==> 41; cost 5 after 5 steps\n",
      "  41 ==E==> 42; cost 6 after 6 steps\n",
      "  42 ==E==> 43; cost 7 after 7 steps\n",
      "  43 ==E==> 44; cost 8 after 8 steps\n",
      "GOAL FOUND after 135 results and 49 goal checks\n",
      "\n",
      "uniform_cost_search:\n",
      "  0 ==S==> 10; cost 1 after 1 steps\n",
      "  10 ==S==> 20; cost 2 after 2 steps\n",
      "  20 ==E==> 21; cost 3 after 3 steps\n",
      "  21 ==E==> 22; cost 4 after 4 steps\n",
      "  22 ==E==> 23; cost 5 after 5 steps\n",
      "  23 ==S==> 33; cost 6 after 6 steps\n",
      "  33 ==S==> 43; cost 7 after 7 steps\n",
      "  43 ==E==> 44; cost 8 after 8 steps\n",
      "GOAL FOUND after 1036 results and 266 goal checks\n"
     ]
    }
   ],
   "source": [
    "compare_searchers(GridProblem(initial=0, goals={44}, size=(10, 10)))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "'test_frontier ok'"
      ]
     },
     "execution_count": 52,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "def test_frontier():\n",
    "    \n",
    "    #### Breadth-first search with FIFO Q\n",
    "    f = FrontierQ(Node(1), LIFO=False)\n",
    "    assert 1 in f and len(f) == 1\n",
    "    f.add(Node(2))\n",
    "    f.add(Node(3))\n",
    "    assert 1 in f and 2 in f and 3 in f and len(f) == 3\n",
    "    assert f.pop().state == 1\n",
    "    assert 1 not in f and 2 in f and 3 in f and len(f) == 2\n",
    "    assert f\n",
    "    assert f.pop().state == 2\n",
    "    assert f.pop().state == 3\n",
    "    assert not f\n",
    "    \n",
    "    #### Depth-first search with LIFO Q\n",
    "    f = FrontierQ(Node('a'), LIFO=True)\n",
    "    for s in 'bcdef': f.add(Node(s))\n",
    "    assert len(f) == 6 and 'a' in f and 'c' in f and 'f' in f\n",
    "    for s in 'fedcba': assert f.pop().state == s\n",
    "    assert not f\n",
    "\n",
    "    #### Best-first search with Priority Q\n",
    "    f = FrontierPQ(Node(''), lambda node: len(node.state))\n",
    "    assert '' in f and len(f) == 1 and f\n",
    "    for s in ['book', 'boo', 'bookie', 'bookies', 'cook', 'look', 'b']:\n",
    "        assert s not in f\n",
    "        f.add(Node(s))\n",
    "        assert s in f\n",
    "    assert f.pop().state == ''\n",
    "    assert f.pop().state == 'b'\n",
    "    assert f.pop().state == 'boo'\n",
    "    assert {f.pop().state for _ in '123'} == {'book', 'cook', 'look'}\n",
    "    assert f.pop().state == 'bookie'\n",
    "    \n",
    "    #### Romania: Two paths to Bucharest; cheapest one found first\n",
    "    S    = Node('S')\n",
    "    SF   = Node('F', S, 'S->F', 99)\n",
    "    SFB  = Node('B', SF, 'F->B', 211)\n",
    "    SR   = Node('R', S, 'S->R', 80)\n",
    "    SRP  = Node('P', SR, 'R->P', 97)\n",
    "    SRPB = Node('B', SRP, 'P->B', 101)\n",
    "    f = FrontierPQ(S)\n",
    "    f.add(SF); f.add(SR), f.add(SRP), f.add(SRPB); f.add(SFB)\n",
    "    def cs(n): return (n.path_cost, n.state) # cs: cost and state\n",
    "    assert cs(f.pop()) == (0, 'S')\n",
    "    assert cs(f.pop()) == (80, 'R')\n",
    "    assert cs(f.pop()) == (99, 'F')\n",
    "    assert cs(f.pop()) == (177, 'P')\n",
    "    assert cs(f.pop()) == (278, 'B')\n",
    "    return 'test_frontier ok'\n",
    "\n",
    "test_frontier()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXEAAAEACAYAAABF+UbAAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGf5JREFUeJzt3XuQVPWd9/H3h4vGy8JiVjAqIRFXJG4lEl0vQWMb77gB\nk31C5ImumsdNJRo1bio6ums5qYpVasol5GbiRhHjJYouQlx9QBZboiZeAG8RWSMrXhmzXFzRCqvw\n3T/OGRzHhjk93T2nT/fnVdU1p5tzur814odf/87voojAzMyKaVDeBZiZWf85xM3MCswhbmZWYA5x\nM7MCc4ibmRWYQ9zMrMAyhbik8yQ9lT7OTV8bIWmBpBWS5ksa3thSzcystz5DXNJ+wP8DDgT2B/5G\n0ligA1gYEeOARcBFjSzUzMw+KEtLfDzwcERsjIhNwGLgi8BkYFZ6zizgpMaUaGZmW5MlxJ8GDk+7\nT3YEJgGjgVER0QUQEauBkY0r08zMKhnS1wkR8aykK4B7gQ3AMmBTpVPrXJuZmfWhzxAHiIiZwEwA\nSZcBLwFdkkZFRJek3YDXK10ryeFuZtYPEaG+zsk6OmXX9OdHgS8ANwPzgNPTU04D5m6jkKZ6XHrp\npbnXUISamrUu1+Sa2qGurDK1xIE7JO0CvAOcFRH/nXax3Cbpq8AqYGrmTzUzs7rI2p3y2QqvrQWO\nrntFZmaWWVvO2CyVSnmX8AHNWBM0Z12uKRvXlF2z1pWFqul76dcHSNHozzAzazWSiHrd2DQzs+bk\nEDczKzCHuJlZgTnEzcwKzCFuZlZgDnEzswJziJuZFZhD3MyswBziZmYF5hA3Myswh7iZWYE5xM3M\nCswhbmZWYA5xM7MCy7o92/mSnpb0pKSbJG0naYSkBZJWSJovaXijizUzs/frM8Ql7Q6cA3w6Ij5J\nshvQNKADWBgR44BFwEWNLNTMrF1cfnn2c7N2pwwGdpI0BNgBeAWYAsxK/3wWcFL2jzUzs0pmzIAb\nbsh+fp8hHhGvAlcBL5KE9xsRsRAYFRFd6TmrgZH9KdjMzBJ33AHf/z7cc0/2a/rcKFnSn5O0uscA\nbwCzJX0F6L3n2lb3YOvs7NxyXCqVCr2fnZlZI/zoR2U6OsqccgrMnJn9uj732JT0f4DjIuLv0+en\nAocAnwNKEdElaTfgvogYX+F677FpZrYNK1bAEUck3SjHHpu8Vs89Nl8EDpH0IUkCjgKeAeYBp6fn\nnAbM7UftZmZtbfVqOOGE5GZmd4BXI9Nu95IuBU4G3gGWAWcCfwbcBowGVgFTI2J9hWvdEjczq2DD\nBiiVYMoUuOSS9/9Z1pZ4phCvhUPczOyD3n0XJk+GPfaAa64B9YrrenanmJlZHUXAN76RHP/0px8M\n8Gr0OTrFzMzq63vfg6VL4f77YejQ2t7LIW5mNoCuvz4ZQvjQQ7DzzrW/n/vEzcwGyPz5cNppSQt8\n3Lhtn5u1T9wtcTOzAbBsGZx6KsyZ03eAV8M3Ns3MGmzVKvj85+Hqq2HixPq+t0PczKyB1q1LJvNc\ncAH87d/W//3dJ25m1iB/+hMcdxwceCBcdVV113qyj5lZjjZvhmnTkuNbboFBVfZ7+MammVmOLrgA\nXnsNFiyoPsCr4RA3M6uzGTPg7rvhgQfgQx9q7Gc5xM3M6qh7Y4cHH4Rddmn85znEzczq5MEHkzVR\n5s+HMWMG5jM9xNDMrA6efTYZQnjjjTBhwsB9rkPczKxGq1fDpEn939ihFg5xM7MabNgAJ54Ip5+e\nPAZalj029wFuJdkIWcBewCXAL9PXxwAvkOzs80aF6z1O3MxaUvfGDrvvDv/yL7WtC95bQyb7SBoE\nvAwcDHwTWBMRV0q6EBgRER0VrnGIm1nLiYCvfQ1eeQXmzq19XfDeGrWzz9HA8xHxEjAFmJW+Pgs4\nqcr3MjMrrO6NHW67rf4BXo1qhxh+Gbg5PR4VEV0AEbFa0si6VmZm1qTqvbFDLTKHuKShwGTgwvSl\n3n0kW+0z6ezs3HJcKpUolUqZCzQzaybz50NHR7Kxw2671e99y+Uy5XK56usy94lLmgycFRHHp8+X\nA6WI6JK0G3BfRIyvcJ37xM2sJSxblqxKOGdO/dcF760RfeLTgFt6PJ8HnJ4enwbMreK9zMwKpZEb\nO9QiU0tc0o7AKmCviHgzfW0X4DZgdPpnUyNifYVr3RI3s0JbuxYOOwy+/nU499yB+UyvJ25mVgd/\n+lMyC/Ov/7r6jR1q4RA3M6vR5s1w8snJJJ7+bOxQC28KYWZWo+98J1kXpdEbO9TCIW5mVsGMGXDP\nPQOzsUMtHOJmZr0M9MYOtXCIm5n1kMfGDrVo0l4eM7OBl9fGDrVwiJuZke/GDrVwiJtZ28t7Y4da\neJy4mbW1d95JNnbYY4/6b+xQi0atJ25m1jIikpuYUrImSrMEeDU8OsXM2lIEnHMOPP00LFyY78YO\ntXBL3MzaTneAP/ZYMpQw740dauEQN7O20jvAhw/Pu6LaOMTNrG20WoCDQ9zM2kQrBjg4xM2sDbRq\ngEPGEJc0XNJsScsl/V7SwZJGSFogaYWk+ZJa6NdiZq2ilQMcsrfEZwB3pxshfwp4FugAFkbEOGAR\ncFFjSjQz659WD3DIMGNT0jBgWUSM7fX6s8ARPXa7L0fEvhWu94xNMxtwRQ/wes7Y/DjwX5JmSloq\n6Zp04+RREdEFEBGrgZG1lWxmVh9FD/BqZJmxOQT4NHB2RDwmaTpJV0rv5vVWm9udnZ1bjkulEqVS\nqepCzcyyKGqAl8tlyuVy1ddl6U4ZBfw2IvZKnx9GEuJjgVKP7pT70j7z3te7O8XMBkRRA7ySunWn\npF0mL0naJ33pKOD3wDzg9PS104C5/SvVzKx2rRTg1ci0FK2kTwG/AIYCK4EzgMHAbcBoYBUwNSLW\nV7jWLXEza6hWDPCsLXGvJ25mhdaKAQ5eT9zM2kCrBng1HOJmVkgO8IRD3MwKxwH+Hoe4mRWKA/z9\nHOJmVhgO8A9yiJtZITjAK3OIm1nTc4BvnUPczJqaA3zbHOJm1rQc4H1ziJtZU3KAZ+MQN7Om4wDP\nziFuZk3FAV4dh7iZNQ0HePUc4mbWFBzg/eMQN7PcOcD7L8sem0h6AXgD2Ay8ExEHSRoB3AqMAV4g\n2RTijQbVaWYtygFem6wt8c0k+2lOiIiD0tc6gIURMQ5YBFzUiALNrHU5wGuXNcRV4dwpwKz0eBZw\nUr2KMrPW5wCvj6whHsC9kh6VdGb62qh0E2UiYjUwshEFmlnrcYDXT6Y+cWBiRLwmaVdggaQVJMHe\nkzfSNLM+OcDrK1OIR8Rr6c8/SroTOAjokjQqIrok7Qa8vrXrOzs7txyXSiVKpVItNZtZQTnAt65c\nLlMul6u+rs/d7iXtCAyKiA2SdgIWAN8FjgLWRsQVki4ERkRER4Xrvdu9mTnAq5R1t/ssIf5xYA5J\nd8kQ4KaIuFzSLsBtwGhgFckQw/UVrneIm7W5jRvhq1+FF16Au+92gGdRtxCvQyEOcbM2tmYNfOEL\nMGoU3HAD7LBD3hUVQ9YQ94xNM2uY55+Hz3wGDjkEbr3VAd4IDnEza4jf/Q4OOwy+9S248koY5LRp\niKxDDM3MMrvjDvj612HWLJg0Ke9qWptD3MzqJgL++Z9h+nRYsAAmTMi7otbnEDezunj3XTjvPPjN\nb+C3v4XRo/OuqD04xM2sZhs2wMknw//8DzzwAAwblndF7cO3GsysJq++Cp/9LHzkI/Bv/+YAH2gO\ncTPrt6eegkMPhS99Ca65BoYOzbui9uPuFDPrl3vvha98BWbMgGnT8q6mfbklbmZVu+46OPXUZCih\nAzxfbombWWYRcMkl8Ktfwf33w7hxeVdkDnEzy6R7EauVK5MhhLvumndFBu5OMbMM1q6FY45JhhAu\nWuQAbyYOcTPbJi9i1dwc4ma2Vd2LWJ13nhexalbuEzeziu64A77xDbj+ei9i1cwy/7sqaZCkpZLm\npc9HSFogaYWk+ZK8V4dZC4iAq65KlpCdP98B3uyq+XJ0HvBMj+cdwMKIGAcsAi6qZ2FmNvDefRe+\n+c1kCdmHHvIqhEWQKcQl7QlMAn7R4+UpwKz0eBZwUn1LM7OBtGEDnHQSPPdcsoiVVyEshqwt8enA\nd0g2S+42KiK6ACJiNTCyzrWZ2QDxIlbF1WeISzoR6IqIx4Ftbdrp3ZDNCsiLWBVbltEpE4HJkiYB\nOwB/JumXwGpJoyKiS9JuwOtbe4POzs4tx6VSiVKpVFPRZlYfXsSqeZTLZcrlctXXKSJ7A1rSEcC3\nI2KypCuBNRFxhaQLgRER0VHhmqjmM8xsYFx3HVx8McyeDYcfnnc11pskImJbvR9AbePELwduk/RV\nYBUwtYb3MrMB4kWsWktVLfF+fYBb4mZNo+ciVvPmeQ2UZpa1Je5JtGZtwotYtSaHuFkbWLnSi1i1\nKoe4WYvzIlatzQtgmbUwL2LV+hziZi0oAqZPTx7z53sNlFbmEDdrMRs2JItYLV2aLGLlNVBam3vH\nzFrIsmVwwAEweHCyD6YDvPU5xM1aQAT86Edw3HHQ2QnXXgs77ZR3VTYQ3J1iVnBr1iQTeF59NWl9\njx2bd0U2kNwSNyuwxYuTm5Z/+Zfw4IMO8HbklrhZAW3aBJddBldfnSxkdcIJeVdkeXGImxXMK68k\ny8cOHgxLlsDuu+ddkeXJ3SlmBXLXXcnok2OOgQULHODmlrhZIWzcCBdeCHPmJLMwJ07MuyJrFg5x\nsyb33HPw5S/Dxz6WjAPfZZe8K7Jm4u4UsyZ2443J6oNnnpm0wB3g1lufLXFJ2wOLge3S82+PiO9K\nGgHcCowBXgCmRsQbDazVrG1s2ABnnw2PPAL//u/wyU/mXZE1qz5b4hGxETgyIiYA+wMnSDoI6AAW\nRsQ4YBFwUUMrNWsT3VPnhwyBxx5zgNu2ZepOiYi308PtSVrjAUwBZqWvzwJOqnt1Zm3EU+etPzLd\n2JQ0CFgCjAV+EhGPShoVEV0AEbFa0sgG1mnW0jx13vorU4hHxGZggqRhwBxJ+5G0xt932tau7+zs\n3HJcKpUolUpVF2rWqhYvhlNOgalTYfZs2G67vCuyPJTLZcrlctXXVb3bvaRLgLeBM4FSRHRJ2g24\nLyLGVzjfu92bVbBpE3zve/Czn3nqvH1Q3Xa7l/QXkoanxzsAxwDLgXnA6elppwFz+12tWZt5+WU4\n6qikFb5kiQPc+i/Ljc2PAPdJehx4GJgfEXcDVwDHSFoBHAVc3rgyzVrHXXfBgQd66rzVR9XdKVV/\ngLtTzID3T52/+WZPnbdty9qd4mn3ZgPAU+etUTzt3qzBPHXeGsktcbMG6Z46//DDsHAhfOpTeVdk\nrcgtcbMG6Dl1fskSB7g1jkPcrI4i4Ic/hGOPhUsv9dR5azx3p5jVyZo1cMYZ702d33vvvCuyduCW\nuFkddO86v88+8NBDDnAbOG6Jm9XgrbeSXednzvTUecuHW+Jm/RCRTNr5xCfgP/8Tli51gFs+3BI3\nq9Jzz8E558CLL8L118ORR+ZdkbUzt8TNMnrrLfjHf4RDD4Wjj4YnnnCAW/7cEjfrQwTceSd861vJ\nzMsnnoA99si7KrOEQ9xsG9x1Ys3O3SlmFbz9NvzTPyVdJ8cc464Ta15uiZv10N11cv75SYC768Sa\nnUPcLNWz62TmTLe8rRiybM+2p6RFkn4v6SlJ56avj5C0QNIKSfO7t3AzKxp3nViRZekTfxf4h4jY\nDzgUOFvSvkAHsDAixgGLgIsaV6ZZ/fWcsPP880l4f/vbMHRo3pWZZdef3e7vBH6cPo7osdt9OSL2\nrXC+t2ezpvPcc3DuubBqFfzkJ255W/Op2273vd70Y8D+wO+AURHRBRARq4GR1ZdpNrB6dp14wo61\ngsw3NiXtDNwOnBcRGyT1bl5vtbnd2dm55bhUKlEqlaqr0qxGPUedeMKONaNyuUy5XK76ukzdKZKG\nAHcB90TEjPS15UCpR3fKfRExvsK17k6xXLnrxIqo3t0p1wHPdAd4ah5wenp8GjC3qgrNGsxdJ9YO\n+myJS5oILAaeIukyCeBi4BHgNmA0sAqYGhHrK1zvlrgNqN5dJ9//vrtOrHiytsSrHp3Sj0Ic4jZg\nurtOXnwRfvxjt7ytuBoyOsWsWfXuOnn8cQe4tQeHuBVazwk7K1d6wo61H6+dYoXVs+vEa51Yu3JL\n3ArHXSdm73GIW2Fs3gyzZ7vrxKwnd6dY09u4EW66Ca68EoYNc9eJWU8OcWtab74J11wD06fDX/0V\nXH01lEqgPgddmbUPh7g1nddfhx/+EH72s2R971//GiZMyLsqs+bkPnFrGitXwllnwb77wtq18PDD\ncMstDnCzbXGIW+4efxymTYODDoIRI2D5cvjpT2Hs2LwrM2t+DnHLRQSUy3D88XDiiXDAAUlL/LLL\nYNSovKszKw73iduA2rwZ5s6Fyy+H9evhgguS59tvn3dlZsXkELcB0XuYYEcHTJkCgwfnXZlZsTnE\nraHefBN+/nP4wQ88TNCsERzi1hBdXckwwZ//3MMEzRrJNzatrrqHCY4fD+vWeZigWaP1GeKSrpXU\nJenJHq+NkLRA0gpJ8yUNb2yZ1uw8TNAsH1la4jOB43q91gEsjIhxwCLgonoXZs3PwwTN8pd1t/sx\nwK8j4pPp82eBI3rsdF+OiH23cq23Z2sxlYYJnnKKhwma1VPW7dn6e2NzZER0AUTEakkj+/k+ViAb\nN8KNNyYbD3uYoFlzqNfolG02tTs7O7ccl0olSqVSnT7WBoKHCZo1XrlcplwuV31df7tTlgOlHt0p\n90XE+K1c6+6Uguo9TPCCCzzKxGyg1Hu3e6WPbvOA09Pj04C5VVVnTWv9erjhBvj852HcOK8maNbs\n+myJS7oZKAEfBrqAS4E7gdnAaGAVMDUi1m/lerfEm9z69TBvXrL12f33w+c+B1/6UhLkw4blXZ1Z\ne8raEs/UnVJjIQ7xJuTgNmtuDnH7AAe3WXE4xA1wcJsVlUO8jTm4zYrPId5mHNxmrcUh3gYc3Gat\nyyHeonoH95FHwtSpDm6zVuMQbyEObrP24xAvOAe3WXtziBeQg9vMujnEC2DdOliyJHn85jeweLGD\n28wSDvEm0zOwux+vvw777w8HHggHHwyTJjm4zSzhEM9RX4F9wAHJY599vKGCmVXmEB8g69bB0qXw\n2GPvD+wJE94Lawe2mVXLId4ADmwzGygO8Ro5sM0sTwMS4pKOB35AskPQtRFxRYVzmj7EuwN7yZL3\nQvuPf0z6sB3YZpaHem/PVukDBgE/Bo4D9gOmSdq3v+/XaJs2wZo18Ic/wFVXlbnyymQo39ixMGYM\nfPe78NprMHky3HVXEuyLF8P06XDKKTB+fGMDvD8bpA6EZqzLNWXjmrJr1rqyqGW3+4OA5yJiFYCk\nXwFTgGfrUVglmzYlE2LWrev7sXbt+59v2JAM3xsxAjZtKvPFL5aYPDkJ72ZoYZfLZUqlUr5FVNCM\ndbmmbFxTds1aVxa1hPgewEs9nr9MEuzbVGsQDx+eBHGlx4c/DHvvXfnPhg+HQen3js7O5GFmVnS1\nhHhmEya8F8RvvfVei7iWIDYzsxpubEo6BOiMiOPT5x1A9L65Kam572qamTWpho5OkTQYWAEcBbwG\nPAJMi4jl/XpDMzOrWr+7UyJik6RvAgt4b4ihA9zMbAA1fLKPmZk1TsNuE0o6XtKzkv5D0oWN+pxq\nSLpWUpekJ/OupZukPSUtkvR7SU9JOrcJatpe0sOSlqU1XZp3Td0kDZK0VNK8vGvpJukFSU+kv69H\n8q4HQNJwSbMlLU//bh2ccz37pL+fpenPN5rk7/r5kp6W9KSkmyRt1wQ1nZf+f5ctDyKi7g+Sfxz+\nAIwBhgKPA/s24rOqrOswYH/gybxr6VHTbsD+6fHOJPcZmuF3tWP6czDwO+CgvGtK6zkfuBGYl3ct\nPWpaCYzIu45eNV0PnJEeDwGG5V1Tj9oGAa8Co3OuY/f0v9126fNbgb/Luab9gCeB7dP/9xYAe23r\nmka1xLdMBIqId4DuiUC5iogHgHV519FTRKyOiMfT4w3AcpIx+LmKiLfTw+1JQiD3fjdJewKTgF/k\nXUsvooHfaqslaRhweETMBIiIdyPiv3Muq6ejgecj4qU+z2y8wcBOkoYAO5L845Kn8cDDEbExIjYB\ni4EvbuuCRv3FqzQRKPdganaSPkbyTeHhfCvZ0m2xDFgN3BsRj+ZdEzAd+A5N8A9KLwHcK+lRSX+f\ndzHAx4H/kjQz7b64RtIOeRfVw5eBW/IuIiJeBa4CXgReAdZHxMJ8q+Jp4HBJIyTtSNJoGb2tC5qm\n9dDuJO0M3A6cl7bIcxURmyNiArAncLCkT+RZj6QTga70W4vSR7OYGBGfJvkf7mxJh+VczxDg08BP\n0rreBjryLSkhaSgwGZjdBLX8OUkPwRiSrpWdJf3fPGuKiGeBK4B7gbuBZcCmbV3TqBB/Bfhoj+d7\npq9ZBelXuduBX0bE3Lzr6Sn9Gn4fcHzOpUwEJktaSdKKO1LSDTnXBEBEvJb+/CMwhwzLTzTYy8BL\nEfFY+vx2klBvBicAS9LfVd6OBlZGxNq06+Jfgc/kXBMRMTMiDoyIErAe+I9tnd+oEH8U2FvSmPRu\n78lAs4wmaLZWHMB1wDMRMSPvQgAk/YWk4enxDsAxNHBhsywi4uKI+GhE7EXy92lRRPxdnjUBSNox\n/RaFpJ2AY0m+EucmIrqAlyTtk750FPBMjiX1NI0m6EpJvQgcIulDkkTye8p9roukXdOfHwW+ANy8\nrfMbsnZKNOlEIEk3AyXgw5JeBC7tvvmTY00Tga8AT6V90AFcHBH/P8eyPgLMSpcbHgTcGhF351hP\nMxsFzEmXlxgC3BQRC3KuCeBc4Ka0+2IlcEbO9ZD28R4NfC3vWgAi4hFJt5N0WbyT/rwm36oAuEPS\nLiQ1ndXXTWlP9jEzKzDf2DQzKzCHuJlZgTnEzcwKzCFuZlZgDnEzswJziJuZFZhD3MyswBziZmYF\n9r8varwUoYrZVQAAAABJRU5ErkJggg==\n",
      "text/plain": [
       "<matplotlib.figure.Figure at 0x106018c18>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "%matplotlib inline\n",
    "import matplotlib.pyplot as plt\n",
    "\n",
    "p = plt.plot([i**2 for i in range(10)])\n",
    "plt.savefig('destination_path.eps', format='eps', dpi=1200)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {
    "button": false,
    "collapsed": false,
    "deletable": true,
    "new_sheet": false,
    "run_control": {
     "read_only": false
    }
   },
   "outputs": [
    {
     "data": {
      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe8AAAHaCAYAAAApPsHTAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt219MlPef/v/rnj+JHWnq1IEhICikmAHExSAhVj2AA8JB\ngRIgYhZ3s5LVE6MbEmP0G+VDmg+JJyRUT2zsQRNprXYaSWNCmygHdU882GpJ3ZCSgAQMQzBNyzib\nyHDP76C7k0yt/cwPGYb3zfNxds99v8Pr6nvu+5pBaiUSCQEAAHO4sj0AAAD4/4fyBgDAMJQ3AACG\nobwBADAM5Q0AgGE82R4gXX//+9/n4/F4MNtzZIrL5bJt23bsh6lEImFbluXIfG63215ZWXFkNsnZ\neydx75nOyfkSiUTkb3/7W/6fnTOmvOPxeLCvry/bY2RMf3+/q729PdtjZEw4HHZFIpFsj5ERwWDQ\n5fT3plP3Tvp9/7j3zBUMBh2bLxgMvvYLqyM/rQAA4GSUNwAAhqG8AQAwDOUNAIBhKG8AAAxDeQMA\nYBjKGwAAw1DeAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIby\nBgDAMJQ3AACGobwBADAM5Q0AgGEobwAADEN5AwBgmE1X3qOjowqFQtq9e7cuX778yvmJiQm9//77\n2rJliwYHB5Ovz87OqqGhQZWVlaqqqtLHH3+8nmOn7cGDB2pubtYHH3ygTz/99JXzU1NT6u7uVk1N\njT777LPk6/Pz8+rp6dGHH36otrY2DQ8Pr+fYaZuZmdEXX3yhzz//XD/88MMr53/55Rd9/fXX+uST\nT/T48ePk69FoVCMjI7p586a+/PJL/fjjj+s5dtqc/P50+t5x75m9f6bl86zLT9kgbNvWqVOndO/e\nPRUUFKi2tlatra0KhULJa7Zv364rV67ozp07KWs9Ho8GBwdVXV2taDSqmpoaNTY2pqzNNtu2NTAw\noOvXrys3N1dHjx5VfX29SktLk9ds27ZN58+f1/3791PWejwenT17VqFQSLFYTEeOHNGBAwdS1mZb\nIpHQ999/r5aWFvl8PoXDYe3atUt+vz95zZYtW3T48GFNTU2lrHW5XDp48KACgYCWl5d1+/ZtFRUV\npazNNie/PzfD3nHvmbt/JubbVN+8Hz58qLKyMu3cuVNer1ddXV0aGRlJuSYQCKimpkYeT+rnmvz8\nfFVXV0uScnJyVF5errm5uXWbPR3j4+MqLi5WQUGBvF6vmpqaNDY2lnKN3+9XZWXlK/kCgUDyQe/z\n+VRSUqKFhYV1mz0dkUhE77zzjt5++2253W699957mp6eTrnmrbfeUm5urizLSnnd5/MpEAhIkrxe\nr/x+v168eLFeo6fFye9Pp+8d957Z+2divk1V3nNzcyoqKkoe79ixY1UPuOnpaT169Eh1dXVrOd4b\nW1hYUH5+fvI4GAyu6iEwNzeniYkJ7d27dy3He2MvXrxQTk5O8jgnJ2dVN8lvv/2m58+fKxgMruV4\nb8zJ70+n7x33Xno26v6ZmG9TlfdaiEaj6ujo0NDQUMpmO0UsFlNvb6/OnTsnn8+X7XHW3PLysr77\n7jsdPHhQXq832+OsOSe/P52+d9x7ZlvvfJuqvAsLCzUzM5M8np2dVWFhYdrr4/G4Ojo6dOzYMbW2\ntmZixDeSl5en+fn55HEkElFeXl7a6+PxuHp7e9Xc3KyGhoZMjPhGtm7dqmg0mjyORqPaunVr2utt\n29a3336r3bt3q6SkJBMjvhEnvz+dvnfce39to++fifk2VXnX1tZqcnJST58+1cuXL3Xz5k21tLS8\n9vpEIpFyfPz4cVVUVOjMmTOZHnVV9uzZo5mZGT179kzLy8saHR1VfX192usvXbqk0tJSdXd3Z3DK\n1cvLy9Ovv/6qpaUlraysaHJyUrt27Xrt9X/cv7GxMfn9/g33K8n/4+T3p9P3jnsvlWn7Z2K+TfXX\n5m63W1evXlVjY6Ns21ZPT4/Ky8t17do1WZalEydOKBKJaP/+/VpaWpLL5dLQ0JCePHmix48fa3h4\nWFVVVdq3b58sy9LAwICampqyHSvJ7XbrwoULOnnypGzbVltbm0pLS3Xr1i1ZlqXOzk4tLi6qq6tL\nsVhMlmXpxo0bGhkZ0cTEhO7evauysjJ1dnbKsiydPn1ahw4dynasJJfLpcOHD+ubb76RJIVCIfn9\nfv3000+yLEsVFRWKxWL66quvtLy8LMuyND4+rq6uLi0uLurnn3/Wu+++q9u3b0uS6urqVFxcnM1I\nKZz8/twMe8e9Z+7+mZjP+uMniI2qv78/0dfXl+0xMqa/v1/t7e3ZHiNjwuGwIpFItsfIiGAwKKe/\nN526d9Lv+8e9Z65gMOjYfP/7bLH+7Nym+rU5AABOQHkDAGAYyhsAAMNQ3gAAGIbyBgDAMJQ3AACG\nobwBADAM5Q0AgGEobwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUNAIBhKG8A\nAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwlDcAAIahvAEAMIyVSCSyPUNaPvrooxXbth37YcPlcsm2\n7WyPkTGJREKWZWV7jIxwcjbJ+fncbrdWVlayPUbGeDwexePxbI+RMU5+drpcLvvixYvuPzvnWe9h\nVsu2bVd7e3u2x8iYcDgsp+eLRCLZHiMjgsGgY7NJmyNfX19ftsfImP7+fsfnc+qzMxwOv/YLq2O/\nyQIA4FSUNwAAhqG8AQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwlDcAAIahvAEA\nMAzlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDAMJQ3AACGobwBADAM5Q0AgGEobwAADEN5\nAwBgmE1X3g8ePFBzc7M++OADffrpp6+cn5qaUnd3t2pqavTZZ58lX5+fn1dPT48+/PBDtbW1aXh4\neD3HTpvT883MzOiLL77Q559/rh9++OGV87/88ou+/vprffLJJ3r8+HHy9Wg0qpGREd28eVNffvml\nfvzxx/UcO21OzufkbJI0OjqqUCik3bt36/Lly6+cn5iY0Pvvv68tW7ZocHAw+frs7KwaGhpUWVmp\nqqoqffzxx+s5dtqcns+0Z6dnXX7KBmHbtgYGBnT9+nXl5ubq6NGjqq+vV2lpafKabdu26fz587p/\n/37KWo/Ho7NnzyoUCikWi+nIkSM6cOBAytpsc3q+RCKh77//Xi0tLfL5fAqHw9q1a5f8fn/ymi1b\ntujw4cOamppKWetyuXTw4EEFAgEtLy/r9u3bKioqSlmbbU7O5+Rs0u/33qlTp3Tv3j0VFBSotrZW\nra2tCoVCyWu2b9+uK1eu6M6dOylrPR6PBgcHVV1drWg0qpqaGjU2NqaszbbNkM+0Z+em+uY9Pj6u\n4uJiFRQUyOv1qqmpSWNjYynX+P1+VVZWyuNJ/VwTCASSbzafz6eSkhItLCys2+zpcHq+SCSid955\nR2+//bbcbrfee+89TU9Pp1zz1ltvKTc3V5Zlpbzu8/kUCAQkSV6vV36/Xy9evFiv0dPi5HxOziZJ\nDx8+VFlZmXbu3Cmv16uuri6NjIykXBMIBFRTU/PKvZefn6/q6mpJUk5OjsrLyzU3N7dus6fD6flM\nfHZuqvJeWFhQfn5+8jgYDK7qP/Lc3JwmJia0d+/etRzvjTk934sXL5STk5M8zsnJWdVD/LffftPz\n588VDAbXcrw35uR8Ts4m/X7PFBUVJY937NixqoKanp7Wo0ePVFdXt5bjvTGn5zPx2bmpynstxGIx\n9fb26ty5c/L5fNkeZ805Pd/y8rK+++47HTx4UF6vN9vjrDkn53NyNun3f9vv6OjQ0NBQygcdp3B6\nvvV+dm6q8s7Ly9P8/HzyOBKJKC8vL+318Xhcvb29am5uVkNDQyZGfCNOz7d161ZFo9HkcTQa1dat\nW9Neb9u2vv32W+3evVslJSWZGPGNODmfk7NJUmFhoWZmZpLHs7OzKiwsTHt9PB5XR0eHjh07ptbW\n1kyM+Eacns/EZ+emKu89e/ZoZmZGz5490/LyskZHR1VfX5/2+kuXLqm0tFTd3d0ZnHL1nJ4vLy9P\nv/76q5aWlrSysqLJyUnt2rXrtdcnEomU47GxMfn9/g33zwH/x8n5nJxNkmprazU5OamnT5/q5cuX\nunnzplpaWl57/R/zHT9+XBUVFTpz5kymR10Vp+cz8dm5qf7a3O1268KFCzp58qRs21ZbW5tKS0t1\n69YtWZalzs5OLS4uqqurS7FYTJZl6caNGxoZGdHExITu3r2rsrIydXZ2yrIsnT59WocOHcp2rCSn\n53O5XDp8+LC++eYbSVIoFJLf79dPP/0ky7JUUVGhWCymr776SsvLy7IsS+Pj4+rq6tLi4qJ+/vln\nvfvuu7p9+7Ykqa6uTsXFxdmMlMLJ+ZycTfr93rt69aoaGxtl27Z6enpUXl6ua9euybIsnThxQpFI\nRPv379fS0pJcLpeGhob05MkTPX78WMPDw6qqqtK+fftkWZYGBgbU1NSU7VhJmyGfac9O64+fkDaq\n/v7+RHt7e7bHyJhwOCyn54tEItkeIyOCwaBjs0mbI19fX1+2x8iY/v5+x+dz6rMzHA6rr6/P+rNz\nm+rX5gAAOAHlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDAMJQ3AACGobwBADAM5Q0AgGEo\nbwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAA\nw1DeAAAYhvIGAMAwViKRyPYMafn73/++Eo/HHfthw+VyybbtbI+RMR6PR/F4PNtjZEQikZBlWdke\nI2Ocns/p9x77Zy6Xy2VfvHjR/WfnPOs9zGrF43FXX19ftsfImP7+frW3t2d7jIwJh8Ny6v719/cr\nEolke4yMCQaDjs/n9HuP/TNTOBx+7RdWx36TBQDAqShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDA\nMJQ3AACGobwBADAM5Q0AgGEobwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUN\nAIBhKG8AAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwm668R0dHFQqFtHv3bl2+fPmV8xMTE3r//fe1\nZcsWDQ4OJl+fnZ1VQ0ODKisrVVVVpY8//ng9x07bgwcP1NzcrA8++ECffvrpK+enpqbU3d2tmpoa\nffbZZ8nX5+fn1dPTow8//FBtbW0aHh5ez7HT5vT9m5mZ0RdffKHPP/9cP/zwwyvnf/nlF3399df6\n5JNP9Pjx4+Tr0WhUIyMjunnzpr788kv9+OOP6zl2WpycTXL+vcf+baz986zLT9kgbNvWqVOndO/e\nPRUUFKi2tlatra0KhULJa7Zv364rV67ozp07KWs9Ho8GBwdVXV2taDSqmpoaNTY2pqzNNtu2NTAw\noOvXrys3N1dHjx5VfX29SktLk9ds27ZN58+f1/3791PWejwenT17VqFQSLFYTEeOHNGBAwdS1mab\n0/cvkUjo+++/V0tLi3w+n8LhsHbt2iW/35+8ZsuWLTp8+LCmpqZS1rpcLh08eFCBQEDLy8u6ffu2\nioqKUtZmk5OzSc6/99i/jbd/m+qb98OHD1VWVqadO3fK6/Wqq6tLIyMjKdcEAgHV1NTI40n9XJOf\nn6/q6mpJUk5OjsrLyzU3N7dus6djfHxcxcXFKigokNfrVVNTk8bGxlKu8fv9qqysfCVfIBBIFpnP\n51NJSYkWFhbWbfZ0OH3/IpGI3nnnHb399ttyu9167733ND09nXLNW2+9pdzcXFmWlfK6z+dTIBCQ\nJHm9Xvn9fr148WK9Rv+HnJxNcv69x/5tvP3bVOU9NzenoqKi5PGOHTtW9QCfnp7Wo0ePVFdXt5bj\nvbGFhQXl5+cnj4PB4KreRHNzc5qYmNDevXvXcrw35vT9e/HihXJycpLHOTk5q3rI/fbbb3r+/LmC\nweBajvdGnJxNcv69x/6lZz33b1OV91qIRqPq6OjQ0NBQypvZKWKxmHp7e3Xu3Dn5fL5sj7PmnL5/\ny8vL+u6773Tw4EF5vd5sj7OmnJxNcv69x/6trU1V3oWFhZqZmUkez87OqrCwMO318XhcHR0dOnbs\nmFpbWzMx4hvJy8vT/Px88jgSiSgvLy/t9fF4XL29vWpublZDQ0MmRnwjTt+/rVu3KhqNJo+j0ai2\nbt2a9nrbtvXtt99q9+7dKikpycSIq+bkbJLz7z32769lY/82VXnX1tZqcnJST58+1cuXL3Xz5k21\ntLS89vpEIpFyfPz4cVVUVOjMmTOZHnVV9uzZo5mZGT179kzLy8saHR1VfX192usvXbqk0tJSdXd3\nZ3DK1XP6/uXl5enXX3/V0tKSVlZWNDk5qV27dr32+j/mGxsbk9/v33C/cpWcnU1y/r3H/v21bOzf\npvprc7fbratXr6qxsVG2baunp0fl5eW6du2aLMvSiRMnFIlEtH//fi0tLcnlcmloaEhPnjzR48eP\nNTw8rKqqKu3bt0+WZWlgYEBNTU3ZjpXkdrt14cIFnTx5UrZtq62tTaWlpbp165Ysy1JnZ6cWFxfV\n1dWlWCwmy7J048YNjYyMaGJiQnfv3lVZWZk6OztlWZZOnz6tQ4cOZTtWktP3z+Vy6fDhw/rmm28k\nSaFQSH6/Xz/99JMsy1JFRYVisZi++uorLS8vy7IsjY+Pq6urS4uLi/r555/17rvv6vbt25Kkuro6\nFRcXZzNSkpOzSc6/99i/jbd/1h8/IW1U/f39ib6+vmyPkTH9/f1qb2/P9hgZEw6H5dT96+/vVyQS\nyfYYGRMMBh2fz+n3Hvtnpv99blp/dm5T/docAAAnoLwBADAM5Q0AgGEobwAADEN5AwBgGMobAADD\nUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwlDcA\nAIahvAEAMAzlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGMZKJBLZniEtf/vb31Ysy3Lshw23262V\nlZVsj5ExLpdLtm1ne4yMcHI2SUokErIsK9tjZIzT98/j8Sgej2d7jIxx8v65XC774sWL7j8751nv\nYVbLsixXJBLJ9hgZEwwG1dfXl+0xMqa/v1/t7e3ZHiMjwuGwY7NJv+dz+r3n9P3j2WKmcDj82i+s\njv0mCwCAU1HeAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIby\nBgDAMJQ3AACGobwBADAM5Q0AgGEobwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAw\nzKYr75mZGX3xxRf6/PPP9cMPP7xy/pdfftHXX3+tTz75RI8fP06+Ho1GNTIyops3b+rLL7/Ujz/+\nuJ5jp210dFShUEi7d+/W5cuXXzk/MTGh999/X1u2bNHg4GDy9dnZWTU0NKiyslJVVVX6+OOP13Ps\ntD148EDNzc364IMP9Omnn75yfmpqSt3d3aqpqdFnn32WfH1+fl49PT368MMP1dbWpuHh4fUcO21O\nzuf0e8/JeyfxbNlo++dZl5+yQSQSCX3//fdqaWmRz+dTOBzWrl275Pf7k9ds2bJFhw8f1tTUVMpa\nl8ulgwcPKhAIaHl5Wbdv31ZRUVHK2myzbVunTp3SvXv3VFBQoNraWrW2tioUCiWv2b59u65cuaI7\nd+6krPV4PBocHFR1dbWi0ahqamrU2NiYsjbbbNvWwMCArl+/rtzcXB09elT19fUqLS1NXrNt2zad\nP39e9+/fT1nr8Xh09uxZhUIhxWIxHTlyRAcOHEhZm21OzrcZ7j2n7p3Es0XaePu3qb55RyIRvfPO\nO3r77bfldrv13nvvaXp6OuWat956S7m5ubIsK+V1n8+nQCAgSfJ6vfL7/Xrx4sV6jZ6Whw8fqqys\nTDt37pTX61VXV5dGRkZSrgkEAqqpqZHHk/q5LT8/X9XV1ZKknJwclZeXa25ubt1mT8f4+LiKi4tV\nUFAgr9erpqYmjY2NpVzj9/tVWVn5Sr5AIJB8WPh8PpWUlGhhYWHdZk+Hk/M5/d5z8t5JPFukjbd/\nm6q8X7x4oZycnORxTk7Oqh4Cv/32m54/f65gMLiW472xubk5FRUVJY937Nixqptkenpajx49Ul1d\n3VqO98YWFhaUn5+fPA4Gg6u6Sebm5jQxMaG9e/eu5XhvzMn5nH7vOXnvJJ4t6VrP/dtU5b0WlpeX\n9d133+ngwYPyer3ZHmfNRaNRdXR0aGhoKOVh6xSxWEy9vb06d+6cfD5ftsdZc07O5/R7z8l7J/Fs\nWWubqry3bt2qaDSaPI5Go9q6dWva623b1rfffqvdu3erpKQkEyO+kcLCQs3MzCSPZ2dnVVhYmPb6\neDyujo4OHTt2TK2trZkY8Y3k5eVpfn4+eRyJRJSXl5f2+ng8rt7eXjU3N6uhoSETI74RJ+dz+r3n\n5L2TeLb8I9nYv01V3nl5efr111+1tLSklZUVTU5OateuXa+9PpFIpByPjY3J7/dvuF9p/Z/a2lpN\nTk7q6dOnevnypW7evKmWlpbXXv/HfMePH1dFRYXOnDmT6VFXZc+ePZqZmdGzZ8+0vLys0dFR1dfX\np73+0qVLKi0tVXd3dwanXD0n53P6vefkvZN4tvwj2di/TfXX5i6XS4cPH9Y333wjSQqFQvL7/frp\np59kWZYqKioUi8X01VdfaXl5WZZlaXx8XF1dXVpcXNTPP/+sd999V7dv35Yk1dXVqbi4OJuRUrjd\nbl29elWNjY2ybVs9PT0qLy/XtWvXZFmWTpw4oUgkov3792tpaUkul0tDQ0N68uSJHj9+rOHhYVVV\nVWnfvn2yLEsDAwNqamrKdqwkt9utCxcu6OTJk7JtW21tbSotLdWtW7dkWZY6Ozu1uLiorq4uxWIx\nWZalGzduaGRkRBMTE7p7967KysrU2dkpy7J0+vRpHTp0KNuxkpycbzPce07dO4lny0bcP+uPn5A2\nqv7+/kQkEsn2GBkTDAbV19eX7TEypr+/X+3t7dkeIyPC4bBjs0m/53P6vef0/ePZYqb/3Tvrz85t\nql+bAwDgBJQ3AACGobwBADAM5Q0AgGEobwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8\nAQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYShvAAAM\nQ3kDAGAYyhsAAMNQ3gAAGMZKJBLZniEtH3300Ypt2479sOHxeBSPx7M9RsYkEglZlpXtMTLC7XZr\nZWUl22NkjJP3TpJcLpds2872GBlDPnO5XC774sWL7j8751nvYVbLtm1Xe3t7tsfImHA4rL6+vmyP\nkTH9/f2KRCLZHiMjgsEge2ewYDAopz9byGemcDj82i+sjv0mCwCAU1HeAAAYhvIGAMAwlDcAAIah\nvAEAMAzlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDAMJQ3AACGobwBADAM5Q0AgGEobwAA\nDEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwzKYr7wcPHqi5uVkffPCBPv3001fOT01N\nqbu7WzU1Nfrss8+Sr8/Pz6unp0cffvih2traNDw8vJ5jp210dFShUEi7d+/W5cuXXzk/MTGh999/\nX1u2bNHg4GDy9dnZWTU0NKiyslJVVVX6+OOP13PstM3MzOiLL77Q559/rh9++OGV87/88ou+/vpr\nffLJJ3r8+HHy9Wg0qpGREd28eVNffvmlfvzxx/UcO21O3j+n753Tny3k21j5POvyUzYI27Y1MDCg\n69evKzc3V0ePHlV9fb1KS0uT12zbtk3nz5/X/fv3U9Z6PB6dPXtWoVBIsVhMR44c0YEDB1LWZptt\n2zp16pTu3bungoIC1dbWqrW1VaFQKHnN9u3bdeXKFd25cydlrcfj0eDgoKqrqxWNRlVTU6PGxsaU\ntdmWSCT0/fffq6WlRT6fT+FwWLt27ZLf709es2XLFh0+fFhTU1Mpa10ulw4ePKhAIKDl5WXdvn1b\nRUVFKWuzzcn7txn2zunPFvJtrHyb6pv3+Pi4iouLVVBQIK/Xq6amJo2NjaVc4/f7VVlZKY8n9XNN\nIBBIPgh9Pp9KSkq0sLCwbrOn4+HDhyorK9POnTvl9XrV1dWlkZGRlGsCgYBqampeyZefn6/q6mpJ\nUk5OjsrLyzU3N7dus6cjEononXfe0dtvvy2326333ntP09PTKde89dZbys3NlWVZKa/7fD4FAgFJ\nktfrld/v14sXL9Zr9LQ4ef+cvndOf7aQb+Pl21TlvbCwoPz8/ORxMBhc1X/kubk5TUxMaO/evWs5\n3hubm5tTUVFR8njHjh2reoBPT0/r0aNHqqurW8vx3tiLFy+Uk5OTPM7JyVnVQ/y3337T8+fPFQwG\n13K8N+bk/XP63jn92UK+9Kxnvk1V3mshFoupt7dX586dk8/ny/Y4ay4ajaqjo0NDQ0MpD1unWF5e\n1nfffaeDBw/K6/Vme5w15+T9c/reOf3ZQr61tanKOy8vT/Pz88njSCSivLy8tNfH43H19vaqublZ\nDQ0NmRjxjRQWFmpmZiZ5PDs7q8LCwrTXx+NxdXR06NixY2ptbc3EiG9k69atikajyeNoNKqtW7em\nvd62bX377bfavXu3SkpKMjHiG3Hy/jl975z+bCHfX8tGvk1V3nv27NHMzIyePXum5eVljY6Oqr6+\nPu31ly5dUmlpqbq7uzM45erV1tZqcnJST58+1cuXL3Xz5k21tLS89vpEIpFyfPz4cVVUVOjMmTOZ\nHnVV8vLy9Ouvv2ppaUkrKyuanJzUrl27Xnv9H/ONjY3J7/dvuF/Z/R8n75/T987pzxby/bVs5NtU\nf23udrt14cIFnTx5UrZtq62tTaWlpbp165Ysy1JnZ6cWFxfV1dWlWCwmy7J048YNjYyMaGJiQnfv\n3lVZWZl/FFNyAAAUQ0lEQVQ6OztlWZZOnz6tQ4cOZTtWktvt1tWrV9XY2CjbttXT06Py8nJdu3ZN\nlmXpxIkTikQi2r9/v5aWluRyuTQ0NKQnT57o8ePHGh4eVlVVlfbt2yfLsjQwMKCmpqZsx0pyuVw6\nfPiwvvnmG0lSKBSS3+/XTz/9JMuyVFFRoVgspq+++krLy8uyLEvj4+Pq6urS4uKifv75Z7377ru6\nffu2JKmurk7FxcXZjJTCyfu3GfbO6c8W8m2sfNYfP+FuVP39/Yn29vZsj5Ex4XBYfX192R4jY/r7\n+xWJRLI9RkYEg0H2zmDBYFBOf7aQz0z/2wvWn53bVL82BwDACShvAAAMQ3kDAGAYyhsAAMNQ3gAA\nGIbyBgDAMJQ3AACGobwBADAM5Q0AgGEobwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8\nAQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwlDcAAIaxEolEtmdIy0cffbRi27Zj\nP2x4PB7F4/Fsj5ExLpdLtm1ne4yMSCQSsiwr22NkDPnM5vR8Tn62uFwu++LFi+4/O+dZ72FWy7Zt\nV3t7e7bHyJhwOKy+vr5sj5Ex/f39cur+hcNhRSKRbI+RMcFgkHwG2wz5HPxsee0XVsd+kwUAwKko\nbwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAA\nw1DeAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDAMJ5s\nD7DeHjx4oMuXLyuRSKitrU09PT0p56empnTx4kX993//t06fPq1//dd/lSTNz8/r//2//6fnz5/L\nsix1dHTon//5n7MR4S+Njo7qP/7jP2Tbtnp6enTu3LmU8xMTE/q3f/s3/dd//ZcGBgbU29srSZqd\nndW//Mu/KBKJyOVy6d///d91+vTpbET4S07fv5mZGf3nf/6nEomEysvLtW/fvpTzv/zyi8bGxrS4\nuKi6ujr90z/9kyQpGo3q3r17+p//+R9ZlqXy8nLt3bs3GxFey8nZJPKZns+0Z8umKm/btjUwMKDr\n168rNzdXR48eVX19vUpLS5PXbNu2TefPn9f9+/dT1no8Hp09e1ahUEixWExHjhzRgQMHUtZmm23b\nOnXqlO7du6eCggLV1taqtbVVoVAoec327dt15coV3blzJ2Wtx+PR4OCgqqurFY1GVVNTo8bGxpS1\n2eb0/UskEvr+++/V0tIin8+ncDisXbt2ye/3J6/ZsmWLDh8+rKmpqZS1LpdLBw8eVCAQ0PLysm7f\nvq2ioqKUtdnk5GwS+SSz85n4bNlUvzYfHx9XcXGxCgoK5PV61dTUpLGxsZRr/H6/Kisr5fGkfq4J\nBALJIvP5fCopKdHCwsK6zZ6Ohw8fqqysTDt37pTX61VXV5dGRkZSrgkEAqqpqXklX35+vqqrqyVJ\nOTk5Ki8v19zc3LrNng6n718kEtE777yjt99+W263W++9956mp6dTrnnrrbeUm5sry7JSXvf5fAoE\nApIkr9crv9+vFy9erNfo/5CTs0nkk8zOZ+KzZVOV98LCgvLz85PHwWBwVf+R5+bmNDExseF+9TM3\nN6eioqLk8Y4dO1ZVwNPT03r06JHq6urWcrw35vT9e/HihXJycpLHOTk5q3rI/fbbb3r+/LmCweBa\njvdGnJxNIl+6Nmo+E58tm6q810IsFlNvb6/OnTsnn8+X7XHWXDQaVUdHh4aGhlJuVqdw+v4tLy/r\nu+++08GDB+X1erM9zppycjaJfKZb72fLpirvvLw8zc/PJ48jkYjy8vLSXh+Px9Xb26vm5mY1NDRk\nYsQ3UlhYqJmZmeTx7OysCgsL014fj8fV0dGhY8eOqbW1NRMjvhGn79/WrVsVjUaTx9FoVFu3bk17\nvW3b+vbbb7V7926VlJRkYsRVc3I2iXz/yEbPZ+KzZVOV9549ezQzM6Nnz55peXlZo6Ojqq+vT3v9\npUuXVFpaqu7u7gxOuXq1tbWanJzU06dP9fLlS928eVMtLS2vvT6RSKQcHz9+XBUVFTpz5kymR10V\np+9fXl6efv31Vy0tLWllZUWTk5PatWvXa6//4/6NjY3J7/dvuH8OkJydTSLfH5mWz8Rny6b6a3O3\n260LFy7o5MmTsm1bbW1tKi0t1a1bt2RZljo7O7W4uKiuri7FYjFZlqUbN25oZGREExMTunv3rsrK\nytTZ2SnLsnT69GkdOnQo27GS3G63rl69qsbGxuT/KlZeXq5r167JsiydOHFCkUhE+/fv19LSklwu\nl4aGhvTkyRM9fvxYw8PDqqqq0r59+2RZlgYGBtTU1JTtWElO3z+Xy6XDhw/rm2++kSSFQiH5/X79\n9NNPsixLFRUVisVi+uqrr7S8vCzLsjQ+Pq6uri4tLi7q559/1rvvvqvbt29Lkurq6lRcXJzNSElO\nziaRz/R8Jj5brD9+Qtqo+vv7E+3t7dkeI2PC4bD6+vqyPUbG9Pf3y6n7Fw6HFYlEsj1GxgSDQfIZ\nbDPkc/Kzpa+vz/qzc5vq1+YAADgB5Q0AgGEobwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAA\nhqG8AQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYShv\nAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDAMFYikcj2DGn5+9//vhKPxx37YcPlcsm27WyPkTFOzufk\nbJLz8yUSCVmWle0xMsbtdmtlZSXbY2SMk9+fLpfLvnjxovvPznnWe5jVisfjrr6+vmyPkTH9/f1q\nb2/P9hgZEw6HHZvPydmkzZEvEolke4yMCQaD4tlppnA4/NovrI79JgsAgFNR3gAAGIbyBgDAMJQ3\nAACGobwBADAM5Q0AgGEobwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUNAIBh\nKG8AAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYTZdeY+OjioUCmn37t26\nfPnyK+cnJib0/vvva8uWLRocHEy+Pjs7q4aGBlVWVqqqqkoff/zxeo6dtgcPHqi5uVkffPCBPv30\n01fOT01Nqbu7WzU1Nfrss8+Sr8/Pz6unp0cffvih2traNDw8vJ5jp4185uZzcjZJmpmZ0RdffKHP\nP/9cP/zwwyvnf/nlF3399df65JNP9Pjx4+Tr0WhUIyMjunnzpr788kv9+OOP6zl22nh2bqz3p2dd\nfsoGYdu2Tp06pXv37qmgoEC1tbVqbW1VKBRKXrN9+3ZduXJFd+7cSVnr8Xg0ODio6upqRaNR1dTU\nqLGxMWVtttm2rYGBAV2/fl25ubk6evSo6uvrVVpamrxm27ZtOn/+vO7fv5+y1uPx6OzZswqFQorF\nYjpy5IgOHDiQsjbbyGduPidnk6REIqHvv/9eLS0t8vl8CofD2rVrl/x+f/KaLVu26PDhw5qamkpZ\n63K5dPDgQQUCAS0vL+v27dsqKipKWZttPDs33vtzU33zfvjwocrKyrRz5055vV51dXVpZGQk5ZpA\nIKCamhp5PKmfa/Lz81VdXS1JysnJUXl5uebm5tZt9nSMj4+ruLhYBQUF8nq9ampq0tjYWMo1fr9f\nlZWVr+QLBALJm8nn86mkpEQLCwvrNns6yGduPidnk6RIJKJ33nlHb7/9ttxut9577z1NT0+nXPPW\nW28pNzdXlmWlvO7z+RQIBCRJXq9Xfr9fL168WK/R08Kzc+O9PzdVec/NzamoqCh5vGPHjlW9iaan\np/Xo0SPV1dWt5XhvbGFhQfn5+cnjYDC4qjfR3NycJiYmtHfv3rUc742RLz0bMZ+Ts0nSixcvlJOT\nkzzOyclZVQH/9ttvev78uYLB4FqO98Z4dqZnPd+fm6q810I0GlVHR4eGhoZSblaniMVi6u3t1blz\n5+Tz+bI9zpojn7mcnE2SlpeX9d133+ngwYPyer3ZHmfN8excW5uqvAsLCzUzM5M8np2dVWFhYdrr\n4/G4Ojo6dOzYMbW2tmZixDeSl5en+fn55HEkElFeXl7a6+PxuHp7e9Xc3KyGhoZMjPhGyPfXNnI+\nJ2eTpK1btyoajSaPo9Gotm7dmvZ627b17bffavfu3SopKcnEiG+EZ+dfy8b7c1OVd21trSYnJ/X0\n6VO9fPlSN2/eVEtLy2uvTyQSKcfHjx9XRUWFzpw5k+lRV2XPnj2amZnRs2fPtLy8rNHRUdXX16e9\n/tKlSyotLVV3d3cGp1w98v21jZzPydmk3x/+v/76q5aWlrSysqLJyUnt2rXrtdf/8dkyNjYmv9+/\n4f454P/w7Pxr2Xh/bqq/Nne73bp69aoaGxtl27Z6enpUXl6ua9euybIsnThxQpFIRPv379fS0pJc\nLpeGhob05MkTPX78WMPDw6qqqtK+fftkWZYGBgbU1NSU7VhJbrdbFy5c0MmTJ2Xbttra2lRaWqpb\nt27Jsix1dnZqcXFRXV1disVisixLN27c0MjIiCYmJnT37l2VlZWps7NTlmXp9OnTOnToULZjJZHP\n3HxOzib9/hfjhw8f1jfffCNJCoVC8vv9+umnn2RZlioqKhSLxfTVV19peXlZlmVpfHxcXV1dWlxc\n1M8//6x3331Xt2/fliTV1dWpuLg4m5FS8OzceO9P64+fkDaq/v7+RF9fX7bHyJj+/n61t7dne4yM\nCYfDjs3n5GzS5sgXiUSyPUbGBINB8ew0UzgcVl9fn/Vn5zbVr80BAHACyhsAAMNQ3gAAGIbyBgDA\nMJQ3AACGobwBADAM5Q0AgGEobwAADEN5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUN\nAIBhKG8AAAxDeQMAYBjKGwAAw1DeAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYaxEIpHtGdLy0Ucf\nrdi27dgPGy6XS7ZtZ3uMjHFyPidnkySPx6N4PJ7tMTLG6ftHPnO5XC774sWL7j8751nvYVbLtm1X\ne3t7tsfImHA4LPKZycnZpN/z9fX1ZXuMjOnv73f8/pHPTOFw+LVfWB37TRYAAKeivAEAMAzlDQCA\nYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDAMJQ3AACGobwBADAM5Q0AgGEobwAADEN5AwBgGMob\nAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAAw2y68n7w4IGam5v1\nwQcf6NNPP33l/NTUlLq7u1VTU6PPPvss+fr8/Lx6enr04Ycfqq2tTcPDw+s5dtrIR76Nmm90dFSh\nUEi7d+/W5cuXXzk/MTGh999/X1u2bNHg4GDy9dnZWTU0NKiyslJVVVX6+OOP13PstDl57yTybbR8\nnnX5KRuEbdsaGBjQ9evXlZubq6NHj6q+vl6lpaXJa7Zt26bz58/r/v37KWs9Ho/Onj2rUCikWCym\nI0eO6MCBAylrs4185Nuo+Wzb1qlTp3Tv3j0VFBSotrZWra2tCoVCyWu2b9+uK1eu6M6dOylrPR6P\nBgcHVV1drWg0qpqaGjU2NqaszTYn751EPmnj5dtU37zHx8dVXFysgoICeb1eNTU1aWxsLOUav9+v\nyspKeTypn2sCgUDyYeHz+VRSUqKFhYV1mz0d5COftDHzPXz4UGVlZdq5c6e8Xq+6uro0MjKSck0g\nEFBNTc0r2fLz81VdXS1JysnJUXl5uebm5tZt9nQ4ee8k8kkbL9+mKu+FhQXl5+cnj4PB4Kr+I8/N\nzWliYkJ79+5dy/HeGPnSQ771Nzc3p6KiouTxjh07VlXA09PTevTokerq6tZyvDfm5L2TyJeu9cy3\nqcp7LcRiMfX29urcuXPy+XzZHmfNkc9sTs4XjUbV0dGhoaEh5eTkZHucNefkvZPIt9Y2VXnn5eVp\nfn4+eRyJRJSXl5f2+ng8rt7eXjU3N6uhoSETI74R8v018mVPYWGhZmZmksezs7MqLCxMe308HldH\nR4eOHTum1tbWTIz4Rpy8dxL5/pFs5NtU5b1nzx7NzMzo2bNnWl5e1ujoqOrr69Nef+nSJZWWlqq7\nuzuDU64e+f4a+bKntrZWk5OTevr0qV6+fKmbN2+qpaXltdcnEomU4+PHj6uiokJnzpzJ9Kir4uS9\nk8j3j2Qj36b6a3O3260LFy7o5MmTsm1bbW1tKi0t1a1bt2RZljo7O7W4uKiuri7FYjFZlqUbN25o\nZGREExMTunv3rsrKytTZ2SnLsnT69GkdOnQo27GSyEe+jZrP7Xbr6tWramxslG3b6unpUXl5ua5d\nuybLsnTixAlFIhHt379fS0tLcrlcGhoa0pMnT/T48WMNDw+rqqpK+/btk2VZGhgYUFNTU7ZjJTl5\n7yTybcR81h8/4W5U/f39ifb29myPkTHhcFjkM5OTs0m/5+vr68v2GBnT39/v+P0jn5n+996z/uzc\npvq1OQAATkB5AwBgGMobAADDUN4AABiG8gYAwDCUNwAAhqG8AQAwDOUNAIBhKG8AAAxDeQMAYBjK\nGwAAw1DeAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDA\nMJQ3AACGobwBADCMlUgksj1DWj766KN527aD2Z4jU1wul23btmM/TDk5n5OzSZLH47Hj8bhj8zl9\n/8hnLpfLFbl48WL+n50zprwBAMDvHPlpBQAAJ6O8AQAwDOUNAIBhKG8AAAxDeQMAYBjKGwAAw1De\nAAAYhvIGAMAwlDcAAIahvAEAMAzlDQCAYShvAAAMQ3kDAGAYyhsAAMNQ3gAAGIbyBgDAMJQ3AACG\nobwBADAM5Q0AgGH+P3KmhkzzUJPZAAAAAElFTkSuQmCC\n",
       "<matplotlib.figure.Figure at 0x1060e7cc0>"
      ]
     },
     "metadata": {},
     "output_type": "display_data"
    }
   ],
   "source": [
    "import random\n",
    "# http://stackoverflow.com/questions/10194482/custom-matplotlib-plot-chess-board-like-table-with-colored-cells\n",
    "\n",
    "from matplotlib.table import Table\n",
    "\n",
    "def main():\n",
    "    grid_table(8, 8)\n",
    "    plt.axis('scaled')\n",
    "    plt.show()\n",
    "\n",
    "def grid_table(nrows, ncols):\n",
    "    fig, ax = plt.subplots()\n",
    "    ax.set_axis_off()\n",
    "    colors = ['white', 'lightgrey', 'dimgrey']\n",
    "    tb = Table(ax, bbox=[0,0,2,2])\n",
    "    for i,j in itertools.product(range(ncols), range(nrows)):\n",
    "        tb.add_cell(i, j, 2./ncols, 2./nrows, text='{:0.2f}'.format(0.1234), \n",
    "                    loc='center', facecolor=random.choice(colors), edgecolor='grey') # facecolors=\n",
    "    ax.add_table(tb)\n",
    "    #ax.plot([0, .3], [.2, .2])\n",
    "    #ax.add_line(plt.Line2D([0.3, 0.5], [0.7, 0.7], linewidth=2, color='blue'))\n",
    "    return fig\n",
    "\n",
    "main()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "class defaultkeydict(collections.defaultdict):\n",
    "    \"\"\"Like defaultdict, but the default_factory is a function of the key.\n",
    "    >>> d = defaultkeydict(abs); d[-42]\n",
    "    42\n",
    "    \"\"\"\n",
    "    def __missing__(self, key):\n",
    "        self[key] = self.default_factory(key)\n",
    "        return self[key]"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.1"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}